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GREEDY SIGNAL SPACE METHODS FOR INCOHERENCE AND BEYOND

RAJA GIRYES AND DEANNA NEEDELL

ABSTRACT. Compressive sampling (CoSa) has provided many methods for signal recovery of sig-

CoSa literature and improve upon previous work in the signal space setting.

1. INTRODUCTION

covering an original signal x € R¥ from a set of noisy measurements

y=Mx+e,

the signal x, such as sparsity.

arXiv:1309.2676v2 [math.NA] 31 Mar 2014

nals compressible with respect to an orthonormal basis. However, modern applications have
sparked the emergence of approaches for signals not sparse in an orthonormal basis but in some
arbitrary, perhaps highly overcomplete, dictionary. Recently, several “signal-space” greedy meth-
ods have been proposed to address signal recovery in this setting. However, such methods inher-
ently rely on the existence of fast and accurate projections which allow one to identify the most
relevant atoms in a dictionary for any given signal, up to a very strict accuracy. When the dictio-
nary is highly overcomplete, no such projections are currently known; the requirements on such
projections do not even hold for incoherent or well-behaved dictionaries. In this work, we pro-
vide an alternate analysis for signal space greedy methods which enforce assumptions on these
projections which hold in several settings including those when the dictionary is incoherent or
structurally coherent. These results align more closely with traditional results in the standard

In many signal and image processing applications we encounter the following problem: re-

where M € R"*4 is a known linear operator and e € R4 is additive bounded noise, i.e. |e||? < 2.
In many cases such as those in Compressive Sampling (CoSa) [1], we have m < d and thus (I)
has infinitely many solutions. To make the problem well-posed we rely on additional priors for

The sparsity assumption provides two main models, termed the synthesis and analysis mod-
els [2]. The synthesis model, which has received great attention in the past decade, assumes
that x has a k-sparse representation & under a given dictionary D € R?*" [3]. In other words,
there exists a vector & € R” such thatx = De and || @]y < k, where |||y = | supp(a)| denotes the

¢y pseudo-norm. Under the synthesis model assumption we can recover x = Da by solving

argmin|eally s.t. |y-MDal,<e.
[14

Since solving () is an NP-complete problem in general [4], approximation techniques are
required for recovering x. One strategy uses relaxation, replacing the ¢y with the ¢; norm, re-

sulting in the ¢, -synthesis problem

&y, =argmineal;, st |y-MDe|,<e.
a

The study of these types of synthesis programs has largely relied on properties like the Restricted

Isometry Property (RIP) [5], which states that

(1-8p) Ixl1? < IMx[|? < (1+6¢) [xI*> for all k-sparse x,
1
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Algorithm 1 Signal Space CoSaMP (S§SCoSaMP)

Require: k,M,D,y,a wherey =Mx+e, k is the sparsity of x under D and e is the additive noise.
S and %, is a pair of near optimal projection schemes.
Ensure: X: k-sparse approximation of x.
Initialize the support T° = @, the residual y? =y and set 7 = 0.
while halting criterion is not satisfied do
r=t+1.
Find new support elements: Ty = %, (M*y.™1).
Update the support: T/ = T'"1 U Th.
Compute the representation: x, = D(MD T:)Ty =D (argmin

ally-MD&> st. &z =0).
Shrink support: T" = #(x)).
Calculate new representation: x’ = Prx,,.
Update the residual: y. = y—Mx'.

end while

Form final solution % = x".

for some small enough constant 6 < 1.
If the matrix D is unitary and the vector x has a k-sparse representation e, then when M
satisfies the RIP with §,; < 0¢,, the program (3) accurately recovers the signal,

”ﬁ[1 —X||2 < Cy ¢, 4)

where %,, = Day,, Cy, is a constant greater than v2 and §,, (= 0.4652) is a constant [6}[7,8]. This
result also implies perfect recovery in the absence of noise. It was extended also for incoherent
redundant dictionaries [9].

An alternative aproach to approximating (2) is to use a greedy strategy. Recently introduced
methods that use this strategy are the CoSaMP [10], IHT [L1], and HTP methods. Greedy
methods iteratively identify elements of the support of the signal, and once identified, use a
simple least-squares to recover the signal. These methods were shown to have guarantees
in the form of () under the assumption of the RIP. However, such results hold only when D
is orthonormal, and do not hold for general dictionaries D. Recently, the greedy approaches
have been adapted to this setting. For example, the Signal Space CoSaMP method adapts
CoSaMP to the setting of arbitrary dictionaries. A slight modificatiorl] of this method is shown
in Algorithm[Il In the algorithm, the subscript 7 denotes the restriction to elements (columns)
indexed in T. The function .#%(y) returns the support of the best k-sparse representation of y in
the dictionary D, and Pt denotes the projection onto that support.

In [13], the authors analyze this CoSaMP variant under the assumption of the D-RIP [14],
which stated]

1-94) ID«|® < IMDa|l® < (1 +0p) IDa|l®> forall k-sparse a. (5)

1Here we use two separate support selection schemes, whereas the original Signal Space CoSaMP method uses
one.
2By abuse of notation we denote both the RIP and the D-RIP constants by 6. It will be clear from the context to
which one we refer at each point in the article.
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They prove that under this assumption, if one has access to projections .# which satisfy
| @ -7 @), <min(e | £ @], 2 |2- 7 @] ), 6)

then the method accurately recovers the k-sparse signal, as in (). Here, we write yko’j " to de-
note the optimal projection. Although the other results for greedy methods in this setting also
rely on similar assumptions [15}[16], it remains an open problem whether such projections can
be obtained. In this paper, we address this issue by analyzing the two projections in the method
separately, and using an alternative theoretical analysis. This analysis allows us to weaken the
requirement on the projections. This new requirement also shows that when D is incoherent,
traditional compressed sensing algorithms can be used for these projections. Of course, the
interesting case is when the dictionary D is not incoherent at all.

