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UNICITY CONDITIONS FOR LOW-RANK MATRIX RECOVERY

Y. C. ELDAR, D. NEEDELL, AND Y. PLAN

Abstract. Low-rank matrix recovery addresses the problem of recovering an
unknown low-rank matrix from few linear measurements. Nuclear-norm mini-
mization is a tractible approach with a recent surge of strong theoretical backing.
Analagous to the theory of compressed sensing, these results have required ran-
dom measurements. For example, m ≥ Cnr Gaussian measurements are sufficient
to recover any rank-r n×n matrix with high probability. In this paper we address
the theoretical question of how many measurements are needed via any method
whatsoever — tractible or not. We show that for a family of random measure-
ment ensembles, m ≥ 4nr− 4r2 measurements are sufficient to guarantee that no
rank-2r matrix lies in the null space of the measurement operator with probabil-
ity one. This is a necessary and sufficient condition to ensure uniform recovery of
all rank-r matrices by rank minimization. Furthermore, this value of m precisely
matches the dimension of the manifold of all rank-2r matrices. We also prove that
for a fixed rank-r matrix, m ≥ 2nr − r2 + 1 random measurements are enough to
guarantee recovery using rank minimization. These results give a benchmark to
which we may compare the efficacy of nuclear-norm minimization.

1. Introduction

In the compressed sensing problem, one wishes to recover an unknown vector x ∈ Rn

from few linear measurements of the form y = Ax ∈ Rm where A is an m × n
measurement matrix and m ≪ n (see e.g. [8, 1, 9] for tutorials on compressed
sensing). This problem is clearly ill-posed until additional assumptions are enforced.
A common assumption is that x is s-sparse: the support of x is small, ‖x‖0 =
| supp(x)| ≤ s ≪ n. If A is injective on all s-sparse vectors then when x is s-sparse,
x will be the solution to

(L0) x̂ = argmin
w

‖w‖0 such that Aw = y.

Moreover, for a matrix A to be injective on all s-sparse vectors, we precisely require
that its null space be disjoint from the set of all 2s-sparse vectors. Since there are
many classes of matrices satisfying this property with m = 2s rows (see e.g. [6,
Theorem 1.1]), this shows that only 2s measurements are required to recover all
s-sparse vectors x ∈ Rd! If we consider the problem of weak recovery, where we
only wish to recover one fixed vector x, s + 1 measurements suffice. These are of
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course theoretical requirements, as the problem (L0) is a combinatorial optimization
problem and is NP-Hard in general (see Sec. 9.2.2 of [19]).

Work in the field of compressed sensing has however provided us with numerically
feasible methods for sparse signal recovery. One such method is ℓ1-minimization
which is a relaxation of (L0):

(L1) x̂ = argmin
z

‖z‖1 such that Az = y.

It has been shown that for certain measurement matrices A, (L0) and (L1) are equiv-
alent [11, 7]. These measurement ensembles can be taken randomly (for example, A
can be chosen to have Gaussian entries), and require m ≥ O(s log(n/s)) measure-
ments to guarantee reconstruction of all s-sparse vectors. Thus we require slightly
more measurements (from 2s to Cs log(n/s)) but can recover via the problem (L1)
which is numerically feasible by linear programming methods. For weak recovery
we need only slightly fewer measurements, see [12] for precise thresholds.

1.1. Low-Rank Matrix Recovery. A related problem to compressed sensing is
the problem of low-rank matrix recovery, for which many results have been obtained
(see e.g. [2, 4, 5, 10, 18, 15, 17, 25, 13, 3]). In this setting, we would like to recover
a matrix M from few of its linear measurements. The measurement operator is of
the form A : Rn×n → Rm and acts on a matrix M by (A(M))i = 〈Ai,M〉 where Ai

are n× n matrices and 〈·, ·〉 denotes the usual matrix inner product:

〈A,B〉
def

= trace(A∗B).

Given the measurements A(M) ∈ Rm, we wish to recover the matrix M ∈ Rn×n.
This is of course again ill-posed for small m in general. However, if we operate under
the assumption that M has low rank then the problem can be made well-posed. The
question then becomes how large does m need to be in order to guarantee recovery of
rank-r matrices and how does one recover such a matrix? Analagous to the program
(L0), one can consider solving

(1.1) X̂ = argmin
X

rank(X) such that A(X) = A(M).

