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Stable Image Reconstruction Using Total Variation Minimization∗

Deanna Needell† and Rachel Ward‡

Abstract. This paper presents near-optimal guarantees for stable and robust image recovery from undersam-
pled noisy measurements using total variation minimization. In particular, we show that from
O(s log(N)) nonadaptive linear measurements, an image can be reconstructed to within the best
s-term approximation of its gradient up to a logarithmic factor, and this factor can be removed by
taking slightly more measurements. Along the way, we prove a strengthened Sobolev inequality for
functions lying in the null space of a suitably incoherent matrix.

Key words. compressed sensing, stability, restricted isometry property, Sobolev inequality, total variation
minimization
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1. Introduction. Compressed sensing (CS) provides the technology to exploit sparsity
when acquiring signals of general interest, allowing for accurate and robust signal acquisition
from surprisingly few measurements. Rather than acquiring an entire signal and then later
compressing, CS proposes a mechanism to collect measurements in compressed form, skipping
the often costly step of complete acquisition. The applications are numerous and range from
image and signal processing to remote sensing and error correction [20].

In compressed sensing one acquires a signal x ∈ C
d via m � d linear measurements of the

form yk = 〈φk,x〉+ zk. The vectors φk form the rows of the measurement matrix Φ, and the
measurement vector y ∈ C

m can thus be viewed in matrix notation as

y = Φx+ z,

where z is the noise vector modeling measurement error. We then ask to recover the signal
of interest x from the noisy measurements y. Since m � d, this problem is ill-posed without
further assumptions. However, signals of interest in applications contain far less information
than their dimension d would suggest, often in the form of sparsity or compressibility in a
given basis. We call a vector x s-sparse when

(1) ‖x‖0 def
= | supp(x)| ≤ s � d.

Compressible vectors are those which are approximated well by sparse vectors.
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1036 DEANNA NEEDELL AND RACHEL WARD

In the simplest case, if we know that x is s-sparse and the measurements are free of noise,
then the inverse problem y = Φx is well-posed if the measurement matrix Φ is one-to-one on
sparse vectors. To recover x ∈ C

d from y ∈ C
m we solve the optimization problem

x̂ = argmin
w

‖w‖0 such that Φw = y.(L0)

IfΦ is one-to-one on s-sparse vectors, then (L0) recovers exactly any s-sparse signal x̂ = x.
The optimization problem (L0), however, is in general NP-hard [39], so we instead consider
its relaxation to the �1-norm,

x̂ = argmin
w

‖w‖1 such that ‖Φw − y‖2 ≤ ε,(L1)

where ‖w‖1 =
∑

i |wi|, ‖w‖2 =
(∑

i w
2
i

)1/2
denotes the standard Euclidean norm, and ε

bounds the noise level ‖z‖2 ≤ ε. The problem (L1) may be cast as a second order cone program
(SOCP) and can thus be solved efficiently using modern convex programming methods [17, 21].

If we require that the measurement matrix be not only one-to-one on s-sparse vectors, but
moreover an approximate isometry on s-sparse vectors, then remarkably (L1) will still recover
any s-sparse signal exactly. Candès and Tao introduced the restricted isometry property (RIP)
and showed that this requirement on the measurement matrix Φ guarantees robust recovery
of compressible signals via (L1) [12].

Definition 1. A matrix Φ ∈ C
m×d is said to have the RIP of order s and level δ ∈ (0, 1) if

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 ∀ s-sparse x ∈ C
d.(2)

The smallest such δ for which this holds is denoted by δs and called the restricted isometry
constant for the matrix Φ.

When δ2s < 1, the RIP guarantees that no 2s-sparse vectors reside in the null space of Φ.
When a matrix has a small restricted isometry constant, Φ acts as a near-isometry over the
subset of s-sparse signals.

Many classes of random matrices can be used to generate matrices having small RIP
constants. With probability exceeding 1− e−Cm, a matrix whose entries are independent and
identically distributed appropriately normalized Gaussian random variables has a small RIP
constant δs < c when m � c−2s log(d/s). This number of measurements is also shown to
be necessary for the RIP [30]. More generally, the RIP holds with high probability for any
matrix generated by a sub-Gaussian random variable [13, 36, 48, 2]. One can also construct
matrices with the RIP using fewer random bits. For example, if m � s log4(d), then the RIP
holds with high probability for the random subsampled Fourier matrix FΩ ∈ C

m×d, formed by
restricting the d× d discrete Fourier matrix to a random subset of m rows and renormalizing
[48]. The RIP also holds for randomly subsampled bounded orthonormal systems [47, 45] and
randomly generated circulant matrices [46].

Candès, Romberg, and Tao showed that when the measurement matrix Φ satisfies the
RIP with sufficiently small restricted isometry constant, (L1) produces an estimation x̂ to x
with error [11],

(3) ‖x̂− x‖2 ≤ C

(‖x− xs‖1√
s

+ ε

)
.
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STABLE IMAGE RECONSTRUCTION USING TOTAL VARIATION MINIMIZATION 1037

This error rate is optimal on account of classical results about the Gel’fand widths of the �1
ball due to Kashin [28] and Garnaev and Gluskin [25].

Here and throughout, xs denotes the vector consisting of the largest s coefficients of x
in magnitude. Similarly, for a set S, xS denotes the vector (or matrix, appropriately) of x
restricted to the entries indexed by S. The bound (3) then says that the recovery error is
proportional to the noise level and the norm of the tail of the signal, x − xs. In particular,
when the signal is exactly sparse and there is no noise in the measurements, (L1) recovers x
exactly. We note that for simplicity, we restrict focus to CS decoding via the program (L1),
but acknowledge that other approaches in compressed sensing such as compressive sampling
matching pursuit [40] and iterative hard thresholding [4] yield analogous recovery guarantees.

Signals of interest are often compressible with respect to bases other than the canonical
basis. We consider a vector x to be s-sparse with respect to the basis B if

x = Bz for some s-sparse z,

and x is compressible with respect to this basis when it is well approximated by a sparse
representation. In this case one may recover x from CS measurements y = Φx+ ξ using the
modified �1 minimization problem

x̂ = argmin
w

‖B∗w‖1 such that ‖Φw − y‖2 ≤ ε.(BL1)

As before, the recovery error ‖x − x̂‖2 is proportional to the noise level and the norm
of the tail of the signal if the composite matrix Ψ = ΦB satisfies the RIP. If B is a fixed
orthonormal matrix and Φ is a random matrix generated by a sub-Gaussian random variable,
then Ψ = ΦB has the RIP with high probability with m � s log(d/s) due to the invariance
of norm-preservation for sub-Gaussian matrices [2]. More generally, following the approach
of [2] and applying Proposition 3.2 in [30], this rotation-invariance holds for any Φ with the
RIP and randomized column signs. The rotational-invariant RIP also extends to the classic
�1-analysis problem which solves (BL1) when B∗ is a tight frame [8].

