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SIGNAL RECOVERY FROM INCOMPLETE AND INACCURATE
MEASUREMENTS VIA REGULARIZED ORTHOGONAL

MATCHING PURSUIT

DEANNA NEEDELL AND ROMAN VERSHYNIN

Abstract. We demonstrate a simple greedy algorithm that can reliably recover
a vector v ∈ R

d from incomplete and inaccurate measurements x = Φv + e. Here
Φ is a N × d measurement matrix with N ≪ d, and e is an error vector. Our
algorithm, Regularized Orthogonal Matching Pursuit (ROMP), seeks to close the
gap between two major approaches to sparse recovery. It combines the speed and
ease of implementation of the greedy methods with the strong guarantees of the
convex programming methods.

For any measurement matrix Φ that satisfies a Uniform Uncertainty Principle,
ROMP recovers a signal v with O(n) nonzeros from its inaccurate measurements
x in at most n iterations, where each iteration amounts to solving a Least Squares
Problem. The noise level of the recovery is proportional to

√
log n‖e‖2. In partic-

ular, if the error term e vanishes the reconstruction is exact.
This stability result extends naturally to the very accurate recovery of approx-

imately sparse signals.

1. Introduction

1.1. Exact recovery by convex programming. The recent massive work in the
area of Compressed Sensing, surveyed in [1], rigorously demonstrated that one can
algorithmically recover sparse (and, more generally, compressible) signals from in-
complete observations. The simplest model is a d-dimensional signal v with a small
number of nonzeros:

v ∈ R
d, |supp(v)| ≤ n≪ d.

Such signals are called n-sparse. We collect N ≪ d nonadaptive linear measurements
of v, given as x = Φv where Φ is some N by d measurement matrix. We then wish
to efficiently recover the signal v from its measurements x.

A necessary and sufficient condition for exact recovery is that the map Φ be
one-to-one on the set of n-sparse vectors. Candès and Tao [4] proved that under
a stronger (quantitative) condition, the sparse recovery problem is equivalent to a
convex program

(1.1) min ‖u‖1 subject to Φu = x

and therefore is computationally tractable. This condition is that the map Φ is an
almost isometry on the set of O(n)-sparse vectors:
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Definition 1.1 (Restricted Isometry Condition). A measurement matrix Φ satisfies
the Restricted Isometry Condition (RIC) with parameters (m, ε) for ε ∈ (0, 1) if we
have

(1− ε)‖v‖2 ≤ ‖Φv‖2 ≤ (1 + ε)‖v‖2 for all m-sparse vectors.

Under the Restricted Isometry Condition with parameters (3n, 0.2), the convex
program (1.1) exactly recovers an n-sparse signal v from its measurements x [4].

The Restricted Isometry Condition can be viewed as an abstract form of the Uni-
form Uncertainty Principle of harmonic analysis ([5], see also [2] and [10]). Many
natural ensembles of random matrices, such as partial Fourier, Bernoulli and Gauss-
ian, satisfy the Restricted Isometry condition with parameters n ≥ 1, ε ∈ (0, 1/2)
provided that

N = nε−O(1) logO(1) d;

see e.g. Section 2 of [11] and the references therein. Therefore, a computationally
tractable exact recovery of sparse signals is possible with the number of measure-
ments N roughly proportional to the sparsity level n, which is usually much smaller
than the dimension d.

1.2. Exact recovery by greedy algorithms. An important alternative to convex
programming is greedy algorithms, which have roots in Approximation Theory. A
greedy algorithm computes the support of v iteratively, at each step finding one or
more new elements (based on some “greedy” rule) and subtracting their contribution
from the measurement vector x. The greedy rules vary. The simplest rule is to
pick a coordinate of Φ∗x of the biggest magnitude; this defines the well known
greedy algorithm called Orthogonal Matching Pursuit (OMP), known otherwise as
Orthogonal Greedy Algorithm (OGA) [14].

