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Abstract—Two-part reconstruction is a framework for signal
recovery in compressed sensing (CS), in which the advantages of
two different algorithms are combined. Our framework allows
to accelerate the reconstruction procedure without compromising
the reconstruction quality. To illustrate the efficacy of our
two-part approach, we extend the author’s previous Sudocodes
algorithm and make it robust to measurement noise. In a 1-
bit CS setting, promising numerical results indicate that our
algorithm offers both a reduction in run-time and improvement
in reconstruction quality.

Index Terms—compressed sensing, fast algorithms, two-part
reconstruction.

I. I NTRODUCTION

In the compressed sensing (CS) signal acquisition paradigm,
sparse signalsxN ∈ R

N containing onlyK ≪ N nonzero
coefficients can be reconstructed from measurementsy ∈ R

M

with K < M ≪ N [1, 2]. The measurement system is often
modeled as a linear matrix-vector multiplicationy = Φx;
measurement noise can also be supported,y = Φx+ z. While
reconstruction quality is an important criterion for designing
reconstruction algorithms, the run-time is also of great concern
in practical applications.

Prior art: There is a vast literature on CS signal reconstruc-
tion algorithms; many existing algorithms can be classified
as combinatorial or geometric. The combinatorial approach
uses sparse and often binary measurement matrices [3, 4], and
features fast recovery but requires a suboptimal number of
measurements. Sparse binary measurement matrices based on
expander graphs have been shown to have good properties
for compressed sensing reconstruction problems [5]. The geo-
metric appoach uses dense measurement matrices that satisfy
the Restricted Isometry Property (RIP) [2]. Examples of the
geometric approach include CoSaMP [6] and IHT [7]. The
advantages of the geometric approach are that it requires
a small number of measurements and offers resiliency to
measurement noise at the expense of greater run-time [8].

The Sudocodes algorithm [9] provides a new scheme for
lossless reconstruction of sparse signals in the case where
measurements are noiseless. The algorithm has two parts. In
Part 1, the Sudocodes algorithm [9] uses a sparse binary
random matrix withL ones in each row to acquire the
measurements. Therefore, onlyL summation operations are
needed for the acquisition of each measurement. With these
measurements, Part 1 can efficiently recover most of the zero

coefficients and some of the nonzero coefficients inx. After
Part 1, only a modest number of coefficients are unknown,
and the unknown coefficients are solved in Part 2, where a
dense measurement matrix is used. Part 2 first updates the
components in the measurements and measurement matrix that
are related to the coefficients recovered in Part 1. Therefore,
Part 2 only needs a modest number of measurements and it
applies matrix inversion to solve the remaining reconstruction
problem. A variation of the Sudocodes algorithm is group
testing basis pursuit CS (GBCS) [10], which applies a CS
reconstruction algorithm, Basis Pursuit, in Part 2. Sudocodes
and GBCS are both fast. However, they can only be applied
to the noiseless case, which is impractical in many real life
applications. Nonetheless, the idea of two-part reconstruction
motivates a more practical framework, which performs fast
reconstruction in the presence of noise. Unlike Sudocodes,a
more straightforward approach to two-part reconstructionis
to perform support recovery in Part 1 [11], but exact support
recovery is ambitious, especially when the measurements are
noisy.

Contributions: First, we propose a two-part framework for
reconstruction of sparse signals (Section II-A). The purpose of
our framework is to accelerate the reconstruction procedure
without compromising the reconstruction quality. Our strat-
egy is to let Part 1 perform a simple algorithm to provide
partial reconstruction and let Part 2 complete the residual
reconstruction problem. Second, to illustrate the efficacyof
our two-part approach, we extend the Sudocodes algorithm [9]
and make it robust to measurement noise (Section II-B); we
call this algorithm Noisy-Sudocodes. Third, we apply Noisy-
Sudocodes to 1-bit CS, by using a modified 1-bit quantizer in
Part 1 and Binary Iterative Hard Thresholding (BIHT) [12] in
Part 2 (Section II-C). Promising numerical results (Section III)
indicate that our algorithm offers both a reduction in run-time
and improvement in reconstruction quality.

II. T WO-PART RECONSTRUCTION

A. Framework

We discuss our two-part reconstruction framework, which
is illustrated in Figure 1. Part 1 will apply a simple and
fast algorithm. This algorithm will quickly provide a low
quality reconstruction in the sense that for some portion ofthe
coefficients, it may not be able to perform sufficiently accurate
reconstruction. The index set of the coefficients that are not
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accurately reconstructed in Part 1 will then be sent to Part 2.
On the one hand, in order to reduce the run-time, we want
the portion left for Part 2 to be as small as possible, because
the algorithm in Part 2 is in general more complex and slower
than the algorithm in Part 1. On the other hand, we don’t
want to sacrifice too much accuracy. The trade-off between
reconstruction quality and run-time can be adjusted according
to the specifics of the application at hand.

