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Abstract

Compressive sampling (CoSa) is a new methodology which demonstrates that sparse signals can
be recovered from a small number of linear measurements. Greedy algorithms like CoSaMP have
been designed for this recovery, and variants of these methods have been adapted to the case where
sparsity is with respect to some arbitrary dictionary rather than an orthonormal basis. In this work
we present an analysis of the so-called Signal Space CoSaMP method when the measurements are
corrupted with mean-zero white Gaussian noise. We establish near-oracle performance for recovery
of signals sparse in some arbitrary dictionary. In addition, we analyze the block variant of the method
for signals whose supports obey a block structure, extending the method into the model-based com-
pressed sensing framework. Numerical experiments confirm that the block method significantly out-
performs the standard method in these settings.

1 Introduction

We consider the compressive sensing problem which aims to recover a signal x ∈Rd from noisy measure-
ments

y = Mx+e, (1)

where M ∈ Rm×d is a known linear operator and e ∈ Rd is additive bounded noise, i.e. ‖e‖2
2 ≤ ε2. A

typical assumption in this context is that the signal x is sparse. There are several notions of sparsity,
the simplest of which is that the signal itself has a small number of non-zero elements: ‖x‖0 ≤ k, where
‖x‖0 = |supp(x)| denotes the `0 quasi-norm. We call such signals k-sparse.

A common approach to the compressive sensing problem utilizes the following optimization prob-
lem, deemed `1-synthesis,

x̂`1 = argmin‖x‖1 s.t .
∥∥y−Mx

∥∥
2 ≤ ε. (2)

One can guarantee accurate recovery using this approach when the measurement operator M satisfies
the Restricted Isometry Property (RIP) [1], which states that for some small enough constant δk < 1,

(1−δk )‖x‖2 ≤ ‖Mx‖2 ≤ (1+δk )‖x‖2 for all k-sparse x.

for some small enough constant δk < 1.
It has been shown [2, 3, 4] that when the signal x is k-sparse and M satisfies the RIP with δ2k < 0.4652,

the program (2) accurately recovers the signal,∥∥x̂`1 −x
∥∥

2 ≤C`1ε. (3)
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Another approach to solving the compressive sensing problem (1) is to use a greedy algorithm. These
methods typically identify elements of the support of the signal or estimate the signal iteration by iter-
ation until some halting criterion is met. Recently introduced methods that use this strategy are the
CoSaMP [5], IHT [6], and HTP [7] methods. Greedy methods attempt to uncover the support of the sig-
nal iteratively, and then utilize a simple least-squares problem to estimate the entire signal.

Sparsity in arbitrary dictionaries. Both the convex optimization and iterative methods provide rig-
orous recovery guarantees when the signal is sparse in some fixed orthonormal basis. However, this
simple notion of sparsity limits the reality of compressive sensing applications, so we instead consider
signals sparse in some dictionary D ∈Rd×n :

x = Dα for some ‖α‖0 ≤ k.

In this setting one can utilize the same `1-synthesis program to obtain a candidate coefficient vector α̂`1

and then estimate the signal x by x̂`1 = Dα̂`1 . Initial work on this problem shows that under stringent
requirements on the dictionary D, accurate recovery is possible (see e.g. [8, 9]). Recently, a sufficient and
necessary dictionary-based null-space condition was derived by Chen et.al., which in particular shows
that when the dictionary is full spark and highly coherent, the method fails [10].

Alternatively, one can solve the `1-analysis problem which minimizes coefficients in the analysis
domain,

x̂`1 = argmin
∥∥D∗x

∥∥
1 s.t .

∥∥y−Mx
∥∥

2 ≤ ε. (4)

Here and throughout, the notation D∗ denotes the adjoint of the matrix D. In [11], the authors prove
accurate recovery using this approach when the operators M and D satisfy the D-RIP:

(1−δk )‖Dα‖2 ≤ ‖MDα‖2 ≤ (1+δk )‖Dα‖2 for all k-sparseα. (5)

Recently, the greedy approaches have also been adapted to the setting in which signals are sparse
with respect to arbitrary dictionaries. In particular, the Signal Space CoSaMP variant [12] of the CoSaMP
method [5] is shown in Algorithm 1. Here and throughout, the subscript T denotes the restriction to
elements (or columns) indexed in T . Sζk (z) denotes the operator which returns a support of size ζk that
approximates the support of the best k-sparse representation of z in the dictionary D, and PT denotes
the projection onto the range of DT .

This method is analyzed in [12], under the assumption of the D-RIP (5) and the assumption that one
has access to projections Sk which satisfy∥∥Sk (z)−S ∗

k (z)
∥∥

2 ≤ min
(
c1

∥∥S ∗
k (z)

∥∥
2 ,c2

∥∥z−S ∗
k (z)

∥∥
2

)
, (6)

where S ∗
k denotes the optimal projection:

S ∗
k (z) = argmin

|T |≤k
‖z−PT z‖2

2 . (7)

Under these requirements, the authors prove that the method accurately recovers the k-sparse signal as
in (3).

Although the assumption on the approximate projections is also made for other methods [13, 14],
it is unknown whether such methods can be obtained. Recently, Giryes and Needell [15] relaxed these
assumptions by introducing the notion of near-optimal projections.
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Algorithm 1 Signal Space CoSaMP (SSCoSaMP)

Require: k,M,D,y, a where y = Mx+e, k is the sparsity of x under D and e is the additive noise. S̃ζak and
Sζk are two near optimal support selection schemes.

Ensure: x̂: k-sparse approximation of x.
Initialize the support T 0 =;, the residual y0

r = y and set t = 0.
while halting criterion is not satisfied do

t = t +1.
Find new support elements: T∆ = S̃ζak (M∗yt−1

r ).
Update the support: T̃ t = T t−1 ∪T∆.

Compute the representation: xp = D(MDT̃ t )†y = D
(
argminα̃

∥∥y−MDα̃
∥∥2

2 s.t. α̃(T̃ t )C = 0
)
.

Shrink support: T t =Sζk (xp ).
Calculate new representation: xt = PT t xp .
Update the residual: yt

r = y−Mxt .
end while
Form final solution x̂ = xt .

