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ON RINGS OF ENTIRE FUNCTIONS OF
FINITE ORDER

By MELVIN HENRIKSEN
[Roceived I\inrch 26, 1953]

In 1940, Helmer showed [1, Theorem 9] that in the ring R of
entire functions, every finitely generated ideal is principal. That is,
if f, ¢ are cntive funetions without zeros in conimon, there exist s, ¢
in B sueh that

sf+Htg=1. (1)

He asked if this theorem is true in the ring RB* of all entire
functions of finite order. A negative answer to this question existed
alrcady in 1936 in a paper of Whittaker [7, p. 256]. In particular
il the zeros (a,), (b,) of f, g respectively are not sufficiently separated
a8 »—r oo, the equation (1) cannot hold with s, ¢ in R*, In 1940,
malking use of results of [7], Mursi showed [6] that if there is an
» > max {ord f, oxd g) such that the circles S{a,, | ¢, |~*) with center
¢, and radius |@,|™ intersect none of the corresponding eircles
S(b,,, | by |7*), then (1) holds with both ord s and ord ¢ no greater
than max {ord f, ord g).

In an carlier paper [2], the author showed that if M is any
maximal ideal of R, the residue class field RfM is isomorphic with
the complex field K. In this paper, under some resirictions, this
theorem is extended to the ring R, of all entire funetions of order
no greater than A, and hence to E*.

Deyrwrmion. Let i {f, n) be.the number of zeros of f contained
in S{a,, | @, [~"), where a zero of multiplicity m s counted m times,

Tarorem. Let M’ be a mazimal ideal of R, containing a function
T such that 4, {f, n) is bounded for some k. Then B,[M" is isomorphic
with K. S o
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The proof proeceds as in {2, Theorem 6], 1t is casily seen that
2,/ 3" has degree of transcendency ¢ (where ¢ is the cardinal number
of the continuum) over the rational field, By a well - known theorem
of Steinitz, it is only necessary to show that E,/J" is algebraically
closed.

Since a maximal ideal of any integral domain is prime, there
is a g in M’ such that 4, {g,#%) =1, for all ». In particular, all the
zeros (b,) of g are simple. Let ¥z, X)=X" + f; (z) X™1 4 ...
~+ f.u(#) be a polynomial with coefficients in R,/ M’, of degree m > 0.
For cach n, ®(b,, X) is a polynomial with coefficients in X, which
has m complex roots. Choose any such and eall it §,. It is well
known that |8, <1 + max (|f; (b,)]s..., |fu (b5)]). Since the order
of the f;, and the exponent of convergence of (b,) do not exceed
A, it follows from a theorem of Macintyre and Wilson [5, Theorem 4]
(also obtained independently by Leont’ev [4]) that there is a ¢
in R, such that §(b,) =3§,. So O(z,t(z)) is in ', whence the theorem.

Remarks: 1. The author does not know if there is a maximal
ideal in R; that fails to satisfy the hypothesis of the theorem.

2. There exist prime ideals of R, and R* that fail to satisfy this
hypothesis, For, the sct B of elements of f of R, (or B*) with ¢, (f, »)
bounded for some &, is closed under multiplication. Hence, oune
can construct, with the aid of Zorn’s lemma, prime ideals not
intersecting B. See also [3]. -

3. .If, in the theorem R, iz replaced by R*, the constant &
in the definition of ¢, (f, #) ean be replaced by a positive, increasing

fanction of |z| such that lim sup M is finite. See [5,
o e logla,
Theorem 57. : ' ‘
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