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GREEDY SIGNAL SPACE METHODS FOR INCOHERENCE AND BEYOND

RAJA GIRYES AND DEANNA NEEDELL

ABSTRACT. Compressive sampling (CoSa) has provided many methods for signal recovery of sig-

nals compressible with respect to an orthonormal basis. However, modern applications have

sparked the emergence of approaches for signals not sparse in an orthonormal basis but in some

arbitrary, perhaps highly overcomplete, dictionary. Recently, several “signal-space” greedy meth-

ods have been proposed to address signal recovery in this setting. However, such methods inher-

ently rely on the existence of fast and accurate projections which allow one to identify the most

relevant atoms in a dictionary for any given signal, up to a very strict accuracy. When the dictio-

nary is highly overcomplete, no such projections are currently known; the requirements on such

projections do not even hold for incoherent or well-behaved dictionaries. In this work, we pro-

vide an alternate analysis for signal space greedy methods which enforce assumptions on these

projections which hold in several settings including those when the dictionary is incoherent or

structurally coherent. These results align more closely with traditional results in the standard

CoSa literature and improve upon previous work in the signal space setting.

1. INTRODUCTION

In many signal and image processing applications we encounter the following problem: re-

covering an original signal x ∈R
d from a set of noisy measurements

y = Mx+e, (1)

where M ∈R
m×d is a known linear operator and e ∈R

d is additive bounded noise, i.e. ‖e‖2
2 ≤ ε2.

In many cases such as those in Compressive Sampling (CoSa) [1], we have m ≪ d and thus (1)

has infinitely many solutions. To make the problem well-posed we rely on additional priors for

the signal x, such as sparsity.

The sparsity assumption provides two main models, termed the synthesis and analysis mod-

els [2]. The synthesis model, which has received great attention in the past decade, assumes

that x has a k-sparse representation α under a given dictionary D ∈ R
d×n [3]. In other words,

there exists a vector α ∈R
n such that x = Dα and ‖α‖0 ≤ k, where ‖α‖0 = |supp(α)| denotes the

ℓ0 pseudo-norm. Under the synthesis model assumption we can recover x = Dα by solving

argmin
α

‖α‖0 s.t .
∥

∥y−MDα

∥

∥

2 ≤ ε. (2)

Since solving (2) is an NP-complete problem in general [4], approximation techniques are

required for recovering x. One strategy uses relaxation, replacing the ℓ0 with the ℓ1 norm, re-

sulting in the ℓ1-synthesis problem

α̂ℓ1
= argmin

α

‖α‖1 s.t .
∥

∥y−MDα

∥

∥

2 ≤ ε. (3)

The study of these types of synthesis programs has largely relied on properties like the Restricted

Isometry Property (RIP) [5], which states that

(1−δk )‖x‖2 ≤ ‖Mx‖2 ≤ (1+δk )‖x‖2 for all k-sparse x,
1

http://arxiv.org/abs/1309.2676v2


Algorithm 1 Signal Space CoSaMP (SSCoSaMP)

Require: k,M,D,y, a where y = Mx+e, k is the sparsity of x under D and e is the additive noise.

Sk and S̃ak is a pair of near optimal projection schemes.

Ensure: x̂: k-sparse approximation of x.

Initialize the support T 0 =;, the residual y0
r = y and set t = 0.

while halting criterion is not satisfied do

t = t +1.

Find new support elements: T∆ = S̃ak (M∗yt−1
r ).

Update the support: T̃ t = T t−1 ∪T∆.

Compute the representation: xp = D(MDT̃ t )†y = D
(

argmin
α̃

∥

∥y−MDα̃

∥

∥

2

2 s.t. α̃(T̃ t )C = 0
)

.

Shrink support: T t =Sk (xp ).

Calculate new representation: xt = PT t xp .

Update the residual: yt
r = y−Mxt .

end while

Form final solution x̂= xt .

for some small enough constant δk < 1.

If the matrix D is unitary and the vector x has a k-sparse representation α, then when M

satisfies the RIP with δ2k < δℓ1
, the program (3) accurately recovers the signal,

∥

∥x̂ℓ1
−x

∥

∥

2 ≤Cℓ1
ε, (4)

where x̂ℓ1
= Dα̂ℓ1

, Cℓ1
is a constant greater than

p
2 andδℓ1

(≃ 0.4652) is a constant [6, 7, 8]. This

result also implies perfect recovery in the absence of noise. It was extended also for incoherent

redundant dictionaries [9].

An alternative aproach to approximating (2) is to use a greedy strategy. Recently introduced

methods that use this strategy are the CoSaMP [10], IHT [11], and HTP [12] methods. Greedy

methods iteratively identify elements of the support of the signal, and once identified, use a

simple least-squares to recover the signal. These methods were shown to have guarantees

in the form of (4) under the assumption of the RIP. However, such results hold only when D

is orthonormal, and do not hold for general dictionaries D. Recently, the greedy approaches

have been adapted to this setting. For example, the Signal Space CoSaMP method [13] adapts

CoSaMP to the setting of arbitrary dictionaries. A slight modification1 of this method is shown

in Algorithm 1. In the algorithm, the subscript T denotes the restriction to elements (columns)

indexed in T . The function Sk (y) returns the support of the best k-sparse representation of y in

the dictionary D, and PT denotes the projection onto that support.

In [13], the authors analyze this CoSaMP variant under the assumption of the D-RIP [14],

which states2

(1−δk )‖Dα‖2 ≤ ‖MDα‖2 ≤ (1+δk )‖Dα‖2 for all k-sparse α. (5)

1Here we use two separate support selection schemes, whereas the original Signal Space CoSaMP method uses

one.
2By abuse of notation we denote both the RIP and the D-RIP constants by δk . It will be clear from the context to

which one we refer at each point in the article.
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They prove that under this assumption, if one has access to projections Sk which satisfy
∥

∥

∥Sk (z)−S
opt

k
(z)

∥

∥

∥

2
≤ min

(

c1

∥

∥

∥S
opt

k
(z)

∥

∥

∥

2
,c2

∥

∥

∥z−S
opt

k
(z)

∥

∥

∥

2

)

, (6)

then the method accurately recovers the k-sparse signal, as in (4). Here, we write S
opt

k
to de-

note the optimal projection. Although the other results for greedy methods in this setting also

rely on similar assumptions [15, 16], it remains an open problem whether such projections can

be obtained. In this paper, we address this issue by analyzing the two projections in the method

separately, and using an alternative theoretical analysis. This analysis allows us to weaken the

requirement on the projections. This new requirement also shows that when D is incoherent,

traditional compressed sensing algorithms can be used for these projections. Of course, the

interesting case is when the dictionary D is not incoherent at all.

1.1. Our contribution. In this paper we present a variant of SSCoSaMP and develop theoretical

guarantees for it. We provide similar guarantees to CoSaMP for incoherent dictionaries and

show how these are extended for coherent ones.

