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Abstract

Compressive sensing (CS) has recently emerged as a powerful framework for acquiring sparse
signals. The bulk of the CS literature has focused on the case where the acquired signal has a
sparse or compressible representation in an orthonormal basis. In practice, however, there are
many signals that cannot be sparsely represented or approximated using an orthonormal basis,
but that do have sparse representations in a redundant dictionary. Standard results in CS can
sometimes be extended to handle this case provided that the dictionary is sufficiently incoher-
ent or well-conditioned, but these approaches fail to address the case of a truly redundant or
overcomplete dictionary. In this paper we describe a variant of the iterative recovery algorithm
CoSaMP for this more challenging setting. We utilize the D-RIP, a condition on the sensing
matrix analogous to the well-known restricted isometry property. In contrast to prior work,
the method and analysis are “signal-focused”; that is, they are oriented around recovering the
signal rather than its dictionary coefficients. Under the assumption that we have a near-optimal
scheme for projecting vectors in signal space onto the model family of candidate sparse signals,
we provide provable recovery guarantees. Developing a practical algorithm that can provably
compute the required near-optimal projections remains a significant open problem, but we in-
clude simulation results using various heuristics that empirically exhibit superior performance
to traditional recovery algorithms.

1 Introduction

1.1 Overview

Compressive sensing (CS) is a powerful new framework for signal acquisition, offering the promise
that we can acquire a vector x ∈ Cn via only m � n linear measurements provided that x is
sparse or compressible.1 Specifically, CS considers the problem where we obtain measurements of

∗This work was partially supported by NSF grants DMS-1004718 and CCF-0830320, NSF CAREER grant CCF-
1149225, and AFOSR grant FA9550-09-1-0465.

1When we say that a vector z is k-sparse, we mean that ‖z‖0
def
= |supp(z)| ≤ k � n. A compressible vector is one

that is well-approximated as being sparse. We discuss compressibility in greater detail in Section 2.2.
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the form y = Ax + e, where A is an m × n sensing matrix and e is a noise vector. If x is sparse
or compressible and A satisfies certain conditions, then CS provides a mechanism to recover the
signal x from the measurement vector y efficiently and robustly.

Typically, however, signals of practical interest are not themselves sparse, but rather have a
sparse expansion in some dictionary D. By this we mean that there exists a sparse coefficient
vector α such that the signal x can be expressed as x = Dα. One could then ask the simple
question: How can we account for this signal model in CS? In some cases, there is a natural way
to extend the standard CS formulation—since we can write the measurements as y = ADα + e
we can use standard CS techniques to first obtain an estimate α̂ of the sparse coefficient vector.
We can then synthesize an estimate x̂ = Dα̂ of the original signal. Unfortunately, this is a rather
restrictive way to proceed for two main reasons: (i) the application of standard CS results to this
problem will require that the matrix given by the product AD satisfy certain properties that will
not be satisfied for many interesting choices of D, as discussed further below, and (ii) we are not
really interested in recovering α per se, but rather in obtaining an accurate estimate of x. If the
dictionary D is poorly conditioned, the signal space recovery error ‖x− x̂‖2 could be significantly
smaller or larger than the coefficient space recovery error ‖α− α̂‖2. It may be possible to recover
x in situations where recovering α is impossible, and even if we could apply standard CS results
to ensure that our estimate of α is accurate, this would not necessarily translate into a recovery
guarantee for x.

In this paper we will consider an alternative approach to this problem and develop an algorithm
for which we can provide guarantees on the recovery of x while making no direct assumptions
concerning our choice of D. Before we describe our approach, however, it will be illuminating to
see precisely what goes wrong in an attempt to extend the standard CS formulation. Towards this
end, let us return to the case where x is itself sparse (when D = I). In this setting, there are many
possible algorithms that have been proposed for recovering an estimate of x from measurements of
the form y = Ax + e, including `1-minimization approaches [5, 12] and greedy/iterative methods
such as iterative hard thresholding (IHT) [4], orthogonal matching pursuit (OMP) [18, 22, 28] and
compressive sampling matching pursuit (CoSaMP) [21]. For any of these algorithms, it can be
shown (see [4, 5, 10, 21]) that x can be accurately recovered from the measurements y if the matrix
A satisfies a condition introduced in [8] known as the restricted isometry property (RIP) with a
sufficiently small constant δk (the precise requirement on δk varies from method to method). We
say that A satisfies the RIP of order k with constant δk ∈ (0, 1) if√

1− δk ≤
‖Ax‖2
‖x‖2

≤
√

1 + δk (1)

holds for all x satisfying ‖x‖0 ≤ k. Importantly, if A is generated randomly with independent and
identically distributed (i.i.d.) entries drawn from a suitable distribution, and with a number of rows
roughly proportional to the sparsity level k, then with high probability A will satisfy (1) [2, 19, 24].

We now return to the case where x is sparse with respect to a dictionary D. If D is unitary
(i.e., if the dictionary is an orthonormal basis), then the same arguments used to establish (1) can
be adapted to show that for a fixed D, if we choose a random A, then with high probability AD
will satisfy the RIP, i.e., √

1− δk ≤
‖ADα‖2
‖α‖2

≤
√

1 + δk (2)

will hold for all α satisfying ‖α‖0 ≤ k. Thus, standard CS algorithms can be used to accurately
recover α, and because D is unitary, the signal space recovery error ‖x− x̂‖2 will exactly equal
the coefficient space recovery error ‖α− α̂‖2.
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Unfortunately, this approach won’t do in cases where D is not unitary and especially in cases
where D is highly redundant/overcomplete. For example, D might represent the overcomplete
Discrete Fourier Transform (DFT), the Undecimated Discrete Wavelet Transform, a redundant
Gabor dictionary, or a union of orthonormal bases. The challenges that we must confront when
dealing with D of this form include:

• Redundancy in D will mean that in general, the representation of a vector x in the dictio-
nary is not unique—there may exist many possible coefficient vectors α that can be used to
synthesize x.