This is simply a uniqueness problem; when is M the unique low rank matrix having
these measurements? However, as in the case of (L0), the problem (1.1) is intractible
in general.

Instead of solving (1.1), we are often interested in a tractible method which provides
worst-case guarantees; that is, guarantees which apply to all rank-r matrices whether
arbitrary or adversarial. A simple observation allows one to select an appropriate
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relaxation of (1.1) that will do just this. The rank of a matrix is the number of
non-zero singular values. That is, if σ is the vector of singular values of M , then
rank(M) = ‖σ‖0. Thus a natural relaxation would be to minimize ‖σ‖1. We thus
consider the minimization problem

(1.2) X̂ = argmin
X

‖X‖∗ such that A(X) = A(M),

where ‖ · ‖∗ denotes the nuclear norm which is defined by

‖X‖∗ = trace(
√

X∗X)) =

n
∑

i=1

σi.

The program (1.2) can be cast as a semidefinite program (SDP) and is therefore
numerically feasible. Moreover, it has been shown [20, 25, 21, 3] that m ≥ Cnr
measurements suffice to recover any n× n rank-r matrix via (1.2).

A question that does not appear to have been previously addressed is, how many
measurements suffice to recover rank-r matrices via the more natural (yet intractible)
method (1.1)? In the compressed sensing setting, this question was easy to answer
because the set of s-sparse vectors is the union of a finite number of linear subspaces.
In the matrix recovery problem, however, this question has remained unresolved.
Answering this question would not only fill a gap in the literature but also give
theoretical bounds on the number of measurements required for low-rank matrix
recovery against which those for problem (1.2) may be compared. In the case of
compressed sensing for example, it is clear that to use a tractible method we pay
in the number of measurements by a factor of log(n/s). What is this factor in the
matrix recovery framework? How good is nuclear-norm minimization? These are
the issues we address in this work.

In this paper we prove that 4nr − 4r2 measurements are sufficient to recover all
rank−r n × n matrices using rank minimization almost surely. To recover a fixed
rank−r n×n matrix with probability one, we show that only 2nr− r2+1 measure-
ments are required. We then compare our results to nuclear norm minimization and
show that rank minimization requires less measurements, but only by a constant
factor.

2. Uniqueness Results

In this section we provide a detailed summary of our main results.

We consider random operators A, and first ask that for any rank-r matrix M ,
the solution to (1.1) is X̂ = M with probability one. If this were not the case,
then there would be some matrices M and M ′ each with rank-r or less such that
A(M) = A(M ′). This means that the rank-2r (or less) matrix M − M ′ is in the
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null space of A. Therefore, to guarantee that (1.1) reconstructs all rank-r matrices,
a necessary and sufficient condition is that there are no rank-2r (or less) matrices
in the null space of A. Thus we examine the following subset of Rn×n:

(2.1) R′ = {X ∈ R
n×n : rank(X) = 2r}.

We first wish to compute how large m must be so that the null space of A is disjoint
from R. We will then repeat this argument for smaller values of the rank.

It is well known that R′ is a manifold with 4nr− 4r2 dimensions. Is m ≥ 4nr− 4r2

sufficient to guarantee uniform recovery? We will show that the answer is yes! This
is summarized by the following theorem.

Below, we call A a Gaussian operator if each Ai is independent with i.i.d. Gaussian
entries.

Theorem 2.1 (Strong Recovery). Let r ≤ n/2. When A : Rn×n → Rm is a

Gaussian operator with m ≥ 4nr − 4r2, problem (1.1) recovers all rank-r matrices

with probability 1.

Remarks.

1. We actually prove a more general result in Theorem 3.1. In this result we consider
any random linear operator A which takes m ≥ d+ 1 measurements 〈Ai, X〉 where
〈Ai, X〉 are independent and do not concentrate around zero. Then Theorem 3.1
shows that any d-dimensional continuously differentiable manifold over the set of
real matrices is disjoint (except possibly at the origin) from the null space of A.
Theorem 2.1 will follow as a consequence.

