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COLLOQU IUM MATHEMAT I CUM
VOL. 104 2006 NO. 1

RESIDUE CLASS RINGS OF REAL-ANALYTIC

AND ENTIRE FUNCTIONS

BY

MAREK GOLASIŃSKI (Toruń) and MELVIN HENRIKSEN (Clarement, CA)

Abstract. Let A(R) and E(R) denote respectively the ring of analytic and real entire
functions in one variable. It is shown that if m is a maximal ideal of A(R), then A(R)/m

is isomorphic either to the reals or a real closed field that is an η1-set, while if m is a
maximal ideal of E(R), then E(R)/m is isomorphic to one of the latter two fields or to
the field of complex numbers. Moreover, we study the residue class rings of prime ideals
of these rings and their Krull dimensions. Use is made of a classical characterization of
algebraically closed fields due to E. Steinitz and techniques described in L. Gillman and
M. Jerison’s book on rings of continuous functions.

1. Introduction. Let R denote the field of reals and A(R) the ring of all
analytic functions on R. That is, A(R) consists of all real-valued functions f
such that for each x0 ∈ R, there exists an open neighborhood V of x0 such
that for all x ∈ V, the value f(x) is the sum of an absolutely convergent
power series in powers of x − x0. Let K be the field R of reals or the field
C of complex numbers and E(K) the ring of entire functions over K, i.e.,
the functions given by power series

∑
∞

n=0 anxn with an ∈ K for n = 0, 1, . . .

and limn→∞ |an|1/n = 0. Clearly, any f ∈ E(R) extends uniquely to an entire
function over C, whence there is an inclusion E(R) ⊆ E(C). As is well known,
A(C) and E(C) coincide, while 1

1+x2 =
∑

∞

n=0(−1)nx2n is in A(R) \ E(R).
After reviewing what is known about the ideal structure of A(R), a

description of the maximal ideals of this ring and the corresponding residue
class fields is given in Section 2. These residue class fields are either the
real field R or non-archimedean totally ordered extensions of it. We show,
in particular, that if CH (the continuum hypothesis) holds, then A(R) mod
a maximal ideal must be isomorphic to one of two possible fields: the reals
R or an H-field of cardinality 2ω. In [8], the maximal ideals of E(C) were
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described, and it was shown that E(C)/m is always isomorphic as a ring
to C, even though for some maximal ideals m, the field E(C)/m is infinite-
dimensional as an algebra over R.

In Section 3, we apply techniques developed in [9] to carry out a similar
program to study E(R). We make use of a characterization of algebraically
closed fields proved by E. Steinitz in 1909 that is still not as well known as it
should be. It states that an algebraically closed field is uniquely determined
by its prime field and its degree of transcendency over it (see [17]). Thus,
every algebraically closed field of degree of transcendency 2ω over the field of
rational numbers is isomorphic to C. Use is also made of techniques described
by Gillman and Jerison in [5].

Section 4 deals with prime ideals of A(R) and E(K). We apply the results
of [12] to derive that the Krull dimension of both rings is at least 2ω1 .

In what follows, all rings considered are assumed to be commutative and
have an identity element. Such a ring is said to be Bézout if each of its
finitely generated ideals is principal, and is called a Bézout domain if it is
also an integral domain. The following proposition whose proof is given in
[4] will be used in what follows.

Proposition 1.1. Let K be one of the fields R or C. Whenever {xn}
is any sequence of elements in K such that limn→∞ |xn| = ∞ and {wnk}
is any double sequence of elements of K, there is an f ∈ E(K) such that

f (k)(xn) = wnk for n = 1, 2, . . . and k = 0, 1, 2, . . . , where f (k) denotes the

kth derivative of f .

In particular, because E(R) ⊆ A(R), there is also such an f ∈ A(R) for
such sequences {xn} and {wnk} of real numbers.

What follows is the main theorem of [8].