• Coherence (correlations) between the columns of D can make it difficult to satisfy (2) with
a sufficiently small constant δk to apply existing theoretical guarantees. For instance, while
the DFT forms an orthonormal basis, a 2× overcomplete DFT is already quite coherent,
with adjacent columns satisfying |〈di, di+1〉| > 2/π > 0.63. Since the coherence provides a
bound on δk for all k ≥ 2, this means that D itself cannot satisfy the RIP with a constant
δ2k < 0.63. For the random constructions of A typically considered in the context of CS,
with high probability A will preserve the conditioning of D (good or bad) on each subspace
of interest. (For such A, one essentially needs D itself to satisfy the RIP in order to expect
AD to satisfy the RIP.) Thus, in the case of the 2× overcomplete DFT, we would expect the
RIP constant for AD to be at least roughly 0.63—well outside the range for which any of the
sparse recovery algorithms described above are known to succeed.

• As noted above, if the dictionary D is poorly conditioned, the signal space recovery error
‖x− x̂‖2 could differ substantially from the coefficient space recovery error ‖α− α̂‖2, further
complicating any attempt to understand how well we can recover x by appealing to results
concerning the recovery of α.

All of these problems essentially stem from the fact that extending standard CS algorithms in an
attempt to recover α is a coefficient-focused recovery strategy. By trying to go from the measure-
ments y all the way back to the coefficient vector α, one encounters all the problems above due to
the lack of orthogonality of the dictionary.

In contrast, in this paper we propose a signal-focused recovery strategy for CS. Our algorithm
employs the model of sparsity in an arbitrary dictionary D but directly obtains an estimate of
the signal x, and we provide guarantees on the quality of this estimate in signal space. Our
algorithm is a modification of CoSaMP [21], and in cases where D is unitary, our “Signal-Space
CoSaMP” algorithm reduces to standard CoSaMP. However, our analysis requires comparatively
weaker assumptions. Our bounds require only that A satisfy the D-RIP [6] (which we explain
below in Section 1.3)—this is a different and less-restrictive condition to satisfy than requiring AD
to satisfy the RIP. The algorithm does, however, require the existence of a near-optimal scheme
for projecting a vector x onto the set of signals admitting a sparse representation in D. While the
fact that we require only an approximate projection is a significant relaxation of the requirements
of traditional algorithms like CoSaMP (which require exact projections), showing that a practical
algorithm can provably compute the required near-optimal projection remains a significant open
problem. Nevertheless, as we will see in Section 3, various practical algorithms do lead to empirically
favorable performance, suggesting that this challenge might not be insurmountable.

1.2 Related Work

Our work most closely relates to Blumensath’s Projected Landweber Algorithm (PLA) [3], an
extension of Iterative Hard Thresholding (IHT) [4] that operates in signal space and accounts for a
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union-of-subspaces signal model. In several ways, our work is a parallel of this one, except that we
extend CoSaMP rather than IHT to operate in signal space. Both works assume thatA satisfies the
D-RIP, and implementing both algorithms requires the ability to compute projections of vectors
in the signal space onto the model family. (These requirements are described more thoroughly in
Section 1.3 below.) One critical difference, however, is that our analysis allows for near-optimal
projections whereas the PLA analysis does not.2 Other fine differences are noted below.

Also related are works that employ an assumption of “analysis sparsity,” in which a signal x
is analyzed in a dictionary D, and recovery from CS measurements is possible if D∗x is sparse
or compressible. Conventional CS algorithms such as `1-minimization [6, 20], IHT [9, 14], and
CoSaMP [14] have been adapted to account for analysis sparsity. These works are similar to ours
in that they provide recovery guarantees in signal space and do not require AD to satisfy the RIP.
However, the assumption of analysis sparsity is in general different from the “synthesis sparsity”
that we assume, where there exists a sparse coefficient vector α such that x = Dα. For example,
in the analysis case, exact sparsity implies that the analysis vector D∗x is sparse, whereas in
our setting exact sparsity implies the coefficient vector α is. Under both of these assumptions,
both the `1-analysis method and our Signal Space CoSaMP algorithm provide recovery guarantees
proportional to the norm of the noise in the measurements, ‖e‖2 [6]. Without exact sparsity, `1-
analysis adds an additional factor ‖D∗x − (D∗x)k‖1/

√
k, where (D∗x)k represents the k largest

coefficients in magnitude of (D∗x). In the synthesis sparsity setting, the analogous “tail-term” is
less straightforward (see Section 2.2 below for details). In summary, these algorithms are intended
for different signal families and potentially different dictionaries. Nevertheless, there are some
similarities between our work and analysis CoSaMP (ACoSaMP) [14] as we will see below.

Finally, it is worth mentioning the loose connection between our work and that in “model-
based CS” [1]. In the case where D is unitary, IHT and CoSaMP have been modified to account
for structured sparsity models, in which certain sparsity patterns in the coefficient vector α are
forbidden. This work is similar to ours in that it involves a projection onto a model set. However,
the algorithm (including the projection) operates in coefficient space (not signal space) and employs
a different signal model; the requisite model-based RIP is more similar to requiring that AD satisfy
the RIP; and extensions to non-orthogonal dictionaries are not discussed. In fact, our work is in part
inspired by our recent efforts [11] to extend the “model-based CS” framework to a non-orthogonal
dictionary in which we proposed a similar algorithm to the one considered in this paper.

1.3 Requirements

First, to establish notation, suppose that A is an m×n matrix and D is an arbitrary n×d matrix.
We suppose that we observe measurements of the form y = Ax+ e = ADα+ e. For an index set
Λ ⊂ {1, 2, . . . , d} (sometimes referred to as a support set), we let DΛ denote the n× |Λ| submatrix
of D corresponding to the columns indexed by Λ, and we let R(DΛ) denote the column span of
DΛ. We also use PΛ : Cn → Cn to denote the orthogonal projection operator onto R(DΛ) and
PΛ⊥ : Cn → Cn to denote the orthogonal projection operator onto the orthogonal complement of
R(DΛ).3

We will approach our analysis under the assumption that the matrix A satisfies the D-RIP [6].
Specifically, we say that A satisfies the D-RIP of order k if there exists a constant δk ∈ (0, 1) such

2Technically, the analysis of the PLA [3] allows for near-optimal projections but only with an additive error term.
For sparse models, however, such projections could be made arbitrarily accurate simply by rescaling the signal before
projecting. Thus, we consider the PLA to require exact projections for sparse models.