As is evident by Algorithm 1, as in the case of other greedy methods, we need access to a

projection which, given a general vector, finds the closest (in the ℓ2 sense) k-sparse vector.

In the representation case (when D = I), simple hard thresholding gives the desired result.

However, in the signal space we need to solve

S
∗

k (z) = argmin
|T |≤k

‖z−PT z‖2
2 . (7)

This problem seems to be NP-hard in general, as is the case in the analysis framework [17], so an

approximation is needed. For this we introduce the notion of a pair of near-optimal projection,

which extends the definition in [16] and is similar to the one in [13].

Definition 1.1. A pair of procedures Sζk and S̃ζ̃k implies a pair of near-optimal projections

PSζk (·) and P
S̃ζ̃k (·) with constants Ck and C̃k if for any z ∈R

d ,
∣

∣Sζk (z)
∣

∣≤ ζk, with ζ≥ 1,
∣

∣

∣S̃ζ̃k (z)
∣

∣

∣≤
ζ̃k, with ζ̃≥ 1, and

∥

∥z−PSζk (z)z
∥

∥

2

2
≤Ck

∥

∥

∥z−PS
∗

k
(z)z

∥

∥

∥

2

2
as well as

∥

∥

∥P
S̃ζ̃k (z)z

∥

∥

∥

2

2
≥ C̃k

∥

∥

∥PS
∗

k
(z)z

∥

∥

∥

2

2
, (8)

where PS
∗

k
denotes the optimal projection as in (7).

Our main result can now be summarized as follows.

Theorem 1.2. Let M satisfy the D-RIP (5) with a constant δ(3ζ+1)k (ζ ≥ 1). Suppose that Sζk

and S̃2ζk are a pair of near optimal projections (as in Definition 1.1) with constants Ck and

C̃2k . Apply SSCoSaMP (with a = 2) and let xt denote the approximation after t iterations. If

δ(3ζ+1)k < ǫ2
Ck ,C̃2k ,γ

and

(1+Ck)

(

1−
C̃2k

(1+γ)2

)

< 1, (9)

then after a constant number of iterations t∗ it holds that
∥

∥

∥xt∗ −x
∥

∥

∥

2
≤ η0 ‖e‖2 , (10)

where γ is an arbitrary constant, and η0 is a constant depending on δ(3ζ+1)k , Ck , C̃2k and γ. The

constant ǫCk ,C̃2k ,γ is greater than zero if and only if (9) holds.
3



Remark. Note that we use a = 2 as in the traditional CoSaMP method for our analysis, but

like in the traditional method, Algorithm 1 provides a template and other choices of a (a ≥ 1)

can certainly be used. Similarly, a large value of ζ allows (9) to be satisfied with smaller con-

stants, but makes the RIP restriction δ(3ζ+1)k < ǫ2
Ck ,C̃2k ,γ

much harder to be satisfied. This is an

important tradeoff, and different projections will optimize this tradeoff in different ways. To

allow for a wide range of projections to be used, we leave ζ as a free parameter.

Unlike previous results in the signal space setting, the requirement (9) on the near-optimal

projections holds in many common compressed sensing settings such as those when the dic-

tionary D is incoherent or satisfies the RIP. In those settings, classical recovery methods may be

utilized for the projections. We thus offer an improvement over existing signal space analyses

which enforce requirements on the projections which do not even hold when the dictionary is

highly incoherent.

1.2. Organization. In Section 2 we present the notation we use in the work and some prelim-

inaries. We present the proof of our main result, Theorem 1.2, in Section 3. In Section 4 we

examine some important settings to which our results apply. Section 5 discusses related works

and concludes the paper.

2. NOTATIONS AND PRELIMINARIES

We use the following notation in our work. We write ‖·‖2 for the Euclidean (ℓ2) norm of a

vector, and ‖·‖ for the spectral (ℓ2 → ℓ2) norm of a matrix. We denote the identity matrix by

Id = I ∈ R
d×d . Given support set T , DT is the sub-matrix of D whose columns are indexed by

T . We write PT = DT D†
T

as the orthogonal projection onto range(DT ) and QT = Id −PT as the

orthogonal projection onto the orthogonal complement of range(DT ).

Recall the D-RIP defined in (5), which enforces that the measurement matrix M preserves

the geometry of signals sparse with respect to D. The D-RIP, like the standard RIP, inherits the

following useful properties. The first follows immediately from the definition and thus appears

without a proof.

Corollary 2.1. If M satisfies the D-RIP with a constant δk then

‖MPT ‖2 ≤ 1+δk (11)

for every T such that |T | ≤ k.

Lemma 2.2. If M satisfies the D-RIP (5) then
∥

∥PT (I−M∗M)PT

∥

∥≤ δk (12)

for any T such that |T | ≤ k.

Proof: The proof is similar to the one of the standard RIP as appears in [8]. We first observe

that the definition (5) of the D-RIP is equivalent to requiring
∣

∣‖Mv‖2
2 −‖v‖2

2

∣

∣≤ δk ‖v‖2
2

for any v = Dα̃ such that ‖α̃‖0 ≤ k. From this it follows that
∣

∣‖MPT z‖2
2 −‖PT z‖2

2

∣

∣≤ δk ‖PT z‖2
2 ≤ δk ‖z‖2

2
4



for any set T such that |T | ≤ k and any z ∈R
d . Next we notice that

‖MPT z‖2
2 −‖PT z‖2

2 = z∗PT M∗MPT z−z∗PT z

= z∗PT (M∗M− Id )PT z

= 〈PT (M∗M− Id )PT z,z〉.

Since PT (M∗M− Id )PT is Hermitian we have that

max
z

〈PT (M∗M− Id )PT z,z〉
‖z‖2

=
∥

∥PT (M∗M− Id )PT

∥

∥ .

Thus we have that the D-RIP implies (12) for any set T such that |T | ≤ k. �

Corollary 2.3. If M satisfies the D-RIP (5) then
∥

∥PT1 (I−M∗M)PT2

∥

∥≤ δk , (13)

for any T1 and T2 with |T1| ≤ k1, |T2| ≤ k2, and k1 +k2 ≤ k.

Proof: Since T1 ⊂ T1 ∪T2 and T2 ⊂ T1 ∪T2, we have from Lemma 2.2 that
∥

∥PT1 (I−M∗M)PT2

∥

∥

2 ≤
∥

∥PT2∪T1 (I−M∗M)PT2∪T1

∥

∥≤ δk .

�

Finally, we point out some consequences of the definition of near-optimal projections, as

in Definition 1.1. A clear implication of this definition is that for any vector v ∈ R
d that has a

k-sparse representation and a support set T such that |T | ≤ k, and for any z ∈R
d we have that

∥

∥z−PSζk (z)z
∥

∥

2

2
≤Ck ‖v−z‖2

2 , and (14)
∥

∥

∥P
S̃ζ̃k (z)z

∥

∥

∥

2

2
≥ C̃k ‖PT z‖2

2 . (15)

The constants Ck and C̃2k will play a role in the convergence guarantees we develop for SS-

CoSaMP. Requirements on the allowed values and the type of dictionaries that has near optimal

support selection schemes will be discussed later in Section 4. We will also utilize the follow-

ing elementary fact, whose proof is immediate using the inequality of arithmetic and geometric

means.

