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Abstract—We present a pursuit-like algorithm that we call ~k-sparsenonnegativesignals can be recovered from only
the “superset method” for recovery of sparse vectors from 2k 1 noiseless Fourier coefficients by imposing the positivity
consecutive Fourier measurements in the super—resolutlomglme. constraint with or Withoutél minimization, see[[l4] I:U7] and

The algorithm has a subspace identification step that hingesen . .
the translation invariance of the Fourier transform, followed [5]. The work of [3] extends this result to the continuous

by a removal step to estimate the solution’s support. The Setting by using total variation minimization. Recentlgr@es
superset method is always successful in the noiseless regimand Fernandez-Granda showed that the solution to/;an

(unlike 4 mininjization)_ and generalize_s to higher dimensi_ons minimization problem with a|A*(y — Aw)Hl misfit will be
(unllke the matrix penclll method). Relative robustness to pise close to the true signal, assuming that locations of any two
is demonstrated numerically. . .
consecutive nonzero coefficients are separated by at least f

Acknowledgments. LD acknowledges funding from thetimes the super-resolution facter/m [2]. Such optimization
Air Force Office of Scientific Research, the National Scienddeas have the advantage of being easily generalizable to
Foundation, and the Alfred P. Sloan Foundation. LD is grdtefhigher dimensions. On the flip sidé; minimization super-
to Jean-Francois Mercier and George Papanicolaou for eamgolution is known to fail on sparse signals with nearby
discussions on super-resolution. components that alternate signs.

In this paper, we discuss a simple algorithm for solving (1)
based on

« subspace identification as in the matrix pencil method,

but without the subsequent eigenvalue computation; and
« aremoval procedure for tightening the active set, remind-
y = Azg + e, (1) ful of a step in certain greedy pursuits.

where A is the partial, short and wide Fourier mattik;, = This algorithm can outperform the well-known matrix pencil
e2mik/n () < j < m, “n/2 < k < n/2, n even, and, say, method, as we show in the numerical section, and it is gener-

¢ ~ N(0,0%,). alizable to higher dimensions. It is a one-pass procedwae th

When recovery is successful in this scenario of contiguoﬂgeS not suffer from slow convergence n 5|tuat|qns of high
measurements, we may speak of super-resolution: the @a&ﬂherence. We also show_that t.he algont_hm prowdgs perfect
between neighboring nonzero componentsgrcan be much recovery for the (not combinatorially hard in the Fouriesep
smaller than the Rayleigh limit/m suggested by Shannon—nOISGIesng problem
Nyquist theory. But in contrast to the compressed sensing

I. INTRODUCTION

We consider the problem of recovering a sparse vegicr
R™, or an approximation thereof, froon < n contiguous
Fourier measurements

A i min [suppz| s.t. Axr =y. (2)
scenario, where the: values ofj are drawn at random from z
{0,...,n — 1}, super-resolution can be arbitrarily ill-posed. II. NOISELESS SUBSPACE IDENTIFICATION
Open questions concern not only recovery bounds, but the
very algorithms needed to define good estimators. For completeness we start by recalling the classical urnique

Various techniques have been proposed in the literatureness result for{2).
tackle super-resolution, such as MUSICI[11], Prony’s méth
/ finite rate of innovation [8]1][18], the matrix pencil ntesd
[9], ¢1 minimization [7] [5] [3] [2], and greedy pursuit§][6].

Prony and matrix pencil methods are based on eigenvaluaVe make use of the following notations. Denote supjy
computations: they work well with exact measurements, bilit and write A for the restriction ofA to its columns inT".
their performance is poorly understood in the presence loét T for the complement of". Let a;, for the k-th column
noise, and they are not obviously set up in higher dimenf A. The superscripf. is used to denote a restriction of a
sions. As for¢; minimization, there is good evidence thatnatrix to its firstZ rows, as inA%.