1.1. Our contribution. In this paper we present a variant of SSCoSaMP and develop theoretical
guarantees for it. We provide similar guarantees to CoSaMP for incoherent dictionaries and
show how these are extended for coherent ones.

As is evident by Algorithm[I} as in the case of other greedy methods, we need access to a
projection which, given a general vector, finds the closest (in the ¢, sense) k-sparse vector.

In the representation case (when D = I), simple hard thresholding gives the desired result.
However, in the signal space we need to solve

S (z) = argmin ||z—PTz||§. (7)
IT|<k

This problem seems to be NP-hard in general, as is the case in the analysis framework [17], so an
approximation is needed. For this we introduce the notion of a pair of near-optimal projection,
which extends the definition in and is similar to the one in [13].

Definition 1.1. A pair of procedures ;. and 572:,C implies a pair of near-optimal projections

Py andPng(.) with constants Cy. and Cy. if for anyz € R4, y(k(z)| <{k,with({ =1, %k(z)‘ <
Ck, with =1, and
9 2 2 2
||Z—P5ﬂ(k(z)Z||2 < Ck Hz—Py’:(z)zHZ as well as HP‘S%(Z)ZHZ >Cy HPy]:(Z)zHZ, (8)

whereP > denotes the optimal projection as in (7).
Our main result can now be summarized as follows.

Theorem 1.2. Let M satisfy the D-RIP (§) with a constant §3¢+1)x € = 1). Suppose that Sy
and S¢i are a pair of near optimal projections (as in Definition[L1) with constants Cy and
Cor. Apply SSCoSaMP (with a = 2) and let X' denote the approximation after t iterations. If

) <€ . and
BC+DE ™%y oty

(1+C)(1— Cak )<1 9)
k (1+Y)2 ’

then after a constant number of iterations t* it holds that
%" =x|, =notel, (10)

wherey is an arbitrary constant, and 1y is a constant depending on 841k, Ck, Cor andy. The
constantec, is greater than zero if and only if Q) holds.
3
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Remark. Note that we use a = 2 as in the traditional CoSaMP method for our analysis, but
like in the traditional method, Algorithm[I] provides a template and other choices of a (a = 1)
can certainly be used. Similarly, a large value of ¢ allows (9) to be satisfied with smaller con-

stants, but makes the RIP restriction 6 ;4 1yx < ezck oy much harder to be satisfied. This is an
2k

important tradeoff, and different projections will optimize this tradeoff in different ways. To
allow for a wide range of projections to be used, we leave { as a free parameter.

Unlike previous results in the signal space setting, the requirement (9) on the near-optimal
projections holds in many common compressed sensing settings such as those when the dic-
tionary D is incoherent or satisfies the RIP. In those settings, classical recovery methods may be
utilized for the projections. We thus offer an improvement over existing signal space analyses
which enforce requirements on the projections which do not even hold when the dictionary is
highly incoherent.

1.2. Organization. In Section[2we present the notation we use in the work and some prelim-
inaries. We present the proof of our main result, Theorem in Section[3l In Section 4] we
examine some important settings to which our results apply. Section[5 discusses related works
and concludes the paper.

2. NOTATIONS AND PRELIMINARIES

We use the following notation in our work. We write ||-||, for the Euclidean (¢2) norm of a
vector, and ||-|| for the spectral (¢, — ¢) norm of a matrix. We denote the identity matrix by
I; = 1€ R, Given support set T, D7 is the sub-matrix of D whose columns are indexed by
T. We write P = DTDTT as the orthogonal projection onto range(D7) and Q7 =1; — Pt as the
orthogonal projection onto the orthogonal complement of range(D ).

Recall the D-RIP defined in (B), which enforces that the measurement matrix M preserves
the geometry of signals sparse with respect to D. The D-RIP, like the standard RIP, inherits the
following useful properties. The first follows immediately from the definition and thus appears
without a proof.

Corollary 2.1. If M satisfies the D-RIP with a constant 6. then
IMP7[* <1+6 (11)
forevery T such that |T| < k.
Lemma 2.2. If M satisfies the D-RIP (B) then
[Pr@—M*M)Pr| <64 (12)
forany T such that|T| < k.

Proof: The proof is similar to the one of the standard RIP as appears in [8]. We first observe
that the definition (B) of the D-RIP is equivalent to requiring

[IMVI5 = IVII5| < 8k VI3
for any v = Da such that || @l < k. From this it follows that

2 2 2 2
|IMP7zll5 — [Przl5| < 61 IP7zll5 < 51 1z
4



for any set T such that |T| < k and any z € R?. Next we notice that

IMPzl|5 - [Przl3 2'P;M*MP;z—-z*Prz
= Z*PT(M*M - Id)PTZ

= (Pr(M*M-1,)Prz,z).

