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Abstract—We present a pursuit-like algorithm that we call
the “superset method” for recovery of sparse vectors from
consecutive Fourier measurements in the super-resolutionregime.
The algorithm has a subspace identification step that hingeson
the translation invariance of the Fourier transform, followed
by a removal step to estimate the solution’s support. The
superset method is always successful in the noiseless regime
(unlike ℓ1 minimization) and generalizes to higher dimensions
(unlike the matrix pencil method). Relative robustness to noise
is demonstrated numerically.
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I. I NTRODUCTION

We consider the problem of recovering a sparse vectorx0 ∈
R

n, or an approximation thereof, fromm ≤ n contiguous
Fourier measurements

y = Ax0 + e, (1)

whereA is the partial, short and wide Fourier matrixAjk =
e2πijk/n, 0 ≤ j < m, −n/2 ≤ k < n/2, n even, and, say,
e ∼ N(0, σ2Im).

When recovery is successful in this scenario of contiguous
measurements, we may speak of super-resolution: the spacing
between neighboring nonzero components inx0 can be much
smaller than the Rayleigh limitn/m suggested by Shannon-
Nyquist theory. But in contrast to the compressed sensing
scenario, where them values ofj are drawn at random from
{0, . . . , n − 1}, super-resolution can be arbitrarily ill-posed.
Open questions concern not only recovery bounds, but the
very algorithms needed to define good estimators.

Various techniques have been proposed in the literature to
tackle super-resolution, such as MUSIC [11], Prony’s method
/ finite rate of innovation [8] [1] [13], the matrix pencil method
[9], ℓ1 minimization [7] [5] [3] [2], and greedy pursuits [6].

Prony and matrix pencil methods are based on eigenvalue
computations: they work well with exact measurements, but
their performance is poorly understood in the presence of
noise, and they are not obviously set up in higher dimen-
sions. As for ℓ1 minimization, there is good evidence that

k-sparsenonnegativesignals can be recovered from only
2k+1 noiseless Fourier coefficients by imposing the positivity
constraint with or withoutℓ1 minimization, see [4] [7] and
[5]. The work of [3] extends this result to the continuous
setting by using total variation minimization. Recently, Candès
and Fernandez-Granda showed that the solution to anℓ1-
minimization problem with a‖A∗(y −Ax)‖1 misfit will be
close to the true signal, assuming that locations of any two
consecutive nonzero coefficients are separated by at least four
times the super-resolution factorn/m [2]. Such optimization
ideas have the advantage of being easily generalizable to
higher dimensions. On the flip side,ℓ1 minimization super-
resolution is known to fail on sparse signals with nearby
components that alternate signs.

In this paper, we discuss a simple algorithm for solving (1)
based on

• subspace identification as in the matrix pencil method,
but without the subsequent eigenvalue computation; and

• a removal procedure for tightening the active set, remind-
ful of a step in certain greedy pursuits.

This algorithm can outperform the well-known matrix pencil
method, as we show in the numerical section, and it is gener-
alizable to higher dimensions. It is a one-pass procedure that
does not suffer from slow convergence in situations of high
coherence. We also show that the algorithm provides perfect
recovery for the (not combinatorially hard in the Fourier case)
noiselessℓ0 problem

min
x
|suppx| s.t. Ax = y. (2)

II. N OISELESS SUBSPACE IDENTIFICATION

For completeness we start by recalling the classical unique-
ness result for (2).

Lemma 1. Let x0 ∈ R
n with supportT such thatm ≥ 2|T |,

and lety = Ax0. Then the unique minimizer of (2) isx0.

