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RANDOMIZED KACZMARZ SOLVER FOR NOISY LINEAR

SYSTEMS

DEANNA NEEDELL

Abstract. The Kaczmarz method is an iterative algorithm for solving systems
of linear equations Ax = b. Theoretical convergence rates for this algorithm were
largely unknown until recently when work was done on a randomized version of
the algorithm. It was proved that for overdetermined systems, the randomized
Kaczmarz method converges with expected exponential rate, independent of the
number of equations in the system. Here we analyze the case where the system
Ax = b is corrupted by noise, so we consider the system Ax ≈ b + r where r is
an arbitrary error vector. We prove that in this noisy version, the randomized
method reaches an error threshold dependent on the matrix A with the same rate
as in the error-free case. We provide examples showing our results are sharp in
the general context.

1. Introduction

The Kaczmarz method [8] is one of the most popular solvers of overdetermined
linear systems and has numerous applications from computer tomography to image
processing. It is an iterative method, and so therefore is practical in the realm of
very large systems of equations. The algorithm consists of a series of alternating
projections, and is often considered a type of Projection on Convex Sets (POCS)
method. Given a consistent system of linear equations of the form

Ax = b,

the Kaczmarz method iteratively projects onto the solution spaces of each equation
in the system. That is, if a1, . . . , am ∈ R

n denote the rows of A, the method
cyclically projects the current estimate orthogonally onto the hyperplanes consisting
of solutions to 〈ai, x〉 = bi. Each iteration consists of a single orthogonal projection.
The algorithm can thus be described using the recursive relation,

xk+1 = xk +
bi − 〈ai, xk〉

‖ai‖22
ai,

where xk is the kth iterate and i = (k mod m) + 1.
Although the Kaczmarz method is popular in practice, theoretical results on the

convergence rate of the method have been difficult to obtain. Most known estimates
depend on properties of the matrix A which may be time consuming to compute, and
are not easily comparable to those of other iterative methods (see e.g. [3], [4], [5]).
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Since the Kaczmarz method cycles through the rows of A sequentially, its conver-
gence rate depends on the order of the rows. Intuition tells us that the order of the
rows of A does not change the difficulty level of the system as a whole, so one would
hope for results independent of the ordering. One natural way to overcome this is to
use the rows of A in a random order, rather than sequentially. Several observations
were made on the improvements of this randomized version [9, 6], but only recently
have theoretical results been obtained [11, 13].

1.1. Randomized Kaczmarz. In designing a random version of the Kaczmarz
method, it is necessary to set the probability of each row being selected. Strohmer
and Vershynin propose in [11, 13] to set the probability proportional to the Euclidean
norm of the row. Their revised algorithm can then be described by the following:

xk+1 = xk +
bp(i) − 〈ap(i), xk〉

‖ap(i)‖22
ap(i),

where p(i) takes values in {1, . . . , m} with probabilities
‖ap(i)‖

2
2

‖A‖2
F

. Here and through-

out, ‖A‖F denotes the Frobenius norm of A and ‖ · ‖2 denotes the usual Euclidean
norm or spectral norm for vectors or matrices, respectively. We note here that of
course, one needs some knowledge of the norm of the rows of A in this version of the
algorithm. In general, this computation takes O(mn) time. However, in many cases
such as the case in which A contains Gaussian entries, this may be approximately
or exactly known.
In [11, 13], Strohmer and Vershynin prove the following exponential bound on the

expected rate of convergence for the randomized Kaczmarz method,

(1.1) E‖xk − x‖22 ≤
(

1− 1

R

)k

‖x0 − x‖22,

where R = ‖A−1‖2‖A‖2F , x0 is an arbitrary initial estimate, and E denotes the
expectation (over the choice of the rows). Here and throughout, we will assume

that A has full column rank so that ‖A−1‖ def
= inf{M : M‖Ax‖2 ≥ ‖x‖2 for all x} is

well defined. We comment here that this particular mixed condition number comes
as an immediate consequence of the simple probabilities used within the randomized
algorithm.
The first remarkable note about this result is that it is essentially independent