1.1. Imaging with CS. Grayscale digital images do not fill the entire space of N × N
blocks of pixel values, consisting primarily of slowly varying pixel intensities except along
edges. In other words, digital images are compressible with respect to their discrete gradient.
Concretely, we denote an N ×N block of pixels by X ∈ C

N×N , and we write Xj,k to denote
any particular pixel. The discrete directional derivatives of X ∈ C

N×N are defined pixelwise
as

Xx : CN×N → C
(N−1)×N , (Xx)j,k = Xj+1,k −Xj,k,(4)

Xy : CN×N → C
N×(N−1), (Xy)j,k = Xj,k+1 −Xj,k.(5)

The discrete gradient transform ∇ : CN×N → C
N×N×2 is defined in terms of the direc-

tional derivatives and in matrix form,

[∇X
]
j,k

def
=

⎧⎪⎪⎨⎪⎪⎩
(
(Xx)j,k, (Xy)j,k

)
, 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N − 1,(

0, (Xy)j,k
)
, j = N, 1 ≤ k ≤ N − 1,(

(Xx)j,k, 0
)
, k = N, 1 ≤ j ≤ N − 1,(

0, 0
)
, j = k = N.
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1038 DEANNA NEEDELL AND RACHEL WARD

Finally, the total variation seminorm is just the sum of the magnitudes of its discrete gradient,

(6) ‖X‖TV
def
= ‖∇X‖1.

We note here that the choice of ((Xx)j,k, (Xy)j,k) in the definition of
[∇X

]
j,k

leads to the
anisotropic version of the total variation norm. The isotropic version of the total variation
norm instead stems from the choice of (Xx)j,k + i(Xy)j,k in the definition of the discrete
gradient. In the isotropic case, ‖X‖TV becomes the sum of terms∣∣(Xx)j,k + i(Xy)j,k

∣∣ = (
(Xx)

2
j,k + (Xy)

2
j,k

)1/2
.

The isotropic and anisotropic induced total variation norms are thus equivalent up to a factor
of

√
2. We emphasize here that our method applies to both anisotropic and isotropic total

variation. However, we will consider only the anisotropic case for simplicity because the
treatment of the isotropic case is analogous.

Natural images have small total variation due to the low-dimensionality of their subset of
pixels representing edges. As such, searching for the image with smallest total variation that
matches a set of measurements, the convex relaxation of searching for the image with fewest
edges, is a natural choice for image reconstruction. In the context of CS, the measurements
y ∈ C

m from an image X are of the form y = M(X) + ξ, where ξ is a noise term and
M : CN×N → C

m is a linear operator defined via its components by

[M(X)]j
def
= 〈Mj ,X〉 = trace(MjX

∗)

for suitable matrices Mj. Here and throughout, M∗ denotes the adjoint of the matrix M .
Total variation minimization refers to the convex optimization

X̂ = argmin
Z

‖Z‖TV such that ‖M(Z) − y‖2 ≤ ε.(TV )

The standard theory of compressed sensing does not apply to total variation minimization.
In fact, the gradient transform Z → ∇Z not only fails to be orthonormal, but, viewed as an
invertible operator over mean-zero images, the Frobenius operator norm of its inverse grows
linearly with N . This poor conditioning would lead to magnification of error even if the usual
CS techniques could be applied.

Despite this, total variation minimization (TV ) is widely used in applications and exhibits
accurate image reconstruction empirically (see, e.g., [11, 14, 10, 43, 16, 33, 34, 32, 42, 35, 27,
29]). However, to the best of our knowledge there have been no provable guarantees that
(TV ) recovery is robust.

Images are also compressible with respect to wavelet transforms. For example, in Figure 1
we display the image of boats alongside its (bivariate) Haar wavelet transform. The Haar
transform (like wavelet transforms more generally) is multiscale, collecting information not
only about local differences in pixel intensity, but also about differences in average pixel
intensity on all dyadic scales. Therefore, the level of compressibility in the wavelet domain
is controlled by the total variation seminorm [22]. We will use in particular that the rate of
decay of the bivariate Haar coefficients of an image can be bounded by the total variation (see
Proposition 8 in section 4).
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(a) (b)

Figure 1. (a) Original boats image and (b) its bivariate Haar coefficients.

Recall that the (univariate) Haar wavelet system constitutes a complete orthonormal sys-
tem for square-integrable functions on the unit interval, consisting of the constant function

H0(t) =

{
1, 0 ≤ t < 1,
0 otherwise,

the mother wavelet

H1(t) =

{
1, 0 ≤ t < 1/2,
−1, 1/2 ≤ t < 1,

and dyadic dilations and translates of the mother wavelet

(7) Hn,k(t) = 2n/2H1(2nt− k), n ∈ N, 0 ≤ k < 2n.

The bivariate Haar system comprises an orthonormal system for L2(Q), the space of square-
integrable functions on the unit square Q = [0, 1)2, and is derived from the univariate Haar
system by the usual tensor-product construction. In particular, starting from the multivariate
functions

He(u, v) = He1(u)He2(v), e = (e1, e2) ∈ V =
{{0, 1}, {1, 0}, {1, 1}},

the bivariate Haar system consists of the constant function and all functions

(8) x = (u, v), He
j,k(x) = 2jHe(2jx− k), e ∈ V, j ≥ 0, k ∈ Z

2 ∩ 2jQ.

Discrete images are isometric to the space ΣN ⊂ L2(Q) of piecewise-constant functions

(9) ΣN =

{
f ∈ L2(Q), f(u, v) = cj,k,

j − 1

N
≤ u <

j

N
,

k − 1

N
≤ v <

k

N

}
via the identification cj,k = NXj,k. Letting N = 2n, the bivariate Haar basis restricted to
the N2 basis functions {He

j,k : j ≤ n− 1} and identified via (9) as discrete images he
j,k, forms

an orthonormal basis for CN×N . We denote by H(X) the matrix product that computes the
discrete bivariate Haar transform X → (〈X,he

j,k〉)j,k,e.
Because the bivariate Haar transform is orthonormal, standard CS results guarantee that

images can be reconstructed up to a factor of their best approximation by s Haar basis

D
ow

nl
oa

de
d 

07
/3

0/
14

 to
 1

34
.1

73
.1

30
.2

44
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1040 DEANNA NEEDELL AND RACHEL WARD

(a) (b) (c)

Figure 2. (a) Original 256 × 256 cameraman image and its reconstruction from 20% randomly selected
Fourier coefficients using (b) total variation minimization and (c) �1-minimization of its bivariate Haar coef-
ficients.

functions using m � s log(N) measurements. One might then consider �1-minimization of the
Haar coefficients as an alternative to total variation minimization. However, total variation
minimization (TV ) gives better empirical image reconstruction results than �1-Haar wavelet
coefficient minimization, despite not being fully justified by CS theory. For details, see [10, 11,
23] and references therein. For example, Figure 2 shows the reconstruction of the cameraman
image using 20% of its discrete Fourier coefficients (selected at random). The image recovered
via total variation minimization (TV ) is not only more pleasing to the eye but has a much
lower recovery error than that of the image recovered via Haar minimization, e.g., (BL1) with
orthonormal transform B = H.