We make use of the following notations. Denote suppx0 by
T , and writeAT for the restriction ofA to its columns inT .
Let T c for the complement ofT . Let ak for the k-th column
of A. The superscriptL is used to denote a restriction of a
matrix to its firstL rows, as inAL

T .
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The “superset method” hinges on a special property that
the partial Fourier matrixA does not share with arbitrary
dictionaries: each columnak is translation-invariant in the
sense that any restriction ofak to s ≤ m consecutive elements
gives rise to the same sequence, up to an overall scalar. In
other words, exponentials are eigenfunctions of the translation
operator. This structure is important. There is an opportunity
cost in ignoring it and treating (1) as a generic compressed
sensing problem.

A way to leverage translation invariance is to recognize that
it gives access to thesubspacespanned by the atomsak for
k ∈ T , such thaty =

∑
k∈T (x0)kak. Algorithmically, one

picks a number1 < L < m and juxtaposes translated copies
of (restrictions of)y into the Hankel matrixY = Hankel(y),
defined as

Y =




y0 y1 · · · ym−L−1

y1 y2 · · · ym−L

...
...

...
...

yL−1 yL · · · ym


 .

The range ofY is the subspace we seek.

Lemma 2. If L ≥ |T |, then the rank ofY is |T |, and

RanY = RanAL
T .

The lemma suggests a simple recovery procedure in the
noiseless case: loop over all the candidate atomsak for
−n/2 ≤ k < n/2 and select those for which the angle

∠(aLk ,RanY ) = 0. (3)

Once the setT is identified, the solution is obtained by solving
the determined system

ATxT = y, xT c = 0. (4)

This procedure (unsurprisingly) provides a solution to the
noise-freeℓ0 sparse recovery problem (2).

Theorem 3. Let x0 ∈ Rn with supportT such thatm > 2|T |,
and let y = Ax0. Considerx defined by (3) and (4), where
the Hankel matrixY is built with |T |+1 ≤ L ≤ m− |T |− 1.
Thenx = x0.

The proofs of lemma 2 and theorem 3 hinge on the fact that
A has full spark.

The idea of subspace identification is at the heart of a
different method, the matrix pencil, which seeks the rank-
reducing numbersz of the pencil

Y − zY ,

whereY is Y with its first row removed, andY is Y with
its last row removed. These numbersz are computed as the
generalized eigenvalues of the couple(Y ∗Y , Y ∗Y ). z can
also be found via solving the eigenvalues of the matrixY †Y .
When |T | ≤ L ≤ m− |T |, the collection of these generalized
eigenvalues includese2πijk/n for k ∈ T , as well asm−L−|T |
zeros. There exist variants that consider a Toeplitz matrix
instead of a Hankel matrix, with slightly better numerical

stability properties. WhenL = |T |, the matrix pencil method
reduces to Prony’s method, a numerically inferior choice that
should be avoided in practice if possible.

III. N OISY SUBSPACE IDENTIFICATION

The problem becomes more difficult when the observations
are contaminated by noise. In this situation RanAL

T 6= RanY ,
though in low-noise situations we may still be able to recover
T from the indices of the smallest angles∠(aLk ,RanY ).

Proposition 4. Let y = y0 + e with e ∼ N(0, σ2Im), and
form the correspondingL × (m − L) matricesY and Y0 as
previously. Denote the singular values ofY m−L

0 by sn,0. Then
there exists positivec1, C1 and c, such that with probability
at least1− c1m

−C1 ,

sin∠(aLk ,RanY ) ≤ c ε1 (5)

for all indicesk in the support set and

ε1 =
|T |∥∥aLk
∥∥
2

σ
√
L logm

|x0min
|

√
|x0max

|
s|T |,0

. (6)

Proof: Here we sketch the proof of this proposition. We
note thataLk ∈ RanY0 whenk is in the true support. Thus

sin∠(aLk ,RanY ) =

∥∥(I − PY )a
L
k

∥∥
2∥∥aLk

∥∥
2

=

∥∥PY ⊥aLk
∥∥
2∥∥aLk

∥∥
2

.