of the number m of equations in the system. Indeed, by the definition of R, R is
proportional to n within a square factor of κ(A), the condition number of A (κ(A)
is defined as the ratio of the largest to smallest singular values of A). This bound
also demonstrates, however, that the Kaczmarz method is an efficient alternative to
other methods only when the condition number is very small. If this is not the case,
then other alternative methods may offer improvements in practice.
The bound (1.1) and the relationship of R to n shows that the estimate xk con-

verges exponentially fast to the solution in just O(n) iterations. Since each iteration
requires O(n) time, the method overall has a O(n2) runtime. Being an iterative algo-
rithm, it is clear that the randomized Kaczmarz method is competitive only for very
large systems. For such large systems, the runtime of O(n2) is clearly superior to,
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for example, Gaussian elimination which has a runtime of O(mn2). Also, since the
algorithm needs only access to the randomly chosen rows of A, the method need not
know the entire matrix A, which for very large systems is a clear advantage. Thus the
interesting cases for the randomized method are those in which n and m are large,
and especially those in which m is extremely large. Strohmer and Vershynin discuss
in detail in Section 4.2 of [13] cases where the randomized Kaczmarz method even
outperforms the conjugate gradient method (CGLS). They show that for example,
randomized Kaczmarz computationally outperforms CGLS for Gaussian matrices
when m > 3n. Numerical experiments in [13] also demonstrate advantages of the
randomized Kaczmarz method in many cases.
Since the results of [11, 13], there has been some further discussion about the

benefits of this randomized version of the Kaczmarz method (see [2, 12]). The
Kaczmarz method has been studied for over seventy years, and is useful in many
applications. The notion of selecting the rows randomly in the method has been
proposed before (see [9, 1, 6]), and improvements over the standard method were
observed. However, the work by Strohmer and Vershynin in [11, 13] provides the
first proof on the rate of convergence. The rate is exponential in expectation and is
in terms of standard matrix properties. We are not aware of any other Kaczmarz
method that provably achieves exponential convergence.
It is important to note that the method of row selection proposed in this version of

the randomized Kaczmarz method is not optimal, and an example that demonstrates
this is given in [13]. However, under this selection strategy, the convergence rates
proven in [11, 13] are optimal, and there are matrices that satisfy the proven bounds
exactly. The selection strategy in this method was chosen because it often yields
very good results, allows a provable guarantee of exponential convergence, and is
computationally efficient.
Since the algorithm selects rows based on their row norms, it is natural to ask

whether one can simply scale the rows any way one wishes. Indeed, choosing the rows
based on their norms is related to the notion of applying a diagonal preconditioner.
However, since finding the optimal diagonal preconditioner for a system Ax = b is
itself a task that is often more costly than inverting the entire matrix, we select
an easier, although not optimal, preconditioner that simply scales by the (square of
the) row norms. This type of preconditioner yields a balance of computational cost
and optimality (see [14, 10]). The distinction between the effect of an alternative
diagonal preconditioner on the Kaczmarz method versus the randomized method
discussed here is important. If the system is multiplied by a diagonal matrix, the
standard Kaczmarz method will not change, since the angles between all rows do
not change. However, such a multiplication to the system in our randomized setting
changes the probabilities of selecting the rows (by definition). It is then not a
surprise that this will also affect the convergence rate proved for this method (since
multiplication will affect the value of R in (1.1)).
This randomized version of the Kaczmarz method provides clear advantages over

the standard method in many cases. Using the selection strategy above, Strohmer
and Vershynin were able to provide a proof for the expected rate of convergence
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that shows exponential convergence. No such convergence rate for any Kaczmarz
method has been proven before. These benefits lead one to question whether the
method works in the more realistic case where the system is corrupted by noise.
In this paper we provide theoretical and empirical results to suggest that in this
noisy case the method converges exponentially to the solution within a specified
error bound. The error bound is proportional to

√
R, and we also provide a simple

example showing this bound is sharp in the general setting.

2. Main Results

Theoretical and empirical studies have shown the randomized Kaczmarz algorithm
to provide very promising results. Here we show that it also performs well in the case
where the system is corrupted with noise. In this section we consider the consistent
system Ax = b after an error vector r is added to the right side:

Ax ≈ b+ r.

Note that we do not require the perturbed system to be consistent. First we present
a simple example to gain intuition about how drastically the noise can affect the
system. To that end, let A be the n × n identity matrix, b = 0, and suppose the
error is the vector whose entries are all one, r = (1, 1, . . . , 1). Then the solution to
the noisy system is clearly x = r = (1, 1, . . . , 1), and the solution to the unperturbed
problem is x = 0. By Jensen’s inequality, we have

(

E‖xk − r‖2
)2

≤ E

(

‖xk − r‖22
)

.