Since P (M*M —1,;)P7 is Hermitian we have that

(PrM'M -14)Prz,7) _ [PrM*M-1,)Pr|.
z llzll»

Thus we have that the D-RIP implies for any set T such that |T| < k. O

Corollary 2.3. If M satisfies the D-RIP [B) then
|Pr,@—M*M)Py, || <64, (13)

forany Ty and T, with |Th| < ky, |T>| < ko, and ky + ko < k.
Proof: Since T) c Ty U T, and T, < Ty U T, we have from Lemma[2Z.2] that
||PT1 (I_M*M)PTz ”2 = ||PT2UT1 (I_M*M)PT2UT1 ” <0r.
O

Finally, we point out some consequences of the definition of near-optimal projections, as
in Definition LTl A clear implication of this definition is that for any vector v € R? that has a
k-sparse representation and a support set T such that | T| < k, and for any z € R we have that

||z—P5p(k(z)z||§ < Crlv-zl3, and (14)

2 = 2
= CullPrai. (15)

HP%@)Z‘

The constants Cy and C,;. will play a role in the convergence guarantees we develop for SS-
CoSaMP. Requirements on the allowed values and the type of dictionaries that has near optimal
support selection schemes will be discussed later in Section[dl We will also utilize the follow-
ing elementary fact, whose proofis immediate using the inequality of arithmetic and geometric
means.

Proposition 2.4. For any two given vectors Xy, X, and a constant ¢ > 0 it holds that

2 2 1 2
X1 +xo5 < (1+ ) X115 + 1+E x21l5. (16)

3. ALGORITHM GUARANTEES

In this section we provide theoretical guarantees for the reconstruction performance of SS-
CoSaMP. The results here are for the choice of a = 2 in the algorithm, however, analogous re-
sults for other values a = 1 follow similarly. We will prove the main result, Theorem via

Corollary[3.2] The proof and discussion of this corollary occupy the remainder of this section.
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3.1. Theorem Conditions. Before we begin the proof of the theorem we first ask under what
conditions the assumptions of the theorem hold. One condition of Theorem[I.2is that §,(;.¢)x <

€2 . foraconstante? . > 0. When the dictionary D is unitary, it was shown for many
CiCorry CrCorry

families of random matrices that for any value of €, if m = e%klog(%k), where C is a given

constant, then d < e with high probability [7, 9} [18]. A similgr result for the same family of
random matrices holds for the D-RIP [14]. Thus, the critical part in the conditions of the The-
orem is condition (@), that imposes a requirement on Cy and C, to be close to 1. We have an
access to projection operators that satisfy this condition in many practical settings which are
not supported by the guarantees provided in previous papers that used near optimal projec-
tions [I6]. This is due to the near-optimality definition and the proof technique used in
this paper; A detailed discussion of this subject is left to Section [ below.

3.2. SSCoSaMP Guarantees. Analogously to that of CoSaMP in [8], our proofrelies on iteration
invariant which shows that each iteration substantially reduces the recovery error.

Theorem 3.1. Let M satisfy the D-RIP (B) with constants 8 +1)k,03¢k,0 3¢+1)k and let S and
Sk be near optimal projections as in Definitionl[L 1l with constants Cy and Coi. Then

I ~x],, < p Jx—x""1 ], +nlele, an
for constants p and n. The iterates converge, i.e. p <1, if 63r41)k < €2C Conr’ for some positive
kr»“2k
constante®. ., and @) holds.
Cr,Corry

An immediate corollary of the above theorem is the following

Corollary 3.2. Assume the conditions of Theorem[3.1l Then after a constant number of iterations
l,* - [10g(llxllz/llellz)—| ll, hOldS l,hal,

log(1/p)

* l_pt*

t

X —Xx| =(1+ el,. 18

[« x|, ( 1_p)nn Iz 18)

Proof: By using (I7) and recursion we have that after ¢* iterations
Hx[* —xH2 <o Ix—x°|, + A+p+p%+...05 Dnlell, (19)
1-p"
s(1+ P )nueuz,
1-p

where the last inequality is due to the equation of the geometric series, the choice of t*, and the
fact thatx? = 0. O

_ot*
Note that Corollary[3.2limplies our main result, Theorem[L2] with ny = (1 + 11 L 5 ) 7.
We turn now to prove the iteration invariant, Theorem 3.1l Instead of presenting the proof
directly, we divide the proof into several lemmas. The first lemma gives a bound for |x, - x|,

as a function of [lell, and | Q: (x, —X) .




Lemma 3.3. IfM has the D-RIP with a constant 63k, then with the notation of Algorithml[I, we
have

1 +63 k
VT el

(20)
1-03c+1)k

Iy =xll, =< Q7 txp =, +

1
/ 2
1- 6(3(+1)k

The second lemma bounds fjx — x|, in terms of ||Q7: (x,, —X) ||, and |||, using the first lemma.
Lemma 3.4. Under the assumptions and notation of Theorem[L.2, we have
Ix" —x[|, < p1[|Qz: oxp =x) ||, + 11 llellz, 21)
where the constants p1 and n, are given explicitly in (23).
The last lemma bounds || Q7+ (x, —x) ||, with ||x’~! —x]|, and [e|l».

Lemma 3.5. Under the assumptions and notation of Theorem[L.2, we have
1Q7:xp —x)||, <m2llella + pa |x—x"7"|,, (22)

where the constants p, and 1, are given explicitly in (25).

The proofs of Lemmas 3.3 3.4]and B.5 appear in[Al [Bland [C] respectively. With the aid of the
above three lemmas we turn to the proof of the iteration invariant, Theorem 3.1}

Proof of Theorem[3.1: Substituting the inequality of Lemma[3.5into the inequality of Lemma[3.4]
gives (I7) with p = p;p, and n =11 + p17m,. The iterates converge if p{p5 < 1. Since §41)k <
53(k = 6(3(+1)k this holds if

(1 +25(3(+1)k\/ Cr+Cy

2
1 _6(3(+1)k

'(1_((“27 +1|\/6aceni - 1+27 <1. 23)

Since 6 (3¢+1)k < 1, we have 5?3(+1)k < 6@r+nk < V/O@r+nk- Using this fact and expanding
yields the stricter condition

—\2 _ _
v C v C v C
((1+Ck) 1—( 1+i/k) —1)+2(1+Ck)( 1+§/k ( 1+i’k+1)\/5(3(+1)k (24)

2 -
1+ 1fzyk) +4,/Cr v Cok

1+y

- 2
+(2\/Ck 1—( CZk) ~(1+Cp)

1+y

)

1+y

+ 1) +2)5(3(+1)k <0.