3Note that PΛ⊥ does not represent the orthogonal projection operator onto R(D{1,2,...,d}\Λ).
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that √
1− δk ≤

‖ADα‖2
‖Dα‖2

≤
√

1 + δk (3)

holds for all α satisfying ‖α‖0 ≤ k. We note that this is different from requiring that A satisfy the
RIP—although (1) and (3) appear similar, the RIP requirement demands that this condition holds
for vectors x containing few nonzeros, while the D-RIP requirement demands that this condition
holds for vectors x having a sparse representation in the dictionaryD. We also note that, compared
to the requirement that AD satisfy the RIP (2), it is relatively easy to ensure that A satisfies the
D-RIP. In particular, we have the following lemma.

Lemma 1.1 (Corollary 3.1 of [11]). For any choice of D, if A is populated with i.i.d. random
entries from a Gaussian or subgaussian distribution, then with high probability, A will satisfy the
D-RIP of order k as long as m = O(k log(d/k)).

In fact, using the results of [17] one can extend this result to show that given any matrix A
satisfying the traditional RIP, by applying a random sign matrix one obtains a matrix that with
high probability will satisfy the D-RIP.

Next, recall that one of the key steps in the traditional CoSaMP algorithm is to project a vector
in signal space onto the model family of candidate sparse signals. In the traditional setting (when
D is an orthonormal basis), this step is trivial and can be performed by simple thresholding of the
entries of the coefficient vector. Our Signal Space CoSaMP algorithm (described more completely
in Section 2) involves replacing thresholding with a more general projection of vectors in the signal
space onto the signal model. Specifically, for a given vector z ∈ Cn and a given sparsity level k,
define

Λopt(z, k) := arg min
Λ:|Λ|=k

‖z − PΛz‖2 .

The support Λopt(z, k)—if we could compute it—could be used to generate the best k-sparse ap-
proximation to z; in particular, the nearest neighbor to z among all signals that can be synthesized
using k columns from D is given by PΛopt(z,k)z. Unfortunately, computing Λopt(z, k) may be diffi-
cult in general. Therefore, we allow for near-optimal projections to be used in our algorithm. For
a given vector z ∈ Cn and a given sparsity level k, we assume a method is available for producing
an estimate of Λopt(z, k), denoted SD(z, k) and having cardinality |SD(z, k)| = k, that satisfies∥∥PΛopt(z,k)z − PSD(z,k)z

∥∥
2
≤ min

(
ε1
∥∥PΛopt(z,k)z

∥∥
2
, ε2
∥∥z − PΛopt(z,k)z

∥∥
2

)
(4)

for some constants ε1, ε2 ≥ 0. Setting ε1 or ε2 equal to 0 would lead to the requirement that
PΛopt(z,k)z = PSD(z,k)z exactly. Note that our metric for judging the quality of an approximation
to Λopt(z, k) is entirely in terms of its impact in signal space. It might well be the case that SD(z, k)
could satisfy (4) while being substantially different (or even disjoint) from Λopt(z, k). Thus, while
computing Λopt(z, k) may be extremely challenging when D is highly redundant, there is hope
that efficiently computing an approximation that satisfies (4) might still be possible. However,
determining whether this is the case remains an open problem.

It is important to note that although computing a near-optimal support estimate that satisfies
the condition (4) remains a challenging task in general, several important related works have run
into the same problem. As we previously mentioned, the existing analysis of the PLA [3] actually
requires exact computation of Λopt(z, k). The analysis of ACoSaMP [14] allows a near-optimal pro-
jection to be used, with a near-optimality criterion that differs slightly from ours. Simulations of
ACoSaMP, however, have relied on practical (but not theoretically backed) methods for computing
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Algorithm 1 Signal Space CoSaMP

input: A, D, y, k, stopping criterion
initialize: r = y, x0 = 0, ` = 0, Γ = ∅
while not converged do

proxy: ṽ = A∗r
identify: Ω = SD(ṽ, 2k)
merge: T = Ω ∪ Γ
update: x̃ = arg minz ‖y −Az‖2 s.t. z ∈ R(DT )

Γ = SD(x̃, k)
x`+1 = PΓx̃
r = y −Ax`+1

` = `+ 1
end while
output: x̂ = x`

this projection. In Section 3, we present simulation results for Signal Space CoSaMP using prac-
tical (but not theoretically backed) methods for computing SD(z, k). We believe that computing
provably near-optimal projections is an important topic worthy of further study, as it is really the
crux of the problem in all of these settings.

2 Algorithm and Recovery Guarantees

Given noisy compressive measurements of the form y = Ax+e, our Signal Space CoSaMP algorithm
for recovering an estimate of the signal x is specified in Algorithm 1.

2.1 A Bound for the Recovery of Sparse Signals

For signals having a sparse representation in the dictionary D, we have the following guarantee.

Theorem 2.1. Suppose there exists a k-sparse coefficient vector α such that x = Dα, and suppose
that A satisfies the D-RIP of order 4k. Then the signal estimate x`+1 obtained after `+1 iterations
of Signal Space CoSaMP satisfies∥∥∥x− x`+1

∥∥∥
2
≤ C1

∥∥∥x− x`∥∥∥
2

+ C2 ‖e‖2 , (5)

where C1 and C2 are constants that depend on the isometry constant δ4k and on the approximation
parameters ε1 and ε2. In particular,

C1 = ((2 + ε1)δ4k + ε1)(2 + ε2)

√
1 + δ4k

1− δ4k
and C2 =

(
(2 + ε2) ((2 + ε1)(1 + δ4k) + 2)√

1− δ4k

)
.

Our proof of Theorem 2.1 appears in Appendix A and is a modification of the original CoSaMP
proof [21]. Through various combinations of ε1, ε2, and δ4k, it is possible to ensure that C1 < 1
and thus that the accuracy of Signal Space CoSaMP improves at each iteration. Taking ε1 = 1

10 ,
ε2 = 1, and δ4k = 0.029 as an example, we obtain C1 ≤ 0.5 and C2 ≤ 12.7. Applying the relation
(5) recursively, we then conclude the following.
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Corollary 2.1. Suppose there exists a k-sparse coefficient vector α such that x = Dα, and suppose
that A satisfies the D-RIP of order 4k with δ4k = 0.029. Suppose that Signal Space CoSaMP is
implemented using near-optimal projections with approximation parameters ε1 = 1

10 and ε2 = 1.
Then the signal estimate x` obtained after ` iterations of Signal Space CoSaMP satisfies∥∥∥x− x`∥∥∥

2
≤ 2−` ‖x‖2 + 25.4 ‖e‖2 . (6)

By taking a sufficient number of iterations `, the first term on the right hand side of (6) can be
made arbitrarily small, and ultimately the recovery error depends only on the level of noise in the
measurements. For a precision parameter η, this shows that at most O(log(‖x‖2 /η)) iterations are
needed to ensure that

‖x− x̂‖2 = O(η + ‖e‖2) = O(max {η, ‖e‖2}).