Similar to the original Sudocodes algorithm [9], Part 2 will
only deal with the coefficients that are left over from Part 1.
Part 2 will first remove the redundant coefficients inx whose
indices are not in the index set sent by Part 1, and also remove
the corresponding columns from the measurement matrix. The
measurements are then updated by subtracting the contribution
of the removed coefficients to the original measurements.
Because the problem size is greatly reduced in Part 2, the
algorithm applied in Part 2 can put emphasis on reconstruction
quality rather than run-time. A potential drawback of our two-

Input measurements & 

measurement matrix in Part 1

Input measurements & 

measurement matrix in Part 2 

Low quality reconstruction in 

Part 1 

Update measurements & 

measurement matrix in Part 2 

High quality reconstruction in 

Part 2 

Combine the reconstructed 

signals from Part 1 and Part 2 

Output of two-part 

reconstruction 

High fidelity algorithm 

Simple algorithm 

Fig. 1. Block diagram for two-part reconstruction.

part framework is that in order for Part 1 to identify most
of the coefficients correctly, it might be necessary to use an
increased number of measurements. Therefore, our two-part
framework is mostly applicable when fast reconstruction is
crucial whereas measurements are relatively cheap.

B. Noisy-Sudocodes

To illustrate how two-part reconstruction can combine the
advantages of two algorithms, we describe a Noisy-Sudocodes
algorithm, which extends the original Sudocodes algorithm[9]
by making it robust to measurement noise, while retaining the
high-speed processing of the original algorithm.

We begin with some notations. Letx be the real-valued
input signal and letx(i) represent theith element ofx.
Denote the measurement matrices in Part 1 and Part 2 by
Φ1 ∈ R

M1×N andΦ2 ∈ R
M2×N , respectively. Letz1 andz2

represent additive measurement noise; the noisy measurements
in the two parts are given by:

y1 = Φ1x+ z1, (1)

y2 = Φ2x+ z2. (2)

The reconstructed signal obtained from Part 1 is denoted by
x̂1. Note that not all the coefficients are recovered in Part 1,

because it is a simple low quality algorithm. The index setT
can now be defined as:

T , {i: x(i) is not recovered in Part 1}.

Define (x)T , {x(i) ∈ x: i ∈ T }. Let (Φ)T denote the sub-
matrix formed by combining columns ofΦ at column indices
T . We defineΩr(j) as the support (indices of nonzeros) of
the jth row ofΦ1, andΩc(i) as the support of theith column
of Φ1, wherej ∈ {1, ...,M1} and i ∈ {1, ..., N}.

The Noisy-Sudocodes algorithm proceeds as follows:
Part 1: The measurement matrixΦ1 has independent and

identically distributed (i.i.d.) Bernoulli entries. The measure-
ment vectory1 is acquired via (1), and eachy1(j) is the
summation of a subset of coefficients ofx that depend on
Ωr(j). If there is no measurement noise, as in the Sudocodes
algorithm [9], then for a real-valued inputx, a zero mea-
surement can only be the summation of zero coefficients.
In other words, if y1(j) is zero, then(x)Ωr(j) = 0. But
in the presence of noise, a measurement is (very) unlikely
to be precisely zero. Moreover, a small-valued measurement
could have measured a combination of multiple large-valued
coefficients, though with small probabilityp. However, it
is unlikely that a large-valued coefficient could appear in
multiple small-valued measurements (ifp is small, thenpn

decreases quickly asn increases).
Our numerical experiments suggest that if the measurement

matrix is sparse enough, then it is sufficiently accurate to
identify a coefficient to be zero when it is involved in three
or more small-valued measurements. To utilize this numerical
observation, letǫ be a small positive constant that depends on
the noise level. Define an index set that contains the indices
of small-valued measurements as:

S , {j : |y1(j)| < ǫ, j ∈ {1, ...,M1}}. (3)

We identifyx(i), i ∈ {1, ..., N} to be zero if|Ωc(i)∩S| ≥ 3,
where|·| denotes cardinality. For those coefficients that cannot
be identified in this zero-identification procedure, the indices
are recorded inT and sent to Part 2.

