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Abstract

The Kaczmarz method is an algorithm for finding the solution to an overdetermined consis-
tent system of linear equations Ax = b by iteratively projecting onto the solution spaces. The
randomized version put forth by Strohmer and Vershynin yields provably exponential conver-
gence in expectation, which for highly overdetermined systems even outperforms the conjugate
gradient method. In this article we present a modified version of the randomized Kaczmarz
method which at each iteration selects the optimal projection from a randomly chosen set, which
in most cases significantly improves the convergence rate. We utilize a Johnson-Lindenstrauss
dimension reduction technique to keep the runtime on the same order as the original randomized
version, adding only extra preprocessing time. We present a series of empirical studies which
demonstrate the remarkable acceleration in convergence to the solution using this modified
approach.

1 Introduction

The Kaczmarz method [18] is a popular algorithm for solving overdetermined consistent systems of
linear equations. Due to its simplicity and speed, it has been used in a variety of applications ranging
from tomography to digital signal processing [4, 21, 19]. The method uses a series of alternating
projections to iteratively converge to the solution of Ax = b, and is therefore computationally
feasible even for very large systems. Given an initial guess x0 and denoting by a1, . . . , am the rows
of the m× n matrix A, each iteration of the method orthogonally projects the current estimation
onto the next hyperplane defined as the solutions to 〈ai, x〉 = bi, chosen in a cyclic fashion. The
algorithm can be described by the iterations:

xk+1 = xk +
b[i]− 〈ai, xk〉

‖ai‖22
ai,

where xk is the kth iterate, b[i] (here and throughout) denotes the ith coordinate of b, and i = (k
mod m) + 1.

Although this technique has been used in practice for quite some time, theoretical guarantees
on convergence were difficult to obtain [8, 12, 13]. It is clear that by design of the algorithm,
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the convergence rate depends on the ordering of the rows in A. Therefore, poorly ordered rows
can lead to slower convergence. To overcome this difficulty, the rows of A can be selected in a
random fashion. It has been observed that this randomized version of the algorithm improves the
convergence rate [19, 14], however only recently have theoretical results been obtained [24, 25, 20].

1.1 Randomized Kaczmarz

In [24, 25], Strohmer and Vershynin propose at each iteration to randomly select a row of A
with probability proportional to the Euclidean norm of the row. The randomized Kaczmarz (RK)
method can thus be described by

xk+1 = xk +
b[p(i)]− 〈ap(i), xk〉

‖ap(i)‖22
ap(i), (1.1)

where p(i) takes values in {1, . . . ,m} with probabilities
‖ap(i)‖

2
2

‖A‖2
F

. Here and throughout, ‖A‖F denotes

the Frobenius norm of A and ‖·‖2 denotes the standard Euclidean norm or spectral norm for vectors
or matrices, respectively. The selection rule used here is not optimal in general. The motivation for
setting the rule according to the weight of the row norms is two-fold. First, it allows for a guarantee
of expected exponential convergence for the Kaczmarz method [25]. Second, it is a computationally
efficient strategy since often these values will be known approximately or exactly, and will only
need to be computed once. A selection rule of this type is of course also related to the idea of
preconditioning the matrix A by scaling its rows. Although other diagonal preconditioners may
certainly perform better in general, finding such an optimal preconditioner is itself an optimization
problem of high complexity. With the above selection strategy, the following exponential bound
was shown in [24, 25] for the convergence in expectation of this randomized method:

E‖xk − x‖22 ≤
(

1− 1

R

)k
‖x0 − x‖22, (1.2)

where R = ‖A−1‖2‖A‖2F and x0 is an arbitrary initial estimate. Since we will always assume that

A has full column rank, the norm ‖A−1‖ def
= inf{M : M‖Ax‖2 ≥ ‖x‖2 for all x} is well-defined.