2. We consider real-valued matrices but our method can easily be extended to
complex-valued matrices as well.

Our proof technique also allows us to provide a bound on the number of measure-
ments required for weak recovery. Recall that in this framework we are interested in
recovering one fixed matrix M with high probability. Since M is fixed, we require
only that for all rank-r matrices X 6= M that X −M is not in the null space of A.
The set of all rank-r matrices is a manifold of dimension 2nr − r2. Recall that in
compressed sensing for weak recovery we a require number of measurements equal
to at least one more than the sparsity level. The following result shows that for
weak recovery of low-rank matrices we require a number of measurements at least
one more than the dimension of the manifold of all rank-r matrices.

Theorem 2.2 (Weak Recovery). Fix a rank−r n × n real matrix M . When A :
Rn×n → Rm is a Gaussian operator with m ≥ 2nr − r2 + 1, problem (1.1) recovers
the matrix M with probability 1.

As we will see in Section 4, this theorem allows the comparison of rank minimization
to the theoretical and empirical results of nuclear-norm minimization in the Gaussian
setting.
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We prove these results in the next section. In Section 4 we discuss the tightness of
these bounds and compare them with results for nuclear-norm minimization.

3. General Results and Proofs

On our way to proving our main results, Theorems 2.1 and 2.2, we will prove a
more general result about arbitrary manifolds of real matrices. This result can be
extended even further by considering manifolds over more arbitrary Banach spaces
and following our proof. For convenience we will restrict ourselves to the Banach
space of real matrices. Below, a continuously differentiable manifold is a manifold
that may be equipped with a class of atlases having transition maps which are all
C1-diffeomorphisms.

Theorem 3.1. Let R be a d-dimensional continuously differentiable manifold over

the set of n × n real matrices. Suppose we take m ≥ d + 1 measurements of the

form 〈Ai, X〉 for X ∈ R, and define the operator A : R → Rm which takes these

measurements, A : X 7→ y with yi = 〈Ai, X〉. Assume that there exists a constant

C = C(n) such that P(|〈Ai, X〉| < ε) < Cε for every X with ‖X‖F = 1. Further

assume that for each X 6= 0 that the random variables {〈Ai, X〉} are independent.

Then with probability 1,

Null(A) ∩ R\{0} = ∅.

Remarks.

1. The requirement that P(|〈Ai, X〉| < ε) < Cε says that the densities of 〈Ai, X〉
do not spike at the origin. A sufficient condition for this to hold for every X with
‖X‖F = 1 is that each Ai has i.i.d. entries with continuous density.

2. The requirement m ≥ d+1 is tight in the sense that the result does not generally
hold form ≤ d. For example, takeR to be the intersection of any (d+1)-dimensional
linear subspace of Rn×n with the unit sphere. Then it is not hard to show that
Null(A) ∩R\{0} 6= ∅ for any linear operator A : Rn×n → R

m as long as m ≤ d.

To prove this result we will utilize a well-known fact about covering numbers. For a
set B, norm ‖·‖ and value ε, we denote by N(B, ‖·‖, ε) the smallest number of balls
(with respect to the norm ‖ · ‖) of radius ε whose union contains B. This number is
called a covering number, and the set of balls covering the space (or more precisely
the center of these balls) is called an ε-net. A bound on the covering number for
the unit ball under the Euclidean norm ‖ · ‖2 is now well known (see e.g. Ch. 13
of [16]):

Lemma 3.2. For any 1 > ε > 0, we have

N(Bd

2
, ‖ · ‖2, ε) ≤

(

3

ε

)d

.

We are now prepared to prove Theorem 3.1.
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Proof of Theorem 3.1. For simplicity we take m = d+ 1. Since R is a continuously
differentiable manifold, so is R\{0} and this implies that there are a countable
number of closed1 sets Vi ⊂ R\{0} such that

•
⋃

Vi = R\{0}
• For each Vi, there exists a C1-diffeomorphism φi : Vi → Bd

2
. In words, there

is a homeomorphism φi from Vi to the unit Euclidean ball in Rd (denoted
Bd

2
) such that φi and φ−1

i
are continuously differentiable.

Our strategy is to show that for fixed i, 0 /∈ A(Vi) with probability 1. We will then
apply a union bound using the fact that there are only countably many Vi.