The cost of a single iteration of the method is dominated by the cost of the identify and update
steps, where we must obtain sparse approximations to ṽ and x̃, respectively. We emphasize again
that there is no known algorithm for computing the approximation SD efficiently, and the ultimate
computational complexity of the algorithm will depend on this choice. However, in the absence of
a better choice, one natural option for estimating SD is to use a greedy method such as OMP or
CoSaMP (see Section 3 for experimental results using these choices). The running time of these
greedy methods on an n× d dictionary D are O(knd) or O(nd), respectively [21]. Therefore, using
these methods as approximations in the identify and update steps yields an overall running time
of O(knd log(‖x‖2 /η)) or O(nd log(‖x‖2 /η)). For sparse signal recovery, these running times are
in line with state-of-the-art bounds for traditional CS algorithms such as CoSaMP [21], except that
Signal Space CoSaMP can be applied in settings where the dictionary D is not unitary. The error
bounds of Corollary 2.1 also match those of classical results, except that here we assume suitable
accuracy of SD. Of course, since no efficient near-optimal projection method is known, this presents
a weakness in these results, but it is one shared by all comparable results in the existing literature.

2.2 A Discussion Concerning the Recovery of Arbitrary Signals

We can extend our analysis to account for signals x that do not exactly have a sparse representation
in the dictionary D. For the sake of illustration, we again take ε1 = 1

10 , ε2 = 1, and δ4k = 0.029,
and we show how (6) can be extended.

We again assume measurements of the form y = Ax+ e but allow x to be an arbitrary signal
in Cn. For any vector αk ∈ Cd such that ‖αk‖0 ≤ k, we can write

y = Ax+ e = ADαk +A(x−Dαk) + e.

The term ẽ := A(x−Dαk) + e can be viewed as noise in the measurements of the k-sparse signal
Dαk. Then by (6) we have∥∥∥Dαk − x`∥∥∥

2
≤ 2−` ‖Dαk‖2 + 25.4 ‖ẽ‖2 ≤ 2−` ‖Dαk‖2 + 25.4 (‖e‖2 + ‖A(x−Dαk)‖2) , (7)

and so using the triangle inequality,∥∥∥x− x`∥∥∥
2
≤ 2−` ‖Dαk‖2 + 25.4 ‖e‖2 + ‖x−Dαk‖2 + 25.4 ‖A(x−Dαk)‖2 . (8)

One can then choose the coefficient vector αk to minimize the right hand side of (8).
Bounds very similar to this appear in the analysis of both the PLA [3] and ACoSaMP [14].

Such results are somewhat unsatisfying since it is unclear how the term ‖A(x−Dαk)‖2 might
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behave. Unfortunately, these bounds are difficult to improve upon when D is not unitary. Under
some additional assumptions, however, we can make further modifications to (8). For example, the
following proposition allows us to bound ‖A(x−Dαk)‖2.

Proposition 2.1 (Proposition 3.5 of [21]). Suppose that A satisfies the upper inequality of the
RIP, i.e., that ‖Ax‖2 ≤

√
1 + δk ‖x‖2 holds for all x ∈ Cn with ‖x‖0 ≤ k. Then, for every signal

z ∈ Cn,

‖Az‖2 ≤
√

1 + δk

[
‖z‖2 +

1√
k
‖z‖1

]
. (9)

Plugging this result in to (8), we have∥∥∥x− x`∥∥∥
2
≤ 2−` ‖Dαk‖2 + 25.4 ‖e‖2 + (25.4

√
1 + δk + 1) ‖x−Dαk‖2

+
25.4
√

1 + δk√
k

‖x−Dαk‖1 . (10)

For any x ∈ Cn, one could define the model mismatch quantity

mismatch(x) := inf
αk:‖αk‖0≤k

[
‖x−Dαk‖2 +

1√
k
‖x−Dαk‖1

]
.

We remark that this mismatch quantity is analogous to the tail bounds in the literature for methods
which do not allow for redundant dictionaries. In particular, the `1-norm term in the classical
setting is required on account of geometric results about Gelfand widths [13, 16]. If this quantity
is large, then the signal is far from compressible and we are not in a setting for which our method
is designed. Plugging this definition into (10), we obtain∥∥∥x− x`∥∥∥

2
≤ 2−` ‖Dαk‖2 + 25.4 ‖e‖2 + 26.4

√
1 + δk ·mismatch(x). (11)

In some sense, one can view mismatch(x) as the “distance” from x to the set of signals that are
k-sparse in the dictionary D, except that the actual “distance” being measured is a mixed `2/`1
norm. In cases where one expects this distance to be small, (11) guarantees that the recovery error
will be small.

We close this discussion by noting that if we make the stronger assumption that AD actually
satisfies the RIP, we can also measure the model mismatch in the coefficient space rather than the
signal space. Let α ∈ Cd be any vector that satisfies x = Dα. Then using a natural extension of
Proposition 2.1, we conclude that

‖A(x−Dαk)‖2 = ‖AD(α−αk)‖2 ≤
√

1 + δk

(
‖α−αk‖2 +

1√
k
‖α−αk‖1

)
.

When α is compressible, the recovery error (8) will be reasonably small.