Denote the compact singular value decomposition ofAL
T =

USLV ∗. Recalling thataLk ∈ RanY0 and a well-known fact
that Y0 = AL

TD(Am−L
T )∗ whereD = diag((x0)T ), we can

write aLk = Uα =
∑|T |

i=1 αiui. Thus,

sin∠(aLk ,RanY ) ≤
|T |∑

i=1

|αi|
‖PY ⊥ui‖2∥∥aLk

∥∥
2

. (7)

Next, sinceY = Y0 + E = AL
TD(Am−L

T )∗ + E, we have
Y [D(Am−L

T )∗]† = AL
T + E[D(Am−L

T )∗]† whereA† is the
pseudo-inverse matrix ofA. By multiplying both sides by
(PY ⊥ui)

∗, we get

(PY ⊥ui)
∗Y [D(Am−L

T )∗]† = (PY ⊥ui)
∗
(
AL

T + E[D(Am−L
T )∗]†

)
.

Since the vectorPY ⊥ui is orthogonal to RanY , the left hand
side is zero. Thus multiplying both sides byvi, the i-th right
singular vector ofAL

T , we have

0 = (PY ⊥ui)
∗AL

T vi + (PY ⊥ui)
∗E[D(Am−L

T )∗]†vi.

We can see that(PY ⊥ui)
∗AL

T vi = (PY ⊥ui)
∗sLi ui =

sLi ‖PY ⊥ui‖22 wheresLi is the i-th singular value ofAL
T . We

therefore obtain

sLi ‖PY ⊥ui‖22 = −(PY ⊥ui)
∗E[D(Am−L

T )∗]†vi

≤ ‖(PY ⊥ui‖2 ‖E‖
∥∥D†

∥∥ ∥∥[(Am−L
T )∗]†

∥∥ .
This leads to the upper bound

‖PY ⊥ui‖2 ≤
1

sLi
‖E‖

∥∥D†
∥∥ ∥∥[(Am−L

T )∗]†
∥∥

=
‖E‖
sLi

1

|x0min
|

1

sm−L
|T |

, (8)



wheresm−L
|T | is the smallest singular value ofAm−L

T .
Recalling thataLk = Uα, we haveαi = u∗

i a
L
k . From the

SVD of AL
T , we see thatAL

T (A
L
T )

∗ = U(SL)2U∗, so that

U∗AL
T (A

L
T )

∗U∗ = (SL)2.

This identity implies that
∥∥u∗

iA
L
T

∥∥
2
= sLi , and thus,|αi| ≤ sLi .

Combining this result with (8) and (7) yields

sin∠(aLk ,RanY ) ≤ |T | ‖E‖
sm−L
|T | |x0min

|
1∥∥aLk
∥∥
2

. (9)

Using the matrix Bernstein inequality of [12] one obtains
that‖E‖ ≤ σ

√
cL logm with high probability. Finally, writing

Y m−L
T asY m−L

T = Am−L
T D1/2(D1/2)∗(Am−L

T )∗, we have

s|T |,0 = min
z

∥∥Am−L
T D1/2z

∥∥2
2

‖z‖22
= min

h

∥∥Am−L
T h

∥∥2
2∥∥D−1/2h

∥∥2
2

≤ min
h

∥∥Am−L
T h

∥∥2
2

‖h‖22 smin(D−1)
≤ (sm−L

|T | )2|x0max
|,

which completes the proof.
There are a few unknown quantities involvingǫ1, which can

empirically be controlled. The support sizeT can be estimated
by a reasonably large constant, saym/2. The dynamic range
of the signal can presumably be known if we know in prior the
type of underlying signal of interest. The singular values|T |,0

of Y m−L
0 can be replaced by that ofY m−L via the simple

Weyl’s inequality |si − si,0| ≤ ‖Hankel(e)‖, which can in
turn be controlled asO(σ

√
L logm) with high probability.

The subspace identification step now gathers all the values
of k such that

sin∠(aLk ,RanY ) ≤ c ε1.