Greedy methods are usually fast and easy to implement, which makes them popu-
lar with practitioners. For example, OMP needs just n iterations to find the support
of an n-sparse signal v, and each iteration amounts to solving one least-squares prob-
lem; so its running time is always polynomial in n, N and d. In contrast, no known
bounds are known on the running time of (1.1) as a linear program. Future work
on customization of convex programming solvers for sparse recovery problems may
change this picture, of course. For more discussion, see [14] and [11].

A variant of OMP was recently found in [11] that has guarantees essentially as
strong as those of convex programming methods.1 This greedy algorithm is called
Regularized Orthogonal Matching Pursuit (ROMP); we state it in Section 1.3 below.
Under the Restricted Isometry Condition with parameters (2n, 0.03/

√
log n), ROMP

exactly recovers an n-sparse signal v from its measurements x.
Summarizing, the Uniform Uncertainty Principle is a guarantee for efficient sparse

recovery; one can provably use either convex programming methods (1.1) or greedy
algorithms (ROMP).

1OMP itself does not have such strong guarantees, see [12].
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1.3. Stable recovery by convex programming and greedy algorithms. A
more realistic scenario is where the measurements are inaccurate (e.g. contaminated
by noise) and the signals are not exactly sparse. In most situations that arise in
practice, one cannot hope to know the measurement vector x = Φv with arbitrary
precision. Instead, it is perturbed by a small error vector: x = Φv + e. Here the
vector e has unknown coordinates as well as unknown magnitude, and it needs not
be sparse (as all coordinates may be affected by the noise). For a recovery algorithm
to be stable, it should be able to approximately recover the original signal v from
these perturbed measurements.

The stability of convex optimization algorithms for sparse recovery was studied in
[7], [13], [8], [3]. Assuming that one knows a bound on the magnitude of the error,
‖e‖ ≤ δ, it was shown in [3] that the solution v̂ of the convex program

(1.2) min ‖u‖1 subject to ‖Φu− x‖2 ≤ δ

is a good approximation to the unknown signal: ‖v − v̂‖2 ≤ Cδ.
In contrast, the stability of greedy algorithms for sparse recovery has not been

well understood. Numerical evidence [8] suggests that OMP should be less stable
than the convex program (1.2), but no theoretical results have been known in either
the positive or negative direction. The present paper seeks to remedy this situation.

We prove that ROMP is as stable as the convex program (1.2). This result essen-
tially closes a gap between convex programming and greedy approaches to sparse
recovery.

Regularized Orthogonal Matching Pursuit (ROMP)

Input: Measurement vector x ∈ R
N and sparsity level n

Output: Index set I ⊂ {1, . . . , d}, reconstructed vector v̂ = y

Initialize: Let the index set I = ∅ and the residual r = x.
Repeat the following steps n times or until |I| ≥ 2n:

Identify: Choose a set J of the n biggest nonzero coordinates in mag-
nitude of the observation vector u = Φ∗r, or all of its nonzero coor-
dinates, whichever set is smaller.

Regularize: Among all subsets J0 ⊂ J with comparable coordinates:

|u(i)| ≤ 2|u(j)| for all i, j ∈ J0,

choose J0 with the maximal energy ‖u|J0
‖2.

Update: Add the set J0 to the index set: I ← I ∪J0, and update the
residual:

y = argmin
z∈RI

‖x− Φz‖2; r = x− Φy.

Theorem 1.2 (Stability under measurement perturbations). Assume a measure-
ment matrix Φ satisfies the Restricted Isometry Condition with parameters (4n, ε)
for ε = 0.01/

√
log n. Let v be an n-sparse vector in R

d. Suppose that the measure-
ment vector Φv becomes corrupted, so we consider x = Φv + e where e is some error
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vector. Then ROMP produces a good approximation to v:

‖v − v̂‖2 ≤ 104
√

log n‖e‖2.
Note that in the noiseless situation (e = 0) the reconstruction is exact: v̂ = v.