This bound is essentially independent of the number of rows of A. Moreover, the bound shows that
for well conditioned matrices A, the RK method yields expected exponential convergence to the
solution in just O(n) iterations (see Section 2.1 of [25]). Since each iteration consists of a single
projection taking O(n) time, this shows that the overall method has O(n2) runtime, which is clearly
superior to other methods such as Gaussian elimination which takes O(mn2), especially when the
system is very large. The discussion in [25] shows that the randomized Kaczmarz method often
even outperforms the celebrated conjugate gradient method. For example, when A is a Gaussian
matrix and m > 3n, the RK method provably requires fewer computations, and empirical studies
show that this improvement is substantial. See Section 4.2 of [25] for details.

The empirical and theoretical benefits of this approach lead one to ask whether it is also ac-
curate in the more realistic case when noise is present. One may thus consider the (now possibly
inconsistent) system Ax ≈ b + w where w is an arbitrary error vector that has been added to the
consistent system Ax = b. It is shown in [20] that in this case we have exponential convergence to
the solution within an error factor:

E‖xk − x‖2 ≤
(

1− 1

R

)k/2
‖x0‖2 +

√
Rγ,
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where R is the same as above and γ = maxi
|w[i]|
‖ai‖2

. It is also shown that this bound is sharp and is

attained even for simple examples [20].

1.2 Modified approach

To further improve the convergence rate of the RK method, we suggest a different approach to
selecting the rows of A. Although our ideas should also apply seamlessly to the case when noise
is present and the system becomes inconsistent, in this work we only consider the noiseless case
and leave a detailed analysis in the presence of noise for future work. Since the projections in
the algorithm (1.1) are orthogonal, it can be seen that the optimal projection in the kth iteration
is the one that maximizes ‖xk+1 − xk‖2. By definition of the iterations (1.1), one can calculate
these quantities by computing inner products between the rows ai of A and the current iterate xk.
Since computing one inner product requires O(n) operations, we clearly cannot afford to perform
more than a constant number of these in a given iteration. Our approach, therefore, is to project
the rows of A onto a lower dimensional space in such a way that the geometry of the vectors is
approximately preserved. We then perform calculations of the form (1.1) with respect to these low
dimensional vectors, and select the best projection.

By construction, our modified algorithm will converge to the solution of Ax = b in the worst
case as fast as the standard RK method. In practice, we expect the convergence to be much
faster, especially when the lower dimension d onto which we project the rows is not too small. The
improvement in each iteration can be quantified in terms of d and the current estimation xk, as we
demonstrate in Section 3. In Section 4 we demonstrate that empirically our technique outperforms
the standard RK method in terms of convergence rate. The runtime of this modified algorithm
of course depends on the dimension d onto which we project the rows of A. If d ≪ n, then each
iteration will require O(dn) operations, meaning that the overall runtime for expected exponential
convergence becomes at most O(dn2). There is a tradeoff in the choice of the dimension d. If d is
small, then the runtime per iteration remains small. However, if d is too small then our technique
reduces to the standard RK method, and we will not gain in the convergence rate. In the next
section we discuss the runtime and implementation, and show why the selection of d on the order
of log n is the right choice. This gives a worst case runtime of O(n2 log n), although we expect a
much faster convergence as we also see in simulations. This worst case runtime however, is still the
same as that of the standard RK method up to the log factor.

2 Implementation and Runtime

Since the projections in the algorithm are orthogonal, one easily sees that the optimal projection
in the kth iteration would be the one that maximizes ‖xk+1 − xk‖2, or equivalently, the term

|b[i]− 〈ai, xk〉|
‖ai‖2

. (2.1)

Unfortunately, calculating this term takes O(n) time, so that to keep the overall runtime at O(n2)
one can only afford to make this computation a constant number of times. However, if we could
significantly reduce the dimension of the vectors ai and xk used in the calcuation, then more of these
calculations could be done at each iteration, and the best out of those computed could be chosen,
leading to accelerated convergence. Our idea is thus to project the vectors onto a low dimensional
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space such that the geometry is preserved. This will allow approximation of the inner products
〈ai, xk〉 and the norms ‖ai‖2 (if they are not known a priori) from the projected data. To do this,
we will consider a Johnson-Lindenstrauss type projection. The well-known Johnson-Lindenstrauss
Lemma [17] states that with high probability, there is a projection of a finite set of points onto
a space logarithmic in the number of points that approximately preserves geometry. This can be
summarized as follows.