Definition 1.1 A pair of procedures Sζk and S̃ζ̃k implies a pair of near-optimal projections PSζk (·) and

PS̃ζ̃k (·) with constants Ck and C̃k if for any z ∈Rd ,
∣∣Sζk (z)

∣∣≤ ζk, with ζ≥ 1,
∣∣∣S̃ζ̃k (z)

∣∣∣≤ ζ̃k, with ζ̃≥ 1, and

∥∥∥PS̃ζ̃k (z)z
∥∥∥2

2
≥ C̃k

∥∥∥PS ∗
k (z)z

∥∥∥2

2
as well as

∥∥z−PSζk (z)z
∥∥2

2
≤Ck

∥∥∥z−PS ∗
k (z)z

∥∥∥2

2
, (8)

where PS ∗
k

denotes the optimal projection as in (7).

We assume from this point onward that SSCoSaMP is run using such a pair of procedures. It has been
proven in [15] that when the dictionary D is incoherent or satisfies the RIP, that many standard algorithms
in compressive sensing give near-optimal projections satisfying (8). This improves upon previous results
since even in this case, it is unknown whether any methods exist that satisfy the stricter requirements
of (6). In particular, they prove the following result:

Theorem 1.2 [15] Let M satisfy the D-RIP (5) with δ(3ζ+1)k (ζ ≥ 1). Let Sζk and S̃2ζk be a pair of near
optimal procedures (as in Definition 1.1) with constants Ck and C̃2k . Apply SSCoSaMP (with a = 2) and let
xt denote the approximation to the k-sparse signal x after t iterations of Algorithm 1. If δ(3ζ+1)k < ε2

Ck ,C̃2k ,γ
and (

1+
√

Ck

)2
(
1− C̃2k

(1+γ)2

)
< 1, (9)

then after a constant number of iterations t∗ it holds that∥∥∥xt∗ −x
∥∥∥

2
≤ η0 ‖e‖2 , (10)

where γ is an arbitrary constant, and η0 is a constant depending on δ(3ζ+1)k , Ck , C̃2k and γ. The constant
εCk ,C̃2k ,γ is greater than zero if and only if (9) holds.
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1.1 Block sparsity

Often, signals in practice have additional structure beyond simple sparsity. One common model is that
the support of the signal is clustered together in one or more blocks. This model accounts for the well-
known observation that many significant signal coefficients tend to reside close to one another, and is
called block sparsity. Block sparsity appears in numerous compressed sensing applications including
DNA microarrays, magnetoencephalography, sensor networks and communication [16, 17, 18, 19, 20,
21]. The case when block sparsity is represented in an orthonormal basis, the literature in compressed
sensing provides many algorithms (including a so-called model-based CoSaMP method) and recovery
guarantees [16, 17, 22, 20, 21]. In [21], Baraniuk et.al. define the block-sparse restricted isometry property
as follows.

Definition 1.3 The matrix M satisfies the block-sparse RIP (block-RIP) with constant δ if

(1−δ)‖x‖2
2 ≤ ‖Mx‖2

2 ≤ (1+δ)‖x‖2
2

holds for all k-block-sparse signals x. That is, the above holds for all x ∈ SB ,k where

SB ,k := {[x∗1 , . . . ,x∗d/B ]∗ : xi ∈RB ,xi = 0 for i ∉Ω, |Ω| = k}.

Under the assumption that the sampling matrix has small enough block-RIP constant δ, it is shown
that a modified CoSaMP method offers robust block-sparse signal recovery [21]1. These results show that
block-sparse signals can be recovered from far fewer measurements than would have been required by
a simple sparsity assumption alone. Indeed, traditional results require m on the order of Bk log(d/(Bk))
whereas the block-sparse model requires on the order of Bk +k log(d/k). This is a significant reduction,
especially when the block size B is very large. It is thus important to analyze and adapt signal space
methods as well to this model. In our setting, we consider block-sparse signal x with respect to the
dictionary D to be those in the set:

SD
B ,k := {x = Dα :α= [α1, . . . ,αn/B ],αi ∈RB ,αi = 0 for i ∉Ω, |Ω| = k}. (11)

We call such signals k-block-sparse. Analogously, we define the set of all such coefficient vectors by

V D
B ,k := {α :α= [α1, . . . ,αn/B ],αi ∈RB ,αi = 0 for i ∉Ω, |Ω| = k}, (12)

and the set of all block-sparse supports by

W D
B ,k =

{
T :αT ∈V D

B ,k

}
. (13)

Remark that for B = 1 the k-block-sparse model coincides with the regular k-sparse framework. We
extend the block-RIP to the signal space setting.

Definition 1.4 The matrix M satisfies the block-sparse D-RIP (block-D-RIP) with constant δk
2

(1−δk )‖x‖2
2 ≤ ‖Mx‖2

2 ≤ (1+δk )‖x‖2
2 (14)

holds for all x ∈ SD
B ,k .

1These results hold for more general models as well as signal ensembles. Here, we focus on the block-sparse model.
2We abuse notation and denote both the D-RIP and the block-D-RIP constants by δk . The use will be clear from the context.
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A straightforward adaption of Signal Space CoSaMP to block-sparse signals is described by Algo-
rithm 2. We add as input the block size B , and force the method to select blocks of coefficients at each
iteration. The approximate projections used must now respect the block-sparsity structure; For this pur-
pose we generalize Definition 1.1 for block-sparse signals.

Definition 1.5 A pair of procedures SB ,ζk and S̃B ,ζ̃k implies a pair of near-optimal projections PSB ,ζk (·)
and PS̃B ,ζ̃k (·) with constants Ck = CB ,k and C̃k = C̃B ,k

3 if for any z ∈ Rd , SB ,ζk (z) ∈ W D
B ,ζk , with ζ ≥ 1,

S̃B ,ζ̃k (z) ∈W D
B ,ζ̃k

, with ζ̃≥ 1, and

∥∥∥PS̃B ,ζ̃k (z)z
∥∥∥2

2
≥ C̃B ,k

∥∥∥PS ∗
B ,k (z)z

∥∥∥2

2
as well as

∥∥z−PSB ,ζk (z)z
∥∥2

2
≤CB ,k

∥∥∥z−PS ∗
B ,k (z)z

∥∥∥2

2
, (15)

where S ∗
k , the support selection procedure in the optimal projection, is given by

S ∗
B ,k (z) = supp

argmin
w∈V D

B ,k

‖z−Dw‖2
2

 . (16)

Algorithm 2 Signal Space CoSaMP (SSCoSaMP) for block-sparse signals

Require: k,B ,M,D,y, a where y = Mx+e, B is the block size, k is the block-sparsity of x under D and e is
the additive noise. S̃B ,ζak and SB ,ζk are two near optimal support selection schemes that obey the
block-sparsity constraint.