Fix an i, and for convenience set φ = φi and V = Vi. Since φ−1 is continuously
differentiable, it is Lipschitz on the closed set Bd

2
. Thus there is an L > 0 such that

(3.1) ‖φ−1(x)− φ−1(y)‖F ≤ L‖x− y‖2.

Next, let Bd
2
be an (ε/L)-net for Bd

2
with cardinality at most

(

3L

ε

)d
. This is of course

possible by Lemma 3.2. Then the net V defined by V = φ−1(Bd
2
) is an ε-net for V.

Indeed, for any X ∈ V, we have φ(X) ∈ Bd
2
and so there is a b ∈ Bd

2
such that

‖b− φ(X)‖2 ≤
ε

L
.

By (3.1) we then have

‖φ−1(b)−X‖F ≤ L · ‖b− φ(X)‖2 ≤ L ·
ε

L
= ε.

Since φ−1(b) ∈ φ−1(Bd
2
), this shows that V is an ε-net for V.

Using the fact that V is an ε-net for V, we have that for any X ∈ V, there is an
X ∈ V such that ‖X −X‖F ≤ ε. This then implies

‖A(X)‖∞ ≥ ‖A(X)‖∞ − ‖A(X −X)‖∞

≥ ‖A(X)‖∞ − ‖A‖F→∞‖X −X‖F

≥ ‖A(X)‖∞ − ε · ‖A‖F→∞,

where ‖·‖F→∞ denotes the operator norm from the Frobenius norm to the supremum
norm, ‖ · ‖∞. Optimizing over all X ∈ V and X ∈ V yields

inf
X∈V

‖A(X)‖∞ ≥ min
X∈V

‖A(X)‖∞ − ε · ‖A‖F→∞.

1Note that in general these sets are open, but by writing each Vi as a countable union of closed
sets (for example Vi = ∪j=1...∞φ−1({x : ‖x‖2 ≤ 1− 1/j})) we observe that we can choose them to
be closed.
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We can then bound the probability (over the random choice of A) by:

P

(

inf
X∈V

‖A(X)‖∞ = 0

)

≤ P

(

inf
X∈V

‖A(X)‖∞ ≤ ε log(1/ε)

)

≤ P

(

min
X∈V

‖A(X)‖∞ − ε · ‖A‖F→∞ ≤ ε log(1/ε)

)

.

Conditioning on whether ‖A‖F→∞ > log(1/ε) and using the law of total probability
yields

P

(

min
X∈V

‖A(X)‖∞ − ε · ‖A‖F→∞ ≤ ε log(1/ε)

)

≤ P

(

min
X∈V

‖A(X)‖∞ ≤ 2ε log(1/ε)

)

+ P

(

‖A‖F→∞ > log(1/ε)
)

.(3.2)

Clearly, for ε small, the second term in this last line of (3.2) is neglible. Thus it
remains to bound the first term. Letting z1, . . . , zm be the coordinates of A(X) for
a given X ∈ V , we have:

P

(

min
X∈V

‖A(X)‖∞ ≤ 2ε log(1/ε)

)

≤ |V| · P
(

‖A(X)‖∞ ≤ 2ε log(1/ε)
)

= |V| · P (max{|z1|, . . . , |zm|} ≤ 2ε log(1/ε))

≤

(

3L

ε

)d

·
m
∏

i=1

(

P (|zi| ≤ 2ε log(1/ε))
)

,

where in the last line we have utilized the independence of all zi = 〈Ai, X〉 and the
size of the net V.

Now,

P (|zi| ≤ 2ε log(1/ε)) = P (|〈Ai, X〉| ≤ 2ε log(1/ε))

= P

(
∣

∣

∣

∣

〈

Ai,
X

‖X‖F

〉
∣

∣

∣

∣

≤
2ε log(1/ε)

‖X‖F

)

.