The above equation has a positive solution if and only if (@) holds. Denoting its positive solution
~ . 2 .
by €1, Cory WE have that the expression holds when ik <€ CoCorry’ which completes the
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proof. Note that in the proof we have

C
\/?icz +2y/C+ Cr/1+ 03¢k

1 +63(k N (1 +5((+1)k)62k)

2
- 2= 25)
m 1= batnr T2 (y(l ) yA+ad+y)
1+26 VCr+C v C 2
2 B+ k k k 2 2k
= y = 1 - 6 - 1 - 6 )
P1 1 _6?3(+1)k 2 (\/ B¢+Dk T+y ( V ((+1)k))
oo VOsr+k
C
\ Ty (= VOsne) = Voarnk
and y > 0 is an arbitrary constant. U

4. NEAR OPTIMAL PROJECTION EXAMPLES

In this section we give several examples for which condition (9),

1+C )(1— Cak )<1
k (1+'}’)2 ’

can be satisfied with accessible projection methods.

4.1. Unitary Dictionaries. For unitary D the conditions hold trivially since Cy = C»; = 1 using
simple thresholding. In this case our results coincide with the standard representation model
for which we already have theoretical guarantees [10]. However, for a general dictionary D sim-
ple thresholding is not expected to have this property.

4.2. RIP Dictionaries. We next consider the setting in which the dictionary D itself satisfies
the RIP. In this case we may use a standard method like IHT or CoSaMP for .#; and simple
thresholding for .%. For dictionaries that satisfy the RIP, it is easy to use existing results in
order to derive bounds on the constant Cy.

In order to see how such bounds can be achieved, notice that standard bounds exists for
these techniques in terms of the representation error rather than the signal error. That is, for
a given vector v = Da + e and any support set T of size k, it is guaranteed that if 54, < 0.1 (or
O3k < \/%) then &, the recovered representation of CoSaMP (or IHT), satisfies

le—aly =< Cellv—Pr+vly, (26)

where C, = 5.6686 (or C, = 3.3562) [8}[10}T1].

We use this result to bound Cy as follows. For a general vector v we may write its optimal
projection as Pr«v = Da with supp(a) = T*. Applying the bound in withe =v—-Pr«vand
P ;v =Da along with the RIP yields

[v=P;v|, < Iv=Prevl, + || Prv—Psv|, (27)
=lv=P7-vl, + |Da -Dall

SIV=Prvlla + v1+02lla—al:

S v=Pr:vlz + Cev/1+ 821 IV=Pr+Vll;.
8



This implies that

Cr<1+Co\/1+65. (28)
For example, if 8, < 0.1 then Cy < 6.9453 for CoSaMP and if §3; < % then Cj. < 4.6408 for IHT.

The inequality in holds true not only for CoSaMP and IHT but for any algorithm that pro-
vides a k-sparse representation that obeys the bound in (26). Note that many greedy algorithms
have these properties (e.g. [12,[19,20]), but relaxation techniques such as ¢;-minimization
or the Dantzig selector [21] are not guaranteed to give a k-sparse result.

Having a bound for Ci, we realize that in order to satisfy (@) we now have a condition on the
second constant,

(1+7)° (29)

~ 1
Cor=|1-
2k ( 1+ Cy

In order to show that this condition can be satisfied we provide an upper bound for C,; which
is a function of the RIP constants of D. The near-optimal projection can be obtained by simple
thresholding under the image of D*:

S (V) = argmin [ D} (30)
IT|=k
Lemma 4.1 (Thresholding Projection RIP bound). If D is a dictionary that satisfies the RIP with
a constant 6y, then using as the thresholding projector yields
~ 1-0x
Cr= .
k 140k

Proof: Let v be a general vector. Let T be the indices of the largest k entries of D*vand T* the
support selected by the optimal support selection scheme as in (7). By definition we have that

2
|psv][, = ID7.v1- (31)

Since ﬁ <| (D’})T”z < 1_1—5k for | T| < k (see Prop. 3.1 of [10]), we have that

2 2
Ty * * \Ty*
(1+65) H(DT) DTV‘ZE 1-64) H(DT*) DT*V‘Z 32)
Since P; = (D})'D. we get that
2 _5k 2
P: > Prvl5. 33
[Psvll; 2 15 IPr-vil (33)
Thus Cy = %. O
Hence, the condition on the RIP of D for satisfying (@) turns to be
>(1- 1+vy)°. 34
1+ 62k 1+ Ck ( Y) (34)

By using the exact expression for Cy in terms of RIP constants, one can obtain guarantees in
terms of the RIP constants only. For example, from [10], for CoSaMP one has more precisely
that for any vector a, the reconstructed vector & from measurements z = Da + e satisfies

1
+4(1+ Oak )

le—all <




Using we have
2 ) 1
—+4(1+ ik ) . (35)
O3k

Ce<1++v1+06
1- 63k V1= Ok
Substituting this into the expression (34) gives a bound on the RIP constants alone. For example,

setting ¥ = 0.01, one finds that the requirement 64 < 0.052 is enough to guarantee (9) holds
using CoSaMP.

4.3. Incoherent Dictionaries. Given thata dictionary D has a coherence y, it is known that the
RIP constant can be upper bounded by p in the following way

8 < (k-1 (36)

Hence, using this relation one may get recovery conditions based on the coherence value using
the conditions from the previous subsection. For example, if we use CoSaMP for the first pro-
jection and thresholding for the second one, one may have the following condition in terms of

the coherence (instead of the RIP): u < %.