3 Simulations

As we discussed in Section 1.3, the main difficulty in implementing our algorithm is in computing
projections of vectors in the signal space onto the model family of candidate sparse signals. One such
projection is required in the identify step in Algorithm 1; another such projection is required in the
update step. Although our theoretical analysis can accommodate near-optimal support estimates
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SD(z, k) that satisfy the condition (4), computing even near-optimal supports can be a challenging
task for many dictionaries of practical interest. In this section, we present simulation results
using practical (but heuristic) methods for attempting to find near-optimal supports SD(z, k).
Specifically, we find ourselves in a situation that mirrors the early days of the sparse recovery
literature—we would like to identify a sparse vector that well-approximates z. This is precisely the
scenario where recovery algorithms like OMP and `1-minimization were first proposed, so despite
the lack of a theoretical guarantee, we can still apply these algorithms. Of course, if we are
leaving the solid ground of theory and entering the world of heuristics, we can also just consider
applying standard algorithms like OMP, CoSaMP, and `1-minimization algorithms directly to the
CS recovery problem to see how they perform. We will see, however, that the “Signal Space
CoSaMP” algorithms resulting from using standard solvers for SD(z, k)—even though they are
not quite covered by our theory—can nevertheless outperform these classical CS reconstruction
techniques.

In all simulations that follow, we set the signal length n = 256. We let D be an n×d dictionary
(two different dictionaries are considered below), and we construct a length-d coefficient vector α
with k = 8 nonzero entries chosen as i.i.d. Gaussian random variables. We set x = Dα, constructA
as a random m×n matrix with i.i.d. Gaussian entries, and collect noiseless measurements y = Ax.
After reconstructing an estimate of x, we declare this recovery to be perfect if the SNR of the
recovered signal estimate is above 100 dB. All of our simulations were performed via a MATLAB
software package that we have made available for download at http://users.ece.gatech.edu/

~mdavenport/software.

3.1 Renormalized Orthogonal Dictionary

As an instructive warm-up, we begin with one almost trivial example where the optimal projection
can be computed exactly: we construct D by taking an orthobasis and renormalizing its columns
while maintaining their orthogonality. To compute Λopt(z, k) with such a dictionary, one merely
computes D∗z, divides this vector elementwise by the column norms of D, and sets Λ equal to the
positions of the k largest entries.

For the sake of demonstration, we set D equal to the n×n identity matrix, but we then rescale
its first n/2 diagonal entries to equal 100 instead of 1. We construct sparse coefficient vectors α
as described above, with supports chosen uniformly at random. As a function of the number of
measurements m, we plot in Figure 1 the percent of trials in which Signal Space CoSaMP recovers x
exactly. We see that with roughly 50 or more measurements, the recovery is perfect in virtually all
trials. In contrast, this figure also shows the performance of traditional CoSaMP using the combined
dictionary AD to first recover α. Because of the non-normalized columns in D, CoSaMP almost
never recovers the correct signal; in fact its support estimates almost always are contained in the
set {1, 2, . . . , n/2}. Of course, if presented with this problem in practice one would naturally want
to modify traditional CoSaMP to account for the various column norms in D; the point here is
merely that our algorithm gives a principled way to make this (trivial) modification.

3.2 Overcomplete DFT Dictionary

As a second example, we set d = 4n and let D be a 4× overcomplete DFT dictionary. In this
dictionary, neighboring columns are highly coherent, while distant columns are not. We consider
two scenarios: one in which the k = 8 nonzero entries of α are randomly positioned but well-
separated (with a minimum spacing of 8 zeros in between any pair of nonzero entries), and one in
which the k = 8 nonzero entries all cluster together in a single, randomly-positioned block. Because
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Figure 1: Performance in recovering signals having a k = 8 sparse representation in a dictionary D with
orthogonal, but not normalized, columns. The plot shows, for various numbers of measurements m, the
percent of trials in which each algorithm recovers the signal exactly. Signal Space CoSaMP (in which we can
compute optimal projections) outperforms an unmodified CoSaMP algorithm.

of the nature of the columns in D, we see that many recovery algorithms perform differently in
these two scenarios.

3.2.1 Well-separated coefficients

Figure 2(a) plots the performance of six different recovery algorithms for the scenario where the
nonzero entries of α are well-separated. Two of these algorithms are the traditional OMP and
CoSaMP algorithms from CS, each using the combined dictionary AD to first recover α. We
actually see that OMP performs substantially better than CoSaMP in this scenario, apparently
because it can select one coefficient at a time and is less affected by the coherence of D. It is
somewhat remarkable that OMP succeeds at all, given that AD will not satisfy the RIP and we
are not aware of any existing theory that would guarantee the performance of OMP in this scenario.

We also show in Figure 2(a) two variants of Signal Space CoSaMP: one in which OMP is
used for computing SD(z, k) (labeled “SSCoSaMP (OMP)”), and one in which CoSaMP is used for
computing SD(z, k) (labeled “SSCoSaMP (CoSaMP)”). That is, these algorithms actually use OMP
or CoSaMP as an inner loop inside of Signal Space CoSaMP to find a sparse solution to the equation
z = Dα. In this scenario, we see that the performance of SSCoSaMP (OMP) is substantially better
than OMP, while the performance of SSCoSaMP (CoSaMP) is poor. We believe that this happens
for the same reason that traditional OMP outperforms traditional CoSaMP. In general, we have
found that when OMP performs well, SSCoSaMP (OMP) may perform even better, and when
CoSaMP performs poorly, SSCoSaMP (CoSaMP) may still perform poorly.

Figure 2(a) also shows the performance of two algorithms that involve convex optimization for
sparse regularization. One, labeled “`1,” uses an `1-minimization approach [27] to find a sparse
coefficient vector α′ subject to the constraint that y = ADα′. This algorithm actually outperforms
traditional OMP in this scenario. The other, labeled “SSCoSaMP (`1),” is a variant of Signal
Space CoSaMP in which `1-minimization is used for computing SD(z, k).4 Specifically, to compute
SD(z, k), we search for the vector α′ having the smallest `1 norm subject to the constraint that
z = Dα′, and we then choose the support that contains the k largest entries of this vector.
Remarkably, this algorithm performs best of all. We believe that this is likely due to the fact that,

4We are not unaware of the irony of using `1-minimization inside of a greedy algorithm.
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(a) (b)

Figure 2: Performance in recovering signals having a k = 8 sparse representation in a 4× overcomplete
DFT dictionary. Two scenarios are shown: (a) one in which the k = 8 nonzero entries of α are randomly
positioned but well-separated, and (b) one in which the k = 8 nonzero entries all cluster together in a single,
randomly-positioned block. Algorithms involving OMP and `1-minimization perform well in the former
scenario; algorithms involving CoSaMP perform well in the latter. In general, the Signal Space CoSaMP
variants outperform the corresponding traditional CS algorithm.

for the overcomplete DFT dictionary, `1-minimization is known to be capable of finding Λopt(z, k)
exactly when z = PΛopt(z,k)z and the entries of Λopt(z, k) are sufficiently well-separated [7]. While
we do not guarantee that this condition will be met within every iteration of Signal Space CoSaMP,
the fact that the original coefficient vector α has well-separated coefficients seems to be intimately
related to the success of `1 and SSCoSaMP (`1) here.