Theorem 1.2. If m ⊆ E(C) is a maximal ideal , then E(C)/m is iso-

morphic as a ring to C.

The zeroset ZC(f) = {x ∈ C : f(x) = 0} of a function f ∈ E(K) is a
closed discrete subset of C and hence is countable. Moreover, as is noted
in [4], f is invertible if and only if ZC(f) = ∅.

2. Maximal ideals of A(R). We begin with a brief summary of the
properties of A(R) given in [2]. Recall that an integral domain R with quo-
tient field K is said to be completely integrally closed if for any x ∈ K, there
exists a finitely generated R-submodule M of K such that R[x] ⊆ M. By
[2, Theorem 1.19], A(R) is a Bézout domain that is completely integrally
closed as well. On the other hand, as is noted in [6], the sequence of functions
{sin(1/2n)x : n = 1, 2, . . .} generates an infinite ascending chain of ideals
that fails to stabilize, so A(R) is not a Noetherian ring.
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Clearly, A(R) is a subring of the ring C(R) of continuous functions f :
R → R with the usual pointwise operations.

Given a non-zero f ∈ A(R), its zeroset ZR(f) = {x ∈ R : f(x) = 0} is a
closed discrete subset of R, and hence is countable. The lemma that follows
is needed below.

Lemma 2.1. A function f ∈ A(R) is invertible if and only if ZR(f) = ∅.
Consequently, given a proper ideal I ⊆ A(R), we have ZR(f) 6= ∅ for any

f ∈ I. We recall that an ideal I is called fixed if
⋂

f∈I ZR(f) 6= ∅. Otherwise
I is called free. Suppose that x0 ∈ ⋂

f∈I ZR(f) and I is a maximal ideal.
Then I is principal ideal generated by the function idR − x0 and there is an
isomorphism

A(R)/I
∼=→ R.

It follows that an element f ∈ A(R) is in a maximal ideal if and only if
ZR(f) 6= ∅. Because A(R) ⊆ C(R), each maximal ideal of A(R) is contained
in a maximal ideal of C(R). By a theorem of Gelfand and Kolmogorov,
any maximal ideal of C(R) is determined by a point of the Stone–Čech
compactification βR of the real line R. More precisely, each maximal ideal
is of the form

m
x = {f ∈ C(R) : x ∈ clβR ZR(f)}

for a unique x ∈ βR (see [5, 7.3]). Clearly mx is fixed if and only if x ∈ R.
Because the zeroset of a non-zero real-analytic function is closed and dis-
crete, we need only consider a restricted subclass of subsets in βR.

A point x ∈ βR\R in the βR-closure of a closed discrete subspace of R is
said to be close to R. Otherwise, x is said to be far from R. For an example
of a far point, see [5, 4U]. Recall that a totally ordered set (L, <) is called an
η1-set if whenever A and B are countable subsets of L such that A < B (i.e.,
a ∈ A and b ∈ B imply a < b), then there is an x ∈ L such that A < x < B,
and a field such that any of its algebraic extensions is algebraically closed
is said to be real closed. Such a field is totally ordered, its positive elements
have square roots, and polynomial equations of odd degree have a root in
that field (see [5, Chapter 13]).

We are now ready to describe the residue class fields of maximal ideals
of A(R).

Theorem 2.2. If m is a maximal ideal of A(R), then the residue class

field A(R)/m has cardinality 2ω and is:

(1) the field of reals if and only if m is fixed ;
(2) a real closed (totally ordered) η1-field if and only if m is free.

Proof. (1) Obviously, if the maximal ideal m ⊆ A(R) is fixed then
A(R)/m is the field of reals.
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If A(R)/m is the field of reals then the ideal m contains a polynomial
function of positive degree. For otherwise, A(R)/m would contain a copy of
the field R(X) of rational functions over R, contrary to the fact that the only
isomorphism of R is the identity. Because any real polynomial p of positive
degree is a product of linear and irreducible quadratic factors, m is a prime
ideal and ZR(p) 6= ∅, the ideal m must contain a linear factor. Hence, the
maximal ideal m is fixed.