4.4. Support Selection using Highly Correlated Dictionaries. In all the above cases, the dic-
tionary is required to be incoherent. This follows from the simple fact that decoding under a
coherent dictionary is a hard problem in general. However, in some cases we have a coherent
dictionary in which each atom has a high correlation with a small number of other atoms and
very small correlation with all the rest. In this case, the high coherence is due to these rare high
correlations and pursuit algorithms may fail to select the right atoms in their support estimate
as they may be confused between the right atom and its highly correlated columns. Hence, one
may update the pursuit strategies to add in each of their steps only atoms which are not highly
correlated with the current selected atoms and as a final stage extend the estimated support to
include all the atoms which have high coherence with the selected support set.

This idea is related to the recent literature of super-resolution (see e.g. [24] 27,
and references therein) and to the e-OMP algorithm [29], which is an extension of OMP. In this
work we employ e-OMP (with a post-processing step that adds correlated atoms) as a support
selection procedure. We also propose a similar extension for thresholding, e-thresholding, that
for a given signal z, selects the support in the following way. It picks the indices of the largest
elements of D*z one at a time, where at each time it adds the atom with highest correlation to
z excluding the already selected ones. Each atom is added together with its highly correlated
columns.

Before we present these methods formally, we introduce the following definition taken from
[29].

Definition 4.2 (c-extensionf)). Let0 < ¢ < 1 andD bea fixed dictionary. Thee-extension of a given
support set T is defined as

d; d; 2
eXte,z(T):{i :3djeT, %21—62}.
Id; 13 d; 5

3In itisreferred to as e-closure but since closure bears a different meaning in mathematics we use a different
name here.
10



Algorithm 2 e-Orthogonal Matching Pursuit

Require: k,D,zwherez=x+e,x=Da, ||ally < k and e is an additive noise.
Ensure: X: k-sparse approximation of x supported on 7.
Initialize estimate X° = 0, residual r’ = z, support 7° = T7° = g and set £ = 0.
while 7 < k do
r=rt+1.
New support element: i’ = argmax; .1 [d;r'~"].
Extend support: 77 = Tt u {i’}.
Calculate a new estimate: X' =D, DTth

Calculate a new residual: ¥’ =z—X".
Support e-extension: T!= exteyz(T h.
end while
Set estimated support 7' = T
Form the final solution X = DTDTTZ

Algorithm 3 e-thresholding

Require: k,D,zwherez=x+e,x=Da, ||l < k and e is an additive noise.
Ensure: X: a k-sparse approximation of x supported on 7.
Initialize support 70 = T7° = @ and set ¢ = 0.
Calculate correlation between dictionary and measurements: v=D*z.
while 7 < k do
r=t+1.
New support element: i’ = argmax;g 1 [vil.
Extend support: 77 = T LU {i’}.
Support e-extension: Tt = = exte (1.
end while
Set estimated support T = T
Form the final solution X = DTDTTZ

Having the above definition, we present e-OMM] and e-Thresholding techniques in Algo-
rithms2land[3

Note that the size of the group of atoms which are highly correlated with one atom of D is
bounded. The size of the largest group is an upper bound for the near-optimality constants {
and{ (note here we will just set { = (). More precisely, if the allowed high correlations are greater
then 1 —e? then we have the upper bound

{ < max |exteo(T)| < max k|exte({i})].
T:|T|<k l=<i=n

We have a trade-off between the size of the correlation which we can allow and the size of
the estimated support which we get. The smaller the correlation between columns we allow,
the larger ¢ is and thus also the estimated support. On the one hand, this attribute is positive;

“In €-OMP is presented slightly different: (1) It treats the more general case of recovering a signal from a
set of measurement y = Mx + e; (2) the support extension at the last stage of Algorithm lis proposed as a post-
processing step apart from the e-OMP algorithm.

11



the larger the support, the higher the probability that our near-optimality constants Cj and Cy
are close to 1. On the other hand, for large {, §3¢+1)x is larger and it is harder to satisfy the
RIP requirements. Hence we expect that if the number of measurements is small, the size of {
would be more critical as it would be harder to satisfy the RIP condition. When the number of
measurements gets higher, the RIP requirement is easier to satisfy and can handle higher values
of (.

One trivial example, in which the above projections have known near-optimality constants
is when D is an incoherent dictionary with one or more repeated columns. In this case, the
projection constants of D are simply the ones of the underlying incoherent dictionary.

1

0.8

0.6

0.4

0.2

0
10° 10" 10 10° 10*

FIGURE 1. Correlation size (inner product) in a sorted order of one atom of the 4
times redundant-DFT dictionary with the other atoms. Note that the x-axis is in
alog-scale.

In other cases we still do not have guarantees for these constants. In [29], a more general
version of e-OMP that includes the matrix M is analyzed, providing conditions for the signal
reconstruction. However, these impose requirements on the magnitude of the signal coeffi-
cients which we do not have control of in the projection problem. Hence, the existing recovery
guarantees for e-OMP cannot be used for developing bounds for the projection constants.

Though theoretical statements are not at hand yet, we shall see that these methods give good
recovery in practice. Clearly, we need each atom in D to be highly correlated only with a small
group of other columns and incoherent with all the rest. An example of such a dictionary is the
overcomplete-DFT which is a highly coherent dictionary. The correlations between each atom
in this dictionary and its neighboring atoms are the same, i.e., each of the diagonals of its Gram
matrix have the same value. A plot of the coherence value of a given atom with its neighborsin a
sorted order appears in Fig.[Ilfor a four times overcomplete DFT and signal dimension d = 1024.