Now considering the noisy problem, we may substitute r for x in (1.1). Combining
this with Jensen’s inequality above, we obtain

(2.1) E‖xk − r‖2 ≤
(

1− 1

R

)k/2

‖x0 − r‖2.

Then by the triangle inequality, we have

‖r − x‖2 ≤ ‖r − xk‖2 + ‖xk − x‖2.
Next, by taking expectation and using (2.1) above, we have

E‖xk − x‖2 ≥ ‖r − x‖2 −
(

1− 1

R

)k/2

‖x0 − r‖2.

Finally by the definition of r and R, this implies

E‖xk − x‖2 ≥
√
R−

(

1− 1

R

)k/2

‖x0 − r‖2.

This means that the limiting error between the iterates xk and the original solution
x is

√
R. In [11, 13] it is shown that the bound provided in (1.1) is optimal, so even

this trivial example demonstrates that if we wish to maintain a general setting, the
best error bound for the noisy case we can hope for is proportional to

√
R. Our

main result proves this exact theoretical bound.
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Theorem 2.1 (Noisy randomized Kaczmarz). Let A have full column rank and

assume the system Ax = b is consistent. Let x∗
k be the kth iterate of the noisy

randomized Kaczmarz method run with Ax ≈ b + r, and let a1, . . . am denote the

rows of A. Then we have

E‖x∗
k − x‖2 ≤

(

1− 1

R

)k/2

‖x0‖2 +
√
Rγ,

where R = ‖A−1‖2‖A‖2F , γ = maxi
|ri|

‖ai‖2
, and the expectation is taken over the choice

of the rows in the algorithm.

Remark. In the case discussed above, note that we have γ = 1, so the example
indeed shows the bound is sharp.

One may also recall the bound from perturbation theory (see e.g. [7]) on the

relative error in the perturbed case. If we let x̂ = A†(x+ r) (where A† def
= (A∗A)−1A∗

denotes the left inverse of A), then

‖x− x̂‖2
‖x‖2

≤ κ(A)
‖r‖2
‖Ax‖2

.

By applying the bound
√
R ≤ κ(A)

√
n to Theorem 2.1 above, we obtain the bound

‖x− x̂‖2
‖x‖2

≤ κ(A)max
i

√
n|ri|

‖ai‖2‖x‖2
.

These bounds look similar in spirit, providing some more reassurance to the sharp-
ness of the error bound. It is important to note though that the first is obtained by
applying the left inverse rather than an iterative method, which explains why the
bounds are not exactly equal. Of course for problems of large sizes, applying the
inverse may not even be computationally feasible.
Before proving the theorem, it is important to first analyze what happens to the

solution spaces of the original equations Ax = b when the error vector is added.
Letting a1, . . . am denote the rows of A, we have that each solution space 〈ai, x〉 = bi
of the original system is a hyperplane whose normal is ai

‖ai‖2
. When noise is added,

each hyperplane is translated in the direction of ai. Thus the new geometry consists
of hyperplanes parallel to those in the noiseless case. A simple computation provides
the following lemma which specifies exactly how far each hyperplane is shifted.

Lemma 2.2. Let Hi be the affine subspaces of Rn consisting of the solutions to the

unperturbed equations, Hi = {x : 〈ai, x〉 = bi}. Let H∗
i be the solution spaces of the

noisy equations, H∗
i = {x : 〈ai, x〉 = bi + ri}. Then H∗

i = {w+αiai : w ∈ Hi} where

αi =
ri

‖ai‖22
.

Remark. Note that this lemma does not imply that the noisy system is consistent.
By definition of H∗

i it is clear that each subspace is non-empty, but we are not
requiring that the intersection of all H∗

i be non-empty.

Proof. First, if w ∈ Hi then 〈ai, w + αai〉 = 〈ai, w〉+α‖ai‖22 = bi+ri, so w+αai ∈ H∗
i .

Next let u ∈ H∗
i . Set w = u− αai. Then 〈ai, w〉 = 〈ai, u〉 − ri = bi + ri − ri = bi, so

w ∈ H∗
i . This completes the proof. �
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We will also utilize the following lemma which is proved in the proof of Theorem
2 in [11, 13].