Ensure: x̂: k-block-sparse approximation of x.
Initialize the support T 0 =;, the residual y0

r = y and set t = 0.
while halting criterion is not satisfied do

t = t +1.
Find new support elements in blocks: T∆ = S̃B ,ζak (M∗yt−1

r ).
Update the support: T̃ t = T t−1 ∪T∆.

Compute the representation: xp = D(MDT̃ t )†y = D
(
argminα̃

∥∥y−MDα̃
∥∥2

2 s.t. α̃(T̃ t )C = 0
)
.

Shrink support in blocks: T t =SB ,ζk (xp ).
Calculate new representation: xt = PT t xp .
Update the residual: yt

r = y−Mxt .
end while
Form final solution x̂ = xt .

1.2 Our contribution

In this work we extend the results of [15] to provide near-oracle recovery guarantees when the measure-
ment noise e is mean-zero Gaussian noise. We focus on the Signal Space CoSaMP method, but analogous
results can be obtained for other methods. Our main result is summarized by the following theorem.

Theorem 1.6 Let y = Mx+e, where M satisfies the D-RIP (5) with a constant δ(3ζ+1)k (ζ≥ 1), x is a vector
with a k-sparse representation under D and e is a white Gaussian noise with varianceσ2. Let Sζk and S̃2ζk

3By abuse of notation we denote also the near optimality constants in the block case by Ck and C̃k . The value of B will be
clear from the context.

5



be a pair of near optimal procedures (as in Definition 1.1) with constants Ck and C̃2k . Apply SSCoSaMP
(with a = 2) and let xt denote the approximation to the k-sparse signal x after t iterations of Algorithm 1.
If δ(3ζ+1)k < ε2

Ck ,C̃2k ,γ
and

(
1+

√
Ck

)2
(
1− C̃2k

(1+γ)2

)
< 1, (17)

then after a constant number of iterations t∗ it holds with high probability that that∥∥∥xt∗ −x
∥∥∥2

2
=O

(
k log(n)σ2) , (18)

where γ is an arbitrary constant, and the constant εCk ,C̃2k ,γ is greater than zero if and only if (17) holds.

Remarks.
1. This improves upon Theorem 1.2 in general, since ‖e‖2 is expected to be on the order of

p
nσ when

e is mean-zero Gaussian noise with variance σ2. These results align with those of standard compressive
sensing when the dictionary D is the identity [23, 24, 25].

2. This bound is, up to a constant and a log(n) factor, the same as the one we get if we use an oracle that
foreknows the true support of the original signal x. The oracle estimator and its error will be defined and
calculated hereafter. Note that the log factor is inevitable for any practical estimator that does not have
access to oracle information [26].

Our second contribution is to extend the analysis of Signal Space CoSaMP to the block-sparse setting.
We prove the following for the recovery given by Algorithm 2.

Theorem 1.7 Let y = Mx + e, where M satisfies the block-D-RIP (5) with a constant δ(3ζ+1)k (ζ ≥ 1), x
is a vector with a block-k-sparse representation under D and e is a white Gaussian noise with variance
σ2. Suppose that SB ,ζk and S̃B ,2ζk are near optimal procedures (as in Definition 1.5 with optimal pro-
jection (16)) with constants Ck and C̃2k respectively. Apply SSCoSaMP (with a = 2) and let xt denote the
approximation to the block-k-sparse signal x after t iterations of Algorithm 2. If δ(3ζ+1)k < ε2

Ck ,C̃2k ,γ
and

(17) holds, then after a constant number of iterations t∗ it holds with high probability that that∥∥∥xt∗ −x
∥∥∥2

2
=O

(
k log(n)σ2) , (19)

where γ is an arbitrary constant, and the constant εCk ,C̃2k ,γ is greater than zero if and only if (17) holds.

Remarks.

1. The condition of Theorem 1.7 is more relaxed than the one of Theorem 1.6 as only Bk + k log(n/k)
measurements are needed for the block-D-RIP to hold (See Theorem 3.3 in [20]), while for the regular
D-RIP, Bk log(n/(Bk)) measurements are needed.

2. If B = 1 then Theorem 1.7 coincides with Theorem 1.6.

6



1.3 Organization

We establish some required notation and preliminary lemmas in Section 2. In Section 3 we present the
oracle estimator in the signal domain and calculate its recovery error. In Section 4 we present our main
results, which imply the near-oracle performance of Theorems 1.6 and 1.7. Our proofs are included in
Section 5. We present numerical experiments for Algorithm 2 in Section 6 and conclude our work in
Section 7.

2 Notation and Consequences of Block-D-RIP

As usual, we let ‖·‖2 denote the Euclidean (`2) norm of a vector, and ‖·‖ the spectral (`2 → `2) norm of a
matrix. We write the d ×d identity matrix as Id . For an index set T , we denote by DT the sub-matrix of
D whose columns are indexed by T . PT = DT D†

T denotes the orthogonal projection onto range(DT ) and
QT = Id −PT the orthogonal projection onto its orthogonal complement.

We next recall some elementary consequences of the block-D-RIP, whose proofs are very similar to
the ones of the D-RIP and can be found in [14].

Lemma 2.1 If M satisfies the block-D-RIP with a constant δk then

‖MPT ‖2 ≤ 1+δk and
∥∥PT (I−M∗M)PT

∥∥≤ δk (20)

for every T ∈W D
B ,k .

Lemma 2.2 If M satisfies the block-D-RIP (14) then∥∥PT1 (I−M∗M)PT2

∥∥≤ δk ,

for any T1 and T2 with T1 ∈W D
B ,k1

, T2 ∈W D
B ,k2

, and k1 +k2 ≤ k.