Proposition 2.4. For any two given vectors x1, x2 and a constant c > 0 it holds that

‖x1 +x2‖2
2 ≤ (1+c)‖x1‖2

2 +
(

1+
1

c

)

‖x2‖2
2 . (16)

3. ALGORITHM GUARANTEES

In this section we provide theoretical guarantees for the reconstruction performance of SS-

CoSaMP. The results here are for the choice of a = 2 in the algorithm, however, analogous re-

sults for other values a ≥ 1 follow similarly. We will prove the main result, Theorem 1.2, via

Corollary 3.2. The proof and discussion of this corollary occupy the remainder of this section.
5



3.1. Theorem Conditions. Before we begin the proof of the theorem we first ask under what

conditions the assumptions of the theorem hold. One condition of Theorem 1.2 is that δ2(1+ζ)k ≤
ǫ2

Ck ,C̃2k ,γ
for a constant ǫ2

Ck ,C̃2k ,γ
> 0. When the dictionary D is unitary, it was shown for many

families of random matrices that for any value of ǫk , if m ≥ C
ǫ2

k

k log( m
kǫk

), where C is a given

constant, then δk ≤ ǫk with high probability [7, 9, 18]. A similar result for the same family of

random matrices holds for the D-RIP [14]. Thus, the critical part in the conditions of the The-

orem is condition (9), that imposes a requirement on Ck and C̃2k to be close to 1. We have an

access to projection operators that satisfy this condition in many practical settings which are

not supported by the guarantees provided in previous papers that used near optimal projec-

tions [13, 15, 16]. This is due to the near-optimality definition and the proof technique used in

this paper; A detailed discussion of this subject is left to Section 4 below.

3.2. SSCoSaMP Guarantees. Analogously to that of CoSaMP in [8], our proof relies on iteration

invariant which shows that each iteration substantially reduces the recovery error.

Theorem 3.1. Let M satisfy the D-RIP (5) with constants δ(ζ+1)k ,δ3ζk ,δ(3ζ+1)k and let Sζk and

S̃2ζk be near optimal projections as in Definition 1.1 with constants Ck and C̃2k . Then

∥

∥xt −x
∥

∥

2 ≤ ρ
∥

∥x−xt−1
∥

∥

2 +η‖e‖2 , (17)

for constants ρ and η. The iterates converge, i.e. ρ < 1, if δ(3ζ+1)k < ǫ2
Ck ,C̃2k ,γ

, for some positive

constant ǫ2
Ck ,C̃2k ,γ

, and (9) holds.

An immediate corollary of the above theorem is the following

Corollary 3.2. Assume the conditions of Theorem 3.1. Then after a constant number of iterations

t∗ =
⌈

log(‖x‖2/‖e‖2)

log(1/ρ)

⌉

it holds that

∥

∥

∥xt∗ −x
∥

∥

∥

2
≤

(

1+
1−ρt∗

1−ρ

)

η‖e‖2 . (18)

Proof: By using (17) and recursion we have that after t∗ iterations
∥

∥

∥xt∗ −x
∥

∥

∥

2
≤ ρt∗

∥

∥x−x0
∥

∥

2 + (1+ρ+ρ2 + . . .ρt∗−1)η‖e‖2 (19)

≤
(

1+
1−ρt∗

1−ρ

)

η‖e‖2 ,

where the last inequality is due to the equation of the geometric series, the choice of t∗, and the

fact that x0 = 0. �

Note that Corollary 3.2 implies our main result, Theorem 1.2, with η0 =
(

1+ 1−ρt∗

1−ρ

)

η.

We turn now to prove the iteration invariant, Theorem 3.1. Instead of presenting the proof

directly, we divide the proof into several lemmas. The first lemma gives a bound for
∥

∥xp −x
∥

∥

2

as a function of ‖e‖2 and
∥

∥QT̃ t (xp −x)
∥

∥

2
.

6



Lemma 3.3. If M has the D-RIP with a constant δ3ζk , then with the notation of Algorithm 1, we

have

∥

∥xp −x
∥

∥

2
≤

1
√

1−δ2
(3ζ+1)k

∥

∥QT̃ t (xp −x)
∥

∥

2
+

√

1+δ3ζk

1−δ(3ζ+1)k

‖e‖2 (20)

The second lemma bounds
∥

∥xt −x
∥

∥

2 in terms of
∥

∥QT̃ t (xp −x)
∥

∥

2
and ‖e‖2 using the first lemma.

Lemma 3.4. Under the assumptions and notation of Theorem 1.2, we have

∥

∥xt −x
∥

∥

2 ≤ ρ1

∥

∥QT̃ t (xp −x)
∥

∥

2
+η1‖e‖2 , (21)

where the constants ρ1 and η1 are given explicitly in (25).

The last lemma bounds
∥

∥QT̃ t (xp −x)
∥

∥

2
with

∥

∥xt−1 −x
∥

∥

2 and ‖e‖2.

Lemma 3.5. Under the assumptions and notation of Theorem 1.2, we have

∥

∥QT̃ t (xp −x)
∥

∥

2
≤ η2 ‖e‖2 +ρ2

∥

∥x−xt−1
∥

∥

2 , (22)

where the constants ρ2 and η2 are given explicitly in (25).

The proofs of Lemmas 3.3, 3.4 and 3.5 appear in A, B and C, respectively. With the aid of the

above three lemmas we turn to the proof of the iteration invariant, Theorem 3.1.

Proof of Theorem 3.1: Substituting the inequality of Lemma 3.5 into the inequality of Lemma 3.4

gives (17) with ρ = ρ1ρ2 and η = η1 +ρ1η2. The iterates converge if ρ2
1ρ

2
2 < 1. Since δ(ζ+1)k ≤

δ3ζk ≤ δ(3ζ+1)k this holds if

(

1+2δ(3ζ+1)k

p
Ck +Ck

1−δ2
(3ζ+1)k

)

·



1−
((√

C̃2k

1+γ
+1

)

√

δ(3ζ+1)k −
√

C̃2k

1+γ

)2


< 1. (23)

Since δ(3ζ+1)k < 1, we have δ2
(3ζ+1)k

< δ(3ζ+1)k <
√

δ(3ζ+1)k . Using this fact and expanding (23)

yields the stricter condition



(1+Ck)



1−
(√

C̃2k

1+γ

)2


−1



+2 (1+Ck)

(√

C̃2k

1+γ

)(√

C̃2k

1+γ
+1

)

√

δ(3ζ+1)k (24)

+
(

2
√

Ck



1−
(√

C̃2k

1+γ

)2


− (1+Ck )

(

1+
√

C̃2k

1+γ

)2

+4
√

Ck

(√

C̃2k

1+γ

)(√

C̃2k

1+γ
+1

)

+2

)

δ(3ζ+1)k < 0.