Lemma 2.3. Let x∗
k−1 be any vector in R

n and let xk be its orthogonal projection

onto a random solution space as in the noiseless randomized Kaczmarz method run

with Ax = b. Then we have

E‖xk − x‖22 ≤
(

1− 1

R

)

‖x∗
k−1 − x‖22,

where R = ‖A−1‖2‖A‖2F , and the expectation is taken over the choice of the rows in

the algorithm.

We are now prepared to prove Theorem 2.1.

of Theorem 2.1. Let x∗
k−1 denote the (k−1)th iterate of noisy randomized Kaczmarz.

Using notation as in Lemma 2.2, let H∗
i be the solution space chosen in the kth

iteration. Then x∗
k is the orthogonal projection of x∗

k−1 onto H∗
i . Let xk denote the

orthogonal projection of x∗
k−1 onto Hi (see Figure 1).

kx

kx*

kx*
k−1

H i

H i
*

ai

Figure 1. The parallel hyperplanes Hi and H∗
i along with the two

projected vectors xk and x∗
k.

By Lemma 2.2 and the fact that ai is orthogonal to Hi and H∗
i , we have that x

∗
k−

x = xk−x+αiai. Again by orthogonality, we have ‖x∗
k−x‖22 = ‖xk−x‖22+‖αiai‖22.

Then by Lemma 2.3 and the definition of γ, we have

E‖x∗
k − x‖22 ≤

(

1− 1

R

)

‖x∗
k−1 − x‖22 + γ2,

where the expectation is conditioned upon the choice of the random selections in
the first k−1 iterations. Then applying this recursive relation iteratively and taking
full expectation, we have

E‖x∗
k − x‖22 ≤

(

1− 1

R

)k

‖x0 − x‖22 +
k−1
∑

j=0

(

1− 1

R

)j

γ2

≤
(

1− 1

R

)k

‖x0 − x‖22 +Rγ2.
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By Jensen’s inequality we then have

E‖x∗
k − x‖2 ≤

(

(

1− 1

R

)k

‖x0 − x‖22 +Rγ2

)1/2

≤
(

1− 1

R

)k/2

‖x0 − x‖2 +
√
Rγ.

This completes the proof. �

3. Numerical Examples

In this section we describe some of our numerical results for the randomized
Kaczmarz method in the case of noisy systems. Figure 2 depicts the error between
the estimate by randomized Kaczmarz and the actual signal, in comparison with
the predicted threshold value for several types of matrices. The first study was
conducted for 100 trials using 2000× 100 Gaussian matrices (matrices who entries
are i.i.d. Gaussian with mean 0 and variance 1) and independent Gaussian noise of
norm 0.02. The systems were homogeneous, meaning x = 0 and b = 0. The thick line
is a plot of the threshold value, γ

√
R for each trial. The thin line is a plot of the error

in the estimate after the given amount of iterations for the corresponding trial. The
scatter plot displays the convergence of the method over several randomly chosen
trials from this study, and clearly shows exponential convergence. The second study
is a similar study but for the experiments in which we used partial Fourier matrices.
In this case we usem = 700 and n = 101. For j = 1 . . . 700 and k = −50 . . . 50, we set
Aj,k = exp(2πiktj), where tj are generated uniformly at random on [0, 1]. This type
of generation is used to create nonuniformly spaced sampling values, and is used in
many applications in signal processing, such as in the reconstruction of bandlimited
signals. The third study is similar but used matrices whose entries are Bernoulli (0/1
each with probability 0.5). All of these experiments were conducted to demonstrate
that the error found in practice is close to that predicted by the theoretical results.
As is evident by the plots, the error is quite close to the threshold in all cases.

Acknowledgment. I would like to thank Roman Vershynin for suggestions that
simplified the proofs and for many thoughtful discussions. I would also like to thank
Thomas Strohmer for his very appreciated guidance.
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Figure 2. The comparison between the actual error in the random-
ized Kaczmarz estimate (thin line) and the predicted threshold (thick
line). The mean values of R in these experiments were 163.2 (upper
left), 428.6 (lower left) and 162.4 (lower right). The scatter plot shows
exponential convergence over several trials.
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