In the case of noise, Figure 3 displays the original Fabio image, corrupted with additive
Gaussian noise. Again, we compare the performance of (TV ) and (BL1) at reconstruction
using 20% Fourier measurements. As is evident, total variation minimization outperforms
Haar minimization in the presence of noise as well. Another type of measurement noise is a
consequence of round-off or quantization error. This type of error may stem from the inability
to take measurements with arbitrary precision and differs from Gaussian noise since it depends
on the signal itself. Figure 4 displays the lake image with quantization error along with the
recovered images. As in the case of Gaussian noise, total variation minimization outperforms
Haar minimization. All experiments here and throughout used the software �1-magic to solve
the minimization programs [24].

We note that the use of total variation regularization in image processing predates the
theory of CS. The seminal paper of Rudin, Osher, and Fatemi introduced total variation
regularization in imaging [49], and subsequently total variation has become a regularizer of
choice for image denoising, deblurring, inpainting, and segmentation [9, 43, 50, 16, 15]. For
more details on the connections between total variation minimization and wavelet frame-based
methods in image analysis, we refer the reader to [6].

1.2. Contribution of this paper. Although theoretical guarantees have been obtained
guaranteeing recovery via (TV ) of images with exactly sparse gradients without noise [11, 14],
to the best of our knowledge no results have shown that this recovery is robust, despite strong
suggestions by numerical evidence. In this paper, we prove precisely this. We show that (TV )
robustly recovers images from a few RIP measurements. The error guarantees are analogous
to those of (3) up to a logarithmic factor, which can be removed by taking slightly more
measurements (see Theorem 6 below).D
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(a) (b) (c)

Figure 3. (a) Original 256 × 256 Fabio image corrupted with Gaussian noise and its reconstruction from
20% randomly selected Fourier coefficients using (b) total variation minimization and (c) �1-minimization of
its bivariate Haar coefficients. Original image (a) used with the kind permission of Fabio, Inc., Santa Monica,
CA.

(a) (b) (c)

Figure 4. (a) Original 256× 256 lake image corrupted with quantization noise and its reconstruction from
20% randomly selected Fourier coefficients using (b) total variation minimization and (c) �1-minimization of
its bivariate Haar coefficients.

Theorem 2. Let X ∈ C
N×N be an image with discrete gradient ∇X. Suppose we observe

noisy measurements y = M(X) + ξ constructed from a matrix satisfying the RIP of order s,
with noise level ‖ξ‖2 ≤ ε. Then the solution

X̂ = argmin
Z

‖Z‖TV such that ‖M(Z) − y‖2 ≤ ε(10)

satisfies

(11) ‖X − X̂‖2 ≤ C log

(
N2

s

)(‖∇X − (∇X)s‖1√
s

+ ε

)
.

This error bound is optimal up to the logarithmic factor, as we discuss below. To the best
of our knowledge, this is the first near-optimal result on stable image recovery by total variation
minimization. For details about the construction of the measurements, see Theorem 5 and
the remarks following.

1.3. Previous theory for total variation minimization. The last few years have witnessed
numerous algorithmic advances that allow the efficient implementation of total variation min-
imization (TV ). The recent split Bregman algorithm proposed by [26], based on the Bregman
distance [5], is very efficient. Several algorithms are designed to exploit the structure of
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1042 DEANNA NEEDELL AND RACHEL WARD

Fourier measurements for further speed-up; see for example [52, 3]. Image reconstruction via
independent minimization of the partial derivatives Xx and Xy was observed in [19] to give
superior empirical results.

With respect to theory, it was shown in [14] that if an image X has an exactly sparse
gradient, then (TV ) recovers the image exactly from a small number of partial Fourier mea-
surements. Moreover, using that the discrete Fourier transform commutes with the discrete
gradient operator, one may change coordinates in this case and recast (TV ) as an �1 program
(L1) with respect to the discrete gradient image [44] to derive stable gradient recovery results.
In this paper, we extend these Fourier-specific stable gradient recovery results to general RIP
measurement ensembles.

However, robust recovery of the gradient need not imply robust recovery of the image itself.
To see this, suppose the error ∇X −∇X̂ in the recovery of the gradient has a single nonzero
component, of size α, located at pixel (1, 1). That is, the gradient is recovered perfectly except
at one pixel location, namely the upper left corner. Then based on this alone, it is possible
that every pixel in X̂ differs from that in X by the amount α. This accumulation of error
means that even when the reconstructed gradient is close to the gradient of X, the images X̂
and X may be drastically different, magnified by a factor of N2! Even for mean-zero images,
the error may be magnified by a factor of N , as for images X with pixels Xj,k = j. We show
that due to properties of the null space of RIP matrices, the (TV ) reconstruction error X−X̂
in Theorem 2 cannot propagate as such.

Recent work in [38] presents an analysis co-sparse model which considers signals sparse
in the analysis domain. A series of theoretical and numerical tools are developed to solve
the analysis problem (BL1) in a general framework. In particular, the analysis operator may
be the finite difference operator, which concatenates the vertical and horizontal derivatives
into a single vector and is thus closely linked with the total variation operator. Effective
pursuit methods are also proposed to solve such problems under the analysis co-sparse prior
assumption. We refer the reader to [38] for details.

Finally, we note that our robustness recovery results for (TV ) are specific to two-dimensional
images, as the embedding theorems we rely on do not hold for one-dimensional arrays. Thus,
our results do not imply robust recovery for one-dimensional piecewise-constant signals. Ro-
bustness for the recovery of the gradient support for piecewise-constant signals was studied
in [51]. While the results for higher dimensional signals, X ∈ C

Nd
for d > 2, also do not

immediately follow from the results in this article, we have recently extended these results to
higher dimensional signals [41].

1.4. Organization. The paper is organized as follows. Section 2 contains the statement
of our main results about robust total variation recovery. The proof of our main results will
occupy most of the remainder of the paper. We first prove robust recovery of the image
gradient in section 3. In section 4 we derive a strong Sobolev inequality for discrete images
lying in the null space of an RIP matrix which will bound the image recovery error by its total
variation. Our result relies on a result by Cohen et al. [19] that the compressibility of the
bivariate Haar wavelet transform is controlled by the total variation of an image. We prove
Theorem 2 by way of Theorem 5 in section 4.1. We prove Theorem 6 in section 5, showing that
the logarithmic factor of Theorem 2 can be removed by taking slightly more measurements.
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We conclude in section 6 with some brief discussion. Proofs of intermediate propositions are
included in the appendix.