(2) Clearly, the ideal m ⊆ A(R) is free provided A(R)/m is a real closed
η1-field.

If now m is free, then m ⊆ mx for some x close to R. Thus x is in
the βR-closure of some closed countable subset of R. By Proposition 1.1,
each coset of C(R)/mx contains an element of E(R) ⊆ A(R). Consequently,
A(R)/m and C(R)/mx are isomorphic. It follows from [5, Chapter 13] that
C(R)/mx and hence A(R)/m is a real closed η1-field, which cannot be the
field of reals since the latter has a countable cofinal subset. That these fields
have cardinality 2ω is clear.

The proof of the above also yields

Corollary 2.3. If m is a maximal ideal of A(R) that is contained in

mx for some x ∈ βR \ R that is close to R, then A(R)/m is a real closed

η1-field.

In [3], a real closed η1-field is called an H-field, and it is shown that
all H-fields of cardinality 2ω are isomorphic if and only if the continuum
hypothesis (CH) holds. Thus, if CH holds, then A(R)/m is isomorphic to one
of only two possible fields. Note that every η1-field is non-archimedean since
it must contain elements larger than any integral multiple of the identity
element.

We recall that given a set X, a family F of its subsets is called a filter

on X if:

(1) ∅ 6∈ F ;
(2) if A, B ∈ F then A ∩ B ∈ F ;
(3) if A ∈ F and A ⊆ B then B ∈ F .

A collection of all subsetes of X containing a certain fixed non-empty subset
X0 ⊆ X is a filter on X called a principal filter. A filter F on a set X is said
to be an ultrafilter if it is maximal (with respect to inclusion) in the family
of all filters on X.

Given a non-unit f ∈ A(R) and a filter F on ZR(f), IF = {g ∈ E(R) :
ZR(f) ∩ ZR(g) ∈ F} is an ideal of A(R). On the other hand, any non-zero
ideal I ⊆ A(R) yields a filter FI = {ZR(g)∩ZR(f) : g ∈ I} on the countable
discrete subset ZR(f) for a fixed non-zero function f ∈ I. Clearly, FI is a
non-principal ultrafilter if and only if I is a non-principal maximal ideal.
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Now, for a maximal ideal m ⊆ A(R), fix an associated ultrafilter F as
above. Then one can easily show that f + m ≥ 0 if and only if f + m =
g + m ≥ 0 for some g ∈ A(R) which restricts to a non-negative function
on some member of the filter F . In particular, f + m is a square for any
non-negative function f ∈ A(R).

Recall (see, e.g., [1, Chapter 4]) that an ideal I ⊆ R of a commutative
ring R is called formally real if r2

1 + · · ·+r2
n ∈ I implies r1, . . . , rn ∈ I. Thus,

Theorem 2.2 yields

Corollary 2.4. Let m ⊆ A(R) be a maximal ideal. Then:

(1) m is formally real ;
(2) for any f ∈A(R), there is g∈A(R) such that g2 +f ∈m or g2−f ∈m.

A. Murillo has pointed out that [11, Corollary 1] says

Remark 2.5. Any non-negative function f ∈ A(R) is a square. Thus,
the Pythagoras number of A(R) is 1.

Let now S be the multiplicative system of E(R) determined by functions
with empty real zerosets and S−1E(R) the corresponding localization. Then,
clearly, S−1E(R) ⊆ A(R) and in view of Remark 2.5, this inclusion is proper
because, e.g.,

√
x2 + 1 ∈ A(R) \ S−1E(R).