The above equation has a positive solution if and only if (9) holds. Denoting its positive solution

by ǫCk ,C̃2k ,γ we have that the expression holds when δ(3ζ+1)k ≤ ǫ2
Ck ,C̃2k ,γ

, which completes the

7



proof. Note that in the proof we have

η1 =

√

2+Ck

1+Ck
+2

p
Ck +Ck

√

1+δ3ζk

1−δ(3ζ+1)k
, η2

2 =
( 1+δ3ζk

γ(1+α)
+

(1+δ(ζ+1)k )C̃2k

γ(1+α)(1+γ)

)

, (25)

ρ2
1 =

1+2δ(3ζ+1)k

p
Ck +Ck

1−δ2
(3ζ+1)k

, ρ2
2 = 1−

(√

δ(3ζ+1)k −
√

C̃2k

1+γ

(

1−
√

δ(ζ+1)k

))2

,

α=
√

δ(3ζ+1)k
√

C̃2k

(1+γ1)(1+γ2)

(

1−
√

δ(ζ+1)k

)

−
√

δ(3ζ+1)k

and γ> 0 is an arbitrary constant. �

4. NEAR OPTIMAL PROJECTION EXAMPLES

In this section we give several examples for which condition (9),

(1+Ck)

(

1−
C̃2k

(1+γ)2

)

< 1,

can be satisfied with accessible projection methods.

4.1. Unitary Dictionaries. For unitary D the conditions hold trivially since Ck = C̃2k = 1 using

simple thresholding. In this case our results coincide with the standard representation model

for which we already have theoretical guarantees [10]. However, for a general dictionary D sim-

ple thresholding is not expected to have this property.

4.2. RIP Dictionaries. We next consider the setting in which the dictionary D itself satisfies

the RIP. In this case we may use a standard method like IHT or CoSaMP for Sk and simple

thresholding for S̃2k . For dictionaries that satisfy the RIP, it is easy to use existing results in

order to derive bounds on the constant Ck .

In order to see how such bounds can be achieved, notice that standard bounds exists for

these techniques in terms of the representation error rather than the signal error. That is, for

a given vector v = Dα+e and any support set T ∗ of size k, it is guaranteed that if δ4k ≤ 0.1 (or

δ3k ≤ 1p
32

) then α̂, the recovered representation of CoSaMP (or IHT), satisfies

‖α− α̂‖2 ≤Ce ‖v−PT ∗v‖2 , (26)

where Ce ≃ 5.6686 (or Ce ≃ 3.3562) [8, 10, 11].

We use this result to bound Ck as follows. For a general vector v we may write its optimal

projection as PT ∗v = Dα with supp(α) = T ∗. Applying the bound in (26) with e = v−PT ∗v and

PT̂ v = Dα̂ along with the RIP yields

∥

∥v−PT̂ v
∥

∥

2 ≤ ‖v−PT ∗v‖2 +
∥

∥PT ∗v−PT̂ v
∥

∥

2 (27)

= ‖v−PT ∗v‖2 +‖Dα−Dα̂‖2

≤ ‖v−PT ∗v‖2 +
√

1+δ2k ‖α− α̂‖2

≤ ‖v−PT ∗v‖2 +Ce

√

1+δ2k ‖v−PT ∗v‖2 .

8



This implies that

Ck ≤ 1+Ce

√

1+δ2k . (28)

For example, if δ4k ≤ 0.1 then Ck ≤ 6.9453 for CoSaMP and if δ3k ≤ 1p
32

then Ck ≤ 4.6408 for IHT.

The inequality in (28) holds true not only for CoSaMP and IHT but for any algorithm that pro-

vides a k-sparse representation that obeys the bound in (26). Note that many greedy algorithms

have these properties (e.g. [12, 19, 20]), but relaxation techniques such as ℓ1-minimization [5]

or the Dantzig selector [21] are not guaranteed to give a k-sparse result.

Having a bound for Ck , we realize that in order to satisfy (9) we now have a condition on the

second constant,

C̃2k ≥
(

1−
1

1+Ck

)

(1+γ)2. (29)

In order to show that this condition can be satisfied we provide an upper bound for C̃2k which

is a function of the RIP constants of D. The near-optimal projection can be obtained by simple

thresholding under the image of D∗:

S̃k (v) = argmin
|T |=k

‖D∗
T v‖2. (30)

Lemma 4.1 (Thresholding Projection RIP bound). If D is a dictionary that satisfies the RIP with

a constant δk , then using (30) as the thresholding projector yields

C̃k ≥
1−δk

1+δk

.

Proof: Let v be a general vector. Let T̂ be the indices of the largest k entries of D∗v and T ∗ the

support selected by the optimal support selection scheme as in (7). By definition we have that
∥

∥

∥D∗
T̂

v
∥

∥

∥

2

2
≥

∥

∥D∗
T ∗v

∥

∥

2

2 . (31)

Since 1
1+δk

≤
∥

∥(D∗
T )†

∥

∥

2

2
≤ 1

1−δk
for |T | ≤ k (see Prop. 3.1 of [10]), we have that

(1+δk )
∥

∥

∥(D∗
T̂

)†D∗
T̂

v
∥

∥

∥

2

2
≥ (1−δk )

∥

∥

∥(D∗
T ∗)†D∗

T ∗v
∥

∥

∥

2

2
. (32)

Since PT̂ = (D∗
T̂

)†D∗
T̂

we get that

∥

∥PT̂ v
∥

∥

2
2 ≥

1−δk

1+δk

‖PT ∗v‖2
2 . (33)

Thus C̃k ≥ 1−δk (D)
1+δk (D)

. �

Hence, the condition on the RIP of D for satisfying (9) turns to be

1−δ2k

1+δ2k

≥
(

1−
1

1+Ck

)

(1+γ)2. (34)

By using the exact expression for Ck in terms of RIP constants, one can obtain guarantees in

terms of the RIP constants only. For example, from [10], for CoSaMP one has more precisely

that for any vector α, the reconstructed vector α̂ from measurements z = Dα+e satisfies

‖α− α̂‖ ≤
[

2
√

1−δ3k

+4

(

1+
δ4k

1−δ3k

)

·
1

√

1−δ2k

]

‖e‖ .

9



Using (28) we have

Ck ≤ 1+
√

1+δ2k

[

2
√

1−δ3k

+4

(

1+
δ4k

1−δ3k

)

·
1

√

1−δ2k

]

. (35)

Substituting this into the expression (34) gives a bound on the RIP constants alone. For example,

setting γ = 0.01, one finds that the requirement δ4k ≤ 0.052 is enough to guarantee (9) holds

using CoSaMP.

4.3. Incoherent Dictionaries. Given that a dictionary D has a coherence µ, it is known that the

RIP constant can be upper bounded by µ in the following way [22]

δk ≤ (k −1)µ. (36)

Hence, using this relation one may get recovery conditions based on the coherence value using

the conditions from the previous subsection. For example, if we use CoSaMP for the first pro-

jection and thresholding for the second one, one may have the following condition in terms of

the coherence (instead of the RIP): µ≤ 0.052
4k−1

.