2. Main results. Our main results use the following proposition which generalizes the
results used implicitly in the recovery of sparse signals using �1-minimization. It allows us
to bound the norm of an entire signal when the signal (a) is close to the null space of an
RIP matrix and (b) obeys an �1 cone constraint. In particular, (13) is just a generalization
of results in [14], while (14) follows from (13) and the cone constraint (12). The proof of
Proposition 3 is contained in the appendix.

Proposition 3. Fix parameters γ ≥ 1 and δ < 1/3. Suppose that A satisfies the RIP of
order 5kγ2 and level δ, and suppose that the image D satisfies a tube constraint

‖A(D)‖2 � ε.

Suppose further that for a subset S of cardinality |S| ≤ k, D satisfies the cone constraint

(12) ‖DSc‖1 ≤ γ‖DS‖1 + σ.

Then

(13) ‖D‖2 � σ

γ
√
k
+ ε

and

(14) ‖D‖1 � σ + γ
√
kε.

Neither the RIP level of 5kγ2 nor the restricted isometry constant δ < 1/3 are sharp; for
instance, an RIP level of 2s and restricted isometry constant δ2s ≈ .4931 are sufficient for
Proposition 3 with γ = 1 [37, 7].

Our main results show robust recovery of images via the total variation minimization
program (TV ). For simplicity of presentation, we say that a linear operator A : CN1×N2 → C

m

has the RIP of order s and level δ ∈ (0, 1) if

(1− δ)‖X‖22 ≤ ‖A(X)‖22 ≤ (1 + δ)‖X‖22 ∀ s-sparse X ∈ C
N1×N2 .(15)

Here and throughout, ‖X‖p =
(∑

j,k |Xj,k|p
)1/p

denotes the entrywise �p-norm of the image
X, treating the image as a vector. In particular, p = 2 is the Frobenius norm

‖X‖2 =

√∑
j,k

|Xj,k|2 =
√

tr(XX∗).

This norm is generated by the image inner product

(16) 〈X,Y 〉 = trace(XY ∗).

Note that if the linear operator A is given by

(A(X))j = 〈Aj ,X〉,
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1044 DEANNA NEEDELL AND RACHEL WARD

then A satisfies this RIP precisely when the matrix whose rows consist of Aj unraveled
into vectors satisfies the standard RIP as defined in (1). Thus there is clearly a one-to-one
correspondence between the RIP for linear operators A : CN1×N2 → C

m and the RIP for
matrices Φ ∈ C

m×(N1N2), and we treat these notions as equivalent.
Since we are considering images X ∈ C

N×N rather than vectors, it will be helpful to
first determine what form an optimal error recovery bound takes in the setting of images.
In standard CS, the optimal minimax error rate from m � s log(N2/s) nonadaptive linear
measurements is

(17) ‖x̂− x‖2 ≤ C

(‖x− xs‖1√
s

+ ε

)
.

In the setting of images, this implies that the best possible error rate from m � s log(N2/s)
linear measurements is at best

(18) ‖X̂ −X‖2 ≤ C

(‖∇X − (∇X)s‖1√
s

+ ε

)
.

Above, (∇X)s is the best s-sparse approximation to the discrete gradient ∇X. To see
that we could not possibly hope for a better error rate, observe that if we could, we would
reach a contradiction in light of the norm of the discrete gradient operator: ‖∇Z‖2 ≤ 4‖Z‖2.

Theorem 5 guarantees a recovery error proportional to (18) up to a single logarithmic factor
log(N2/s). That is, the recovery error of Theorem 5 is optimal up to at most a logarithmic
factor. We see in Theorem 6 that by taking more measurements, we obtain the optimal
recovery error, without the logarithmic term. Here and throughout we use the notation u � v
to indicate that there exists some absolute constant C > 0 such that u ≥ Cv. We use the
notation u � v accordingly. In this paper, C > 0 will always denote a universal constant that
might be different in each occurrence.

To change coordinates from the image domain to the gradient domain, it will be useful
for us to consider matrices Φ0 and Φ0 obtained from a matrix Φ by concatenating a row of
zeros to the bottom and top of Φ, respectively. Concretely, for a matrix Φ ∈ C

(N−1)×N , we
denote by Φ0 ∈ C

N×N the augmented matrix Φ0 with entries

(19) (Φ0)j,k =

{
0, j = 1,
Φj−1,k, 2 ≤ j ≤ N.

We denote similarly by Φ0 the matrix resulting by adding an additional row of zeros to the
bottom of Φ.

We can relate measurements using the padded matrices (19) of the entire image to mea-
surements of its directional gradients, as defined in (4). This relation can be verified by direct
algebraic manipulation, and so the proof is omitted.

Lemma 4. Given X ∈ C
N×N and Φ ∈ C

(N−1)×N ,

〈Φ,Xx〉 =
〈
Φ0,X

〉− 〈Φ0,X〉
and 〈

Φ,XT
y

〉
=
〈
Φ0,XT

〉− 〈
Φ0,X

T
〉
,
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where XT denotes the (nonconjugate) transpose of the matrix X.
For a linear operator A : C

(N−1)×N → C
m with component measurements A(X)j =

〈Aj ,X〉 we denote by A0 : CN×N → C
m the linear operator with components [A0(X)]j =〈

(A0)j ,X
〉
. We define A0 : C

N×N → C
m similarly.

We are now prepared to state our main results which guarantee stable image recovery by
total variation minimization using RIP measurements.

Theorem 5. Let N = 2n be a power of two. Let A : C(N−1)×N → C
m1 and A′ : C(N−1)×N →

C
m1 be such that the concatenated operator [A A′] has the RIP of order 5s and level δ < 1/3.

Recall the bivariate Haar transform H : C
N×N → C

N×N as defined in (8), and let B :
C
N×N → C

m2 be such that the composite operator BH−1 : CN×N → C
m2 has the RIP of order

2s and level δ < 1.
Let m = 4m1 +m2, and consider the linear operator M(X) : CN×N → C

m with compo-
nents

(20) M(X) =
(
A0(X),A0(X),A′0(XT ),A′

0(X
T ),B(X)

)
.

If X ∈ C
N×N has discrete gradient ∇X and noisy measurements y = M(X) + ξ are

observed with noise level ‖ξ‖2 ≤ ε, then

X̂ = argmin
Z

‖Z‖TV such that ‖M(Z) − y‖2 ≤ ε(21)

satisfies

‖∇X −∇X̂‖2 � ‖∇X − (∇X)s‖1√
s

+ ε,(22)

‖X − X̂‖TV � ‖∇X − (∇X)s‖1 +
√
sε,(23)

and

(24) ‖X − X̂‖2 � log

(
N2

s

)(‖∇X − (∇X)s‖1√
s

+ ε

)
.

To the best of our knowledge, Theorem 5 provides the first provable guarantee of robust
recovery for images from compressed measurements via total variation minimization. Since
we require the RIP only on the measurements generating the operator M, Theorem 5 implies
Theorem 2.

Our second main result shows that, by allowing for more measurements, one obtains
stable and robust recovery guarantees as in Theorem 5 but without the additional log factor.
Moreover, the following theorem holds for general sensing matrices such that, composed with
the inverse bivariate Haar transform, they have the RIP.