Since V is closed and does not contain zero, the Frobenius norm of any X ∈ V
is bounded uniformly away from zero. This combined with the assumption that
P(|〈Ai, X〉| < ε) < Cε for every X with ‖X‖F = 1 yields

(

3L

ε

)d

·
m
∏

i=1

(

P (|zi| ≤ 2ε log(1/ε))
)

≤

(

3L

ε

)d

· (4C ′ε log(1/ε))
m

= C ′′εm−d · (log(1/ε))m

= C ′′ε · (log(1/ε))m ,
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where C, C ′ and C ′′ are constants which do not depend on ε. The last equality
follows since m = d + 1. Taking ε to zero once again makes this last term vanish.
Thus the probability that the null space of A intersects V is zero. Since there are
only countably many Vi, the probability that the null space of A intersects any of
these sets is also zero.

�

Now we turn to proving our main result Theorem 2.1. To prove this theorem, it will
be useful to view the space of rank-2r unit norm matrices as a smooth manifold.
Then Theorem 2.1 will follow as a corollary of Theorem 3.1. We denote by ‖ · ‖F
the usual Frobenius norm for matrices.

Lemma 3.3. The space of rank-r matrices with fixed Frobenius norm,

R = {X ∈ R
n×n : rank(X) = 2r, ‖X‖F = 1},

is a smooth manifold with dimension 4nr − 4r2 − 1.

Proof. We will first show that the space of rank-2r matrices (with arbitrary Frobe-
nius norm) is a smooth manifold. This is a well-known result but we sketch the
proof. Then we will show that the intersection of this space and the sphere of all
unit norm matrices is transverse which will yield the desired result. To this end, let
R′ be as in (2.1) and let M = {A ∈ Rn×n} be the set of all n×n matrices. Let G be
the lie group consisting of the cross product of the general linear group with itself:

G = GL(n,R)×GL(n,R).

For an element (g, h) ∈ G, let it act on elements A ∈ R′ by (g, h)A = gAh−1. Since
this is just matrix multiplication, this action is clearly continuous. Moreover, it is
transitive. Indeed, let A,B ∈ R′ Since A is rank 2r, there are g, h ∈ GL(n,R) such
that

gAh−1 =

[

I2r

On−2r

]

def

= D,

where I2r denotes the 2r×2r identity matrix and On−2r denotes the n−2r×n−2r
matrix of zeros. Similarly, there are y, z ∈ GL(n,R) such that yBz−1 equals this
same block matrix. Thus gAh−1 = yBz−1 and so A = g−1yBz−1h which proves
transitivity since (g−1y, z−1h) ∈ G. Next let H be the stabilizer of the matrix
D under the action of G. Since the action of G is continuous and transitive, the
stabilizer H is a closed subgroup of the lie group G and thus H is a closed lie
subgroup. Therefore G/H is a smooth manifold. But H is the stabilizer of D under
G and so since the action is transitive, G/H must be isomorphic to the orbit of D
under the action of G. But the orbit of D is precisely our set R′ and thus R′ is also
a smooth manifold.
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We now wish to show that R is also a smooth manifold by viewing R as the inter-
section of R′ and the sphere

S = {A ∈ M : ‖A‖F = 1}.

It is clear that S is a smooth manifold (it is a sphere of the smooth manifold M)
and by above R′ is also a smooth manifold. Since R = R′∩S and both R′ and S are
smooth manifolds, to show that R is also a smooth manifold it suffices to show that
this intersection is transverse. That is, we need to show that for any A ∈ R′ ∩ S,
the direct sum of the tangent space of S at A and R′ at A is equal to the tangent
space of M of A:

TA(S)⊕ TA(R
′) = TA(M).

Since S has codimension 1 in M, it will suffice to show that TA(R
′) contains a

vector in the direction normal to the sphere. Now for any A ∈ R′ and k 6= 0, the
matrix kA will clearly also have rank 2r and thus be contained in R′. Therefore
R′ contains the entire line L through the origin containing A (excluding the actual
origin itself). Then since L ⊂ R′, we have L = TA(L) ⊂ TA(R

′). Thus we must
indeed have TA(S) ⊕ TA(R

′) = TA(M). Therefore the intersection R = S ∩ R′ is
transverse and so it is a smooth manifold.

Finally, it is well known that the dimension of the manifold R′ is 4nr−4r2 (see [14,
Chapter 8]) and the codimension of S in M is 1. Thus codim(R) = codim(S) +
codim(R′) = n2 − (4nr − 4r2) + 1 and so the dimension of R is 4nr − 4r2 − 1.