Part 2: Solve the remaining reconstruction problem by
utilizing a high quality CS reconstruction algorithm. The
distribution of the measurement matrixΦ2 depends on the
algorithm applied in Part 2 (for example, if CoSaMP [6] is
used in Part 2, then a GaussianΦ2 is appropriate). Initially,
the measurement vectory2 is acquired via (2). After receiving
T from Part 1, Part 2 first updatesx andΦ2:

x̃ = (x)T ,

Φ̃2 = (Φ2)T .

Note that we only identify zero coefficients in Part 1. The
zero coefficients do not contribute toy2, thus y2 need not
be updated. The high quality CS reconstruction algorithm in
Part 2 takes̃x, Φ̃2, andy2, and computeŝx2, the reconstructed
signal.

We complete the reconstruction by assigning the coefficients
in x̂2 at indicesT to the elements in the final reconstructed
signal x̂,

(x̂)T = x̂2.



C. Application to 1-bit compressed sensing

In 1-bit CS [13], the CS measurements are quantized to 1
bit per measurement. The problem model for noiseless and
noisy 1-bit CS is formulated as

y = sign(Φx), (4)

y = sign(Φx+ z), (5)

where z is measurement noise. Note that the measurements
acquired in both noiseless and noisy 1-bit CS include quan-
tization noise. The quantization noise explains why the SNR
achieved in the noiseless 1-bit CS setting, which is shown
in Figure 2, is finite, whereas unquantized noiseless measure-
ments yield perfect reconstruction [1, 2].

Because the amplitude information of the measurements
is lost due to the quantization described by (4) or (5), it is
convenient to assume that the 1-bit CS framework imposes a
unit energy constraint on the reconstructed signal.

In Part 1 of Noisy-Sudocodes discussed in Subsection II-B,
we only need to know ify1(j) is greater or less thanǫ.
Therefore, 1 bit is sufficient to quantize each measurement
without losing any information needed for the reconstruction
in Part 1. For example, we can quantizey1(j) as:

ȳ1(j) =

{
0, if |y1(j)| ≤ ǫ

1, if |y1(j)| > ǫ
. (6)

We note that this modified 1-bit quantizer (6) is only used
in Part 1, whereas in Part 2 we utilize a standard 1-bit
quantizer (4, 5).

Then utilizingȳ1 as the measurements, (3) can be rewritten
as:

S , {j : |ȳ1(j)| = 0, j ∈ {1, ...,M1}}.

This discussion implies that Noisy-Sudocodes can be extended
to a 1-bit CS setting by utilizing a 1-bit CS algorithm in Part2.

A possible 1-bit CS algorithm that can be utilized is
BIHT [12]. BIHT achieves better reconstruction performance
than the previous 1-bit CS algorithms in the noiseless 1-
bit CS setting. We show by numerical results in Section III
that combining Noisy-Sudocodes with BIHT in a two-part
setting (Sudo+BIHT) achieves better reconstruction quality
and reduction in run-time than directly using BIHT (direct
BIHT).

III. N UMERICAL RESULTS

In this section, we present simulation results that compare
Sudo+BIHT and direct BIHT in terms of SNR and run-time.
SNR is defined as

SNR(dB), 10 log10(‖x‖
2
2/‖x− x̂‖22),

wherex is the input signal and̂x is the reconstructed signal;
run-time is measured in seconds on a Dell OPTIPLEX 9010
running an Intel(R) CoreTM i7-3770 with 16GB RAM.

We simulate both noiseless, in which BIHT-l1 is utilized
and noisy 1-bit CS settings, in which BIHT-l2 is utilized.
The input signalx is of length N = 10, 000, containing
K = 50 nonzero coefficients, which are i.i.d. Gaussian with

zero mean, andx is normalized such that‖x‖2 = 1. Let M1

and M2 be the number of measurements for Parts 1 and 2
of Sudo+BIHT. ThenM = M1 + M2 is the number of
measurements for direct BIHT. We perform the trials for mea-
surement rateM/N within the range[0, 2]. In our simulation,
we let M1 = c1K log2(N/K), which for sufficiently large
c1 (determined numerically) allows Part 1 to identify more
than 90% of the zero coefficients. The measurement matrix
Φ1 ∈ R

M1×N is i.i.d. Bernoulli with Bernoulli parameter
p = c2

K
, wherec2 (determined numerically) is a constant. Note

that the nonzero entries of the Bernoulli matrix are scaled by
1√
p

in order to have the same input SNR as in direct BIHT.