Lemma 2.1 (Johnson-Lindenstrauss [17]) Let δ > 0 and let S be a finite set of points in R
n.

Then for any d satisfying

d ≥ C
log |S|
δ2

, (2.2)

there exists a Lipschitz mapping Φ : Rn → R
d such that

(1− δ)‖si − sj‖22 ≤ ‖Φ(si)− Φ(sj)‖22 ≤ (1 + δ)‖si − sj‖22, (2.3)

for all si, sj ∈ S, where C is an absolute constant.

Remark. The value of C in which this lemma holds depends on the distribution from which
Φ is created. When Φ is Gaussian, one has C ≤ 8 [7].

Although this lemma as stated only guarantees existence of such a mapping, in their proof
the map Φ is chosen as the projection onto a random d-dimensional subspace of Rn. This result
has been improved over time and now one can easily construct such a (random) projection which
preserves the geometry (see e.g. [1, 6, 16]). Indeed, it is shown in [1] that whenever a distribution
satisfies certain moment conditions, the d×n random matrix Φ whose entries are chosen i.i.d. with
respect to that distribution will satisfy (2.3) with high probability provided d satisfies (2.2). The
Guassian distribution, for example, satisfies these moment conditions; therefore the matrix with
i.i.d. Gaussian entries will preserve geometry with high probability. Recently there has been work
on constructing transforms which satisfy (2.3) but that also provide a fast multiply (see e.g. [2, 15]).
For example, Ailon and Chazelle construct in [2] a Cδ−2 log |S| × n transform Φ satisfying (2.3)
with high probability whose multiply requires roughly n log n + δ−2 log3 |S| operations. Hinrichs
and Vybiral provide a multiply using n log n operations when Φ has slightly more rows, on the
order of log2 |S|. Even more recently, Ailon and Liberty show in [3] that when the d× n Φ is the
composition of a randomly subsampled Hadamard (or Fourier) matrix and a random sign matrix,
then Φ satisfies (2.3) with high probability when d = Cδ−4 log |S| log4 n. This matrix has an n log n
multiply, and so this result provides an optimal fast JL transform, up to the power −4 on δ and
the polylogarithmic dependence on n.

2.1 Implementation

In our setting, the Johnson-Lindenstrauss Lemma allows us to project the rows of A as well as the
estimations xk onto a space of substantially lower dimension. This will then let us approximately
calculate the terms in (2.1) using far fewer operations, which we can use to decide on which
hyperplane to project the current estimate. We note that the projection of the rows of A will be
performed offline, adding to the preprocessing time, whereas the projection of the estimation xk
will be done at each iteration. We choose to use an analagous strategy as in the RK algorithm
for our row selection; that is, using the weight of the row norms. This choice yields a worst case
convergence rate which is the same as that guaranteed by the original RK method (see Remark

4



2 below). This leads to the following modified randomized Kaczmarz method, called Randomized
Kaczmarz via Johnson-Lindenstrauss (RKJL) which can be summarized as follows.

Randomized Kaczmarz via Johnson-Lindenstrauss (RKJL)

Input: m× n matrix A, coefficient vector b ∈ R
m, parameter d, initial estimate x0

Output: Approximate x solving Ax = b

Initialize: Set k = 0, create a d× n Gaussian matrix Φ and set αi = Φai. Repeat the following
O(n) times:

Select: Select n rows so that each row ai is chosen with probability ‖ai‖22/‖A‖2F as in 1.1. For
each row selected, calculate

γi =
|b[i]− 〈αi,Φxk〉|

‖αi‖2
,

and set j = argmaxi γi.

Test: For aj and the first row al selected out of the n, explicitly calculate

γ∗j =
|b[j] − 〈aj , xk〉|

‖aj‖2
and γ∗l =

|b[l]− 〈al, xk〉|
‖al‖2

.

If γ∗l > γ∗j , set j = l.