We note that all of the above algorithms involve a step where a least-squares problem must be
solved on an estimated support set.5 This might seem somewhat contrary to our signal-focused
approach, since solving this least-squares problem essentially involves recovering a set of coefficients
α and then computing x̃ = DTα. However, recall that at this point in the algorithm we are solving
an over-determined system, so there is no significant difference between solving for α versus x̃. The
problem with coefficient-focused strategies and analysis is that they rely on identifying the subset
T containing the “correct” subset of coefficients, whereas for us, T could be very different from the
“correct” subset, and the vector α has no particular significance—all that matters is the vector
x̃ that this step ultimately synthesizes. Nevertheless, it is worth noting that when a dictionary
D is highly coherent, it can be numerically challenging to solve this problem, as the resulting
submatrix can be very poorly conditioned. Following our discussion in [11], we employ Tikhonov
regularization [15, 23, 25, 26] and solve a norm-constrained least-squares problem to improve its
conditioning. For this we must provide our algorithms with an upper bound on the norm of the
sparse coefficient vector. In the simulations above, we have selected this bound to be 10× the true
norm of the original α. The selection of this bound does not have a substantial impact on the
performance of OMP or SSCoSaMP (OMP), but we have noticed that CoSaMP and SSCoSaMP
(CoSaMP) perform somewhat better when the true norm ‖α‖2 is provided as an oracle.

5We use this for debiasing after running `1.
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3.2.2 Clustered coefficients

Figure 2(b) plots the performance of the same six recovery algorithms for the scenario where the
nonzero entries of α are clustered into a single block. Although one could of course employ a block-
sparse recovery algorithm in this scenario, our intent is more to study the impact that neighboring
active atoms have on the algorithms above.

In this scenario, between the traditional greedy algorithms, CoSaMP now outperforms OMP,
apparently because it is designed to select multiple indices at each step and will not be as affected by
the coherence of neighboring active columns in D. We also see that the performance of SSCoSaMP
(CoSaMP) is somewhat better than CoSaMP, while the performance of SSCoSaMP (OMP) is poor.
We believe that this happens for the same reason that traditional CoSaMP outperforms traditional
OMP. In general, we have found that when CoSaMP performs well, SSCoSaMP (CoSaMP) may
perform even better, and when OMP performs poorly, SSCoSaMP (OMP) may still perform poorly.

In terms of our condition for perfect recovery (estimating x to within an SNR of 100 dB or more),
neither of the algorithms that involve `1-minimization perform well in this scenario. However, we
do note that both `1 and SSCoSaMP (`1) do frequently recover an estimate of x with an SNR of
50 dB or more, though still not quite as frequently as SSCoSaMP (CoSaMP) does.

In these simulations, we again use Tikhonov regularization with a norm bound that is 10× the
true norm of the original α. However, we have not found that changing this norm bound has a
significant impact on CoSaMP or SSCoSaMP (CoSaMP) in this scenario. We also note that in
this scenario we found it beneficial to run CoSaMP and the three Signal Space CoSaMP methods
for a few more iterations than in the case of well-separated coefficients; convergence to exactly the
correct support can be slow in this case where multiple neighboring atoms in a coherent dictionary
are active.

3.2.3 Additional investigations

We close with some final remarks concerning additional investigations. First, our simulations
above have tested three heuristic methods for attempting to find near-optimal supports SD(z, k),
and we have evaluated the performance of these methods based on the ultimate success or failure
of SSCoSaMP in recovering the signal. In some problems of much smaller dimension (where we
could use an exhaustive search to find Λopt(z, k)) we monitored the performance of CoSaMP, OMP,
and `1-minimization for computing SD(z, k) in terms of the effective ε1 and ε2 values they attained
according to the metric in (4). For scenarios where the nonzero entries of α were well-separated,
we observed typical ε1 and ε2 values for OMP and `1-minimization on the order of 1 or less. For
CoSaMP, these values were larger by one or two orders of magnitude, as might be expected based
on the signal recovery results presented in Section 3.2.1.6 For scenarios where the nonzero entries
of α were clustered, the ε2 values for OMP and `1-minimization increased by about one order of
magnitude, but the ε1 and ε2 values for CoSaMP did not change significantly. The primary reason
for this, despite the superior signal recovery performance of SSCoSaMP (CoSaMP) in Section 3.2.2,
appears to be that even when the nonzero entries of α are clustered, the support of the optimal
approximation of ṽ in the identify step will not necessarily be clustered, and so CoSaMP will
struggle to accurately identify this support.

Second, we remark that our simulations in Sections 3.2.1 and 3.2.2 have tested two extremes:
one scenario in which the nonzero entries of α were well-separated, and one scenario in which
the nonzero entries clustered together in a single block. Among the heuristic methods that we

6The occasional exception in some of these simulations occurred when it happened that
∥∥z − PΛopt(z,k)z

∥∥
2
≈ 0

but
∥∥PΛopt(z,k)z − PSD(z,k)z

∥∥
2

was not correspondingly small, and so the effective ε2 value was large or infinite.
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have used for attempting to find near-optimal supports SD(z, k), the question of which method
performs best has been shown to depend on the sparsity pattern of α. Although we do not present
detailed results here, we have also tested these same algorithms using a hybrid sparsity model for
α in which half of the nonzero entries are well-separated while the other half are clustered. As
one might expect based on the discussions above, all three of the SSCoSaMP methods struggle in
this scenario (as do the three standard CS methods). This is yet another reminder that more work
is needed to understand what techniques are appropriate for approximating SD(z, k) and how to
optimize these techniques depending on what is known about the signal’s sparsity pattern.