4.4. Support Selection using Highly Correlated Dictionaries. In all the above cases, the dic-

tionary is required to be incoherent. This follows from the simple fact that decoding under a

coherent dictionary is a hard problem in general. However, in some cases we have a coherent

dictionary in which each atom has a high correlation with a small number of other atoms and

very small correlation with all the rest. In this case, the high coherence is due to these rare high

correlations and pursuit algorithms may fail to select the right atoms in their support estimate

as they may be confused between the right atom and its highly correlated columns. Hence, one

may update the pursuit strategies to add in each of their steps only atoms which are not highly

correlated with the current selected atoms and as a final stage extend the estimated support to

include all the atoms which have high coherence with the selected support set.

This idea is related to the recent literature of super-resolution (see e.g. [23, 24, 25, 26, 27, 28]

and references therein) and to the ǫ-OMP algorithm [29], which is an extension of OMP. In this

work we employ ǫ-OMP (with a post-processing step that adds correlated atoms) as a support

selection procedure. We also propose a similar extension for thresholding, ǫ-thresholding, that

for a given signal z, selects the support in the following way. It picks the indices of the largest

elements of D∗z one at a time, where at each time it adds the atom with highest correlation to

z excluding the already selected ones. Each atom is added together with its highly correlated

columns.

Before we present these methods formally, we introduce the following definition taken from

[29].

Definition 4.2 (ǫ-extension3). Let 0≤ ǫ< 1 and D be a fixed dictionary. The ǫ-extension of a given

support set T is defined as

extǫ,2(T ) =
{

i : ∃ j ∈T,

∣

∣〈di ,d j 〉
∣

∣

2

‖di‖2
2

∥

∥d j

∥

∥

2

2

≥ 1−ǫ2

}

.

3In [29] it is referred to as ǫ-closure but since closure bears a different meaning in mathematics we use a different

name here.
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Algorithm 2 ǫ-Orthogonal Matching Pursuit

Require: k,D,z where z = x+e, x = Dα, ‖α‖0 ≤ k and e is an additive noise.

Ensure: x̂: k-sparse approximation of x supported on T̂ .

Initialize estimate x̂0 = 0, residual r0 = z, support T̂ 0 = Ť 0 =; and set t = 0.

while t ≤ k do

t = t +1.

New support element: i t = argmaxi 6∈Ť t−1 |d∗
i

rt−1|.
Extend support: T̂ t = T̂ t−1 ∪ {i t }.

Calculate a new estimate: x̂t = DT̂ t D†

T̂ t
z.

Calculate a new residual: rt = z− x̂t .

Support ǫ-extension: Ť t = extǫ,2(T̂ t ).

end while

Set estimated support T̂ = Ť t .

Form the final solution x̂ = DT̂ D†

T̂
z.

Algorithm 3 ǫ-thresholding

Require: k,D,z where z = x+e, x = Dα, ‖α‖0 ≤ k and e is an additive noise.

Ensure: x̂: a k-sparse approximation of x supported on T̂ .

Initialize support T̂ 0 = Ť 0 =; and set t = 0.

Calculate correlation between dictionary and measurements: v = D∗z.

while t ≤ k do

t = t +1.

New support element: i t = argmaxi 6∈Ť t−1 |vi |.
Extend support: T̂ t = T̂ t−1 ∪ {i t }.

Support ǫ-extension: Ť t = extǫ,2(T̂ t ).

end while

Set estimated support T̂ = Ť t .

Form the final solution x̂ = DT̂ D†

T̂
z.

Having the above definition, we present ǫ-OMP4 and ǫ-Thresholding techniques in Algo-

rithms 2 and 3.

Note that the size of the group of atoms which are highly correlated with one atom of D is

bounded. The size of the largest group is an upper bound for the near-optimality constants ζ

and ζ̃ (note here we will just set ζ= ζ̃). More precisely, if the allowed high correlations are greater

then 1−ǫ2 then we have the upper bound

ζ≤ max
T :|T |≤k

∣

∣extǫ,2(T )
∣

∣≤ max
1≤i≤n

k
∣

∣extǫ,2({i })
∣

∣ .

We have a trade-off between the size of the correlation which we can allow and the size of

the estimated support which we get. The smaller the correlation between columns we allow,

the larger ζ is and thus also the estimated support. On the one hand, this attribute is positive;

4In [29] ǫ-OMP is presented slightly different: (1) It treats the more general case of recovering a signal from a

set of measurement y = Mx+ e; (2) the support extension at the last stage of Algorithm 2 is proposed as a post-

processing step apart from the ǫ-OMP algorithm.

11



the larger the support, the higher the probability that our near-optimality constants Ck and C̃k

are close to 1. On the other hand, for large ζ, δ(3ζ+1)k is larger and it is harder to satisfy the

RIP requirements. Hence we expect that if the number of measurements is small, the size of ζ

would be more critical as it would be harder to satisfy the RIP condition. When the number of

measurements gets higher, the RIP requirement is easier to satisfy and can handle higher values

of ζ.

One trivial example, in which the above projections have known near-optimality constants

is when D is an incoherent dictionary with one or more repeated columns. In this case, the

projection constants of D are simply the ones of the underlying incoherent dictionary.
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FIGURE 1. Correlation size (inner product) in a sorted order of one atom of the 4

times redundant-DFT dictionary with the other atoms. Note that the x-axis is in

a log-scale.

In other cases we still do not have guarantees for these constants. In [29], a more general

version of ǫ-OMP that includes the matrix M is analyzed, providing conditions for the signal

reconstruction. However, these impose requirements on the magnitude of the signal coeffi-

cients which we do not have control of in the projection problem. Hence, the existing recovery

guarantees for ǫ-OMP cannot be used for developing bounds for the projection constants.

Though theoretical statements are not at hand yet, we shall see that these methods give good

recovery in practice. Clearly, we need each atom in D to be highly correlated only with a small

group of other columns and incoherent with all the rest. An example of such a dictionary is the

overcomplete-DFT which is a highly coherent dictionary. The correlations between each atom

in this dictionary and its neighboring atoms are the same, i.e., each of the diagonals of its Gram

matrix have the same value. A plot of the coherence value of a given atom with its neighbors in a

sorted order appears in Fig. 1 for a four times overcomplete DFT and signal dimension d = 1024.

Note that when we determine a correlation to be high, if the inner product (atoms are nor-

malized) between two atoms is greater than 0.9 (ǫ=
p

0.1), we get that each atom has two other

highly correlated columns with correlation of size 0.9. The correlation with the rest is below

0.64, where the largest portion has inner products smaller then 0.1.

4.4.1. Experimental Results. We repeat the experiments from [13] for the overcomplete-DFT

with redundancy factor 4 and check the effect of the new support selection methods both for the

case where the signal coefficients are clustered and the case where they are well separated. We

compare the performance of OMP, ǫ-OMP and ǫ-thresholding for the approximate projections.