Theorem 6. Let N = 2n be a power of two. Let H be the bivariate Haar transform, and
let A : CN×N → C

m be such that the composite operator AH−1 : CN×N → C
m has the RIP

of order Cs log3(N) and level δ < 1/3. Then the following holds for any X ∈ C
N×N : if noisy

measurements y = A(X) + ξ are observed with noise level ‖ξ‖2 ≤ ε, then

X̂ = argmin
Z

‖Z‖TV such that ‖A(Z) − y‖2 ≤ ε
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1046 DEANNA NEEDELL AND RACHEL WARD

satisfies

(25) ‖X − X̂‖2 � ‖∇X − (∇X)s‖1√
s

+ ε.

Remark 1. In light of (18), the gradient error guarantees (22) and (23) provided by The-
orem 5 are optimal, and the image error guarantee (24) is optimal up to a logarithmic factor,
which we conjecture to be an artifact of the proof which relies on the Haar wavelet transform.
We also believe that the 4m1 measurements derived from A in the theorem, which are used
only to prove stable gradient recovery, are not necessary and can be removed. Theorem 6
provides optimal error recovery guarantees, at the expense of requiring an additional factor
of log3(N) measurements.

Remark 2. The RIP requirements in Theorem 5 mean that the linear measurements can
be generated from standard RIP matrix ensembles that are incoherent with the Haar wavelet
basis. For example, they can be generated from a sub-Gaussian random matrix Φ ∈ R

m×N2

with m � s log(N2/s) or a partial Fourier matrix FΩ ∈ C
m×N2

with m � s log5(N) and
randomized column signs [30]. We note that without randomized column signs, the partial
Fourier matrix with uniformly subsampled rows is not incoherent with wavelet bases. As
recently shown in [31], the partial Fourier matrix with rows subsampled according to appro-
priate power law densities, after preconditioning, is incoherent with the Haar wavelet basis
and does apply in Theorems 5 and 6.

Remark 3. The constant C in Theorem 6 is an absolute constant proportional to the
constant obtained in Proposition 8 below. We have not tried to optimize the dependence on
the values of the restricted isometry parameters in the theorems. Refinements such as those
in standard CS may yield improvements in the conditions.

Remark 4. Theorems 5 and 6 require the image side-length to be a power of 2, N = 2n.
This is not actually a restriction, as an image of arbitrary side-length N ∈ N can be reflected
horizontally and vertically to produce an at most 2N×2N image with the same total variation
up to a factor of 4.

The remainder of this paper is dedicated to the proofs of Theorems 5 and 6. The proof of
Theorem 5 has two parts: we first prove the bounds (22) and (23) concerning stable recovery
of the discrete gradient. We then prove a strengthened Sobolev inequality for images in the
null space of an RIP matrix, and stable image recovery follows. The proof of Theorem 6 is
similar, but more direct, and does not use a Sobolev inequality explicitly.

3. Stable gradient recovery for discrete images. In this section we prove statements (22)
and (23) from Theorem 5, showing that total variation minimization recovers the gradient
image robustly.

3.1. Proof of stable gradient recovery, bounds (22) and (23). Since [A A′] satisfies
the RIP, in light of Proposition 3, it suffices to show that the discrete gradient ∇(X − X̂),
regarded as a vector, satisfies the tube and cone constraints.

Let D = X − X̂, and set L = (Dx,D
T
y ). For convenience, let P denote the mapping

of indices which maps the index of a nonzero entry in ∇D to its corresponding index in
L. Observe that by definition of the gradient, L has the same norm as ∇D. That is,
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‖L‖2 = ‖∇D‖2 and ‖L‖1 = ‖∇D‖1. It thus now suffices to show that the matrix L satisfies
the tube and cone constraints.

Let A1,A2, . . .Am1 ,A
′
1,A

′
2, . . .A

′
m1

be such that

A(Z)j = 〈Aj ,Z〉, A′(Z)j = 〈A′
j ,Z〉.

Cone constraint. The cone constraint holds by minimality of X̂ = X −D. Indeed, by
this and the fact that X is also a feasible solution, letting S denote the support of the largest
s entries of ∇X, we have

‖(∇X)S‖1 − ‖(∇D)S‖1 − ‖(∇X)Sc‖1 + ‖(∇D)Sc‖1
≤ ‖(∇X)S − (∇D)S‖1 + ‖(∇X)Sc − (∇D)Sc‖1
= ‖∇X̂‖1
≤ ‖∇X‖1
= ‖(∇X)S‖1 + ‖(∇X)Sc‖1.

Rearranging, this yields

‖(∇D)Sc‖1 ≤ ‖(∇D)S‖1 + 2‖∇X − (∇X)s‖1.
Since L contains all the same nonzero entries as ∇D, this implies that L satisfies the cone
constraint

‖LP (S)c‖1 ≤ ‖(∇D)P (S)‖1 + 2‖∇X − (∇X)s‖1.
By definition of P , note that |P (S)| ≤ |S| = s.

Tube constraint. First note that D satisfies a tube constraint,

‖M(D)‖22 ≤ 2‖M(X) − y‖22 + 2‖M(X̂)− y‖22
≤ 4ε2.

Now by Lemma 4,

| 〈Aj ,Dx〉 |2 =
∣∣ 〈[Aj ]

0,D
〉− 〈[Aj ]0,D〉 ∣∣2

≤ 2
∣∣ 〈[Aj ]

0,D
〉 ∣∣2 + 2| 〈[Aj ]0,D〉 |2(26)

and ∣∣∣ 〈A′
j ,D

T
y

〉 ∣∣∣2 = ∣∣〈[A′
j ]
0,DT

〉− 〈
[A′

j ]0,D
T
〉∣∣2

≤ 2
∣∣〈[A′

j ]
0,DT

〉∣∣2 + 2
∣∣〈[A′

j ]0,D
T
〉∣∣2 .(27)

Thus L also satisfies a tube constraint:

‖[A A′](L)‖22 =

m∑
j=1

| 〈Aj ,Dx〉 |2 +
∣∣ 〈A′

j ,D
T
y

〉 ∣∣2
≤ 2‖M(D)‖22
≤ 8ε2.(28)

Proposition 3 then completes the proof.
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4. A strengthened Sobolev inequality for incoherent null spaces. As a corollary of the
classical Sobolev embedding of the space of functions of bounded variation BV (R2) into L2(R

2)
[1], the Frobenius norm of a mean-zero image is bounded by its total variation seminorm.

Proposition 7 (Sobolev inequality for images). Let X ∈ C
N×N be a mean-zero image. Then

(29) ‖X‖2 ≤ ‖X‖TV .