A Proof of Theorem 2.1

The proof of Theorem 2.1 requires four main lemmas, which are listed below and proved in Sec-
tions A.1–A.4. In the lemmas below, v = x− x` denotes the recovery error in signal space after `
iterations.

Lemma A.1 (Identify). ‖PΩ⊥v‖2 ≤ ((2 + ε1)δ4k + ε1) ‖v‖2 + (2 + ε1)
√

1 + δ4k ‖e‖2.

Lemma A.2 (Merge). ‖PT⊥x‖2 ≤ ‖PΩ⊥v‖2.

Lemma A.3 (Update). ‖x− x̃‖2 ≤
√

1+δ4k
1−δ4k ‖PT⊥x‖2 + 2√

1−δ4k
‖e‖2.

Lemma A.4 (Estimate).
∥∥x− x`+1

∥∥
2
≤ (2 + ε2) ‖x− x̃‖2.

Combining all four statements above, we have∥∥∥x− x`+1
∥∥∥

2
≤ (2 + ε2) ‖x− x̃‖2

≤ (2 + ε2)

√
1 + δ4k

1− δ4k
‖PT⊥x‖2 +

4 + 2ε2√
1− δ4k

‖e‖2

≤ (2 + ε2)

√
1 + δ4k

1− δ4k
‖PΩ⊥v‖2 +

4 + 2ε2√
1− δ4k

‖e‖2

≤ (2 + ε2)

√
1 + δ4k

1− δ4k
((2 + ε1)δ4k + ε1) ‖v‖2

+ (2 + ε2)

√
1 + δ4k

1− δ4k
(2 + ε1)

√
1 + δ4k ‖e‖2 +

4 + 2ε2√
1− δ4k

‖e‖2

= ((2 + ε1)δ4k + ε1)(2 + ε2)

√
1 + δ4k

1− δ4k

∥∥∥x− x`∥∥∥
2

+

(
(2 + ε2) ((2 + ε1)(1 + δ4k) + 2)√

1− δ4k

)
‖e‖2 .

This completes the proof of Theorem 2.1.

A.1 Proof of Lemma A.1

In order to prove the four main lemmas, we require two supplemental lemmas, the first of which is
a direct consequence of the D-RIP.

Lemma A.5 (Consequence of D-RIP). For any index set B and any vector z ∈ Cn,

‖PBA∗APBz − PBz‖2 ≤ δ|B| ‖z‖2 .
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Proof. We have

δ|B| ≥ sup
x: |B|−sparse in D

| ‖Ax‖22 − ‖x‖
2
2 |

‖x‖22

≥ sup
x

| ‖APBx‖22 − ‖PBx‖
2
2 |

‖PBx‖22

≥ sup
x

| ‖APBx‖22 − ‖PBx‖
2
2 |

‖x‖22
= sup
‖x‖2=1

| ‖APBx‖22 − ‖PBx‖
2
2 |

= sup
‖x‖2=1

|〈P∗BA∗APBx− P∗BPBx,x〉|

= sup
‖x‖2=1

|〈PBA∗APBx− PBx,x〉|

= ‖PBA∗APB − PB‖2 ,

where the third line follows because ‖PBx‖2 ≤ ‖x‖2 for all x, and the last line follows from the
fact that PBA∗APB − PB is self-adjoint.

We’ll also utilize an elementary fact about orthogonal projections.

Lemma A.6. For any pair of index sets A,B with A ⊂ B, PA = PAPB.

Now, to make the notation simpler, note that ṽ = A∗Av +A∗e and that Ω = SD(ṽ, 2k). Let
Ω∗ = Λopt(ṽ, 2k) denote the optimal support of size 2k for approximating ṽ, and set R = SD(v, 2k).
Using this notation we have

‖PΩ⊥v‖2 = ‖v − PΩv‖2
≤ ‖v − PΩṽ‖2
= ‖(v − PR∪Ω∗ ṽ) + (PR∪Ω∗ ṽ − PΩ∗ ṽ) + (PΩ∗ ṽ − PΩṽ)‖2
≤ ‖v − PR∪Ω∗ ṽ‖2 + ‖PR∪Ω∗ ṽ − PΩ∗ ṽ‖2 + ‖PΩ∗ ṽ − PΩṽ‖2
≤ ‖v − PR∪Ω∗A

∗Av‖2 + ‖PR∪Ω∗A
∗e‖2 + ‖PR∪Ω∗ ṽ − PΩ∗ ṽ‖2 + ‖PΩ∗ ṽ − PΩṽ‖2 , (12)

where the second line follows from the fact that PΩv is the nearest neighbor to v among all vectors
in R(DΩ) and the fourth and fifth lines use the triangle inequality.

Below, we will provide bounds on the first and second terms appearing in (12). To deal with
the third term in (12), note that for any Π which is a subset of R ∪ Ω∗, we can write

ṽ − PΠṽ = (ṽ − PR∪Ω∗ ṽ) + (PR∪Ω∗ ṽ − PΠṽ),

where ṽ−PR∪Ω∗ ṽ is orthogonal to R(DR∪Ω∗), and PR∪Ω∗ ṽ−PΠṽ is contained in R(DR∪Ω∗). Thus
we can write

‖ṽ − PΠṽ‖22 = ‖ṽ − PR∪Ω∗ ṽ‖22 + ‖PR∪Ω∗ ṽ − PΠṽ‖22 .

Recall that over all index sets Π with |Π| = 2k, ‖ṽ − PΠṽ‖2 is minimized by choosing Π = Ω∗.
Thus, over all Π which are subsets of R∪Ω∗ with |Π| = 2k, ‖PR∪Ω∗ ṽ − PΠṽ‖22 must be minimized
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by choosing Π = Ω∗. In particular, we have the first inequality below:

‖PR∪Ω∗ ṽ − PΩ∗ ṽ‖2 ≤ ‖PR∪Ω∗ ṽ − PRṽ‖2
= ‖PR∪Ω∗ ṽ − PRPR∪Ω∗ ṽ‖2
≤ ‖PR∪Ω∗ ṽ − PR(v +A∗e)‖2
= ‖(PR∪Ω∗A

∗Av − v) + (PR∪Ω∗A
∗e− PRA∗e)‖2

≤ ‖PR∪Ω∗A
∗Av − v‖2 + ‖PR∪Ω∗A

∗e− PRA∗e‖2
≤ ‖PR∪Ω∗A

∗Av − v‖2 + ‖(I − PR)PR∪Ω∗A
∗e‖2

≤ ‖PR∪Ω∗A
∗Av − v‖2 + ‖PR∪Ω∗A

∗e‖2 . (13)

The second line above uses Lemma A.6, the third line follows from the fact that PRPR∪Ω∗ ṽ must
be the nearest neighbor to PR∪Ω∗ ṽ among all vectors in R(DR), the fourth line uses the fact that
PRv = v because R = SD(v, 2k) and both x and x` are k-sparse in D, the fifth line uses the
triangle inequality, the sixth line uses Lemma A.6, and the seventh line follows from the fact that
(I − PR) is an orthogonal projection and hence has norm bounded by 1.