The resulting setΩ of indices is only expected to be asuperset
of the true supportT , with high probability.

A second step is now needed to pruneΩ in order to extract
T . For this purpose, a loop overk is set up where we test
the membership ofy in RanAΩ\k, the range ofAΩ with the
k-th column removed. We are now considering a new set of
angles where the roles ofy andA are reversed: in a noiseless
situation,k ∈ T if and only if

∠(y,RanAΩ\k) 6= 0.

When noise is present, we first filter out the noise offΩ by
projectingy onto the range ofAΩ, then estimatek ∈ T only
when the angle is above a certain threshold. It is easier to
work directly with projectionsΠ:

‖ΠΩy −ΠΩ\ky‖ = sin∠(ΠΩy,RanAΩ\k) ‖ΠΩy‖.

The effect of noise on the left-hand side is as follows.

Proposition 5. Let y = y0+e with e ∼ N(0, σ2Im). LetΠΩy
be the projection ofy onto RanAΩ, and let∆Π = ΠΩ−ΠΩ\k.
Then there existsc > 0 such that, with high probability,

| ‖∆Πy‖ − ‖∆Πy0‖ | ≤ c ε2,

with ε2 = σ.

Algorithm 1 for the superset method implements the re-
moval step in an iterative fashion, one atom at a time.

Algorithm 1 Superset selection and pruning

input: Partial Fourier matrixA ∈ Cm×n, y = Ax0 + e,
parameterL, thresholdsε1 andε2.
initialization: Y = Hankel(y) ∈ CL×(m−L)

support identification
decompose: Q̃R̃ = Y Ẽ, Q̃ ∈ C

L×r

project: ak ← A{k} ( for all k)

γk ←
∥∥∥ak − Q̃Q̃∗ak

∥∥∥ / ‖ak‖
Ω = {k : γk ≤ ε1}

while true do
decompose: QR = AΩE, Q ∈ Cm×|Ω|

remove: ∀k ∈ Ω: Q(k)R(k) = AΩ\kE(k)

δk ← ‖(Q(k)Q
∗
(k) −QQ∗)y‖2

k0 ← argmink δk
if δk0

< ε2, Ω← Ω\k0
else break

end while
output: x̂ = argminx ‖y −AΩx‖

IV. EXPERIMENTAL RESULTS

In the first simulation, we fixn = 1000 and m = 120
and construct ann-dimensional signalx0 whose nonzero
components are well separated by at least4n/m, a distance
equivalent to four times the super-resolution factorn/m.
The spike magnitudes are independently set to±1/

√
29 with

probability1/2. The noise vectore is drawn fromN(0, σ2Im)
with σ = 10−3. We fix the thresholdsε1 via (6) with c = 1 and
ε2 = 10σ. Throughout our simulations, we setL = ⌊m/3⌋.
As can be seen from Fig. 1, top row, the recovered signal from
the superset method is reasonable, with‖x̂− x0‖2 = 0.075,
while the reconstruction viaℓ1-minimization tends to exhibit
incorrect clusters around the true spikes.

Our next simulation considers a more challenging signal
model with a strongly coherent matrixA. For example, with
n = 1000 andm = 120, the coherence of the matrixA with
normalized columnsai is µ = maxi6=j | 〈ai, aj〉 | = 0.9765.
The signal in this simulation is shown in Fig. 1, bottom
row. It consists of five spike clusters: each of the first two
clusters consists of a single spike, and each of the last four
clusters contains two neighboring spikes. The signs of these
neighboring spikes either agree or differ. We setm,σ andε2
as in the previous simulation, and we let the constantc in
the equation (6) ofε1 equal to 5. Recovery via the superset
method is accurate, whileℓ1 minimization fails at least with
clusters of opposite-sign spikes.