This case of Theorem 1.2 was proved in [11].
Our stability result extends naturally to the even more realistic scenario where

the signals are only approximately sparse. Here and henceforth, denote by fm the
vector of the m biggest coefficients in absolute value of f .

Corollary 1.3 (Stability of ROMP under signal perturbations). Assume a measure-
ment matrix Φ satisfies the Restricted Isometry Condition with parameters (8n, ε)
for ε = 0.01/

√
log n. Consider an arbitrary vector v in R

d. Suppose that the mea-
surement vector Φv becomes corrupted, so we consider x = Φv + e where e is some
error vector. Then ROMP produces a good approximation to v2n:

(1.3) ‖v̂ − v2n‖2 ≤ 159
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

.

Remarks. 1. The term v2n in the corollary can be replaced by v(1+δ)n for any
δ > 0. This change will only affect the constant terms in the corollary.

2. By applying Corollary 1.3 to the largest 2n coordinates of v and using
Lemma 3.1 below, we also have the error bound for the entire vector v:

(1.4) ‖v̂ − v‖2 ≤ 160
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

.

3. For the convex programming method (1.2), the stability bound (1.4) was
proved in [3], and even without the logarithmic factor. We conjecture that this
factor is also not needed in our results for ROMP.

4. Unlike the convex program (1.2), ROMP succeeds with absolutely no prior
knowledge about the error e; its magnitude can be arbitrary. In the terminology
of [8], the convex programming approach needs to be “noise-aware” while ROMP
needs not.

5. One can use ROMP to approximately compute a 2n-sparse vector that is
close to the best 2n-term approximation v2n of an arbitrary signal v. To this end,
one just needs to retain the 2n biggest coordinates of v̂. Indeed, Corollary 3.2 below
shows that the best 2n-term approximations of the original and the reconstructed
signals are close:

‖v2n − v̂2n‖2 ≤ 477
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

.

6. An important special case of Corollary 1.3 is for the class of compressible
vectors, which is a common model in signal processing, see [5], [6]. Suppose v is
a compressible vector in the sense that its coefficients obey a power law: for some
p > 1, the k-th largest coefficient in magnitude of v is bounded by Cpk

−p. Then
(1.4) yields the following bound on the reconstructed signal:

(1.5) ‖v − v̂‖2 ≤ C ′
p

√
log n

np−1/2
+ C ′′√log n‖e‖2.
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As observed in [3], this bound is optimal (within the logarithmic factor); no algo-
rithm can perform fundamentally better.

The rest of the paper is organized as follows. In Section 2, we prove our main
result, Theorem 1.2. In Section 3, we deduce the extension for approximately sparse
signals, Corollary 1.3, and a consequence for best n-term approximations, Corol-
lary 3.2. In Section 4, we demonstrate some numerical experiments that illustrate
the stability of ROMP.

2. Proof of Theorem 1.2

We shall prove a stronger version of Theorem 1.2, which states that at every
iteration of ROMP, either at least 50% of the newly selected coordinates are from
the support of the signal v, or the error bound already holds.

Theorem 2.1 (Iteration Invariant of ROMP). Assume Φ satisfies the Restricted
Isometry Condition with parameters (4n, ε) for ε = 0.01/

√
log n. Let v 6= 0 be an n-

sparse vector with measurements x = Φv + e. Then at any iteration of ROMP, after
the regularization step where I is the current chosen index set, we have J0 ∩ I = ∅
and (at least) one of the following:

(i) |J0 ∩ supp(v)| ≥ 1
2
|J0|;

(ii) ‖v|supp(v)\I‖2 ≤ 100
√

log n‖e‖2.
In other words, either at least 50% of the coordinates in the newly selected set J0

belong to the support of v or the bound on the error already holds.