This inequality also holds if, instead of being mean-zero, X ∈ C
N×N contains some zero-

valued pixel. In the appendix, we give a direct proof of the Sobolev inequality (29) in the case
that all pixels in the first column and first row of X ∈ C

N×N are zero-valued, X1,j = Xj,1 = 0.
In light of the total variation error estimate (23), the Sobolev inequality allows a prelimi-

nary estimate for the image error, assuming it is mean-zero:

‖X − X̂‖2 ≤ ‖∇X − (∇X)S‖1 +
√
sε.

We will be able to derive a sharper bound on the error by looking to a deep and nontrivial
theorem from [19] which says that the bivariate Haar coefficient vector of a function f ∈
BV (Q) on the unit square Q = [0, 1)2 is in weak �1, and its weak �1-norm is proportional to
its bounded variation seminorm. As a corollary of that result, we can bound the magnitude
of the kth largest bivariate Haar coefficient of an image by the total variation of the image.

Proposition 8. Suppose X ∈ C
N×N is mean-zero, and let c(k)(X) be the bivariate Haar

coefficient of X having kth largest magnitude, or the entry of the bivariate Haar transform
H(X) having kth largest magnitude. Then for all k ≥ 1,

|c(k)(X)| ≤ C
‖X‖TV

k
.

The derivation of Proposition 8 from Theorem 8.1 of [19] is provided in the appendix.
Proposition 8 bounds the decay of the Haar wavelet coefficients by the image total variation

seminorm. At the same time, vectors lying in the null space of a matrix with the RIP must
be sufficiently flat, with the �2-energy in their largest s components in magnitude bounded by
the �1-norm of the remaining components (the so-called null-space property) [18]. As a result,
the norm of the bivariate Haar transform of the error, and thus the norm of the error itself,
must be sufficiently small. Specifically, the error X − X̂ satisfies a Sobolev inequality that is
stronger than the standard inequality (29) by a factor of log(N2/s)/

√
s.

Theorem 9 (strong Sobolev inequality). Let B : C
N×N → C

m be a linear map such that
BH−1 : CN×N → C

m has the RIP of order 2s + 1 and level δ < 1, where H : CN×N →
C
N×N is the bivariate Haar transform. Suppose that D ∈ C

N×N satisfies the tube constraint
‖B(D)‖2 ≤ ε. Then

(30) ‖D‖2 �
(‖D‖TV√

s

)
log

(
N2

s

)
+ ε.

Proof. Let Y = H(D) ∈ C
N×N be the bivariate Haar transform of D, and let c(j) ∈ C

be the jth largest entry (pixel) of Y in absolute magnitude. Note that D can be decomposed
orthogonally into a mean-zero image and a constant image, and that the Haar transform of a
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constant image is one-sparse. Thus, by assuming the RIP of order 2s+1 as opposed to order
2s, we can assume without loss of generality that D is itself mean-zero.

Decompose Y = YS + YSc , where YS is the s-sparse image consisting of the s largest-
magnitude entries of Y . Write YSc = Y (1) + Y (2) + · · · + Y (r), where r = �N2

s �, where Y (1)

is the s-sparse image consisting of the s largest-magnitude entries of YSc , and so on.

By Proposition 8, we know that |c(j)| ≤ C‖D‖TV /j. Then

‖YSc‖1 =
N2∑

j=s+1

|c(j)|

≤ C‖D‖TV

N2∑
j=s+1

1

j

≤ C‖D‖TV log

(
N2

s

)
,(31)

where the second inequality follows from properties of the geometric summation. We can
similarly bound the �2-norm of the residual image:

‖YSc‖22 =
N2∑

j=s+1

|c(j)|2

≤ C(‖D‖TV )
2

N2∑
j=s+1

1

j2

≤ C(‖D‖TV )
2/s,(32)

obtaining ‖YSc‖2 ≤ C‖D‖TV /
√
s.

We now use the assumed tube constraint for D and RIP for BH−1,

ε ≥ ‖B(D)‖2
≥ ‖BH−1(YS + Y (1))‖2 −

r∑
j=2

‖BH−1(Y (j))‖2

≥ (1− δ)‖YS + Y (1)‖2 − (1 + δ)
r∑

j=2

‖Y (j)‖2

≥ (1− δ)‖YS‖2 − (1 + δ)

r∑
j=2

‖Y (j)‖2

≥ (1− δ)‖YS‖2 − (1 + δ)
1√
s

r∑
j=1

‖Y (j)‖1

= (1− δ)‖YS‖2 − (1 + δ)
1√
s
‖YSc‖1.(33)
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The last inequality applies the blockwise bound ‖Y (j)‖2 ≤ ‖Y (j−1)‖1√
s

, which holds because

the magnitude of each component of Y (j−1) is larger than the average magnitude of the
components of Y (j).

Combined with the �1-norm bound (31) on YSc , this gives

‖YS‖2 � ε+ log

(
N2

s

)(‖D‖TV√
s

)
.(34)

This bound together with the �2-tail bound (32) gives

(35) ‖D‖2 = ‖Y ‖2 ≤ ‖YS‖2 + ‖YSc‖2 � ε+ log

(
N2

s

)(‖D‖TV√
s

)
,

where the first equality follows by orthonormality of the Haar transform. This completes the
proof.

4.1. Proof of Theorem 5. We now have all the ingredients to prove our main result,
Theorem 5.

Proof. Since bounds (22) and (23) were already proved in section 3.1, it remains to prove
the final stability bound (24). Since the measurements of X are of the form (20), the image
error D = X − X̂ satisfies the tube-constraint ‖BD‖2 ≤ ε. Thus we may apply Theorem 9
and then the total variation bound (23) on D which shows

‖X − X̂‖2 = ‖D‖2
� ε+ log

(
N2

s

)(‖D‖TV√
s

)
� ε+ log

(
N2

s

)(‖∇X − (∇X)s‖1 +
√
sε√

s

)
� log

(
N2

s

)(‖∇X − (∇X)s‖1√
s

+ ε

)
.

This completes the proof of Theorem 5.

5. Proof of Theorem 6. We will use the following two basic lemmas about the bivariate
Haar system.

Lemma 10. Let N = 2n. For any indices (j, k) and (j, k+1), there are at most 6n bivariate
Haar wavelets which are not constant on these indices.

Proof. The lemma follows by showing that for fixed dyadic scale p between 1 and n, there
are at most six Haar wavelets with side dimension 2n−p which are not constant on these two
indices. Indeed, if the edge between (j, k) and (j, k+1) coincides with a dyadic edge at scale p,
then the three wavelets supported on each of the two adjacent dyadic squares transition from
being zero to nonzero along this edge. The only other case to consider is that (j, k) coincides
with a dyadic edge at dyadic scale p+ 1 but does not coincide with a dyadic edge at scale p;
in this case the three wavelets supported on the dyadic square centered at (j, k+1), (j, k) can
change from negative to positive value.
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Lemma 11. The bivariate Haar wavelets satisfy

‖∇he
j,k‖1 ≤ 8 ∀ j, k, e.