In the next simulation, we consider a signal of sizen =
1000 which contains two nearby spikes at locations[100, 101]
and has magnitudes1/

√
2 and−1/

√
2. We empirically in-

vestigate the algorithm’s ability to recover the signal from
varying measurementsm = {10, 20, ..., 220} and noise levels
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Fig. 1. Original (blue) and recovered (red) signals. Left column: the
superset method. Right column:ℓ1-minimization. Top row: a signal
with well-separated spikes. Bottom row: spike spacing below the
Rayleigh length.

log10σ = {−3.5,−3.4, ...,−2}. For each pair(m,σ), we
report the frequency of success over100 random realizations
of e. The greyscale goes from white (100 successes) to black
(100 failures). A trial is declared successful if the recovered
x̂ satisfies‖x̂− x0‖2 / ‖x0‖2 < 10−3. The horizontal axis
indicates the noise levelσ in log scale, and the vertical axis
indicateslog10(1− µ) whereµ is the coherence as earlier.

We note that the coherence is inversely proportional to the
amount of measurementsm and proportional to the super-
resolution factorn/m: increasingm (decreasing the super-
resolution factor) will reduce the coherenceµ. On the vertical
axis, smaller values imply higher coherence, or equivalently
smaller amount of measurements. As shown in Fig. 2, for
reasonably small noise, the algorithm is able to recover the
signal exactly even the coherence is nearly1.

For reference, we also compare the superset method with
the matrix pencil method as set up in [10]. The noise is
filtered out by preparing low-rank approximations ofY and
Y where only the singular values abovecσ

√
L logL are

kept, for some heuristically optimized constantc. Two more
signals are considered: (1) a 3-sparse signal consisting ofthree
neighboring spikes, each of magnitude1/

√
3 with alternating

signs, and (2) a 4-sparse signal with neighboring spikes of
alternating signs and equal magnitude1/2. Fig. 2 is a good
illustration of the contrasting numerical behaviors of thetwo
methods: the matrix pencil is often the better method in the
special case of a signal with 2 spikes, but loses ground to the
superset method in various cases of progressively less sparse
signals. Understanding the performance of the matrix pencil
would require formulating a lower bound on the (typically
extremely small)S-th eigenvalues ofY0 whereS is the sparsity
of y0.

V. CONCLUSION

Empirical evidence is presented for the potential of the
superset method as a viable computational method for super-

resolution. Further theoretical justifications will be presented
elsewhere.
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Fig. 2. Probability of recovery, from 1 (white) to 0 (black) for the superset
method (left column) and the matrix pencil method (right column). Top row:
2-sparse signal. Middle row: 3-sparse signal. Bottom row: 4-sparse signal.
The plots show recovery as a function of the noise level (x-axis, log10 σ) and
the coherence (y-axis,log10(1 − µ)).
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[8] U. Grenander and G. Szegő.Toeplitz forms and their applications. U.
California Press, Berkeley, 1958.

[9] Y. Hua and T.K. Sarkar. Matrix pencil method for estimating parameters
of exponentially damped/undamped sinusoids in noise. 38(5):814–824,
1990.

[10] Y. Hua and T.K. Sarkar. On svd for estimating generalized eigenvalues
of singular matrix pencil in noise.IEEE T. Signal Proces., 39(4):892–
900, 1991.

[11] R. O. Schmidt. Multiple emitter location and signal parameter estima-
tion. IEEE Trans. Atten. Prop., 34(3):276–280, Apr. 1986.

[12] J. A. Tropp. User-friendly tail bounds for sums of random matrices.
Found. Comput. Math., 12(4):389–434, 2012.

[13] M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate
of innovation. IEEE T. Signal Proces., 50(6):1417–1428, 2002.


	Claremont Colleges
	Scholarship @ Claremont
	6-10-2013

	Super-resolution via Superset Selection and Pruning
	Laurent Demanet
	Deanna Needell
	Nam Nguyen
	Recommended Citation


	I Introduction
	II Noiseless subspace identification
	III Noisy subspace identification
	IV Experimental Results
	V Conclusion
	References