We show that the Iteration Invariant implies Theorem 1.2 by examining the three
possible cases:

Case 1: (ii) occurs at some iteration. We first note that since |I| is nonde-
creasing, if (ii) occurs at some iteration, then it holds for all subsequent iterations.
To show that this would then imply Theorem 1.2, we observe that by the Restricted
Isometry Condition and since |supp(v̂)| ≤ |I| ≤ 3n,

(1− ε)‖v̂ − v‖2 − ‖e‖2 ≤ ‖Φv̂ − Φv − e‖2.
Then again by the Restricted Isometry Condition and definition of v̂,

‖Φv̂ − Φv − e‖2 ≤ ‖Φ(v|I)− Φv − e‖2 ≤ (1 + ε)‖v|supp(v)\I‖2 + ‖e‖2.
Thus we have that

‖v̂ − v‖2 ≤
1 + ε

1− ε
‖v|supp(v)\I‖2 +

2

1− ε
‖e‖2.

Thus (ii) of the Iteration Invariant would imply Theorem 1.2.
Case 2: (i) occurs at every iteration and J0 is always non-empty. In this

case, by (i) and the fact that J0 is always non-empty, the algorithm identifies at least
one element of the support in every iteration. Thus if the algorithm runs n iterations
or until |I| ≥ 2n, it must be that supp(v) ⊂ I, meaning that v|supp(v)\I = 0. Then
by the argument above for Case 1, this implies Theorem 1.2.
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Case 3: (i) occurs at each iteration and J0 = ∅ for some iteration. By
the definition of J0, if J0 = ∅ then u = Φ∗r = 0 for that iteration. By definition of
r, this must mean that

Φ∗Φ(v − y) + Φ∗e = 0.

This combined with Part 1 of Proposition 2.2 below (and its proof, see [11]) applied
with the set I ′ = supp(v) ∪ I yields

‖v − y + (Φ∗e)|I′‖2 ≤ 2.03ε‖v − y‖2.
Then combinining this with Part 2 of the same Proposition, we have

‖v − y‖2 ≤ 1.1‖e‖2.
Since v|supp(v)\I = (v − y)|supp(v)\I , this means that the error bound (ii) must hold,
so by Case 1 this implies Theorem 1.2.

We now turn to the proof of the Iteration Invariant, Theorem 2.1. We will use
the following proposition from [11].

Proposition 2.2 (Consequences of Restricted Isometry Condition [11]). Assume a
measurement matrix Φ satisfies the Restricted Isometry Condition with parameters
(2n, ε). Then the following holds.

(1) (Local approximation) For every n-sparse vector v ∈ R
d and every set I ⊂

{1, . . . , d}, |I| ≤ n, the observation vector u = Φ∗Φv satisfies

‖u|I − v|I‖2 ≤ 2.03ε‖v‖2.
(2) (Spectral norm) For any vector z ∈ R

N and every set I ⊂ {1, . . . , d}, |I| ≤
2n, we have

‖(Φ∗z)|I‖2 ≤ (1 + ε)‖z‖2.
(3) (Almost orthogonality of columns) Consider two disjoint sets I, J ⊂ {1, . . . , d},
|I ∪ J | ≤ 2n. Let PI , PJ denote the orthogonal projections in R

N onto
range(ΦI) and range(ΦJ), respectively. Then

‖PIPJ‖2→2 ≤ 2.2ε.

The proof of Theorem 2.1 is by induction on the iteration of ROMP. The induction
claim is that for all previous iterations, the set of newly chosen indices is disjoint
from the set of previously chosen indices I, and either (i) or (ii) holds. Clearly if
(ii) held in a previous iteration, it would hold in all future iterations. Thus we may
assume that (ii) has not yet held. Since (i) has held at each previous iteration, we
must have

(2.1) |I| ≤ 2n.

Let r 6= 0 be the residual at the start of this iteration, and let J0, J be the sets
found by ROMP in this iteration. As in [11], we consider the subspace

H := range(Φsupp(v)∪I)

and its complementary subspaces

F := range(ΦI), E0 := range(Φsupp(v)\I).
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The Restricted Isometry Condition in the form of Part 3 of Proposition 2.2 ensures
that F and E0 are almost orthogonal. Thus E0 is close to the orthogonal complement
of F in H ,

E := F⊥ ∩H.