Proof. The wavelet he
j,k is supported on a dyadic square of side-length 2n−j , and it has

constant magnitude on its support |hej,k| = 2j−n. Thus at the four boundary edges of the

square, there is a jump of 2j−n, and at the (at most two) dyadic edges in the middle of the
square where the sign changes there is a jump of 2 · 2j−n. Then ‖∇he

j,k‖1 ≤ 8 · 2n−j · 2j−n =
8.

We are now in a position to prove Theorem 6.
Proof of Theorem 6. Let D = X − X̂ denote the residual error by (TV ), which we

may assume without loss is mean-zero. Let H : C
N2 → C

N2
denote the unitary matrix

that computes the bivariate Haar transform, and let c(j) = c(j)(D) denote the jth largest-
magnitude Haar coefficient of D among c = HD. Let h(j) denote the Haar wavelet associated
to c(j). We assume that AH∗ = AH−1 has the RIP of order

(36) s̃ = C ′′s log3(N)

for a universal constant C ′′ derived below and level δ < 1/3.

Cone constraint on ∇D. As shown in section 3.1, we have the cone constraint

(37) ‖(∇D)Sc‖1 ≤ ‖(∇D)S‖1 + 2‖∇X − (∇X)s‖1.

Cone constraint on c = HD. Proposition 8 allows us to pass from a cone constraint on
the gradient to a cone constraint on the Haar transform of D. Recall that S is the subset of s
largest-magnitude entries of ∇D. By Lemma 10, the set Ω of wavelets which are nonconstant
over S has cardinality at most |Ω| = 8s log(N). Decompose D as

(38) D =
∑
j

c(j)h(j) =
∑
j∈Ω

c(j)h(j) +
∑
j∈Ωc

c(j)h(j) =: DΩ +DΩc .

By linearity of the gradient, ∇D = ∇DΩ +∇DΩc . Moreover, by construction of Ω, we have
immediately that (∇DΩc)S = 0, leaving the equality (∇D)S = (∇DΩ)S . By Lemma 11 and
the triangle inequality,

‖(∇D)S‖1 = ‖(∇DΩ)S‖1 ≤ ‖∇DΩ‖1
≤
∑
j∈Ω

|c(j)|‖∇h(j)‖1

≤ 8
∑
j∈Ω

|c(j)|.(39)

Combining (39) with Proposition 8 concerning the decay of the wavelet coefficients and the
cone constraint (37), and letting

k = 8s log(N) = |Ω|,
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we arrive at a cone constraint on the wavelet coefficients:

N2∑
j=k+1

|c(j)| ≤
N2∑

j=s+1

|c(j)|

≤ C log

(
N2

s

)
‖∇D‖1

= C log

(
N2

s

)(
‖(∇D)S‖1 + ‖(∇D)Sc‖1

)
≤ C log

(
N2

s

)(
2‖(∇D)S‖1 + 2‖∇X − (∇X)S‖1

)
≤ C log

(
N2

s

)(
16

∑
j∈Ω

|c(j)|+ 2‖∇X − (∇X)S‖1
)

≤ C ′ log
(
N2

s

)( k∑
j=1

|c(j)|+ ‖∇X − (∇X)S‖1
)
.

Tube constraint ‖AH∗c‖2 ≤ 2ε. By assumption, AH∗ : CN2 → C
m has the RIP of

order s = 8s log3(N) > k. Since both X and X̂ are in the feasible region of (TV ), we have
for c = HD = HX −HX̂ and by the triangle inequality

‖AH∗c‖2 ≤ ‖AX‖2 + ‖AX̂‖2 ≤ 2ε.

Using the derived cone and tube constraints on c = H(X−X̂), along with the RIP bound
onAH∗, the proof is complete by applying Proposition 3 using γ = C ′ log(N2/s) ≤ 2C ′ log(N),
k = 8s logN , and σ = log(N2/s)‖∇X − (∇X)S‖1. In fact, this is where we need that the
RIP order is s̃ in (36), to accommodate the factors γ and k in Proposition 3.

6. Conclusion. Compressed sensing techniques provide reconstruction of compressible sig-
nals from a few linear measurements. A fundamental application is image compression and
reconstruction. Since images are compressible with respect to wavelet bases, standard CS
methods such as �1-minimization guarantee reconstruction to within a factor of the error of
best s-term wavelet approximation. The story does not end here, though. Images are more
compressible with respect to their discrete gradient representation, and indeed the advantages
of total variation minimization over wavelet-coefficient minimization have been empirically
well documented (see, e.g., [10, 11]). It had been well known that without measurement
noise, images with perfectly sparse gradients are recovered exactly via total variation mini-
mization [14]. Of course in practice, images do not have exactly sparse gradients, and mea-
surements are corrupted with additive or quantization noise. To the best of our knowledge,
our main results, Theorems 5 and 6, are the first to provably guarantee robust image recov-
ery via total variation minimization. Analogously to the standard CS results, the number of
measurements in Theorem 5 required for reconstruction is optimal, up to a single logarithmic
factor in the image dimension. Theorem 5 has been extended to the multidimensional case for
signals with higher dimensional structure such as movies [41]. On the other hand, the proof
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of Theorem 6 is specific to properties of the bivariate Haar system, and extending it to higher
dimensions (as well as for d = 1) remains an open problem. Theorem 6 applies, for example, to
partial Fourier matrices subsampled according to appropriate variable densities [31]. Finally,
we believe our proof technique can be used for analysis operators beyond the total variation
operator. For example, in practice one often finds that minimizing the sum of a total variation
seminorm and wavelet norm gives better image reconstructions. We leave this and the study
of more general analysis-type operators as future work.

Appendix. Proofs of lemmas and propositions.

A.1. Proof of Proposition 3. Here we include a proof of Proposition 3, which is a modest
generalization of results from [11].

Let s = kγ2, and let S ⊂ [N ] be the support set of the best s-term approximation of D.
Proof. By assumption, we suppose that D obeys the cone constraint

(40) ‖DSc‖1 ≤ γ‖DS‖1 + σ

and the tube constraint ‖A(D)‖2 ≤ ε.

We write DSc = DS1 + DS2 + · · · + DSr , where r = �N2

4s �. Here DS1 consists of the
4s largest-magnitude components of D over Sc, DS2 consists of the 4s largest-magnitude
components of D over Sc \ S1, and so on. Note that DS and similar expressions below can
have the meaning of both restricting D to the indices in S as well as being the array whose
entries are set to zero outside S.

Since the magnitude of each nonzero component of DSj−1 is larger than the average
magnitude of the nonzero components of DSj ,

‖DSj‖2 ≤
‖DSj−1‖1

2
√
s

, j = 2, 3, . . . .

Combining this with the cone constraint gives

(41)

r∑
j=2

‖DSj‖2 ≤ 1

2γ
√
k
‖DSc‖1 ≤ 1

2
√
k
‖DS‖1 + 1

2γ
√
k
σ ≤ 1

2
‖DS‖2 + 1

2γ
√
k
σ.