Lemma 2.3 (Approximate projections) Let SB ,ζk and S̃B ,ζk be a pair of near-optimal procedures as in
Definition 1.5. For any vector v ∈Rd that has a block-k-sparse representation, a support set T ∈W D

B ,k , and

any z ∈Rd we have that ∥∥z−PSB ,ζk (z)z
∥∥2

2
≤Ck ‖v−z‖2

2 , and (21)∥∥∥PS̃B ,ζk (z)z
∥∥∥2

2
≥ C̃k ‖PT z‖2

2 . (22)

Finally, an elementary fact that we will also utilize.

Proposition 2.4 For any two given vectors x1, x2 and a constant c > 0 it holds that

‖x1 +x2‖2
2 ≤ (1+ c)‖x1‖2

2 + (1+ 1

c
)‖x2‖2

2 . (23)
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3 The Oracle Estimator in the Signal Domain

Before we proceed to develop our main result for SSCoSaMP, we start by asking what is the error of an
estimator that foreknows the support of the original signal x. Let T be the true support of x, then the
oracle estimator is simply

x̂O = DT (MDT )† y, (24)

i.e., the minimizer of

min
x̃

∥∥y−Mx̃
∥∥2

2 s.t . x̃ = Dα̃,α̃T C = 0. (25)

The oracle’s error is given by the following lemma

Lemma 3.1 Let M satisfy the D-RIP (5) and x be a signal with a block-k-sparse representation α under a
dictionary D. Assume the measurements are corrupte with mean-zero Gaussian noise with variance σ2.
The oracle estimator’s error is

Bkσ2

1+δk
≤ E‖x− x̂O‖2

2 ≤
Bkσ2

1−δk
. (26)

Proof: Since x is supported on T we can write it as x = Dα= DTαT . Plugging (1) in (24) we have

x̂O = DT (MDT )† (MDTαT +e) = x+DT (MDT )† e. (27)

Thus, the oracle’s error equals

E‖x− x̂O‖2
2 = E

∥∥∥DT (MDT )† e
∥∥∥2

2
. (28)

Using the D-RIP we have

1

1+δk
E
∥∥∥MDT (MDT )† e

∥∥∥2

2
≤ E‖x− x̂O‖2

2 ≤
1

1−δk
E
∥∥∥MDT (MDT )† e

∥∥∥2

2
(29)

The proof ends by noticing that MDT (MDT )† is a projection operator. Therefore, from the properties of
white Gaussian noise we have

E
∥∥∥MDT (MDT )† e

∥∥∥2

2
= trace

(
MDT (MDT )†

)
σ2 = trace

(
(MDT )† MDT

)
σ2 = Bkσ2. (30)

�

4 Main Results

Though the oracle’s error is promising, it is unattainable as we do not have the support of the original
signal. We turn to analyze the SSCoSaMP for block-sparse signals, which is a feasible algorithm for signal
recovery. We provide theoretical guarantees for its recovery performance when the measurement noise is
Gaussian. We assume a = 2 in the algorithm, however, analogous results for other values can be obtained
similarly. We concentrate on the proof of SSCoSaMP for block-sparse signals. In doing so, we also prove
our main result for non-structured sparse signals, as that result is the special case when B = 1.

8



4.1 Theorem Conditions

Before we present the proof of the main result, we recall the conditions which guarantee the assumptions
of Theorem 1.6. The first requirement, that δ(3ζ+1)k < ε2

Ck ,C̃2k ,γ
for a constant ε2

Ck ,C̃2k ,γ
> 0, holds for many

families of random matrices when m ≥ C
ε2

k

(
k log( n

kεk
)+Bk log( 1

εk
)
)

[3, 8, 11, 20, 27]. The more challenging

assumption in the theorem is the condition (17), which requires Ck and C̃2k to be close to 1. However, we
do have an access to such projection operators in many practical settings, and these are not supported by
the guarantees provided in previous results [12, 13, 14, 28]. In fact, when the dictionary D is incoherent
or satisfies the RIP itself, then simple thresholding or standard compressive sensing algorithms can be
used for the projection. See Sec. 4 of [15] for a detailed discussion.

4.2 SSCoSaMP Near-Oracle Guarantees

As in [4, 5], our proof utilizes an iteration invariant which guarantees that each iteration exponentially
reduces the recovery error, down to the noise floor.

Theorem 4.1 Let y = Mx+e, where M satisfies the block-D-RIP (5) with a constant δ(3ζ+1)k (ζ ≥ 1), x is a
vector with a block-k-sparse representation under D and e is an additive noise vector. Suppose SB ,ζk and
S̃B ,2ζk be a pair of near optimal projections as in Definition 1.5 with constants Ck and C̃2k respectively.
Then the estimate of SSCoSaMP, Algorithm 2, at the t-th iteration satisfies∥∥xt −x

∥∥
2 ≤ ρ

∥∥x−xt−1
∥∥

2 +η
∥∥PTe M∗e

∥∥
2 , (31)

for constants ρ and η, and where

Te = argmax
T̃ :|T̃ |≤3ζBk

∥∥PT̃ M∗e
∥∥

2 . (32)

The iterates converge, i.e. ρ < 1, if δ(3ζ+1)k < ε2
Ck ,C̃2k ,γ

, for some positive constant ε2
Ck ,C̃2k ,γ

, and (17) holds.

An immediate corollary of the above theorem yields the following.

Theorem 4.2 Let y = Mx+e, where M satisfies the block-D-RIP (5) with a constant δ(3ζ+1)k (ζ ≥ 1), x is a
vector with a block-k-sparse representation under D and e is a vector of additive noise. Suppose SB ,ζk and
S̃B ,2ζk be a pair of near optimal projections as in Definition 1.5 with the optimal projection (16) and with

constants Ck and C̃2k respectively. Then after a constant number of iterations t∗ =
⌈

log(‖x‖2/‖e‖2)
log(1/ρ)

⌉
it holds

that ∥∥∥xt∗ −x
∥∥∥

2
≤

(
1+ 1−ρt∗

1−ρ

)
η

∥∥PTe M∗e
∥∥

2 , (33)

where η is a constant and Te is defined as in (32).