Φ2 ∈ R
M2×N is i.i.d. Gaussian withφ2(i, j) ∼ N (0, 1),

i ∈ {1, ...,M2}, j ∈ {1, ..., N}.
For direct BIHT, the measurement matrixΦ ∈ R

M×N is
i.i.d. Gaussian withφ(i, j) ∼ N (0, 1), i ∈ {1, ...,M}, j ∈
{1, ..., N}.

Finally, the additive measurement noisez, which we use in
the noisy setting, is i.i.d. Gaussian. It has zero mean and its
variance is10−2.5.

Noiseless setting:The measurement vectory1 for Part 1
of Sudo+BIHT is acquired by (6) withǫ = 0, and the
measurement vectorsy2 for Part 2 of Sudo+BIHT andy for
direct BIHT are acquired by (4). In the noiseless setting, if
any elementy1(j) only measures zero coefficients, theny1(j)
will be strictly zero. Therefore, we modify Part 1 of Noisy-
Sudocodes by identifyingx(i) to be zero if it is measured at
least once in the zero measurements, i.e.,|Ωc(i) ∩ S| ≥ 1.
Note that in this case, Part 1 will not introduce any error.
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Fig. 2. Reconstruction performance from 1-bit measurements in the noiseless
setting.

The simulation results for the SNR and run-time are shown in
Figure 2. We iterate over BIHT until the consistency property1

is satisfied or the number of iterations reaches 100. We notice

1We say that the consistency property of BIHT [13] is satisfiedif applying
the measurement and quantization system (4) and (5) to the reconstructed
signal x̂ yields the same measurementsy as the original measurements.



that Sudo+BIHT achieves slightly higher SNR than direct
BIHT except in the low measurement rate (M/N ) region,
where the SNR for both Sudo+BIHT and direct BIHT is
modest. Owing to the generally low reconstruction quality
in the low measurement rate region, it is more interesting to
compare performance in the higher measurement rate region.
It is demonstrated in Figure 2 that asM/N increases, the SNR
for both algorithms increases similarly. However, the run-time
for Sudo+BIHT grows slower than direct BIHT.

Noisy setting: The measurement vectory1 for Part 1
of Sudo+BIHT is acquired by (6) withǫ > 0, and the
measurement vectors for Part 2 of Sudo+BIHT,y2, and direct
BIHT, y, are acquired by (5). The resulting SNR is shown in

0 0.5 1 1.5 2
−5

0

5

10

15

20

25

30

M/N

S
N

R
(d

B
)

 

 

Sudo+BIHT 130
direct BIHT 130
Sudo+BIHT 80
direct BIHT 80
Sudo+BIHT 30
direct BIHT 30

Fig. 3. SNR achieved by Sudo+BIHT and direct BIHT in the noisy1-bit CS
setting with 30, 80 and 130 iterations for BIHT.
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Fig. 4. Run-time of Sudo+BIHT and direct BIHT in the noisy 1-bit CS setting
with 30, 80 and 130 iterations for BIHT.

Figure 3, and run-time is shown in Figure 4. When the number
of iterations for BIHT is 30 in both Part 2 of Sudo+BIHT and

direct BIHT, Sudo+BIHT yields better consistency and thus
provides better reconstruction quality. With more iterations,
the SNR for both Sudo+BIHT and direct BIHT improves. The
SNR curve of direct BIHT tends to get closer to Sudo+BIHT
as the number of iterations increases, because for Sudo+BIHT,
the error introduced in Part 1 cannot be corrected by Part
2. We notice that the run-time for Sudo+BIHT with 130
BIHT iterations is half of that for direct BIHT with 30 BIHT
iterations, while the SNR increased by roughly 5 dB. In other
words, problem size reduction due to zero identification in
Part 1 allows BIHT in Part 2 to run more iterations to improve
reconstruction quality with reasonable run-time.

IV. CONCLUSION

We discussed a two-part framework for fast reconstruction
of sparse signals, in which Part 1 quickly reduces the problem
size by reconstructing the “easy” part, leaving a “difficult”
problem of smaller size for Part 2. The zero-identification
algorithm in Noisy-Sudocodes is well suited for Part 1 of
our two-part framework, because it is fast. Part 1 of Noisy-
Sudocodes quickly identifies most of the zero coefficients
without introducing much error. Therefore, a high fidelity
algorithm in Part 2 is able to complete the reconstruction
efficiently due to the reduction in problem size. The promising
simulation results of Noisy-Sudocodes with BIHT in Part 2
(Sudo+BIHT) implies that Noisy-Sudocodes could be promis-
ing for algorithm design in 1-bit CS reconstruction problems.
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