We do not include other methods since a thorough comparison has been already performed in

[13], and the goal here is to check the effect of the ǫ-extension step.
12



The recovery results appear in Figures 2–4. As seen from Figure 2, in the separated case

SSCoSaMP-OMP works better for small values of m. This is likely because it uses a smaller

support set for which it is easier to satisfy the RIP condition. As separated atoms are very un-

correlated it is likely that OMP will not be confused between them. When the atoms are clus-

tered, the high correlations take more effect and OMP is not able to recovery the right support

because of the high coherence between close atoms in the cluster and around it. This is over-

came by using ǫ-OMP which uses larger support sets and thus resolves the confusion. Note that

even ǫ-threshodling gets better recovery in this case, though it is a much simpler technique, and

this shows that indeed the improvement is due to the extended support selection strategy. As

expected, using larger support estimates for the projection is more effective when the number

of measurements m is large.

We may say that the support extension step leads to a better recovery rate overall as it gets

a good recovery on both the separated and clustered coefficient cases. In [13] it is shown that

all the projection algorithms either perform well on the first case and very bad on the other or

vice versa. Using SSCoSaMP with ǫ-OMP we have, at the cost of getting slightly inferior behav-

ior in the separated case compared to SSCoSaMP with OMP, much improved behavior for the

clustered case where the latter gets no recovery at all.

Figures 3–4 demonstrate the sensitivity of the approximation algorithms to the choice of ǫ

(note that ǫ = 0 reverts to the Thresholding/OMP algorithm). While it is clear that ǫ cannot be

too large (or far too many atoms will be included), the optimum choice of ǫ may not always be

easy to identify since it depends on the dictionary D.
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FIGURE 2. Recovery rate for SSCoSaMP (Thresholding), SSCoSaMP (ǫ-

Thresholding) with ǫ =
p

0.1, SSCoSaMP (OMP), SSCoSaMP (ǫ-OMP) with

ǫ=
p

0.1 and ǫ-OMP with ǫ=
p

0.1 for a random m×1024 Gaussian matrix M and

a 4 times overcomplete DFT matrix D. The signal is 8-sparse and on the left the

coefficients of the original signal are clustered whereas on the right they are sep-

arated.

5. DISCUSSION

5.1. Related Work. Our work extends the work of Davenport, Needell, and Wakin [13] who de-

velop and analyze the Signal Space CoSaMP algorithm. In that work, the D-RIP is enforced,

as well as access to projections which satisfy (6). It is currently unknown whether there exist
13
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FIGURE 3. Recovery rate for SSCoSaMP (ǫ-Thresholding) with different values of

ǫ for a random m × 1024 Gaussian matrix M and a 4 times overcomplete DFT

matrix D. The signal is 8-sparse and on the left the coefficients of the original

signal are clustered whereas on the right they are separated.
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FIGURE 4. Recovery rate for SSCoSaMP (ǫ-OMP) with different values of ǫ for a

random m ×1024 Gaussian matrix M and a 4 times overcomplete DFT matrix D.

The signal is 8-sparse and on the left the coefficients of the original signal are

clustered whereas on the right they are separated.

efficient projections which satisfy these requirements, even for well-behaved dictionaries like

those that satisfy the RIP or have an incoherence property. That being said, other results on sig-

nal space methods rely on such assumptions. For example, a related work by Blumensath an-

alyzes an algorithm which is a signal space extension of the Iterative Hard Thresholding (IHT)

method [15]. The model in that work utilizes a union-of-subspaces model and also assumes the

D-RIP and projections with even stronger requirements than those in (6).

These types of projections also appear in model-based compressive sensing, where such op-

erators project onto a specified model set. The model may describe structured sparsity patterns

like tree-like or block sparsity, or may be a more general mode. In this setting, signal recovery

is performed by first reconstructing the coefficient vector, and then mapping to signal space.

When the dictionary D is an orthonormal basis, greedy methods have been adapted to struc-

tured sparsity models [30]. The assumptions, however, nearly require the product AD to satisfy
14



the traditional RIP, and so extensions to non-orthonormal dictionaries serve to be difficult. Al-

though our work differs in its assumptions and domain model, model-based methods inspired

the development of signal space CoSaMP [13, 31].

The importance of using and analyzing two separate projection schemes in sparse recovery

is also discussed in an independent line of work by Hegde et.al. [32]. There, the authors call

the two projections the “head” and “tail” projections, and analyze a variant of Iterative Hard

Thresholding (IHT) for signal recovery under the Model-RIP, a generalization of the D-RIP. In

fact, they show that without a projection satisfying essentially the second inequality of (8), con-

ventional IHT will fail.

It would be also important to mention the relation of the ǫ-OMP and ǫ-thresholding algo-

rithms (Algorithms 2 and 3) to the methods proposed in [24, 28]. The notion of excluding co-

herent atoms in the process of building the representation is used also within these works. In

particular, without the extension step, the ǫ-OMP and ǫ-threshodling techniques share a great

similarity with the Band-Excluded OMP (BOMP) and Band-Excluded Matched Thresholding

(BMT) methods in [24] and the heuristic coherence-inhibiting sparse approximation strategy

in [28]. As we have seen in Section 4.4, the use of the extension step deteriorates the perfor-

mance in the case of separated coefficients as a larger support is processed and therefore the

RIP conditions are harder to be satisfied. It is likely that using the techniques in [24, 28] would

be better suited to deal with separated coefficient vectors.

Finally, a related but significantly different vein of work also exists that studies signals from

analysis space rather than synthesis signal space. Indeed, it was in this vein that the D-RIP was

first proposed and enforced for reconstruction [14]. In this setting, one requires that the analysis

coefficients D∗x are sparse or compressible, and reconstruction is performed in that domain.

Standard optimization based and greedy methods for compressed sensing have been extended

and studied in this setting as well. In particular, ℓ1-minimization [2, 14, 33, 34, 35], and greedy

methods like CoSaMP and IHT have all been adapted to account for analysis (co)sparsity [16,

36, 37, 38].

5.2. Contributions and Directions. In this work, we extend previous analysis of the Signal

Space CoSaMP (SSCoSaMP) algorithm. In signal space greedy algorithms for dictionaries which

are not orthonormal, the computational bottleneck lies in the use of the approximate projec-

tions. Here we extend the idea of a near-optimal projection, and consider two possibly different

near-optimal projections in the SSCoSaMP method. Our new analysis enforces weaker assump-

tions on these projections, which hold when the dictionary D is incoherent or satisfies the RIP,

unlike previous results whose assumptions do not hold in this setting. Above, we discuss several

important settings and describe algorithms that can be used for the approximate projections

which satisfy our requirements for accurate signal recovery. This includes even the case when

the dictionary is highly coherent but each atom is only highly correlated with a small number

of atoms, an important example in applications like super-resolution.