Proof: By using (31) and recursion we have that after t∗ iterations∥∥∥xt∗ −x
∥∥∥

2
≤ ρt∗ ∥∥x−x0

∥∥
2 + (1+ρ+ρ2 + . . .ρt∗−1)η

∥∥PTe M∗e
∥∥

2 (34)

≤
(

1+ 1−ρt∗

1−ρ

)
η

∥∥PTe M∗e
∥∥

2 ,

9



where the last inequality is due to the equation of the geometric series, the choice of t∗, and the fact that
x0 = 0. �

To prove the near oracle bound we need the following lemma, whose proof is presented in Section 5.

Lemma 4.3 If M has the block-D-RIP with a constant δ3ζk and e is zero-mean white Gaussian noise with
variance σ2 then with probability exceeding 1− 2

(3ζk)! n
−β we have

∥∥PTe M∗e
∥∥

2 ≤
√

(1+δ3ζk )3ζBk
(
1+

√
2(1+β) log(n)

)
σ. (35)

This lemma together with Theorem 4.2 provides the following near-oracle performance theorem.

Theorem 4.4 Assume the conditions of Theorem 4.1 and that e is a zero-mean white Gaussian noise with

variance σ2. Then after a constant number of iterations t∗ =
⌈

log(‖x‖2/‖e‖2)
log(1/ρ)

⌉
it holds with probability ex-

ceeding 1− 2
(3ζBk)! n

−β that

∥∥∥xt∗ −x
∥∥∥

2
≤

(
1+ 1−ρt∗

1−ρ

)
η
√

(1+δ3ζk )3ζBk
(
1+

√
2(1+β) log(n)

)
σ. (36)

Note that Theorem 4.4 implies our main result, Theorem 1.6. We have thus established that SS-
CoSaMP provides near-oracle performance when the noise is mean-zero Gaussian.

5 Proofs

5.1 Proof of Lemma 4.3

We rely on the proof technique of Lemma 3 in [29]. Without loss of generality, we prove for the case of
σ= 1. By simple scaling we get the above result for any value of σ. Using Lemma 2.1 we have that for any
e1,e2 ∈Rd and any support T̃ ,

∣∣T̃ ∣∣≤ 3ζBk,

∥∥PT̃ M∗(e1 −e2)
∥∥

2 ≤
√

1+δ3ζk ‖e1 −e2‖2 . (37)

Thus we can say that
∥∥PT̃ M∗·∥∥2

2 is a
√

1+δ3ζk -Lipschitz functional. Using trace and expectation proper-
ties we have

E
∥∥PT̃ M∗e

∥∥2
2 = E

[
trace

(
e∗MPT̃ PT̃ M∗e

)]= trace
(
MPT̃ PT̃ M∗E

[
ee∗

])= trace
(
MPT̃ PT̃ M∗)

, (38)

where the last equality is due to E [ee∗] = I. Note that trace(MPT̃ PT̃ M∗) equals the sum of the singular
values of MPT̃ . Since PT̃ is a projection to a subspace of dimension 3ζBk, there are at most 3ζBk non-
zero singular values. By the block-D-RIP, we thus have that

E
∥∥PT̃ M∗e

∥∥2
2 ≤ (1+δ3ζk )3ζBk, (39)

and from Jensen’s inequality it follows that

E
∥∥PT̃ M∗e

∥∥
2 ≤

√
(1+δ3ζk )3ζBk, (40)

10



Using concentration of measure in Gauss space [30, 31] we have

P
(∣∣∥∥PT̃ M∗(e)

∥∥
2 −E

[∥∥PT̃ M∗e
∥∥

2

]∣∣≥ t
)≤ 2exp

(
− t 2

2(1+δ3ζk )

)
. (41)

Using (40) we have
∥∥PT̃ M∗e

∥∥
2 −

√
(1+δ3ζk )3ζBk ≤ ∥∥PT̃ M∗e

∥∥
2 −E

[∥∥PT̃ M∗e
∥∥

2

]
and thus

P
(∥∥PT̃ M∗e

∥∥
2 −

√
(1+δ3ζk )3ζBk ≥ t

)
≤ P

(∥∥PT̃ M∗e
∥∥

2 −E
[∥∥PT̃ M∗e

∥∥
2

]≥ t
)

(42)

≤ P
(∣∣∥∥PT̃ M∗e

∥∥
2 −E

[∥∥PT̃ M∗e
∥∥

2

]∣∣≥ t
)

.

Combining (42) and (41) yields

P
(∥∥PT̃ M∗e

∥∥
2 ≥

√
(1+δ3ζk )3ζBk + t

)
≤ 2exp

(
− t 2

2(1+δ3ζk )

)
. (43)

Selecting t =√
(1+δ3ζk )3ζBk

√
2(1+β) log(n) we have e

− t2

2(1+δ3ζk ) = n−3ζBk(1+β). Using a union bound we
have

P
(∥∥PTe M∗e

∥∥
2 ≥

√
(1+δ3ζk )3ζBk

(
1+

√
2(1+β) log(n)

))
(44)

≤ ∑
T̃ :|T̃ |=3ζk

P
(∥∥PT̃ M∗e

∥∥
2 ≥

√
(1+δ3ζk )3ζBk

(
1+

√
2(1+β) log(n)

))

≤ 2

(
n

3ζBk

)
n−3ζBk(1+β) ≤ 2

(3ζBk)!
n−β,

which completes the claim. �

5.2 Proof of Theorem 4.1

We turn now to prove the iteration invariant, Theorem 4.1. Instead of presenting the proof directly,
we divide the proof into several lemmas. The first lemma gives a bound for

∥∥xp −x
∥∥

2 as a function of∥∥PTe M∗e
∥∥

2 and
∥∥QT̃ t (xp −x)

∥∥
2.