Project: Set

xk+1 = xk +
b[j] − 〈aj , xk〉

‖aj‖22
aj.

Update: Set k = k + 1.

Remarks. 1. We show in Section 3 that d = O(log n) will be enough to approximately preserve
geometry and thus give convergence improvements. Of course greater values of d may give greater
improvements on convergence, at the expense of more computational cost at each iteration.

2. In the Test stage of the algorithm, we see that in addition to approximating the n inner
products, we also exactly calculate the inner product of a randomly selected row and also the row
that was chosen. This will guarantee that the convergence is not slowed by any drastic consequences
of the error in the approximations, and does not affect the overall runtime.

3. We note that the initialization step may of course be computationally expensive, as is
calculating the probabilities p(i) in the standard version (1.1). However, this need only be done
once, and thus this version of the algorithm will be beneficial for situations in which the same matrix
A is used in many problems. This is the case for many applications such as the wave-scattering
problem [22] and structural mechanics problems [11]; see [5, 23] for others.

We next turn to an analysis of this modified method. In Section 4 we provide numerical results
demonstrating the improved convergence rate.
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2.2 Runtime

As discussed above and in [24, 25], the standard randomized Kaczmarz method converges expo-
nentially fast to the solution in O(n) iterations, resulting in a total runtime of O(n2). The RKJL
algorithm will thus also converge (in expectation) in at most O(n) iterations, and so it remains to
calculate the runtime of each iteration.

The first step in an iteration is to calculate Φxk. Since Φ is a d × n matrix, this computation
in general takes O(nd) time. Next, each αi lives in a d dimensional space, so that calculating
inner products in the selection step costs only O(d). Since we calculate n such inner products, the
total calculation time is O(nd). The projection and update steps clearly take O(n) and O(1) time,
respectively, leading to an overall runtime per iteration of O(nd). Therefore, after O(n) iterations,
we see that the overall runtime of the algorithm is O(n2d). Lemma 3.1 below shows that d can be
chosen on the order of log n. Therefore, RKJL converges exponentially fast in at most O(n2 log n)
time, which is the same as the runtime of standard RK, up to the log factor. In practice, the
runtime is much faster as we show in Section 4.

Because the algorithm will need to use roughly n2 rows of A (assuming n2 ≤ m), the matrix
Φ will have to be applied to at least this many vectors, resulting in a O(n3d) initial cost. If the
algorithm is used repeatedly for various problem instances over the same matrix A, then one may
wish to apply Φ to all the rows of A, yielding a O(mnd) cost. Even when d = O(log n) this is
of course substantial, but for applications in which the algorithm will be used many times, this
one-time cost will become minimal.

This initial computational cost occurs in other methods as well, for example, in submatrix
selection algorithms that take O(mn2) to select a well represented n log n× n submatrix of A (see
e.g. [9, 10]). These methods randomly select the submatrix (according to a particular probability
model), and if the submatrix selected represents A well, then it can be used to solve the system
Ax = b. However, there is some probability that the subsystem cannot be solved, in which case
it must be reselected again, and so on. This is in contrast to RKJL, for which we are always
guaranteed convergence, and most likely with improved expected convergence rate. The choice of
method will of course depend on the application, and in some cases it may even be beneficial to
use some combination of these approaches.

3 Analytical Justification

We next analyze how the Johnson-Lindenstrauss Lemma is utilized by our method. We will assume
here that the system is real-valued and homogeneous (ie. Ax = 0), that the rows of A all have unit
norm, and that the initial guess x0 also satisfies ‖x0‖2 ≤ 1. These assumptions are of course not
necessary, but will make the analysis simpler. We discuss the case where the row norms may be
far from equal in Remark 3 below. We begin with an easy lemma which shows that the geometry
of the vectors used in the RKJL method is approximately preserved.

Lemma 3.1 Let Φ be the n× d (Gaussian) matrix with d = Cδ−2 log(n) as in the RKJL method.
Set γi = 〈Φai,Φxk〉 also as in the method. Then |γi−〈ai, xk〉| ≤ 2δ for all i and k in the first O(n)
iterations of RKJL.