It remains an important and challenging open problem to develop approximate projection

techniques which satisfy the assumptions of our main results even when the dictionary is highly

coherent in an arbitrary fashion. There are clearly limitations in this regard, as decoding from

highly correlated atoms has fundamental theoretic boundaries. It is unknown, however, how

far these limits reach and for what applications accurate reconstruction is still possible. An

alternative of course is to develop greedy methods which do not require such projections, which

we believe to be an equally challenging problem.
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APPENDIX A. PROOF OF LEMMA 3.3

Lemma 3.3: If M has the D-RIP with constants δ3ζk ,δ(3ζ+1)k , then

∥

∥xp −x
∥

∥

2
≤

1
√

1−δ2
(3ζ+1)k

∥

∥QT̃ t (xp −x)
∥

∥

2
+

√

1+δ3ζk

1−δ(3ζ+1)k

‖e‖2 .

Proof: Since xp , Dαp is the minimizer of
∥

∥y−Mx̃
∥

∥

2 with the constraints x̃ = Dα̃ and α̃(T̃ t )C =
0, then

〈Mxp −y,Mv〉 = 0 (37)

for any vector v = Dα̃ such that α̃(T̃ t )C = 0. Substituting y = Mx+e with simple arithmetics gives

〈xp −x,M∗Mv〉 = 〈e,Mv〉 (38)

where v = Dα̃ and α̃(T̃ t )C = 0. Turning to look at
∥

∥PT̃ t (xp −x)
∥

∥

2

2
and using (38) with v = PT̃ t (xp −

x), we have
∥

∥PT̃ t (xp −x)
∥

∥

2

2
= 〈xp −x,PT̃ t (xp −x)〉 (39)

= 〈xp −x, (Id −M∗M)PT̃ t (xp −x)〉+〈e,MPT̃ t (xp −x)〉
≤

∥

∥xp −x
∥

∥

2

∥

∥PT̃ t∪T (Id −M∗M)PT̃ t

∥

∥

2

∥

∥PT̃ t (xp −x)
∥

∥

2

+‖e‖2

∥

∥MPT̃ t (xp −x)
∥

∥

2

≤ δ(3ζ+1)k

∥

∥xp −x
∥

∥

2

∥

∥PT̃ t (xp −x)
∥

∥

2

+‖e‖2

√

1+δ3ζk

∥

∥PT̃ t (xp −x)
∥

∥

2
.

where the first inequality follows from the Cauchy-Schwartz inequality, the projection property

that PT̃ t = PT̃ t PT̃ t and the fact that xp −x = PT̃ t∪T (xp −x). The last inequality is due to the D-RIP

property, the fact that |T̃ t | ≤ 3ζk and Corollary 2.3. After simplification of (39) by
∥

∥PT̃ t (xp −x)
∥

∥

2
we have

∥

∥PT̃ t (xp −x)
∥

∥

2
≤ δ(3ζ+1)k

∥

∥xp −x
∥

∥

2
+

√

1+δ3ζk ‖e‖2 .

Utilizing the last inequality with the fact that
∥

∥xp −x
∥

∥

2

2
=

∥

∥Q
Λ̃t (xp −x)

∥

∥

2

2
+

∥

∥P
Λ̃t (xp −x)

∥

∥

2

2
gives

∥

∥xp −x
∥

∥

2

2
≤

∥

∥QT̃ t (xp −x)
∥

∥

2

2
+

(

δ(3ζ+1)k

∥

∥xp −x
∥

∥

2
+

√

1+δ3ζk ‖e‖2

)2

. (40)

The last equation is a second order polynomial of
∥

∥xp −x
∥

∥

2
. Thus its larger root is an upper

bound for it and this gives the inequality in (20). For more details look at the derivation of (13)

in [8]. �
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APPENDIX B. PROOF OF LEMMA 3.4

Lemma 3.4: Under the assumptions and notation of Theorem 1.2, we have
∥

∥xt −x
∥

∥

2 ≤ ρ1

∥

∥QT̃ t (xp −x)
∥

∥

2
+η1‖e‖2 (41)

Proof: Denote w = xp . We start with the following observation

∥

∥x−xt
∥

∥

2

2 =
∥

∥x−w+w−xt
∥

∥

2

2 = ‖x−w‖2
2 +

∥

∥xt −w
∥

∥

2

2 +2(x−w)∗(w−xt ), (42)

and turn to bound the second and last terms in the RHS. For the second term, using the fact

that xt = PSζk (w)w with (14) gives

∥

∥xt −w
∥

∥

2

2 ≤Ck ‖x−w‖2
2 . (43)

For bounding the last term, we look at its absolute value and use (38) with u = w−xt = PT̃ t (w−
xt ). This leads to

∣

∣(x−w)∗(w−xt )
∣

∣=
∣

∣(x−w)∗(I−M∗M)(w−xt )−e∗M(w−xt )
∣

∣ .

By using the triangle and Cauchy-Schwartz inequalities with the fact that x−w = PT∪T̃ t (x−w)

and w−xt = PT̃ t (w−xt ) we have
∣

∣(x−w)∗(w−xt )
∣

∣≤ ‖x−w‖2

∥

∥PT∪T̃ t (I−M∗M)PT̃ t

∥

∥

2

∥

∥w−xt
∥

∥

2 +‖e‖2

∥

∥M(w−xt )
∥

∥

2 (44)

≤ δ(3ζ+1)k ‖x−w‖2

∥

∥w−xt
∥

∥

2 +
√

1+δ3ζk ‖e‖2

∥

∥w−xt
∥

∥

2 ,

where the last inequality is due to the D-RIP definition, the fact that |T̃ t | ≤ 3ζk and Corollary 2.3.

By substituting (43) and (44) into (42) we have

∥

∥x−xt
∥

∥

2

2 ≤ (1+Ck)‖x−w‖2
2 +2δ(3ζ+1)k

√

Ck ‖x−w‖2
2 +2

√

1+δ3ζk

√

Ck ‖e‖2 ‖x−w‖2 (45)

≤
(

(1+2δ(3ζ+1)k

√

Ck +Ck)‖x−w‖2 +2
√

(1+δ3ζk )Ck ‖e‖2

)

‖x−w‖2

≤
1+2δ(3ζ+1)k

p
Ck +Ck

1−δ2
(3ζ+1)k

∥

∥QT̃ t (x−w)
∥

∥

2

2

+
2
√

1+δ3ζk (1+ (1+δ(3ζ+1)k )
p

Ck +Ck )

(1−δ(3ζ+1)k )
√

1−δ2
4k

∥

∥QT̃ t (x−w)
∥

∥

2
‖e‖2 +

(1+δ3ζk )(1+2
p

Ck +Ck )

(1−δ(3ζ+1)k )2
‖e‖2

2

≤
(

√

1+2δ(3ζ+1)k

p
Ck +Ck

√

1−δ2
(3ζ+1)k

∥

∥QT̃ t (x−w)
∥

∥

2 +

√

2+Ck

1+Ck
+2

p
Ck +Ck

√

1+δ3ζk

1−δ(3ζ+1)k

‖e‖2

)2

,

where for the second inequality we use the fact that δ(3ζ+1)k ≤ 1 combined with the inequality

of Lemma 3.3, and for the last inequality we use the fact that (1+ (1+δ(3ζ+1)k )
p