Lemma 5.1 If M has the D-RIP with a constant δ3ζk , then with the notation of Algorithm 1, we have

∥∥xp −x
∥∥

2 ≤
1√

1−δ2
(3ζ+1)k

∥∥QT̃ t (xp −x)
∥∥

2 +
1

1−δ(3ζ+1)k

∥∥PTe M∗e
∥∥

2 (45)

Proof: Since xp ,Dαp is the minimizer of
∥∥y−Mx̃

∥∥
2 with the constraints x̃ = Dα̃ and α̃(T̃ t )C = 0, then

〈Mxp −y,Mv〉 = 0 (46)

for any vector v = Dα̃ such that α̃(T̃ t )C = 0. Substituting y = Mx+e with simple arithmetic gives

〈xp −x,M∗Mv〉 = 〈e,Mv〉 (47)

11



where v = Dα̃ and α̃(T̃ t )C = 0. To bound
∥∥PT̃ t (xp −x)

∥∥2
2 we use (47) with v = PT̃ t (xp −x), which gives∥∥PT̃ t (xp −x)

∥∥2
2 = 〈xp −x,PT̃ t (xp −x)〉 (48)

= 〈xp −x, (Id −M∗M)PT̃ t (xp −x)〉+〈e,MPT̃ t (xp −x)〉
≤ ∥∥xp −x

∥∥
2

∥∥PT̃ t∪T (Id −M∗M)PT̃ t

∥∥
2

∥∥PT̃ t (xp −x)
∥∥

2 +
∥∥PT̃ t M∗e

∥∥
2

∥∥PT̃ t (xp −x)
∥∥

2

≤ δ(3ζ+1)k
∥∥xp −x

∥∥
2

∥∥PT̃ t (xp −x)
∥∥

2 +
∥∥PT̃ t M∗e

∥∥
2

∥∥PT̃ t (xp −x)
∥∥

2 ,

where the first inequality follows from the Cauchy-Schwartz inequality, the projection property that
PT̃ t = PT̃ t PT̃ t and the fact that xp −x = PT̃ t∪T (xp −x). The last inequality is due to the block-D-RIP prop-
erty, the facts that T̃ t ∈W D

B ,3ζk and T ∈W D
B ,k and Lemma 2.2. After simplification of (48) by

∥∥PT̃ t (xp −x)
∥∥

2
we have ∥∥PT̃ t (xp −x)

∥∥
2 ≤ δ(3ζ+1)k

∥∥xp −x
∥∥

2 +
∥∥PT̃ t M∗e

∥∥
2 .

Utilizing the last inequality with the fact that
∥∥xp −x

∥∥2
2 =

∥∥QT̃ t (xp −x)
∥∥2

2 +
∥∥PT̃ t (xp −x)

∥∥2
2 gives∥∥xp −x

∥∥2
2 ≤

∥∥QT̃ t (xp −x)
∥∥2

2 +
(
δ(3ζ+1)k

∥∥xp −x
∥∥

2 +
∥∥PT̃ t M∗e

∥∥
2

)2 . (49)

The last equation is a second order polynomial of
∥∥xp −x

∥∥
2. Thus its larger root is an upper bound for it

and together with (32) this gives the inequality in (45). For more details look at the derivation of (13) in
[4]. �

The second lemma bounds
∥∥xt −x

∥∥
2 in terms of

∥∥QT̃ t (xp −x)
∥∥

2 and
∥∥PTe M∗e

∥∥
2 using the first lemma.

Lemma 5.2 Given that SB ,ζk is the first procedure as in Definition 1.5 with constant Ck , if M has the
D-RIP with a constant δ(3ζ+1)k , then∥∥xt −x

∥∥
2 ≤ ρ1

∥∥QT̃ t (xp −x)
∥∥

2 +η1
∥∥PTe M∗e

∥∥
2 (50)

Proof: We start with the following observation∥∥x−xt
∥∥

2 =
∥∥x−xp +xp −xt

∥∥
2 ≤

∥∥x−xp
∥∥

2 +
∥∥xt −xp

∥∥
2 , (51)

where the last step is due to the triangle inequality. Using (21) with the fact that xt = PSB ,ζk (xp )xp we have∥∥xt −xp
∥∥2

2 ≤Ck
∥∥x−xp

∥∥2
2 . (52)

Plugging (52) in (51) leads to

∥∥x−xt
∥∥

2 ≤ (1+
√

Ck )
∥∥x−xp

∥∥
2 ≤

1+√
Ck√

1−δ2
(3ζ+1)k

∥∥QT̃ t (xp −x)
∥∥

2 +
1+√

Ck

1−δ(3ζ+1)k

∥∥PTe M∗e
∥∥

2 (53)

where for the last inequality we use Lemma 5.1. �

The last lemma bounds
∥∥QT̃ t (xp −x)

∥∥
2 with

∥∥xt−1 −x
∥∥

2 and
∥∥PTe M∗e

∥∥
2.
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Lemma 5.3 Given that S̃B ,2ζk is a near optimal support selection scheme with a constant C̃2k , if M has
the block-D-RIP with constants δ(3ζ+1)k and δ2ζk then∥∥QT̃ t (xp −x)

∥∥
2 ≤ η2

∥∥PTe M∗e
∥∥

2 +ρ2
∥∥x−xt−1

∥∥
2 . (54)

Proof: Looking at the step of finding new support elements one can observe that PT∆ is a near optimal
projection operator for M∗yt−1

r = M∗(y−Mxt−1). Noticing that T∆ ⊆ T̃ t and then using (22) with PT t−1∪T

gives ∥∥PT̃ t M∗(y−Mxt−1)
∥∥2

2 ≥
∥∥PT∆M∗(y−Mxt−1)

∥∥2
2 ≥ C̃2k

∥∥PT t−1∪T M∗(y−Mxt−1)
∥∥2

2 . (55)

We start by bounding the left hand side of (55) from above. Using Proposition 2.4 with γ1 > 0 and
α> 0 we have∥∥PT̃ t M∗(y−Mxt−1)

∥∥2
2 ≤ (1+ 1

γ1
)
∥∥PT̃ t M∗e

∥∥2
2 + (1+γ1)

∥∥PT̃ t M∗M(x−xt−1)
∥∥2

2 (56)

≤ 1+γ1

γ1

∥∥PT̃ t M∗e
∥∥2

2 + (1+α)(1+γ1)
∥∥PT̃ t (x−xt−1)

∥∥2
2

+(1+ 1

α
)(1+γ1)