�

We finally show that Theorem 2.1 and Theorem 2.2 follow as corollaries.

Proof of Theorem 2.1. By Lemma 3.3, R is a smooth manifold of dimension d =
4nr − 4r2 − 1 and note that clearly R = R\{0}. Let A be the operator taking
m ≥ 4nr−4r2 Gaussian measurements 〈Ai, X〉 forX ∈ R and Ai (for i = 1, 2, . . .m)
having i.i.d. Gaussian entries. Then all 〈Ai, X〉 are independent and have (the
same) continuous density. Therefore by Theorem 3.1, Null(A) ∩ R = ∅. Applying
Theorem 3.1 for all ranks between 1 and 2r, we see that there is no matrix of rank
2r or less in the null space of A. Thus when M has rank r (or less) there can be
no other matrix X with A(X) = A(M) having the same or lower rank. This proves
that (1.1) must recover the matrix M and completes the proof. �

Proof of Theorem 2.2. Let W = {X − M : rank(X) = r}. Note the proof of
Lemma 3.3 explicitly shows that the space of all matrices of a fixed rank r is a
smooth manifold of dimension 2nr− r2. Since W is a shift of this space, it is also a
smooth manifold of the same dimension. Then by Theorem 3.1, we have that with
probability one

W\{0} ∩ Null(A) = ∅.
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Repeating this for ranks 1 through r, we get that with probability one

(3.3) W ′\{0} ∩ Null(A) = ∅

where W ′ = {X − M : rank(X) ≤ r}. Now let X be the solution of the rank
minimization problem (1.1). Since M has rank r and is a feasible matrix, rank(X) ≤
r as well. Thus X −M ∈ W ′. But since A(X) = A(M), X −M ∈ Null(A). Thus
by (3.3) it must be that X−M = 0 which shows X = M is the recovered matrix. �

4. Discussion

The bounds on the number of measurements given by Theorems 2.1 and 2.2 of
4nr−4r2 and 2nr−r2+1 are analagous to the bounds of 2s and s+1 in compressed
sensing. As we did in the compressed sensing case, it is of course insightful to com-
pare rank minimization and nuclear-norm minimization. To (provably) recover n×n
rank-r matrices using nuclear-norm minimization, one needs Cnr measurements. As
discussed in [3], by observing that the space of rank-r matrices has a subspace which
consists of all rank-r matrices whose last n− r rows are zero, one sees that at least
2nr measurements are required to recover all rank-r matrices. In [21] explicit for-
mulas and graphs are given from which bounds on the constant C can be derived.
Even more recent results in [22] prove that 6nr measurements suffice for weak re-
covery and 16nr measurements suffice for strong recovery. New work in [23, 24] also
shows weak recovery when m ≥ 6nr − 3r2. In addition, numerical results indicate
that weak recovery requires about 4nr − 2r2 Gaussian measurements [21, Figure
1]. Thus according to these results, rank minimization does succeed with somewhat
fewer measurements. We emphasize that this should not be a surprise — nuclear-
norm minimization is a tractible method whereas rank minimization is an intractible
method whose guarantees give us theoretical bounds with which to compare. In fact,
the price to pay for a tractible method in low-rank matrix recovery seems to be a
very reasonable one.

As discussed above, our general manifold result, Theorem 3.1, is tight. However,
this does not imply that its consequences, Theorems 2.1 and 2.2, are tight since the
set of matrices of fixed rank is not a linear subspace. We conjecture that the strong
recovery requirement, m ≥ 4nr−4r2 from Theorem 2.1, is tight because the number
of measurements required matches the dimension of the underlying manifold. In the
case of the weak recovery requirement m ≥ 2nr − 2r2 + 1 given by Theorem 2.2,
we require m to be one greater than the dimension of the underlying manifold.
However, we once again conjecture this to be tight at least within an additive factor
of one for the same reason.

Our results in conjunction with work on nuclear-norm minimization show how close
nuclear-norm minimization guarantees are to those of the intractible problem of rank
minimization. While rank minimization requires fewer measurements, it is not at all
an unreasonable amount to pay in order to solve the problem via a computationally
feasible method.
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