Ck +Ck )2 ≤
(1+2δ(3ζ+1)k

p
Ck +Ck )(

2+Ck

1+Ck
+2

p
Ck +Ck ) together with a few algebraic steps. Taking square-

root on both sides of (45) provides the desired result. �
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APPENDIX C. PROOF OF LEMMA 3.5

Lemma 3.5: Under the assumptions and notation of Theorem 1.2, we have

∥

∥QT̃ t (xp −x)
∥

∥

2
≤ η2 ‖e‖2 +ρ2

∥

∥x−xt−1
∥

∥

2 . (46)

Proof: Looking at the step of finding new support elements one can observe that PΛ∆
is a near

optimal projection operator for M∗yt−1
r = M∗(y−Mxt−1). Noticing that T∆ ⊆ T̃ t and then using

(15) with PT t−1∪T gives

∥

∥PT̃ t M∗(y−Mxt−1)
∥

∥

2

2 (47)

≥
∥

∥PT∆
M∗(y−Mxt−1)

∥

∥

2

2

≥ C̃2k

∥

∥PT t−1∪T M∗(y−Mxt−1)
∥

∥

2

2 .

We start by bounding the lhs of (47) from above. Using Proposition 2.4 with γ1 > 0 and α> 0

we have

∥

∥PT̃ t M∗(y−Mxt−1)
∥

∥

2

2 ≤ (1+
1

γ1
)
∥

∥PT̃ t M∗e
∥

∥

2

2 (48)

+(1+γ1)
∥

∥PT̃ t M∗M(x−xt−1)
∥

∥

2

2

≤
1+γ1

γ1

∥

∥PT̃ t M∗e
∥

∥

2

2 + (1+α)(1+γ1)
∥

∥PT̃ t (x−xt−1)
∥

∥

2

2

+(1+
1

α
)(1+γ1)

∥

∥PT̃ t (Id −M∗M)(x−xt−1)
∥

∥

2

2

≤
(1+γ1)(1+δ3ζk )

γ1
‖e‖2

2

−(1+α)(1+γ1)
∥

∥QT̃ t (x−xt−1)
∥

∥

2

2

+
(

1+α+δ(3ζ+1)k +
δ(3ζ+1)k

α

)

(1+γ1)
∥

∥x−xt−1
∥

∥

2

2 ,

where the last inequality is due to Corollary 2.1 and (13).

We continue with bounding the rhs of (47) from below. For the first element we use Proposi-

tion 2.4 with constants γ2 > 0 and β> 0, and (13) to achieve

∥

∥PT t−1∪T M∗(y−Mxt−1)
∥

∥

2

2 (49)

≥
1

1+γ2

∥

∥PT t−1∪T M∗M(x−xt )
∥

∥

2

2 −
1

γ2

∥

∥PT t−1∪T M∗e
∥

∥

2

2

≥
1

1+β

1

1+γ2

∥

∥x−xt−1
∥

∥

2

2 −
1

γ2

∥

∥PT t−1∪T M∗e
∥

∥

2

2

−
1

β

1

1+γ2

∥

∥PT t−1∪T (M∗M− Id )(x−xt−1)
∥

∥

2

2

≥ (
1

1+β
−
δ(ζ+1)k

β
)

1

1+γ2

∥

∥x−xt−1
∥

∥

2

2 −
(1+δ(ζ+1)k )

γ2
‖e‖2

2 .
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By combining (48) and (49) with (47) we have

(1+α)(1+γ1)
∥

∥QT̃ t (x−xt−1)
∥

∥

2

2 (50)

≤
(1+γ1)(1+δ3ζk )

γ1
‖e‖2

2 +C̃2k

(1+δ(1+ζ)k )

γ2
‖e‖2

2

+
(

1+α+δ(3ζ+1)k +
δ(3ζ+1)k

α

)

(1+γ1)
∥

∥x−xt−1
∥

∥

2

2

−C̃2k (
1

1+β
−
δ(1+ζ)k

β
)

1

1+γ2

∥

∥x−xt−1
∥

∥

2

2 .

Division of both sides by (1+α)(1+γ1) yields

∥

∥QT̃ t (x−xt−1)
∥

∥

2

2 ≤ (51)

( 1+δ3ζk

γ1(1+α)
+

(1+δ(ζ+1)k )C̃2k

γ2(1+α)(1+γ1)

)

‖e‖2
2

+
(

1+
δ(3ζ+1)k

α

−
C̃2k

(1+α)(1+γ1)(1+γ2)
(

1

1+β
−
δ(ζ+1)k

β
)
)

∥

∥x−xt−1
∥

∥

2

2 .

Substitutingβ=
p

δ(ζ+1)k

1−
p

δ(ζ+1)k

gives

∥

∥QT̃ t (x−xt−1)
∥

∥

2

2 ≤ (52)

( 1+δ3ζk

γ1(1+α)
+

(1+δ(ζ+1)k )C̃2k

γ2(1+α)(1+γ1)

)

‖e‖2
2

+
(

1+
δ(3ζ+1)k

α

−
C̃2k

(1+α)(1+γ1)(1+γ2)

(

1−
√

δ(ζ+1)k

)2 )

∥

∥x−xt−1
∥

∥

2

2 ,

Using α=
p

δ(3ζ+1)k
√

C̃2k
(1+γ1)(1+γ2)

(

1−
p

δ(ζ+1)k

)

−
p

δ(3ζ+1)k

yields

∥

∥Q
Λ̃t (x−xt−1)

∥

∥

2

2 ≤ (53)

( 1+δ3ζk

γ1(1+α)
+

(1+δ(ζ+1)k )C̃2k

γ2(1+α)(1+γ1)

)

‖e‖2
2

+
(

−
(√

δ(3ζ+1)k −

√

C̃2k

(1+γ1)(1+γ2)

(

1−
√

δ(ζ+1)k

))2

+1
)

∥

∥x−xt−1
∥

∥

2

2 ,

The values of γ1,γ2 give a tradeoff between the convergence rate and the size of the noise coef-

ficient. For smaller values we get better convergence rate but higher amplification of the noise.
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We make no optimization on them and choose them to be γ1 = γ2 = γ where γ is an arbitrary

number greater than 0. Thus we have

∥

∥QT̃ t (x−xt−1)
∥

∥

2

2 ≤ (54)

( 1+δ3ζk

γ(1+α)
+

(1+δ(ζ+1)k )C̃2k

γ(1+α)(1+γ)

)

‖e‖2
2

+
(

−
(√

δ(3ζ+1)k −
√

C̃2k

1+γ

(

1−
√

δ(ζ+1)k

))2

+1
)

∥

∥x−xt−1
∥

∥

2

2 ,

Using the triangle inequality and the fact that QT̃ t xp = QT̃ t xt−1 = 0 gives the desired result.

�
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