The residual r thus still has a simple description:

Lemma 2.3 (Residual). Here and thereafter, let PL denote the orthogonal projection
in R

N onto a linear subspace L. Then

r = PEΦv + PF⊥e.

Proof. By definition of the residual in the algorithm, r = PF⊥x = PF⊥(Φv + e). To
complete the proof we need that PF⊥Φv = PEΦv. This follows from the orthogonal
decomposition H = F + E and the fact that Φv ∈ H . �

Now we consider the signal we seek to identify at the current iteration, and its
measurements:

(2.2) v0 := v|supp(v)\I , x0 := Φv0 ∈ E0.

To guarantee a correct identification of v0, we first state two approximation lemmas
that reflect in two different ways the fact that subspaces E0 and E are close to each
other.

Lemma 2.4 (Approximation of the residual). We have

‖x0 − r‖2 ≤ 2.2ε‖x0‖2 + ‖e‖2.
Proof. By definition of F , we have Φv − x0 = Φ(v − v0) ∈ F . Therefore, by
Lemma 2.3, r = PEΦv + PF⊥e = PEx0 + PF⊥e, and so

‖x0 − r‖2 = ‖x0 − PEx0 − PF⊥e‖2 ≤ ‖PFx0‖2 + ‖e‖2.
Now we use Part 3 of Proposition 2.2 for the sets I and supp(v) \ I whose union has
cardinality at most 3n by (2.1). It follows that

‖PFx0‖2 + ‖e‖2 = ‖PFPE0
x0‖2 + ‖e‖2 ≤ 2.2ε‖x0‖2 + ‖e‖2

as desired. �

Lemma 2.5 (Approximation of the observation). Consider the observation vectors
u0 = Φ∗x0 and u = Φ∗r. Then for any set T ⊂ {1, . . . , d} with |T | ≤ 3n,

‖(u0 − u)|T‖2 ≤ 2.4ε‖v0‖2 + (1 + ε)‖e‖2.
Proof. Since x0 = Φv0, we have by Lemma 2.4 and the Restricted Isometry Condition
that

‖x0 − r‖2 ≤ 2.2ε‖Φv0‖2 + ‖e‖2 ≤ 2.2ε(1 + ε)‖v0‖2 + ‖e‖2 ≤ 2.3ε‖v0‖2 + ‖e‖2.
To complete the proof, it remains to apply Part 2 of Proposition 2.2, which yields
‖(u0 − u)|T‖2 ≤ (1 + ε)‖x0 − r‖2. �
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We next show that the energy (norm) of u when restricted to J , and furthermore
to J0, is not too small. By the regularization step of ROMP, since all selected
coefficients have comparable magnitudes, we will conclude that not only a portion
of energy but also of the support is selected correctly, or else the error bound must
already be attained. This will be the desired conclusion.

Lemma 2.6 (Localizing the energy). We have ‖u|J‖2 ≥ 0.8‖v0‖2 − (1 + ε)‖e‖2.
Proof. Let S = supp(v) \ I. Since |S| ≤ n, the maximality property of J in the
algorithm implies that

‖u|J‖2 ≥ ‖u|S‖2.
By Lemma 2.5,

‖u|S‖2 ≥ ‖u0|S‖2 − 2.4ε‖v0‖2 − (1 + ε)‖e‖2.
Furthermore, since v0|S = v0, by Part 1 of Proposition 2.2 we have

‖u0|S‖2 ≥ (1− 2.03ε)‖v0‖2.
Putting these three inequalities together, we conclude that

‖u|J‖2 ≥ (1− 2.03ε)‖v0‖2 − 2.4ε‖v0‖2 − (1 + ε)‖e‖2 ≥ 0.8‖v0‖2 − (1 + ε)‖e‖2.
This proves the lemma. �

We next bound the norm of u restricted to the smaller set J0, again using the
general property of regularization. In our context, Lemma 3.7 of [11] applied to the
vector u|J yields

‖u|J0
‖2 ≥

1

2.5
√

log n
‖u|J‖2.