3. Properties of E(R). The first thorough study of the ideal structure
of E(R) was made by O. Helmer in [6]. Indeed, he studied the ring of en-
tire functions with everywhere convergent power series with coefficients in
any subfield K ⊆ C. The most striking result in that paper is that E(K)
is a Bézout domain. What is surprising is that for K = C this was already
proved in 1915 by J. M. H. Wedderburn [18]. Building on this latter re-
sult, M. Henriksen showed in [8] that the residue class ring of every max-
imal ideal m ⊆ E(C) is isomorphic to C, even though the fact that E(C)
contains all polynomials with complex coefficients shows that E(C)/m is
infinite-dimensional as an algebra over R. The proof relies on the theorem
of E. Steinitz cited above [17].

A ring R is called an elementary divisor ring if whenever A is a matrix
with entries from R, there are invertible matrices P, Q of appropriate size
such that PAQ is a diagonal matrix. A ring R is said to be adequate [7] if R
is Bézout and for a, b ∈ R with a 6= 0, there exist r, s ∈ R such that a = rs,
(r, b) = (1), and if a non-unit s′ divides s, then (s′, b) 6= (1). It is known that
every elementary divisor ring is a Bézout ring and that a Bézout domain
that is an adequate ring, is an elementary divisor ring as well. It is shown
in [7, Theorem 4] that in an adequate domain every non-zero prime ideal is
contained in a unique maximal ideal. For the proofs of other assertions in
this paragraph, see [2, Theorems 3.18 and 3.19], and [14].
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As observed in [7], in the light of [10], the ring E(K) is adequate. Those
arguments, with a minor modification, show that A(R) is also an adequate
ring. Hence, A(R) and E(K), being adequate Bézout domains, are elemen-
tary divisor rings as well. Actually, that E(C) is an elementary division ring
was shown first in [18].

We say that an ideal I of a ring R is formally complex if r2+1 ∈ I for some
r ∈ R. If R contains an element j such that j2 = −1, then (j − jr)2 + 1 ∈ I
provided that r ∈ I. So every ideal of R is formally complex. In particular,
any ideal of a subring R of E(C) that contains the constant function i is
formally complex.

If f(x) =
∑

∞

k=0 akx
k ∈ E(R), let f̃(z) =

∑
∞

k=0 akz
k denote its extension

to a function in E(C). The lemmas below show that any maximal ideal
m ⊆ E(R) is either formally real or formally complex.

Lemma 3.1. Let m ⊆ E(R) be a maximal ideal. Then the following prop-

erties are equivalent :

(1) ZR(f) 6= ∅ for each f ∈ m;
(2) for any maximal ideal m′ ⊆ A(R) containing m, the inclusion map

E(R)/m →֒ A(R)/m′ of residue class fields is onto;
(3) m is formally real.

Proof. Clearly, (1)⇒(2)⇒(3).

To show (3)⇒(1), let m ⊆ E(R) be a formally real maximal ideal and
f ∈ m with ZR(f) = ∅. Then the zeroset ZC(f) is symmetric (about the
real axis) and ZC(f) = Z1 ∪Z2, where Z1 is the portion of ZC(f) above and
Z2 the portion below the real axis. By Proposition 1.1, there is a function
f1 = f̃ ′

1 + if̃ ′′
1 ∈ E(C) such that ZC(f1) = Z1 for some f ′

1, f
′′
1 ∈ E(R). Then

ZC(f2) = Z2 for f2 = f̃ ′
1−if̃ ′′

1 and f = f ′((f ′
1)

2+(f ′′
1 )2) with some invertible

function f ′ ∈ E(R).

Given a maximal ideal m′ ⊆ E(C) containing m, we get f1 ∈ m′ or
f2 ∈ m′. Then (f ′

1)
2 + (f ′′

1 )2 ∈ m and hence f ′
1, f

′′
1 ∈ m. Consequently, the

non-empty symmetric set ZC(f ′
1)∩ZC(f ′′

1 ) is contained in ZC(f1) = Z1. This
leads to a contradiction and the proof is complete.