Note that when we determine a correlation to be high, if the inner product (atoms are nor-
malized) between two atoms is greater than 0.9 (¢ = v/0.1), we get that each atom has two other
highly correlated columns with correlation of size 0.9. The correlation with the rest is below
0.64, where the largest portion has inner products smaller then 0.1.

4.4.1. Experimental Results. We repeat the experiments from for the overcomplete-DFT
with redundancy factor 4 and check the effect of the new support selection methods both for the
case where the signal coefficients are clustered and the case where they are well separated. We
compare the performance of OMP, e-OMP and e-thresholding for the approximate projections.
We do not include other methods since a thorough comparison has been already performed in

[13], and the goal here is to check the effect of the e-extension step.
12



The recovery results appear in Figures ZH4l As seen from Figure 2, in the separated case
SSCoSaMP-OMP works better for small values of m. This is likely because it uses a smaller
support set for which it is easier to satisfy the RIP condition. As separated atoms are very un-
correlated it is likely that OMP will not be confused between them. When the atoms are clus-
tered, the high correlations take more effect and OMP is not able to recovery the right support
because of the high coherence between close atoms in the cluster and around it. This is over-
came by using e-OMP which uses larger support sets and thus resolves the confusion. Note that
even e-threshodling gets better recovery in this case, though it is a much simpler technique, and
this shows that indeed the improvement is due to the extended support selection strategy. As
expected, using larger support estimates for the projection is more effective when the number
of measurements m is large.

We may say that the support extension step leads to a better recovery rate overall as it gets
a good recovery on both the separated and clustered coefficient cases. In it is shown that
all the projection algorithms either perform well on the first case and very bad on the other or
vice versa. Using SSCoSaMP with e-OMP we have, at the cost of getting slightly inferior behav-
ior in the separated case compared to SSCoSaMP with OMP, much improved behavior for the
clustered case where the latter gets no recovery at all.

Figures [3H4] demonstrate the sensitivity of the approximation algorithms to the choice of €
(note that € = 0 reverts to the Thresholding/OMP algorithm). While it is clear that ¢ cannot be
too large (or far too many atoms will be included), the optimum choice of ¢ may not always be
easy to identify since it depends on the dictionary D.

100¢ 8—e o = o——e : 0 100¢

> 90F > 90
S S
() ()
> 8of S sof
3 3
@ 70+ @ 70+
S S
4 4
O 60p —w— SSCoSaMP (Thresholding) O 60p —w— SSCoSaMP (Thresholding)
Q —e—55C0SaMP (¢ Thresholding), & = V0.1 Q —e—55C0SaMP (¢ Thresholding), & = V0.1
B 501 —+— SSCoSaMP (OMP) B 50+ —+— SSCoSaMP (OMP)
Iy —s— SSCoSaMP (e OMP), £ = V0.1 Iy —s— SSCoSaMP (¢ OMP), £ = V0.1
u— 40} £ OMP,e =V0.1 y— 40r £ OMP,e =V0.1
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FIGURE 2. Recovery rate for SSCoSaMP (Thresholding), SSCoSaMP (e-
Thresholding) with ¢ = v0.1, SSCoSaMP (OMP), SSCoSaMP (e-OMP) with
€ = /0.1 and e-OMP with € = /0.1 for a random m x 1024 Gaussian matrix M and
a 4 times overcomplete DFT matrix D. The signal is 8-sparse and on the left the
coefficients of the original signal are clustered whereas on the right they are sep-
arated.

5. DISCUSSION

5.1. Related Work. Our work extends the work of Davenport, Needell, and Wakin who de-
velop and analyze the Signal Space CoSaMP algorithm. In that work, the D-RIP is enforced,

as well as access to projections which satisfy (@). It is currently unknown whether there exist
13
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FIGURE 3. Recovery rate for SSCoSaMP (e-Thresholding) with different values of
€ for a random m x 1024 Gaussian matrix M and a 4 times overcomplete DFT
matrix D. The signal is 8-sparse and on the left the coefficients of the original
signal are clustered whereas on the right they are separated.
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FIGURE 4. Recovery rate for SSCoSaMP (e-OMP) with different values of € for a
random m x 1024 Gaussian matrix M and a 4 times overcomplete DFT matrix D.
The signal is 8-sparse and on the left the coefficients of the original signal are
clustered whereas on the right they are separated.

efficient projections which satisfy these requirements, even for well-behaved dictionaries like
those that satisfy the RIP or have an incoherence property. That being said, other results on sig-
nal space methods rely on such assumptions. For example, a related work by Blumensath an-
alyzes an algorithm which is a signal space extension of the Iterative Hard Thresholding (IHT)
method [15]. The model in that work utilizes a union-of-subspaces model and also assumes the
D-RIP and projections with even stronger requirements than those in (6).

These types of projections also appear in model-based compressive sensing, where such op-
erators project onto a specified model set. The model may describe structured sparsity patterns
like tree-like or block sparsity, or may be a more general mode. In this setting, signal recovery
is performed by first reconstructing the coefficient vector, and then mapping to signal space.
When the dictionary D is an orthonormal basis, greedy methods have been adapted to struc-

tured sparsity models [30]. The assumptions, however, nearly require the product AD to satisfy
14



the traditional RIP, and so extensions to non-orthonormal dictionaries serve to be difficult. Al-
though our work differs in its assumptions and domain model, model-based methods inspired
the development of signal space CoSaMP [13}[31].