Now combining (41) with the tube constraint and the RIP,

ε � ‖AD‖2
≥ ‖A(DS +DS1)‖2 −

r∑
j=2

‖A(DSj )‖2

≥ √
1− δ‖DS +DS1‖2 −

√
1 + δ

r∑
j=2

‖DSj‖2

≥ √
1− δ‖DS +DS1‖2 −

√
1 + δ

(
1

2
‖DS‖2 + 1

2γ
√
k
σ

)
≥
(√

1− δ −
√
1 + δ

2

)
‖DS +DS1‖2 −

√
1 + δ

1

2γ
√
k
σ.(42)
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Then, since δ < 1/3,

‖DS +DS1‖2 ≤ 5ε+
3σ

γ
√
k
.

Finally, because ‖∑r
j=2DSj‖2 ≤

∑r
j=2 ‖DSj‖2 ≤ 1

2‖DS +DS1‖2 + 1
2γ

√
k
σ, we have

‖D‖2 ≤ 8ε+
5σ

γ
√
k
,

confirming (13).

To confirm (14), note that the cone constraint allows the estimate

‖D‖1 ≤ (γ + 1)‖DS‖1 + σ

≤ 2γ
√
s‖DS‖2 + σ

≤ 2γ
√
k

(
5ε+

3σ

γ
√
k

)
+ σ.(43)

A.2. Proof of Proposition 7. Here we give a direct proof of the discrete Sobolev inequality
(29) for images X ∈ C

N×N whose first row and first column of pixels are zero-valued, X1,j =
Xj,1 = 0.

Proof. For any 1 ≤ k ≤ i ≤ N we have

|Xi,j | =
∣∣∣∣∣X1,j +

i−1∑
�=1

(
X�+1,j −X�,j

)∣∣∣∣∣
≤

i−1∑
�=1

|X�+1,j −X�,j|

≤
N−1∑
�=1

|X�+1,j −X�,j|.(44)

Similarly, by reversing the order of indices we also have

(45) |Xi,j| ≤
N−1∑
�=1

|Xi,�+1 −Xi,�|.

For ease of notation let

f(j) =

N−1∑
�=1

|X�+1,j −X�,j|,

and let

g(i) =

N−1∑
�=1

|Xi,�+1 −Xi,�|.

Combining the two bounds (44) and (45) on Xi,j results in the bound |Xi,j |2 ≤ f(j) · g(i).
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Summing this inequality over all pixels (i, j),

‖X‖2 =
N∑
i=1

N∑
j=1

|Xi,j |2 ≤
⎛⎝ N∑

j=1

f(j)

⎞⎠(
N∑
i=1

g(i)

)

≤ 1

4
·
⎛⎝ N∑

j=1

f(j) +
N∑
i=1

g(i)

⎞⎠2

≤ 1

4
·
⎛⎝ N∑

j=1

N−1∑
k=1

|Xk+1,j −Xk,j|+
N∑
i=1

N−1∑
k=1

|Xi,k+1 −Xi,k|
⎞⎠2

≤ 1

4
‖∇X‖21

=
1

4
‖X‖2TV .(46)

A.3. Derivation of Proposition 8. Recall that a function f(u, v) is in the space Lp(Ω)
(1 ≤ p < ∞) if

‖f‖Lp(Ω) :=

(∫
Ω⊂R2

|f(x)|pdx
)1/p

< ∞,

and the space of functions with bounded variation on the unit square is defined as follows.

Definition 12. BV (Q) is the space of functions of bounded variation on the unit square
Q := [0, 1)2 ⊂ R

2. For a vector v ∈ R
2, we define the difference operator Δv in the direction

of v by

Δv(f,x) := f(x+ v)− f(x).

We say that a function f ∈ L1(Q) is in BV (Q) if and only if

VQ(f) := sup
h>0

h−1
2∑

j=1

‖Δhej(f, ·)‖L1(Q(hej)) = lim
h→0

h−1
2∑

j=1

‖Δhej(f, ·)‖L1(Q(hej))

is finite, where ej denotes the jth coordinate vector. Here, the last equality follows from the
fact that ‖Δhej (f, ·)‖L1(Q) is subadditive. VQ(f) provides a seminorm for BV:

|f |BV (Q) := VQ(f).

Theorem 8.1 of [19] bounds the rate of decay of a function’s bivariate Haar coefficients by
its bounded variation seminorm.

Theorem 13 (Theorem 8.1 of [19]). Consider a function mean-zero f ∈ BV (Q) and its bi-
variate Haar coefficients arranged in decreasing order according to their absolute value, c(k)(f).
We have

c(k)(f) ≤ C1
|f |BV

k
,

where C1 = 36(480
√
5 + 168

√
3).
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As discrete images are isometric to piecewise-constant functions of the form (9), the bivari-
ate Haar coefficients of the image X ∈ C

N×N are equal to those of the function fX ∈ L2(Q)
given by

(47) fX(u, v) = NXi,j,
i− 1

N
≤ u <

i

N
,

j − 1

N
≤ v <

j

N
, 1 ≤ i, j ≤ N.

To derive Proposition 8, it will suffice to verify that the bounded variation of fX can be
bounded by the total variation of X.

Lemma 14. |fX |BV ≤ ‖X‖TV .
Proof. For h < 1

N ,

Δhe1

(
fX , (u, v)

)
=

{
N(Xi+1,j −Xi,j),

i
N − h ≤ u ≤ i

N , j
N ≤ v ≤ j+1

N ,

0 else

and

Δhe2

(
fX , (u, v)

)
=

{
N(Xi,j+1 −Xi,j),

i
N ≤ u ≤ i+1

N , j
N − h ≤ v ≤ j

N ,

0 else.

Then

|fX |BV = lim
h→0

1

h

[∫ 1

0

∫ 1

0
|fX(u+ h, v) − fX(u, v)| dudv(48)

+

∫ 1

0

∫ 1

0
|fX(u, v + h)− fX(u, v)| dvdu

]
=

N−1∑
j=1

N−1∑
i=1

|Xi+1,j −Xi,j|+
N−1∑
i=1

N−1∑
j=1

|Xi,j+1 −Xi,j|

≤ ‖X‖TV
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[51] S. Vaiter, G. Peyré, C. Dossal, and J. Fadili, Robust sparse analysis regularization, IEEE Trans.
Inform. Theory, 59 (2013), pp. 2001–2016.

[52] J. Yang, Y. Zhang, and W. Yin, A fast alternating direction method for TV L1-L2 signal reconstruction
from partial Fourier data, IEEE J. Sel. Topics Signal Process., 4 (2010), pp. 288–297.

D
ow

nl
oa

de
d 

07
/3

0/
14

 to
 1

34
.1

73
.1

30
.2

44
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Claremont Colleges
	Scholarship @ Claremont
	3-13-2013

	Stable Image Reconstruction Using Total Variation Minimization
	Deanna Needell
	Rachel Ward
	Recommended Citation