Yemma 1. Let xo € R™ with supportT” such thatm > 2|T7,
and lety = Axo. Then the unique minimizer dfl (2) is.
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The “superset method” hinges on a special property thsthbility properties. Wheitl. = |T'|, the matrix pencil method
the partial Fourier matrixA does not share with arbitraryreduces to Prony’'s method, a numerically inferior choica th
dictionaries: each columny, is translation-invariantin the should be avoided in practice if possible.
sense that any restriction of, to s < m consecutive elements m

) ; N OISY SUBSPACE IDENTIFICATION
gives rise to the same sequence, up to an overall scalar. In . )
other words, exponentials are eigenfunctions of the tediosl The problem becomes more difficult when the observations

operator. This structure is important. There is an opp<i1151unare contaminated by noise. In this situation Rgn RanY’,

cost in ignoring it and treatingX(1) as a generic compressEPudh in low-naise situations we may stil E)e able to recove
sensing problem T from the indices of the smallest anglg$a;’, RanY’).

A way to leverage translation invariance is to recognize thRroposition 4. Let y = yo + e with ¢ ~ N(0,02%I,,), and
it gives access to theubspacespanned by the atoms. for  form the correspondind. x (m — L) matricesY” and Y, as
k € T, such thaty = >, _(zo)xax. Algorithmically, one previously. Denote the singular valuesgf' " by s, o. Then
picks a numbed < L < m and juxtaposes translated copieshere exists positive;, C; and ¢, such that with probability
of (restrictions of)y into the Hankel matri” = Hankely), at leastl — ¢c;mC1,
defined as

sin Z(ak,RanY) < ce; (5)
Yo Yyr 0 Ym—L-1

Y Y2 o YmeL for all indicesk in the support set and

Y = .
L T ovTTogm [lwo,.] ©
g1 = .
YyrL—1 yr - Ym HG£HQ %0, S|T1,0

The range ofY” is the subspace we seek. Proof: Here we sketch the proof of this proposition. We
. note thata’ € RanY, whenk is in the true support. Thus
Lemma 2. If L > [T, then the rank of” is |T'|, and k< 0 B PP .
I —Py)ax Py Lay
RanY = RanA%. sin Z(aj,Rany’) = I LY) il = H Y: kH2'
ag |, ag |,

The lemma suggests a simple recovery procedure in th
noiseless case: loop over all the candidate atamsfor
—n/2 < k < n/2 and select those for which the angle

“enote the compact singular value decompositior bf=
USEV*. Recalling thatal € RanY; and a well-known fact
that Yy = ALKD(A7~")* where D = diag((xo)r), we can

Z(ay,Rany’) = 0. 3) write ak = Ua = 3\" aju,. Thus,
Once the sef’ is identified, the solution is obtained by solving . . 7| | Py il
the determined system sin Z(ay, Rany) < |%|W- (7
i=1 kll2
ATxT =Y, TTe = 0. (4)

Next, sinceY = Y, + E = AXD(AT71)* + E, we have
This procedure (unsurprisingly) provides a solution to thE[D(AZ %) = Ak + E[D(A7~)*]' where AT is the
noise-free/, sparse recovery probler] (2). pseudo-inverse matrix off. By multiplying both sides by

Theorem 3. Letz, € R™ with supportT” such thatn > 2|7, (Py1ui)”, we get
and lety = Azo. Considerz defined by[[8) and4), where (Py . w;)*Y [D(AF~5)*]" = (Pyou;)* (A% + E[D(A7~ ")) .
the Hankel matrixt” is built with ||+ 1 < L <m —|T| — 1.

Since the vectoPy . u; is orthogonal to Rafr, the left hand
Thenz = zg.

side is zero. Thus multiplying both sides by, the i-th right
The proofs of lemmBl2 and theoré 3 hinge on the fact thgingular vector ofA%, we have