Remark 1 This lemma shows that with d chosen on the order of O(log n), the geometry of the
vectors involved in the RKJL method is approximately preserved. In practice, d should thus be
chosen of this order to gain improvements in convergence.
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Proof. We employ the Johnson-Lindenstrauss Lemma (Lemma 2.1) with S consisting of all ai and
xk in the first O(n) iterations of RKJL. Then since |S| . n2, the condition (2.2) is satisfied, and
so (2.3) holds for all ai and xk used in the algorithm. By this and the parallelogram law, we have

γi = 〈Φai,Φxk〉

=
1

4

(

‖Φai +Φxk‖22 − ‖Φai − Φxk‖22
)

≤ 1

4

(

(1 + δ)‖ai + xk‖22 − (1− δ)‖ai − xk‖22
)

= 〈ai, xk〉+
1

4
δ(‖ai + xk‖22 + ‖ai − xk‖22)

≤ 〈ai, xk〉+ 2δ.

Similarly we have that γi ≥ 〈ai, xk〉 − 2δ, which completes the claim.

This shows that the terms γi used for selection in the algorithm are approximately equal to the
actual desired values 〈ai, xk〉. Thus for δ small, the RKJL algorithm makes well educated decisions
at each iteration which allows for quicker convergence (see Theorem 3.2 below). This also shows
that when the estimation xk becomes very close to the true solution x = 0, the error δ begins to
dominate and improvements may no longer be expected. However, this does not pose a problem
since it only occurs when the estimate is already approximately x.

It is clear from construction of the RKJL algorithm (and especially in light of Remark 2 above),
that convergence using RKJL is at least as fast as the standard randomized version. Moreover,
when the error produced by applying Φ is small, the RKJL method will project onto the “best”
hyperplane out of those it selected in that iteration. Since the probability of choosing this “best”
row when selecting only a single row is strictly less than the probability of choosing that row when
a set of rows is selected, this implies that the only case in which RKJL would not provide a strictly
faster convergence rate is when 〈ai, xk〉 = 〈aj , xk〉 for all rows ai, aj selected in the kth iteration.

Given a current estimate xk, one can explicitly compare the expectation of the improvement
the next estimation provides, for both the RKJL and standard randomized methods. First observe
that if P denotes the projection in the kth iteration, then xk−1−xk resides in the kernel of P , and
is thus orthogonal to the space onto which P projects. This space contains xk − x since x is the
solution to all equations Ax = b and xk = Pxk−1. Therefore, xk − x and xk−1 −xk are orthogonal,
implying that

‖xk − xk+1‖22 = ‖x− xk‖22 − ‖x− xk+1‖22. (3.1)

The relation (3.1) shows that the larger ‖xk − xk−1‖2, the bigger the improvement made in that
iteration. We thus fix an estimation xk and analyze the expectation of ‖xk − xk+1‖2 for the RKJL
method versus the standard one. For convenience, we again consider the real and homegenous case
(ie. when b = 0), and assume the rows of A have unit norms. We then have the following result.

Theorem 3.2 Fix an estimation xk and denote by xk+1 and x∗k+1 the next estimations using the
RKJL and the standard RK method, respectively. Set γ∗j = |〈aj , xk〉|2 and reorder these so that

γ∗1 ≥ γ∗2 ≥ . . . ≥ γ∗m. Then when d = Cδ−2 log n,

E‖xk+1 − x‖22 ≤ min



E‖x∗k+1 − x‖22 −
m
∑

j=1

(

pj −
1

m

)

γ∗j + 2δ, E‖x∗k+1 − x‖22



 ,
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where

pj =

{

(m−j

n−1)
(mn)

, j ≤ m− n+ 1

0, j > m− n+ 1

are non-negative values satisfying
∑m

j=1 pj = 1 and p1 ≥ p2 ≥ . . . ≥ pm = 0.

Proof. Since we assume the rows of A have unit norm and that b = 0, we see that γJ is precisely
the value of ‖xk+1 − xk‖22 if the algorithm were to select row J . We begin by examining the kth
RKJL iteration.