The importance of using and analyzing two separate projection schemes in sparse recovery
is also discussed in an independent line of work by Hegde et.al. [32]. There, the authors call
the two projections the “head” and “tail” projections, and analyze a variant of Iterative Hard
Thresholding (IHT) for signal recovery under the Model-RIP, a generalization of the D-RIP. In
fact, they show that without a projection satisfying essentially the second inequality of (8), con-
ventional IHT will fail.

It would be also important to mention the relation of the e-OMP and e-thresholding algo-
rithms (Algorithms[2l and B) to the methods proposed in [24} [28]. The notion of excluding co-
herent atoms in the process of building the representation is used also within these works. In
particular, without the extension step, the e-OMP and e-threshodling techniques share a great
similarity with the Band-Excluded OMP (BOMP) and Band-Excluded Matched Thresholding
(BMT) methods in [24] and the heuristic coherence-inhibiting sparse approximation strategy
in [28]. As we have seen in Section [4.4] the use of the extension step deteriorates the perfor-
mance in the case of separated coefficients as a larger support is processed and therefore the
RIP conditions are harder to be satisfied. It is likely that using the techniques in [24} 28] would
be better suited to deal with separated coefficient vectors.

Finally, a related but significantly different vein of work also exists that studies signals from
analysis space rather than synthesis signal space. Indeed, it was in this vein that the D-RIP was
first proposed and enforced for reconstruction [I4]. In this setting, one requires that the analysis
coefficients D*x are sparse or compressible, and reconstruction is performed in that domain.
Standard optimization based and greedy methods for compressed sensing have been extended
and studied in this setting as well. In particular, ¢;-minimization [2} 14} 33} 34} 35], and greedy
methods like CoSaMP and IHT have all been adapted to account for analysis (co)sparsity [16),
36,137,138].

5.2. Contributions and Directions. In this work, we extend previous analysis of the Signal
Space CoSaMP (SSCoSaMP) algorithm. In signal space greedy algorithms for dictionaries which
are not orthonormal, the computational bottleneck lies in the use of the approximate projec-
tions. Here we extend the idea of a near-optimal projection, and consider two possibly different
near-optimal projections in the SSCoSaMP method. Our new analysis enforces weaker assump-
tions on these projections, which hold when the dictionary D is incoherent or satisfies the RIP,
unlike previous results whose assumptions do not hold in this setting. Above, we discuss several
important settings and describe algorithms that can be used for the approximate projections
which satisfy our requirements for accurate signal recovery. This includes even the case when
the dictionary is highly coherent but each atom is only highly correlated with a small number
of atoms, an important example in applications like super-resolution.

It remains an important and challenging open problem to develop approximate projection
techniques which satisfy the assumptions of our main results even when the dictionary is highly
coherent in an arbitrary fashion. There are clearly limitations in this regard, as decoding from
highly correlated atoms has fundamental theoretic boundaries. It is unknown, however, how
far these limits reach and for what applications accurate reconstruction is still possible. An
alternative of course is to develop greedy methods which do not require such projections, which

we believe to be an equally challenging problem.
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APPENDIX A. PROOF OF LEMMA [3.3]

Lemmal3.3: If M has the D-RIP with constants 63k, 9 3¢+1)k, then

\/1+53

k
lell,.
1-03c+1)k

1

/ 2
1 _6(3(+1)k

Proof: Since x,, £ Da, is the minimizer of |y — Mx||, with the constraintsX = D& and & 7:,c =
0, then

[xp=xll, = Q7+, =20, +

(Mx),, —y,Mv) =0 (37)
for any vector v = D& such that & 7. c = 0. Substitutingy = Mx + e with simple arithmetics gives
(x, —x,M*"Mv) = (e, Mv) (38)

where v= D@ and &7+ c = 0. Turning to look at || P (x, —x)||5 and using @8) with v =P (x, -
x), we have
P70 =305 = X — %, P (X — X)) (39)
=(xp =X, ([ —M"M)P 7 (x, — X)) + (€, MP (X, —X))
< [xp =[5 [P7er 0o =M MP7 |, [P (x, -]
+ el [MP: (x, —x) |,

<8k |xp = x|, [P xp =),

+llellz /1 +Osck [P xp =3, -

where the first inequality follows from the Cauchy-Schwartz inequality, the projection property
thatP;: = P7:P: and the fact thatx, —x = P71 (X, —X). The last inequality is due to the D-RIP
property, the fact that | T*| < 3¢k and Corollary23l After simplification of (39) by [Pz (x, —x)|,
we have

P &xp —%) ||, < Sacenyic [|Xp —x]|, + /1 + Es¢k llellz.

Utilizing the last inequality with the fact that ||x, — x||§ = Qzxp —x) ||§ +[|P4: (xp — %) ||§ gives

2
o x5 = Q7+ 065 =30+ (St [1xp = X[, + /1 + B¢ lela) (40)

The last equation is a second order polynomial of |x, —x||,. Thus its larger root is an upper
bound for it and this gives the inequality in (20). For more details look at the derivation of (13)
in [8]. 0J
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APPENDIX B. PROOF OF LEMMA [3.4]
Lemmal3.4 Under the assumptions and notation of Theorem[L.2] we have
I =], = p1 [@7: (6, =0 + 71 el “
Proof: Denote w = x,,. We start with the following observation
||x—x[||§ = [|x-w+w-x’ ||§ =[x — w3 + [|x* —w||§ +2(x—-w) (w-x"), (42)
and turn to bound the second and last terms in the RHS. For the second term, using the fact
thatx’ = Py, wyw with (I4) gives

" — w3 < Cr lIx—wl2. (43)