Furthermore, we have

Lemma 3.2. Let m be a maximal ideal of E(R). Then the following prop-

erties are equivalent :

(1) there is an isomorphism E(R)/m
∼=→ C of fields;

(2) m is formally complex ;

(3) there is f ∈ m with ZR(f) = ∅.
Proof. Clearly, (1)⇒(2)⇒(3).
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To show (2)⇒(1), take any maximal ideal m′ ⊆ E(C) containing m. Then
(2) implies that the inclusion map E(R)/m →֒ E(C)/m′ of residue class fields
is onto. Hence, the main result of [8] (see Theorem 1.2) yields the required
implication.

Finally, we show (3)⇒(2). Given f ∈ m with ZR(f) = ∅, take any maxi-
mal ideal m′ ⊆ E(C) containing m. From the proof of Lemma 3.1, we easily

derive that there are functions f ′
1, f

′′
1 ∈ E(R) such that f̃ ′

1 + if̃ ′′
1 ∈ m′ or

f̃ ′
1 − if̃ ′′

1 ∈ m′. If f ′
1, f

′′
1 ∈ m then the set ZC(f ′

1) ∩ ZC(f ′′
1 ) 6= ∅ is symmetric

and the inclusion ZC(f̃ ′
1) ∩ ZC(f̃ ′′

1) ⊆ Z1 leads to a contradiction. Hence,
f ′
1 6∈ m or f ′′

1 6∈ m and so f ′
1 or f ′′

1 is invertible (mod m). Thus, 1 + ig̃1 ∈ m′

or g̃2−i ∈ m′ for some g1, g2 ∈ E(R). Consequently, g2
1 +1 ∈ m or g2

2 +1 ∈ m,
and this completes the proof.

In the light of Theorem 2.2, and Lemmas 3.1 and 3.2, we summarize
what we know about residue classes of maximal ideals of E(R) in:

Theorem 3.3. Let m ⊆ E(R) be a maximal ideal. Then:

(1) there is an isomorphism E(R)/m
∼=→ C if and only if m is formally

complex ;
(2) there is an isomorphism E(R)/m

∼=→ R if and only if m is fixed ;
(3) the residue class field E(R)/m is real closed otherwise. Furthermore,

E(R)/m is an η1-field provided m is a formally real maximal free

ideal , and any two such fields are isomorphic if and only if the con-

tinuum hypothesis holds.

We note that Theorem 3.3 leads to the following conclusion on real entire
functions.

Corollary 3.4. For a maximal ideal m ⊆ E(R) the following hold :

(1) if m is formally real then for any function f ∈ E(R) there is g ∈ E(R)
such that g2 + f ∈ m or g2 − f ∈ m;

(2) if m is formally complex then for any function f ∈ E(R) there is

g ∈ E(R) such that g2 − f ∈ m.

Furthermore, formally real maximal ideals of E(R) might be character-
ized as follows.

Given a non-unit f ∈ E(R) and a filter F on ZC(f), the set I = {g ∈
E(R) : ZC(f) ∩ ZC(g) ∈ F} is an ideal of E(R). On the other hand, any
non-zero ideal I ⊆ E(R) yields a filter F = {ZC(g) ∩ ZC(f) : g ∈ I} on the
countable discrete subset ZC(f) for a fixed non-zero function f ∈ I. Clearly,
F is an ultrafilter if and only if the ideal I is maximal.

For such a formally real maximal ideal m ⊆ A(R), fix an associated
ultrafilter F as above. Then one can easily show that f + m ≥ 0 if and only
if f + m = g + m ≥ 0 for some g ∈ E(R) which restricts to a non-negative
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function on some member of the filter F . In particular, for any non-negative
function f ∈ E(R) there is g ∈ E(R) such that g2 − f ∈ m.