A has full spark. _ # AL * m—Ly#7t
. . e . . 0= (P (17 A (7 + P (17 FE[D(A V;.
The idea of subspace identification is at the heart of a (Pywui) Az ( Y; JEID(AT )] .
different method, the matrix pencil, which seeks the rankYe can see that(Py 1 u;)"Azvi = (Pyrug)'sju; =
reducing numbers of the pencil sk Py L uill; wheres! is thei-th singular value ofd%. We

therefore obtain

hereY is Y with its first g sy win " [Pysuilly = =(Pyus) BID(A7 ")

whereY is Y with its first row removed, and” is Y wi P m—Ly#1t

. < . )
its last row removed. These numbersare computed as the < [(Pyruilly [ E] HD H H[(AT )] ||
generalized eigenvalues of the coudlE*Y,Y*Y). » can This leads to the upper bound

Y_ZX7

also be found via solving the eigenvalues of the matfix’. 1 _

i i 1Py uill, < — IEI| D [[1CA7 =)
When|T| < L < m —|T|, the collection of these generalized Y-Tillz = 7 T
eigenvalues includes™*/™ for k € T, as well asn—L—|T| HZEH 1 1
zeros. There exist variants that consider a Toeplitz matrix = Iz proy (8)
instead of a Hankel matrix, with slightly better numerical i POminl 87



wheres{; " is the smallest singular value of7 .

Recalling thatal = Ua, we havea; = ujal. From the
SVD of AL, we see thatlk(AL)* = U(SL)2U*, so that
U* AL(AL) U* = (ST)2.
This identity implies thaf|u; A% ||, = sF, and thus|a;| < st
Combining this result with[{8) and(7) yields
1]

L|x0rnin

1

sin Z(ag,RanY’) < |T|—— o
ay

s
1T

(9)

I

Using the matrix Bernstein inequality df [12] one obtains

that||E|| < o+/cLlogm with high probability. Finally, writing
vt asyrt = AmT LDl (DY2) (AR we have
e 2 " 2
AzThD e, (AR
m e — E— min T
12112 ho|[D=22h
" 2
A7~ "Rl
B |Rll3 $min(D)

which completes the proof. |
There are a few unknown quantities involviag which can

empirically be controlled. The support siZecan be estimated

by a reasonably large constant, say2. The dynamic range

S|r,0 = m

< (5777 )10

of the signal can presumably be known if we know in prior the

type of underlying signal of interest. The singular valyg, ,
of Yom*L can be replaced by that af™—” via the simple
Weyl's inequality |s; — s; 0| < || Hankele)||, which can in
turn be controlled a®)(o+/Llogm) with high probability.

with g9 = 0.

Algorithm [T for the superset method implements the re-
moval step in an iterative fashion, one atom at a time.

Algorithm 1 Superset selection and pruning
input: Partial Fourier matrixA € C™*", y = Axy + e,
parameterl., thresholdss; andes.
initialization: Y = Hankely) € CFx(m=L)
support identification
decompose: QR=YE, Q € CLx"
project: ap < Aqpy (forall k)
e [lax — Q@ ar| /o
Q=A{k:v <e1}

while true do
decompose: QR = AqFE, Q € CxI¢

remove: Vk € Q: Q(k)R(k) = ASZ\kE(k)
Ik Qe Qlx) — QR)Yll2
ko < argminy, Jy
if 51% < &9, N+ Q\ko
else break
end while

output: T = argmin, ||y — Aqz||

IV. EXPERIMENTAL RESULTS

In the first simulation, we fixa = 1000 and m = 120
and construct am-dimensional signalry whose nonzero
components are well separated by at leastm, a distance

The subspace identification step now gathers all the vallg@uivalent to four times the super-resolution factofm.

of k such that
sin Z(ay,Rany) < ce;.

The resulting sef2 of indices is only expected to besaperset
of the true supporf’, with high probability.
A second step is now needed to prunén order to extract

T'. For this purpose, a loop ovér is set up where we test

the membership of in RanAg,;, the range ofdg with the
k-th column removed. We are now considering a new set

angles where the roles gfand A are reversed: in a noiselesg"”

situation,k € 7' if and only if
Z(y,RanAq\x) # 0.

When noise is present, we first filter out the noise @fby
projectingy onto the range ofdg, then estimaté € 7' only
when the angle is above a certain threshold.
work directly with projectiondT:

[Tlay — Mao\ryll = sin Z(Tloy, RanAg\) [[Tay|-
The effect of noise on the left-hand side is as follows.