For bounding the last term, we look at its absolute value and use withu=w-x" =Pz (W-
x"). This leads to

|x-w)* (w-x")|=|x-w)* T-M*"M)(w-x")—e"Mw-x")|.
By using the triangle and Cauchy-Schwartz inequalities with the fact thatx —w =P, 7:(x —w)
and w—x" =P (w—x') we have

|x—w)*W—x")| < Ix=wl |[Pry7: A-M"MPz |, [w—x|, +llel [Mw-x)|, (44)

< 6(3(+1)k ”X—W”z ”W—Xt ”2 +4/ 1 +63(k ||e||2 ”W—Xt ”2,

where the last inequality is due to the D-RIP definition, the fact that | T?| < 3¢ k and Corollary2.3]
By substituting (43) and (44) into we have

2
[x—x"||; = 1+ Cr) Ix—wWli5 + 26 341k v/ Cre Ix = W5 +21/1 + 8311/ Cie el Ix - wll (45)
< ((1 +28 3+ 1)k vV Ce + Ci) X =Wl +21/ (1 + 8301 Ce ||e||2) Ix—wll

- 1+25(3(+1)k\/ Cr+Cy

2
1 _6(3c+1)k

+2\/ 1+63:k(1+ (1 +83041)6) vV Ci + Ci)

1 =8@reni)y/1-65,

\/1 +263¢+1)kV Cr + Ck

/ 2
1- 6(3(+1)k

where for the second inequality we use the fact that §3¢41)x < 1 combined with the inequality
of Lemma and for the last inequality we use the fact that (1 + (1 + 8@r+1)k)vVCr + Cr)? <
(14283741 VCk + Ci) (?igz +2y/Cy + Cy) together with a few algebraic steps. Taking square-
root on both sides of provides the desired result. U

|7 x-w;

(1+03¢1)(1+2y/C + Cy)
(1 -8 @r+1k)?

\/§:g£+2\/ck+ck\/1+53(k 2
Q7 x—w) [, + lella | ,
1-8@r+1k

Q7 x—w)|, llell, + lell5

<
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APPENDIX C. PROOF OF LEMMA [3.5]

Lemmal3.5: Under the assumptions and notation of Theorem[L.2] we have

1Q7: xp —X) |, < 2 llellz + pa [ x—x"1) . (46)

Proof: Looking at the step of finding new support elements one can observe that P, is a near
optimal projection operator for M*y’.~! = M* (y - Mx’™!). Noticing that Ty € 77 and then using
with P17 gives

* “1412
[P7M* (y—Mx"); 47)
« “1412
> ||Pr,M* (y—Mx')|;
~ " _ 2
> Cop |Pre1o 7 M (y—Mx' D).

We start by bounding the lhs of (47) from above. Using Proposition[2Z.4]with y; > 0 and a > 0
we have

1
|P7M* (y-Mx' Do <1+ =) [Pz M*e|? (48)
1

+1+7) [P M MEx-x"Y]5
1+’}f1
Y1

1 * —1412
+(1+E)(1+y1)||PTt(1d—M M x-x""],

[PsM*e|>+1+a)(1+y) [Prx—x""1];

<

_ )@+ 83¢k)
B Y1
~A+a)1+y) |Qpx—x""1];

2
lell5

O@Br+1)k

+1+a+barene + (1 +71) ”x_x[_l”;

where the last inequality is due to Corollary2.Iland (13).
We continue with bounding the rhs of (@7) from below. For the first element we use Proposi-
tion[Z.4]with constants y, > 0 and 8 > 0, and (I3) to achieve

[P rearM* (y—Mx' (49)

=

o [P M=) [ - [P el
1 1
1+61+7vys
1 1
_E 1+7v2
1 5((+1)k 1 ”X—Xt_lnz— (1+6((+1)k)

Z(1'|',6_ ,6 1+’}/2

. 1
=" 1IIE—gIIPrrlurM*elli

|Prerur MM -1 x-x""1)];

2
lell3.

18



By combining (48) and with (@7) we have

I+ +y) [Qpx—x"1; (50)
1 +y1) A +851) (146,00
< VU PO o2 4 Gy O 2
71 Y2

O0Br+1k

+|1+a+b6@r+k + (1+Y1)”X—x[_1”§

U Baspk, 1y o2
g 2 e

Division of both sides by (1 + a)(1 + y;) yields

—Cox(

|Q7 x—x"1; < (51)
(1+53(k N (1+5((+1)k)ézk)” 2
yil+a) y.(l+a)A+y)) 2

+(1 N O@Br+1)k
a

B Cor 1 Sgsnk 12
I+ +y)0+y2) 146 B ))”x o P

I Vo .
Substituting 8 = 1\/% gives
- C+Dk

JQrx—x""];, = (52)
1463k (L+6¢ni) Cok 2

( + ) el

ni+a rpi+ad+y)

1)
+(1+ B¢+Dk

_ Car ) N
e ymaays (- Voen) Jexl,

VOarnk
c
\/WM (1_\/5((+1)k)_\/5(3(+1)k

JQarx—x"D]; = (53)

1+63(k (1+6((+1)k)ézk 2
( + )nen2
1(1+a) 2(1+a)(1+71)

( ‘/6(3(+1)k_\/(1+ylc)2(§+y2)( \/5((+1)k))2

+1) x5,

Using a = yields

The values of y1, > give a tradeoff between the convergence rate and the size of the noise coef-

ficient. For smaller values we get better convergence rate but higher amplification of the noise.
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We make no optimization on them and choose them to be y; =y, = y where y is an arbitrary
number greater than 0. Thus we have

|Qz x—x"; < (54)
146 146 C

( + 3(k+( +0¢+1)k) 2k)”e”§

yl+a) yA+a)d+y)

o oo Y (1 o))

+1) [=x""[,

Using the triangle inequality and the fact that Q:x, = Q:x'~! = 0 gives the desired result.
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