Let L denote the set of rows chosen in the selection step, so that |L| = n. If exact geometry were
preserved (i.e. δ = 0), then the method would simply select the index of the largest λ∗

i contained
in L. However, due to the error induced by Φ, even when the “best” row is selected to be in L, the
algorithm may not choose this row for the projection.

We thus define sets Tj for j = 1, . . . m, which consist of rows which could be “confused” in this
way,

Tj
def
= {i : |γ∗i − γ∗j | ≤ 2δ}, and µj = min{γ∗i : i ∈ Tj}.

From Lemma 3.1, if j ∈ L and 1, . . . , j − 1 /∈ L, then the worst row we could choose is one that
would give ‖xk+1 − xk‖22 = µj. Therefore,

E‖xk+1 − xk‖22 = EJγ
∗
J

≥ µ1P(1 ∈ L) + µ2P(2 ∈ L ∩ 1 /∈ L) + . . .+ µm−n+1P(1, 2, . . . ,m− n /∈ L)

=

m−n+1
∑

j=1

µjP(j ∈ L ∩ 1, . . . , j − 1 /∈ L).

Since each row of A has equal norm, each row of A is equally likely to be selected in L. Thus

P(j ∈ L ∩ 1, . . . , j − 1 /∈ L) =
(

m−j
n−1

)

(

m
n

) .

Therefore, we have

E‖xk+1 − xk‖22 ≥
m−n+1
∑

j=1

µjpj.

Lemma 3.1 and the definition of Tj guarantee that µj ≥ max(γ∗j − 2δ, 0). This along with the
fact that

∑

pj = 1 yields

E‖xk+1 − xk‖22 ≥
(

m−n+1
∑

j=1

γ∗j pj

)

− 2δ. (3.2)

Finally, since all the rows of A have the same norm, the standard RK method selects each row
uniformly at random, so that

E‖x∗k+1 − xk‖22 =
m
∑

j=1

1

m
γ∗j . (3.3)

8



Combining (3.3) with (3.2) and (3.1) we have

E‖xk+1 − x‖22 = E‖xk − x‖22 − ‖xk − xk+1‖22

≤ E‖xk − x‖22 −
(

m−n+1
∑

j=1

γ∗j pj

)

+ 2δ

= E‖x∗k+1 − x‖22 + E‖x∗k+1 − xk‖22 −
(

m−n+1
∑

j=1

γ∗j pj

)

+ 2δ

= E‖x∗k+1 − x‖22 −
m
∑

j=1

(

pj −
1

m

)

γ∗j + 2δ.

This along with the fact that by construction of RKJL, E‖xk+1 − x‖22 ≤ E‖x∗k+1 − x‖22, completes
the claim.

Remarks. 1. Theorem 3.2 gives a lower bound, which shows improvements in the “worst case”,
when the error induced by the Johnson-Lindenstrauss projection causes the method to choose a row
of A in the worst way. Numerical experiments (as seen in the next section) demonstrate substantial
improvements in the convergence rate.

2. Note that since the sequences {γ∗j } and {pj} are non-increasing and
∑m

j=1 pj = 1 =
∑m

j=1
1
m ,

the sum β =
∑m

j=1

(

pj− 1
m

)

γ∗j is non-negative. Furthermore, β = 0 only when γ∗1 = γ∗2 = . . . = γ∗m.

Indeed, if γ∗i > γ∗j even for just one pair i < j, then for δ small enough, the RKJL method provides
strict convergence improvement. Knowledge of xk and A would allow one to precisely calculate the
improvement.

3. The theorem is proven under the assumption that the rows of A have the same norm. The
same argument holds (with different values of pj) still showing improvement when this assumption
does not hold, and numerical experiments show similar results in either case. Although the analysis
of exact improvement in these other cases may quickly become quite complicated, we recall that
by construction the RKJL method offers overall improvement in any case.