∥∥PT̃ t (Id −M∗M)(x−xt−1)
∥∥2

2

≤ 1+γ1

γ1

∥∥PT̃ t M∗e
∥∥2

2 − (1+α)(1+γ1)
∥∥QT̃ t (x−xt−1)

∥∥2
2

+
(
1+α+δ(3ζ+1)k +

δ(3ζ+1)k

α

)
(1+γ1)

∥∥x−xt−1
∥∥2

2 ,

where the last inequality is due to Lemma 2.1 and (21).
We continue with bounding the right hand side of (55) from below. For the first element we use

Proposition 2.4 with constants γ2 > 0 and β> 0, and (21) to achieve

∥∥PT t−1∪T M∗(y−Mxt−1)
∥∥2

2 ≥ 1

1+γ2

∥∥PT t−1∪T M∗M(x−xt )
∥∥2

2 −
1

γ2

∥∥PT t−1∪T M∗e
∥∥2

2 (57)

≥ 1

1+β
1

1+γ2

∥∥x−xt−1
∥∥2

2 −
1

γ2

∥∥PT t−1∪T M∗e
∥∥2

2

− 1

β

1

1+γ2

∥∥PT t−1∪T (M∗M− Id )(x−xt−1)
∥∥2

2

≥ (
1

1+β − δ(ζ+1)k

β
)

1

1+γ2

∥∥x−xt−1
∥∥2

2 −
1

γ2

∥∥PT t−1∪T M∗e
∥∥2

2 .

By combining (56) and (57) with (55) and then using (32) we have

(1+α)(1+γ1)
∥∥QT̃ t (x−xt−1)

∥∥2
2 ≤ 1+γ1

γ1

∥∥PTe M∗e
∥∥2

2 + C̃2k
1

γ2

∥∥PTe M∗e
∥∥2

2 (58)

+
(
1+α+δ(3ζ+1)k +

δ(3ζ+1)k

α

)
(1+γ1)

∥∥x−xt−1
∥∥2

2

−C̃2k (
1

1+β − δ(1+ζ)k

β
)

1

1+γ2

∥∥x−xt−1
∥∥2

2 .
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Division of both sides by (1+α)(1+γ1) yields∥∥QT̃ t (x−xt−1)
∥∥2

2 ≤
( 1

γ1(1+α)
+ C̃2k

γ2(1+α)(1+γ1)

)∥∥PTe M∗e
∥∥2

2 (59)

+
(
1+ δ(3ζ+1)k

α
− C̃2k

(1+α)(1+γ1)(1+γ2)
(

1

1+β − δ(ζ+1)k

β
)
)∥∥x−xt−1

∥∥2
2 .

Substituting β=
p
δ(ζ+1)k

1−pδ(ζ+1)k
gives

∥∥QT̃ t (x−xt−1)
∥∥2

2 ≤
( 1

γ1(1+α)
+ C̃2k

γ2(1+α)(1+γ1)

)∥∥PTe M∗e
∥∥2

2 (60)

+
(
1+ δ(3ζ+1)k

α
− C̃2k

(1+α)(1+γ1)(1+γ2)

(
1−

√
δ(ζ+1)k

)2 )∥∥x−xt−1
∥∥2

2 ,

Using α=
p
δ(3ζ+1)k√

C̃2k
(1+γ1)(1+γ2)

(
1−pδ(ζ+1)k

)
−pδ(3ζ+1)k

yields

∥∥QΛ̃t (x−xt−1)
∥∥2

2 ≤
( 1

γ1(1+α)
+ C̃2k

γ2(1+α)(1+γ1)

)∥∥PTe M∗e
∥∥2

2 (61)

+
(
−

(√
δ(3ζ+1)k −

√
C̃2k

(1+γ1)(1+γ2)

(
1−

√
δ(ζ+1)k

))2
+1

)∥∥x−xt−1
∥∥2

2 ,

The values of γ1,γ2 give a tradeoff between the convergence rate and the size of the noise coefficient.
For smaller values we get better convergence rate but higher amplification of the noise. We make no
optimization on them and choose them to be γ1 = γ2 = γ where γ is an arbitrary number greater than 0.
Thus we have∥∥QT̃ t (x−xt−1)

∥∥2
2 ≤

( 1

γ(1+α)
+ C̃2k

γ(1+α)(1+γ)

)∥∥PTe M∗e
∥∥2

2 (62)

+
(
−

(√
δ(3ζ+1)k −

√
C̃2k

1+γ
(
1−

√
δ(ζ+1)k

))2
+1

)∥∥x−xt−1
∥∥2

2 .

Using the triangle inequality and the fact that QT̃ t xp = QT̃ t xt−1 = 0 gives the desired result.
�

With the aid of the above three lemmas we turn to the proof of the iteration invariant, Theorem 4.1.
Proof of Theorem 4.1: Substituting the inequality of Lemma 5.3 into the inequality of Lemma 5.2 gives

(31) with ρ = ρ1ρ2 and η= η1+ρ1η2. The iterates converge if ρ2
1ρ

2
2 < 1. Since δ(ζ+1)k ≤ δ3ζk ≤ δ(3ζ+1)k this

holds if (
1+√

Ck
)2

1−δ2
(3ζ+1)k

(
1−

((√
C̃2k

1+γ +1

)√
δ(3ζ+1)k −

√
C̃2k

1+γ

)2)
< 1. (63)

Since δ(3ζ+1)k < 1, we have δ2
(3ζ+1)k < δ(3ζ+1)k . Using this fact and expanding (63) yields the stricter con-

dition(
1−

(
1+

√
Ck

)2
(√

C̃2k

1+γ +1

)2)
δ(3ζ+1)k +2

(
1+

√
Ck

)2
(√

C̃2k

1+γ +1

) √
C̃2k

1+γ
√
δ(3ζ+1)k (64)

+2
√

Ck +Ck −
C̃2k (1+√

Ck )2

(1+γ)2 < 0.
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Algorithm 3 ε-Block Orthogonal Matching Pursuit

Require: k,D,z, where z = x+e, x = Dα, α0 ∈V D
B ,k , where {T1,T2, . . . ,Tn/B } is the set of the valid 1-block-

sparse supports, and e is additive noise.
Ensure: x̂: k-block-sparse approximation of x supported on T̂ .