Along with Lemma 2.6 this directly implies:

Lemma 2.7 (Regularizing the energy). We have

‖u|J0
‖2 ≥

1

4
√

log n
‖v0‖2 −

‖e‖2
2
√

log n
.

We now finish the proof of Theorem 2.1. The claim that J0∩ I = ∅ follows by the
same arguments as in [11].

The nontrivial part of the theorem is its last claim, that either (i) or (ii) holds.
Suppose (i) in the theorem fails. Namely, suppose that |J0 ∩ supp(v)| < 1

2
|J0|, and

thus

|J0\supp(v)| > 1

2
|J0|.

Set Λ = J0\supp(v). By the comparability property of the coordinates in J0 and
since |Λ| > 1

2
|J0|, there is a fraction of energy in Λ:

(2.3) ‖u|Λ‖2 >
1√
5
‖u|J0

‖2 ≥
1

4
√

5 log n
‖v0‖2 −

‖e‖2
2
√

5 log n
,

where the last inequality holds by Lemma 2.7.
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On the other hand, we can approximate u by u0 as

(2.4) ‖u|Λ‖2 ≤ ‖u|Λ − u0|Λ‖2 + ‖u0|Λ‖2.
Since Λ ⊂ J , |J | ≤ n, and using Lemma 2.5, we have

‖u|Λ − u0|Λ‖2 ≤ 2.4ε‖v0‖2 + (1 + ε)‖e‖2.
Furthermore, by definition (2.2) of v0, we have v0|Λ = 0. So, by Part 1 of Proposi-
tion 2.2,

‖u0|Λ‖2 ≤ 2.03ε‖v0‖2.
Using the last two inequalities and (2.4), we conclude that

‖u|Λ‖2 ≤ 4.43ε‖v0‖2 + (1 + ε)‖e‖2.
This is a contradiction to (2.3) so long as

ε ≤ 0.02√
log n

− ‖e‖2‖v0‖2
.

If this is true, then indeed (i) in the theorem must hold. If it is not true, then by
the choice of ε, this implies that

‖v0‖2 ≤ 100‖e‖2
√

log n.

This proves Theorem 2.1. Next we turn to the proof of Corollary 1.3. �

3. Approximately sparse vectors and best n-term approximations

3.1. Proof of Corollary 1.3. We first partition v so that x = Φv2n+Φ(v−v2n)+e.
Then since Φ satisfies the Restricted Isometry Condition with parameters (8n, ε),
by Theorem 1.2 and the triangle inequality,

(3.1) ‖v2n − v̂‖2 ≤ 104
√

log 2n(‖Φ(v − v2n)‖2 + ‖e‖2),
The following lemma as in [9] relates the 2-norm of a vector’s tail to its 1-norm. An
application of this lemma combined with (3.1) will prove Corollary 1.3.

Lemma 3.1 (Comparing the norms). Let w ∈ R
d, and let wm be the vector of the

m largest coordinates in absolute value from w. Then

‖w − wm‖2 ≤
‖w‖1
2
√

m
.

Proof. Let µ denote the (n + 1)th largest entry of w. If µ = 0 then wm = 0 so the
claim holds. Thus we may assume this is not the case. Then we have

‖g − gm‖2
‖g‖1

≤
√

‖g − gm‖1‖g − gm‖∞
‖gm‖1 + ‖g − gm‖1

≤
√

mµ2

mµ + mµ
.

Simplifying gives the desired result. �
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By Lemma 29 of [9], we have

‖Φ(v − v2n)‖2 ≤ (1 + ε)
(

‖v − v2n‖2 +
‖v − v2n‖1√

n

)

.