Let now f ∈ E(R) be a non-negative function. Because real zeros of f
have even multiplicity, we get f = gh2 for some g, h ∈ E(R) with ZR(g) = ∅,
where h is an entire function such that ZC(h) ⊆ R. Next, take the decom-
position g = g′((g′1)

2 + (g′′2)2) presented in the proof of Lemma 3.1 for some
g′, g′1, g

′′
1 ∈ E(R) with g′ invertible. Consequently, we recover the following

result proved in [15].

Corollary 3.5. Any non-negative function f ∈ E(R) is a sum of two

squares,

f = (f ′)2 + (f ′′)2

for some f ′, f ′′ ∈ E(R).

Clearly, not every non-negative real entire function is a square. Hence,
the Pythagoras number of E(R) is 2.

Furthermore, because the zeroset ZC(f) of any non-negative real poly-
nomial function f of one variable is finite, for f ′ and f ′′ might be taken real
polynomial functions of one variable as well. Hence, the polynomial f is a
sum of squares of two such polynomials.

At the end of this section, given a maximal ideal m ⊆ C(R), consider the
inclusion maps

E(R)/(m ∩ E(R)) →֒ A(R)/(m ∩ A(R)) →֒ C(R)/m.

If m ∩ E(R) 6= (0) then by the methods presented in Section 2, those maps
are onto. On the other hand, by [5, 4F, p. 61] there is a z-ultrafilter F on R

containing only sets of infinite measure. Let mF ⊆ C(R) be the corresponding
maximal ideal. Because the zeroset of any function in E(R) is discrete, we
have mF ∩ E(R) = (0). Hence, the canonical map E(R) → C(R)/mF is a
monomorphism and implies the inclusion maps

E(R)(0) →֒ A(R)(0) →֒ C(R)/mF ,

where A(R)(0) and E(R)(0) denote the quotient fields of A(R) and E(R),
respectively.

If now M(C) = E(C)(0) denote the field of meromorphic functions on the

complex plane C then the isomorphism E(R)(j)
∼=→ E(C) yields (E(R)(0))(j)

∼=→ M(C), and consequently, we derive an inclusion map

M(C) →֒ (C(R)/mF)(j),

where j2 = −1. By [5], the field C(R)/mF is real closed and the Steinitz

Theorem [17] leads to an isomorphism (C(R)/mF )(j)
∼=→ C. Hence, the field

C(R)/mF coincides with the real closure of the formally real fields A(R)(0)

and E(R)(0). Furthermore, in view of the Steinitz Theorem, the algebraic
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closures of the fields A(R)(0), E(R)(0) and M(C) coincide, being isomorphic

to the field C. The real-analytic function exp(1/(x2 + 1)) is surely not al-
gebraic over the field E(R)(0) so the inclusion E(R)(0) ⊆ A(R)(0) is not an
algebraic extension. Consequently, no isomorphism of the algebraic closures
of E(R)(0) and A(R)(0) is over E(R)(0).

Note that by Corollary 3.5 any element f/g ∈ E(R)(0) is a sum of two
squares provided that f, g ∈ E(R) are simultaneously positive or negative
functions.

4. Krull dimension of A(R) and E(K). Recall that the Krull dimen-
sion K-dimR of a commutative ring R is the supremum of the lengths of
chains of (proper) prime ideals.

In [16] Schilling claimed to have shown that K-dimE(C) = 1, but in 1952
Kaplansky showed that it is at least 2; then Henriksen proved [9] that it is
at least 2ω1 and also discussed the nature of the residue class rings E(C)/p,
where p is a prime ideal of E(C).

For f in A(R) or E(R) that is neither 0 nor a unit, let m(f) denote
the maximum multiplicity of a zero of f , if it is finite, and let m(f) = ∞
otherwise. By Proposition 1.1, it is clear that any maximal ideal of these
rings must contain an element f such that m(f) = 1. Though much of what
follows could be found in [9], we have decided to present that once again
below. It will be placed in a more general context, in which it is evident that
it applies to A(R) or E(R) as well as to E(C).