It is also helpful to identify some particularly interesting scenarios, for example, when one or
a few rows are substantially of larger norm. In this case the standard RK algorithm (noticing
that each row is selected independently of the previous selections) will choose this row repeatedly
with high probability. Clearly this may slow convergence (especially when these rows are highly
correlated), and although there is still guaranteed exponential convergence, R in this case is much
larger so that the guaranteed rate is slower. In RKJL, although the guaranteed worst case rate
is the same, these large rows are likely not to be selected when their contributions toward the
solution is minimal. This will again speed up convergence, since in the language of Theorem 3.2,
the λ∗

k corresponding to the rows which are highly correlated with the previous projection will be
such that k ≈ m. This means that the same argument as in Theorem 3.2 will hold for all λ∗

j with
j ≤ k ≈ m. Although this means the improvement in RKJL may not be as substantial as in the
case of equal normed rows, we will still see a large improvement.

These ideas highlight the fact that the selection strategy is not optimal in general. For example,
if there are k ≪ m rows which are highly uncorrelated but have very small norm, and m −
k ≈ m equal rows with substantially larger norm, neither RK nor RKJL will perform well. Of
course if this were reversed, with the uncorrelated rows having large norm and the equal rows
having small norm, the selection strategy will yield excellent convergence in both RK and especially
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RKJL. We emphasize again that the choice of the selection rule is certainly not optimal in general,
but is computationally efficient and allows for provable expected exponential rate of convergence.
Choosing an optimal selection strategy for a given system is itself a problem of high complexity. If
one is using RKJL and investing preprocessing time to perform dimension reduction, one may also
wish to simply normalize the rows to avoid such difficulties.

Theorem 3.2 implies the following corollary, showing the improved convergence using RKJL
when exact geometry is preserved (i.e. when δ → 0).

Corollary 3.3 Fix an estimation xk and denote by xk+1 and x∗k+1 the next estimations using
the RKJL and the standard method, respectively. Set γ∗j = |〈aj , xk〉|2 and reorder these so that
γ∗1 ≥ γ∗2 ≥ . . . ≥ γ∗m. Then when exact geometry is preserved (δ → 0),

E‖xk+1 − x‖22 ≤ E‖x∗k+1 − x‖22 −
m
∑

j=1

(

pj −
1

m

)

γ∗j .

4 Numerical Results

We now demonstrate improved convergence using the RKJL method. The first experiment we
run is in the computationally infeasible situation where we do not use the Johnson-Lindenstrauss
projection, but simply choose the best row out of the randomly selected n rows. This experiment
will demonstrate the improved convergence using RKJL when the error δ induced by Φ goes to 0.
This is the best improvement one can hope for in RKJL. When the problem sizes grow very large,
the effect of the δ2 term in (2.2) becomes minimal, so it may be realistic to take δ quite small.
For these simulations we use a 60000× 1000 matrix with Bernoulli entries and use a homogeneous
system with an initial estimate chosen uniformly at random on the sphere. We see in Figure 1 that
the convergence in this scenario is significantly improved.
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Figure 1: ℓ2-Error (y-axis) as a function of the iterations (x-axis). The dashed line is standard
Randomized Kaczmarz, and the solid line is the modified one, without a Johnson-Lindenstrauss
projection. Instead, the best move out of the randomly chosen n rows is used. Note that we
cannot afford to do this computationally.
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Next we run simulations using a Johnson-Lindenstrauss matrix Φ. We generate Φ and the
system Ax = b the same as above, but now run RKJL using various values of d. In Figure 2 we
see exactly what we expect, that with higher values of d (corresponding to lower δ values), we have
much quicker convergence. The speedup in convergence using larger d needs to be weighed against
the increase in computation per iteration, as was discussed in Section 2. Since right now there are
no theoretical guarantees on precisely how the convergence is affected by larger d, this comparison
should be done empirically. Finally, it is clear that as m and n grow large, the impact on d of
forcing δ to be small becomes minimal. Thus for very large systems, using d = O(log n) will give
convergence that looks more like that in Figure 1.
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Figure 2: ℓ2-Error (y-axis) as a function of the iterations (x-axis) for various values of d with
m = 60000 and n = 1000.
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