Claremont Colleges Scholarship @ Claremont

All HMC Faculty Publications and Research

HMC Faculty Scholarship

1-1-1953

On Rings of Entire Functions of Finite Order

Melvin Henriksen Harvey Mudd College

Recommended Citation

Henriksen, Melvin. "On rings of entire functions of finite order." Journal of the Indian Mathematical Society 17 (1953): 59-61.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

T. V. LAKSHMINARASIMHAN

REFERENCES

- R. P. BOAS : Fundamental sets of entire functions, Annals of Math. 47 (1946), 21-32.
- 2. R. C. BUCK : On the distribution of the zeros of an entire function, Jour. Indian Math. Soc. 16 (1952), 147-149.
- S. M. SHAH : A note on nniqueness sets for entire functions, Proc. Indian Acad. Sci. 28 (1948), 1-8.
- S. M. SHAH : The maximum term of an entire series (III), Quarterly Jour. Math. 19 (1948), 220-223.

Madras Christian College Tambaram

ON RINGS OF ENTIRE FUNCTIONS OF FINITE ORDER

By MELVIN HENRIKSEN

[Received March 26, 1953]

In 1940, Helmer showed [1, Theorem 9] that in the ring R of entire functions, every finitely generated ideal is principal. That is, if f, g are entire functions without zeros in common, there exist s, tin R such that

$$sf + tg = 1. \tag{1}$$

He asked if this theorem is true in the ring R^* of all entire functions of finite order. A negative answer to this question existed already in 1936 in a paper of Whittaker [7, p. 256]. In particular if the zeros (a_n) , (b_n) of f, g respectively are not sufficiently separated as $n \to \infty$, the equation (1) cannot hold with s, t in R^* . In 1940, making use of results of [7], Mursi showed [6] that if there is an $h > \max$ (ord f, ord g) such that the circles $S(a_n, |a_n|^{-h})$ with center a_n and radius $|a_n|^{-h}$ intersect none of the corresponding circles $S(b_m, |b_m|^{-h})$, then (1) holds with both ord s and ord t no greater than max (ord f, ord g).

In an earlier paper [2], the author showed that if M is any maximal ideal of R, the residue class field R/M is isomorphic with the complex field K. In this paper, under some restrictions, this theorem is extended to the ring R_{λ} of all entire functions of order no greater than λ , and hence to R^* .

DEFINITION. Let i_h (f, n) be the number of zeros of f contained in $S(a_n, |a_n|^{-h})$, where a zero of multiplicity m is counted m times.

THEOREM. Let M' be a maximal ideal of R_{λ} containing a function f such that $i_h(f, n)$ is bounded for some h. Then R_{λ}/M' is isomorphic with K.

· · ·

58

MELVIN HENRIKSEN

The proof proceeds as in [2, Theorem 6]. It is easily seen that R_j/M' has degree of transcendency c (where c is the cardinal number of the continuum) over the rational field. By a well-known theorem of Steinitz, it is only necessary to show that R_j/M' is algebraically elosed.

Since a maximal ideal of any integral domain is prime, there is a g in M' such that $i_h(g, n) = 1$, for all n. In particular, all the zeros (b_n) of g are simple. Let $\Phi(z, X) = X^m + f_1(z) X^{m-1} + ...$ $+ f_m(z)$ be a polynomial with coefficients in R_1/M' , of degree m > 0. For each n, $\Phi(b_n, X)$ is a polynomial with coefficients in K, which has m complex roots. Choose any such and call it δ_n . It is well known that $|\delta_n| < 1 + \max(|f_1(b_n)|, ..., |f_m(b_n)|)$. Since the order of the f_i , and the exponent of convergence of (b_n) do not exceed λ , it follows from a theorem of Macintyre and Wilson [5, Theorem 4] (also obtained independently by Leont'ev [4]) that there is a t in R_1 such that $t(b_n) = \delta_n$. So $\Phi(z, t(z))$ is in M', whence the theorem.

REMARKS: 1. The author does not know if there is a maximal ideal in R_2 that fails to satisfy the hypothesis of the theorem.

2. There exist prime ideals of R_{λ} and R^* that fail to satisfy this hypothesis. For, the set B of elements of f of R_{λ} (or R^*) with $i_h(f, n)$ bounded for some h, is closed under multiplication. Hence, one can construct, with the aid of Zorn's lemma, prime ideals not intersecting B. See also [3].

3. If, in the theorem R_{λ} is replaced by R^* , the constant h in the definition of $i_h(f, n)$ can be replaced by a positive, increasing function of |z| such that $\limsup_{n\to\infty} \frac{\log h(|a_n|)}{\log |a_n|}$ is finite. See [5, Theorem 5].

REFERENCES

1. O. HELMER: Divisibility properties of integral functions, Duke Math. Jour. 6(1940), 345-356.

2. M. HENRIKSEN: On the ideal structure of the ring of entire functions, *Pacific Jour. Math.* 2(1952), 179-184.

- 3. M. HENRIKSEN : On the prime ideals of the ring of entire functions, to appear, *Pacific Jour. Math.* 3(1953).
- A. F. LEONT'EV: On interpolation in the class of entire functions of finite order (Russian), Doklady Akad. Nauk. SSSR (N.S.) 61(1948), 785-787.
- 5. A. J. MAGINTYRE and R. WILSON : On the order of interpolated integral functions and of meromorphic functions with given poles *Quart. Jour. Math.* 5(1934), 211-220.
- M. MURSI: An identity in integral functions, Proc. Math. Phys. Soc. Egypt 1, no. 4(1940), 14-16.
- J. M. WHITTAKER: A theorem on meromorphic functions, Proc. London Math. Soc. 40(1936), 255-272.

Purdue University Lafayette, Indiana, U. S. A.