Suppose R is an adequate domain that satisfies:

(1) if m is a maximal ideal of R then its powers mn for n = 1, 2, . . . are
distinct;

(2) if a non-maximal prime ideal p ⊆ R is contained in a maximal
ideal m, then p ⊆ p⋆ =

⋂
∞

n=1 mn.

We call such a ring nearly analytic.

Remark 4.1. (1) It follows easily that p⋆ is a prime ideal and hence it
is the largest non-maximal prime ideal contained in the maximal ideal m.

(2) Using the fact that A(R) and E(R) are adequate domains, and Propo-
sition 1.1, it is an exercise to show that each of these rings is nearly analytic.
Note also that p⋆ = (0) if and only if the unique maximal ideal containing
p is fixed.

Recall that a commutative ring R such that for any non-zero s, t ∈ R
either s | t or t | s is called a valuation ring.

Proposition 4.2. If p is a prime ideal of a nearly analytic ring R then

R/p is a valuation ring.
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Proof. Because R is nearly analytic, we know that R/p is a Bézout
domain with a unique maximal ideal m/p. By [13, Theorem 63], this shows
that R/p is a valuation ring.

Theorem 4.3. If p is a prime ideal of a nearly analytic ring R, then

R/p is Noetherian if and only if p = p⋆.

Proof. Because R/p⋆ is a valuation domain, by Proposition 4.3 for any
f ∈ m \ p⋆ the coset f + p⋆ generates the only prime ideal m/p⋆ of R/p⋆.
Thus, R/p⋆ is a Noetherian ring.

Conversely, if p⋆ contains p properly then consider the ideal 〈fk + p :
k = 1, 2, . . .〉 of R/p for f ∈ m \ m2. This cannot be finitely generated by
property (1) of any nearly analytic ring.

By the above, the arguments given in the proof of [8, Theorem 8] and
the results of [12], we can summarize properties of the rings A(R) and E(R),
denoted by R, as follows.

Theorem 4.4. (1) There exists a non-maximal , prime ideal p ⊆ R;

(2) a necessary and sufficient condition for a prime ideal p ⊆ R to be

non-maximal is that m(f) = ∞ for every f ∈ p;
(3) R/p is a valuation ring and its unique maximal ideal is principal for

any non-zero prime ideal p ⊆ R;
(4) the localization Rp is a valuation ring for any prime ideal p ⊆ R;
(5) R is an elementary divisor domain in which every non-zero prime

ideal is contained in a unique maximal ideal ;
(6) for any maximal ideal m such that p⋆ 6= (0), the ring R/p⋆ is iso-

morphic to the ring (R/m)[[X]] of formal power series over the field

R/m.

By [1, Chapter 4], a prime ideal p ⊆ E(R) is formally real if and only if the
quotient field of the residue class ring E(R)/p is formally real. Furthermore,
given a prime non-maximal ideal p ⊆ E(R), in view of the integral extension
E(R) ⊆ E(C), there is a non-maximal prime ideal p′ ⊆ E(C) with p =
E(R) ∩ p′.

We show that the proofs of Lemmas 3.1 and 3.2, and Proposition 4.2,
lead mutatis mutandis to a characterization of formally real and formally
complex prime ideals of E(R). In particular, it follows that also any prime
ideal of E(R) is either formally real or formally complex. As usual, if R is a
ring, R[X] denotes the ring of polynomials with coefficients in R. First, we
state

Proposition 4.5. Let p be a prime ideal of E(R). Then the following

properties are equivalent :

(1) p is formally complex ;
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(2) for any prime ideal p′ ⊆ E(C) with p = E(R)∩ p′, the inclusion map

E(R)/p →֒ E(C)/p′ of residue class rings is onto;
(3) there is f ∈ p with ZR(f) = ∅.
Proof. Clearly, the implications (1)⇒(2)⇒(3) are obvious.