To deal with the fourth term in (12), note that from the definition of Ω∗ and from (4), we have
the first inequality below:

‖PΩ∗ ṽ − PΩṽ‖2 ≤ ε1 ‖PΩ∗ ṽ‖2
= ε1 ‖PΩ∗(A

∗Av +A∗e)‖2
≤ ε1 ‖PΩ∗A

∗Av‖2 + ε1 ‖PΩ∗A
∗e‖2

= ε1 ‖PΩ∗PR∪Ω∗A
∗Av‖2 + ε1 ‖PΩ∗PR∪Ω∗A

∗e‖2
≤ ε1 ‖PR∪Ω∗A

∗Av‖2 + ε1 ‖PR∪Ω∗A
∗e‖2

≤ ε1 ‖v‖2 + ε1 ‖PR∪Ω∗A
∗Av − v‖2 + ε1 ‖PR∪Ω∗A

∗e‖2 , (14)

The third line above uses the triangle inequality, the fourth line uses Lemma A.6, the fifth line uses
the fact PΩ∗ is an orthogonal projection and hence has norm bounded by 1, and the sixth line uses
the triangle inequality.

Combining (12), (13), and (14) we see that

‖PΩ⊥v‖2 ≤ (2 + ε1) ‖PR∪Ω∗A
∗Av − v‖2 + (2 + ε1) ‖PR∪Ω∗A

∗e‖2 + ε1 ‖v‖2 .

Since v ∈ R(DR), it follows that v ∈ R(DR∪Ω∗), and so

‖PR∪Ω∗A
∗Av − v‖2 = ‖PR∪Ω∗A

∗APR∪Ω∗v − PR∪Ω∗v‖2 ≤ δ4k ‖v‖2 ,

where we have used Lemma A.5 to get the inequality above. In addition, we know that the operator
norm of PR∪Ω∗A

∗ satisfies

‖PR∪Ω∗A
∗‖2 = ‖(PR∪Ω∗A

∗)∗‖2 = ‖APR∪Ω∗‖2 ≤
√

1 + δ4k,

which follows from the D-RIP. Specifically, for any x,

‖APR∪Ω∗x‖2
‖x‖2

≤
‖APR∪Ω∗x‖2
‖PR∪Ω∗x‖2

≤
√

1 + δ4k.

Putting all of this together, we have

‖PΩ⊥v‖2 ≤ ((2 + ε1)δ4k + ε1) ‖v‖2 + (2 + ε1)
√

1 + δ4k ‖e‖2 .
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A.2 Proof of Lemma A.2

First note that by the definition of T , x` ∈ R(DT ), and hence PT⊥x` = 0. Thus we can write,

‖PT⊥x‖2 =
∥∥∥PT⊥(x− x`)

∥∥∥
2

= ‖PT⊥v‖2 .

Finally, since Ω ⊆ T , we have that

‖PT⊥v‖2 ≤ ‖PΩ⊥v‖2 .

A.3 Proof of Lemma A.3

To begin, we note that x − x̃ has a 4k-sparse representation in D, thus, applying the D-RIP (of
order 4k) we have

‖x− x̃‖2 ≤
‖Ax−Ax̃‖2√

1− δ4k
.

By construction,
‖Ax−Ax̃+ e‖2 ≤ ‖Ax−Az + e‖2

for any z ∈ R(DT ), in particular for z = PTx. Thus,

‖x− x̃‖2 ≤
‖Ax−Ax̃‖2√

1− δ4k

≤
‖Ax−Ax̃+ e‖2 + ‖e‖2√

1− δ4k

≤
‖Ax−APTx+ e‖2 + ‖e‖2√

1− δ4k

≤
‖Ax−APTx‖2 + 2 ‖e‖2√

1− δ4k

where the second and fourth lines use the triangle inequality. By applying the D-RIP we obtain

‖Ax−APTx‖2 ≤
√

1 + δ4k ‖x− PTx‖2 =
√

1 + δ4k ‖PT⊥x‖2 .

Combining all of this,

‖x− x̃‖2 ≤
√

1 + δ4k ‖PT⊥x‖2 + 2 ‖e‖2√
1− δ4k

.

A.4 Proof of Lemma A.4

Using the triangle inequality, we have∥∥∥x− x`+1
∥∥∥

2
=
∥∥∥x− x̃+ x̃− x`+1

∥∥∥
2
≤ ‖x− x̃‖2 +

∥∥∥x̃− x`+1
∥∥∥

2
.

Recall that Γ = SD(x̃, k) and x`+1 = PΓx̃. Let Γ∗ = Λopt(x̃, k) denote the optimal support of size
k for approximating x̃. Then we can write∥∥∥x̃− x`+1

∥∥∥
2
≤ ‖x̃− PΓ∗x̃‖2 + ‖PΓ∗x̃− PΓx̃‖2
≤ ‖x̃− PΓ∗x̃‖2 + ε2 ‖x̃− PΓ∗x̃‖2 ,
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where the first line follows from the triangle inequality, and the second line uses (4). Combining
all of this, we have ∥∥∥x− x`+1

∥∥∥
2
≤ ‖x− x̃‖2 + (1 + ε2) ‖x̃− PΓ∗x̃‖2
≤ ‖x− x̃‖2 + (1 + ε2) ‖x̃− x‖2
= (2 + ε2) ‖x− x̃‖2 ,

where the second line follows from the fact that PΓ∗x̃ is the nearest neighbor to x̃ among all vectors
having a k-sparse representation in D.
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