Applying Lemma 3.1 to the vector w = v − vn we then have

‖Φ(v − v2n‖2 ≤ 1.5(1 + ε)
‖v − vn‖1√

n
.

Combined with (3.1), this proves the corollary.

3.2. Best n-term approximation. We now show that by truncating the recon-
structed vector, we obtain a 2n-sparse vector very close to the original signal.

Corollary 3.2. Assume a measurement matrix Φ satisfies the Restricted Isometry
Condition with parameters (8n, ε) for ε = 0.01/

√
log n. Let v be an arbitrary vector

in R
d, let x = Φv + e be the measurement vector, and v̂ the reconstructed vector

output by the ROMP Algorithm. Then

‖v2n − v̂2n‖2 ≤ 477
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

,

where zm denotes the best m-sparse approximation to z (i.e. the vector consisting of
the largest m coordinates in absolute value).

Proof. Let vS := v2n and v̂T := v̂2n, and let S and T denote the supports of vS and
v̂T respectively. By Corollary 1.3, it suffices to show that ‖vS − v̂T‖2 ≤ 3‖vS − v̂‖2.

Applying the triangle inequality, we have

‖vS − v̂T‖2 ≤ ‖(vS − v̂T )|T‖2 + ‖vS|S\T‖2 =: a + b.

We then have

a = ‖(vS − v̂T )|T‖2 ≤ ‖vS − v̂T‖2
and

b ≤ ‖v̂|S\T‖2 + ‖(vS − v̂)|S\T‖2.
Since |S| = |T |, we have |S\T | = |T\S|. By the definition of T , every coordinate
of v̂ in T is greater than or equal to every coordinate of v̂ in T c in absolute value.
Thus we have,

‖v̂|S\T‖2 ≤ ‖v̂|T\S‖2 = ‖(vS − v̂)|T\S‖2.
Thus b ≤ 2‖vS − v̂‖2, and so

a + b ≤ 3‖vS − v̂‖2.
This completes the proof. �

Remark. Corollary 3.2 combined with Corollary 1.3 and (1.4) implies that we can
also estimate a bound on the whole signal v:

‖v − v̂2n‖2 ≤ C
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

.
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4. Numerical Examples

This section describes our experiments that illustrate the stability of ROMP.
We experimentally examine the recovery error using ROMP for both perturbed
measurements and signals. The empirical recovery error is actually much better
than that given in the theorems.

First we describe the setup of our experiments. For many values of the ambient
dimension d, the number of measurements N , and the sparsity n, we reconstruct
random signals using ROMP. For each set of values, we perform 500 trials. Initially,
we generate an N × d Gaussian measurement matrix Φ. For each trial, independent
of the matrix, we generate an n-sparse signal v by choosing n components uniformly
at random and setting them to one. In the case of perturbed signals, we add to the
signal a d-dimensional error vector with Gaussian entries. In the case of perturbed
measurements, we add an N -dimensional error vector with Gaussian entries to the
measurement vector Φv. We then execute ROMP with the measurement vector
x = Φv or x + e in the perturbed measurement case. After ROMP terminates, we
output the reconstructed vector v̂ obtained from the least squares calculation and
calculate its distance from the original signal.

Figure 1 depicts the recovery error ‖v− v̂‖2 when ROMP was run with perturbed
measurements. This plot was generated with d = 256 for various levels of sparsity
n. The horizontal axis represents the number of measurements N , and the vertical
axis represents the average normalized recovery error. Figure 1 confirms the results
of Theorem 1.2, while also suggesting the bound may be improved by removing the√

log n factor.
Figure 2 depicts the normalized recovery error when the signal was perturbed

by a Gaussian vector. The figure confirms the results of Corollary 1.3 while also
suggesting again that the logarithmic factor in the corollary is unnecessary.
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Figure 1. The error to noise ratio ‖v̂−v‖2

‖e‖2

as a function of the number

of measurements N in dimension d = 256 for various levels of sparsity
n.
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d = 256 for various levels of sparsity n.
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