(3)⇒(1): Let now ZR(f) = ∅. Then, by the proof of Lemma 3.1 there
are f ′

1, f
′′
1 ∈ E(R) such that (f ′

1)
2 + (f ′′

1 )2 ∈ p and f ′
1, f

′′
1 6∈ p. In view of

Proposition 4.2, E(R) is a valuation ring. Hence, f ′
1−gf ′′

1 ∈ p or f ′′
1 −hf ′

1 ∈ p

for some g, h ∈ E(R). Thus, g2 + 1 ∈ p or h2 + 1 ∈ p and the proof is
complete.

To characterize formally real prime ideals of E(R), we proceed by the
following construction.

If p(X)∈(E(R)/p)[X] then there are f, g ∈ E(R) and q(X)∈(E(R)/p)[X]
such that p(X) = q(X)(X2 + 1) + (f + p) + (g + p)X. The map

(E(R)/p)[X] → E(C)/p
′

that sends p(X) to (f̃ + g̃i) + p′ may be regarded as a homomorphism onto
E(C)/p′ whose kernel contains the principal ideal (X2 + 1) of (E(R)/p)[X].
This yields a map

η : (E(R)/p)[X]/(X2 + 1) → E(C)/p
′.

Proposition 4.6. Let p ⊆ E(R) be a prime ideal. Then the following

properties are equivalent :

(1) p is formally real ;
(2) ZR(f) 6= ∅ for each f ∈ p;
(3) for any prime ideal p′ ⊆ E(C) with p = E(R) ∩ p′, the map

η : (E(R)/p)[X]/(X2 + 1) → E(C)/p
′

is a ring isomorphism.

Furthermore, any prime ideal of A(R) is formally real.

Proof. First, we show that (1)⇔(2) and (2)⇔(3).

(1)⇒(2): Suppose that ZR(f) = ∅ for some f ∈ p. Then, by Proposition
4.5, there is g ∈ E(R) with g2 + 1 ∈ p, contrary to (1).

(2)⇒(1): Let f2
1 + · · · + f2

n ∈ p for some f1, . . . , fn ∈ E(R) and write g
for the greatest common divisor of f1, . . . , fn. Then f1 = gf ′

1, . . . , fn = gf ′
n

for some f ′
1, . . . , f

′
n ∈ E(R). Hence, g ∈ p or (f ′

1)
2 + · · ·+ (f ′

n)2 ∈ p. Because
ZR((f ′

1)
2 + · · · + (f ′

n)2) = ∅, we get g ∈ p and consequently f1, . . . , fn ∈ p.

(2)⇒(3): If f̃ + g̃i ∈ p′ for some f, g ∈ E(R) then f2 + g2 ∈ p. Then as
above the greatest common divisor of f and g is in p and so also f, g ∈ p.
Hence, the induced map (E(R)/p)[X]/(X2 + 1) → E(C)/p′ is a ring isomor-
phism.
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(3)⇒(2): Suppose that ZR(f) = ∅ for some f ∈ p. Then, by Proposition
4.5, g2 + 1 ∈ p for some g ∈ E(R). Consequently, g̃ + i ∈ p′ or g̃ − i ∈ p′

and hence g + X + (X2 + 1) or g − X + (X2 + 1) is in the kernel of the
map η : (E(R)/p)[X]/(X2 +1) → E(C)/p′. This contradiction completes the
proof of the last implication.

Let now p ⊆ A(R) be a prime ideal and f2
1 + · · · + f2

n ∈ p for some
f1, . . . , fn ∈ A(R). Because the ring A(R) is a Bézout domain [2, Theorem
1.19], the proof of (2)⇒(1) above also shows that f1, . . . , fn ∈ p.

Methods of [9] and [12] applied to the ring R lead to the following gen-
eralization of [9, Theorem 5].

Theorem 4.7. If p1 ( p2 ( p3 are prime ideals of R then there exists

a chain of 2ω1 prime ideals between p1 and p3. In particular , the Krull

dimension K-dimR ≥ 2ω1 .
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