Initialize estimate x̂0 = 0, residual r0 = z, support T̂ 0 = Ť 0 =; and set t = 0.
while t ≤ k do

t = t +1.
New support element: i t = argmaxi :Ti 6⊂∈Ť t−1

∥∥∥D∗
Ti

rt−1
∥∥∥

2
.

Extend support: T̂ t = T̂ t−1 ∪Ti t .
Calculate a new estimate: x̂t = DT̂ t D†

T̂ t
z.

Calculate a new residual: rt = z− x̂t .
Get maximal correlated column: î t = argmaxi∈Ti t

∥∥D∗
i rt−1

∥∥
2

Support ε-extension: Ť t = Ť t−1 ∪b-extε,2
({

î t
})

.
end while
Set estimated support T̂ = Ť t .
Form the final solution x̂ = DT̂ D†

T̂
z.

The above equation has a positive solution if and only if (17) holds. Denoting its positive solution by
εCk ,C̃2k ,γ, we have that the expression holds when δ(3ζ+1)k ≤ ε2

Ck ,C̃2k ,γ
, which completes the proof. Note

that in the proof we have

η1 =
1+√

Ck

1−δ(3ζ+1)k
, η2

2 =
( 1+δ3ζk

γ(1+α)
+ (1+δ(ζ+1)k )C̃2k

γ(1+α)(1+γ)

)
,

ρ2
1 =

(
1+√

Ck
)2

1−δ2
(3ζ+1)k

, ρ2
2 = 1−

(√
δ(3ζ+1)k −

√
C̃2k

1+γ
(
1−

√
δ(ζ+1)k

))2
,

α=
√
δ(3ζ+1)k√

C̃2k
(1+γ1)(1+γ2)

(
1−√

δ(ζ+1)k
)−√

δ(3ζ+1)k

and γ> 0 is an arbitrary constant. �

6 Numerical experiments with block-sparsity

We perform similar experiments to the ones presented in [12, 15] for the overcomplete-DFT with
redundancy factor 4 and check the effect of the block sparsity. In [12, 15] the signal coefficients were
either all clustered together or all well separated. Here we test the case of several separated clusters in
the coefficients.

We consider two setups: One with k = 2 and B = 4 and one with k = 4 and B = 4. We compare
the performance of SSCoSaMP with OMP [32], ε-OMP [15, 33], block-OMP (BOMP) [34] and ε-BOMP as
the approximate projections. We do not include other methods since a thorough comparison has been
already performed in [12, 15], and the goal here is to check the effect of the block sparsity.
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ε-BOMP is an extension of BOMP, presented in Algorithm 3. This algorithm uses the block-extension
operator, which is a generalization to the extension operator in [33]4. This operator extends the support
to include also the indices of the blocks in the dictionary that contain at least one atom that is highly
correlated with one of the atoms in the current support.

Definition 6.1 (ε-block-extension) Let 0 ≤ ε< 1, D be a fixed dictionary and {T1,T2, . . . ,Tn/B } be the set of
the valid 1-block-sparse supports. The ε-block-extension of a given support set T is defined as

b-extε,2(T ) =
{

i ∈ Tq : ∃ j ∈ T, ∃l ∈ Tq ,

∣∣〈dl ,d j 〉
∣∣2

‖dl‖2
2

∥∥d j
∥∥2

2

≥ 1−ε2

}
.

The recovery rate in the noiseless case appears in Figure 1. It can be seen that using the block based
algorithm provides better recovery results. Note that the major improvement is achieved for smaller
values of m. This is due to the fact stated above that it is easier to satisfy the block-D-RIP than the regular
D.

The reconstruction error in the noiseless case is presented in Figure 2. It can be seen that, as antic-
ipated from the theory, the `2-norm of the error scales linearly with σ and that the squared error scales
nearly linearly with k. The reason that the behavior for k is not exactly linear as is for σ is due to the
fact that the D-RIP constant changes when k increases. Notice also that the larger k is, the harder it is to
satisfy the D-RIP conditions. As the conditions for SSCoSaMP without using block-sparsity are stricter
we have that the graphs in this case rise faster.
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Figure 1: Recovery rate for SSCoSaMP (OMP), SSCoSaMP (ε-OMP) with ε = p
0.1, SSCoSaMP (block-

OMP) and SSCoSaMP (ε-block-OMP) with ε = p
0.1 for a random m ×1024 Gaussian matrix M and a 4

times overcomplete DFT matrix D. The signal is k-block-sparse with block size b = 4. On the left k = 2
and on the right k = 4.

7 Conclusion

The Signal Space CoSaMP method was studied in the case of arbitrary noise [35, 12, 14] under the as-
sumptions of the D-RIP and approximate projections. As in [14], the assumptions in this work on the

4In [33] it is referred to as ε-closure but since closure bears a different meaning in mathematics we use a different name here.
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Figure 2: Error of SSCoSaMP (OMP), SSCoSaMP (ε-OMP) with ε = p
0.1, SSCoSaMP (block-OMP) and

SSCoSaMP (ε-block-OMP) for a random 70×1024 Gaussian matrix M, a 4 times overcomplete DFT matrix
D and different values of k with σ= 0.4 (left) and different values of σ with k = 2.

approximate projections allow for standard compressed sensing algorithms to be used when the dic-
tionary D satisfies properties like the RIP or incoherence. In this correspondence, we have presented
performance guarantees for this method in the presence of white Gaussian noise, which are comparable
to those obtained from an oracle which provides the support of the signal. Our bounds are also of the
same order as those for standard greedy algorithms like IHT and CoSaMP [25], but ours hold also for
signals sparse with respect to an arbitrary dictionary.

In addition, we present a block variant of the Signal Space CoSaMP method designed for signals
sparse in an arbitrary dictionary D and whose sparsity pattern obeys a block structure. The analysis
demonstrates that far fewer measurements are required when this model is utilized when compared
to standard methods. Experiments show that using traditional compressed sensing algorithms as the
approximate projections in the Signal Space CoSaMP method very often fails completely for block-sparse
signals. The block variant proposed in this work however, offers recovery in these settings.
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