Proposition 5. Lety = yo+e With e ~ N(0,021,,). LetIlqy
be the projection of onto Randg, and IetAll = IIg —TIlg\.
Then there exists > 0 such that, with high probability,

| 1Ay [| = [ATTyol| | < cea,

The spike magnitudes are independently set-19//29 with
probability1/2. The noise vectoe is drawn fromN (0, 021,,)

with o = 10~3. We fix the thresholds, via (@) withc = 1 and

g2 = 100. Throughout our simulations, we sét= |m/3].

As can be seen from Fif 1, top row, the recovered signal from
the superset method is reasonable, wjth— x|/, = 0.075,
while the reconstruction vid;-minimization tends to exhibit
incorrect clusters around the true spikes.

OfOur next simulation considers a more challenging signal
odel with a strongly coherent matri. For example, with

n = 1000 andm = 120, the coherence of the matrig with
normalized columns; is ¢ = max;; | (a;,a;) | = 0.9765.

The signal in this simulation is shown in Figl 1, bottom
row. It consists of five spike clusters: each of the first two
clusters consists of a single spike, and each of the last four
clusters contains two neighboring spikes. The signs ofethes

It is easier i@i5hhoring spikes either agree or differ. We setr ande,

as in the previous simulation, and we let the constaiir
the equation[{6) of; equal to 5. Recovery via the superset
method is accurate, whil& minimization fails at least with
clusters of opposite-sign spikes.

In the next simulation, we consider a signal of size=
1000 which contains two nearby spikes at locatidng0, 101]
and has magnitudes/+/2 and —1/v/2. We empirically in-
vestigate the algorithm’s ability to recover the signalnfro
varying measurements = {10, 20, ..., 220} and noise levels
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Fig. 1. Original (blue) and recovered (red) signals. Left colunire t
superset method. Right colum#;-minimization. Top row: a signal
with well-separated spikes. Bottom row: spike spacing Wwethe o of the noise 16067
Rayleigh length.
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logipc = {—3.5,—-3.4,...,—2}. For each pair(m,o), we
report the frequency of success ou® random realizations
of e. The greyscale goes from white (100 successes) to ble
(100 failures). A trial is declared successful if the reqede T Ry oftnose vt ° 7 ey orienoise lever  °
T satisfies||Z — zo||, / ||zoll, < 1073. The horizontal axis
indicates the noise levet in log scale, and the vertical axis':ig-hZ-d (lrrfct)batlﬂlity ;Jf r%cor\]/ery. from 1 (wlf\ite) ;]0 g ((blick)rftt]?eTSUDerset
. . . . metho eft column) and the matrix penci metho rng tucoh). 0op row:
Indlc""teSbglO(1 - ,u) where ;. IS_ th_e coherence as _ear“er' 2-sparse signal. Middle row: 3-sparse signal. Bottom rovepdrse signal.
We note that the coherence is inversely proportional to thee plots show recovery as a function of the noise level (s-aug;, o) and
amount of measuremenis and proportional to the super-the coherence (y-axiog;o(1 — 1)).
resolution factorn/m: increasingm (decreasing the super-
resolution factor) will reduce the cohereneeOn the vertical
axis, smaller values imply higher coherence, or equivtent _ . _ _
smaller amount of measurements. As shown in Eig. 2 fO[tl] V.M. Adamjan, D.Z. Arov, and MG Krein. Analytic propees of
bl I . h | ithm i bl ! h schmidt pairs for a hankel operator and the generalized rdekagi
reasonably small noise, the algorithm is able to recover the ,opiem. sb. Math, 15(1):31-73, 1971.
signal exactly even the coherence is nedrly [2] E. Candés and C. Fernandez-Granda. Towards a matlwamntteory

For referen w I mpare th r meth wi of super-resolutionCommun. Pure Appl. MathTo appear.
or reference, we also compare the superset met od Y. de Castro and F. Gamboa. Exact reconstruction usingriiBg
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