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ABSTRACT

This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set
of linear measurements – L1-minimization methods and iterative methods (Matching Pursuits). We find a simple
regularized version of the Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the
speed and transparency of OMP and the strong uniform guarantees of the L1-minimization. Our algorithm
ROMP reconstructs a sparse signal in a number of iterations linear in the sparsity, and the reconstruction is
exact provided the linear measurements satisfy the Uniform Uncertainty Principle. In the case of inaccurate
measurements and approximately sparse signals, the noise level of the recovery is proportional to

√
log n‖e‖2

where e is the error vector.

1. INTRODUCTION

Sparse recovery problems arise in many applications ranging from medical imaging to error correction. Suppose
v is an unknown d-dimensional signal with at most n≪ d nonzero components:

v ∈ R
d, |supp(v)| ≤ n≪ d.

We call such signals n-sparse. Suppose we are able to collect N ≪ d nonadaptive linear measurements of v, and
wish to efficiently recover v from these. The measurements are given as the vector Φv ∈ R

N , where Φ is some
N × d measurement matrix.

As discussed in,2 exact recovery is possible with just N = 2n. However, recovery using only this property
is not numerically feasible; the sparse recovery problem in general is known to be NP-hard. Nevertheless, a
massive recent work in the emerging area of Compressed Sensing demonstrated that for several natural classes
of measurement matrices Φ, the signal v can be exactly reconstructed from its measurements Φv with

N = n logO(1)(d). (1.1)

In other words, the number of measurements N ≪ d should be almost linear in the sparsity n. Survey1 contains
some of these results; the Compressed Sensing webpage7 documents progress in this area.

The two major algorithmic approaches to sparse recovery are methods based on the L1-minimization (see
e.g.3) and iterative methods (such as Orthogonal Matching Pursuit, see14). We now briefly discuss the advantages
and disadvantages of these methods. Then we propose a new iterative method that has advantages of both
approaches.
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1.1 Advantages and challenges of both approaches

The L1-minimization has strongest known guarantees of sparse recovery. Once the measurement matrix Φ satisfies
the Restricted Isometry Condition, this method works correctly for all sparse signals v.

Definition 1.1 (Restricted Isometry Condition). A measurement matrix Φ satisfies the Restricted
Isometry Condition (RIC) with parameters (n, ε) for ε ∈ (0, 1) if we have

(1− ε)‖v‖2 ≤ ‖Φv‖2 ≤ (1 + ε)‖v‖2 for all n-sparse vectors.

The Restricted Isometry Condition states that every set of n columns of Φ forms approximately an ortho-
normal system. One can interpret the Restricted Isometry Condition as an abstract version of the Uniform
Uncertainty Principle in harmonic analysis (6 and also see discussions in4 and10).

Also, the L1-minimization is based on linear programming, and it is not very clear what this running time
is, as there is no strongly polynomial time algorithm in linear programming yet.

Orthogonal Matching Pursuit is quite fast, both theoretically and experimentally. It makes n iterations,
where each iteration amounts to a multiplication by a d ×N matrix Φ∗ (computing the observation vector u),
and solving a least squares problem in dimensions N × n (with matrix ΦI). This yields strongly polynomial
running time. In practice, OMP is observed to perform faster and is easier to implement than L1-minimization.14

On the other hand, OMP has weaker guarantees of exact recovery. Unlike L1-minimization, the guarantees of
OMP are non-uniform: for each fixed sparse signal v and not for all signals, the algorithm performs correctly
with high probability. Moreover, OMP’s condition on measurement matrices given in14 is more restrictive than
the Restricted Isometry Condition. In particular, it is not known whether OMP succeeds in the important class
of partial Fourier measurement matrices.

1.2 Stable recovery by convex programming and greedy algorithms

A more realistic scenario is where the measurements are inaccurate (e.g. contaminated by noise) and the signals
are not exactly sparse. In most situations that arise in practice, one cannot hope to know the measurement
vector x = Φv with arbitrary precision. Instead, it is perturbed by a small error vector: x = Φv + e. Here the
vector e has unknown coordinates as well as unknown magnitude, and it needs not be sparse (as all coordinates
may be affected by the noise). For a recovery algorithm to be stable, it should be able to approximately recover
the original signal v from these perturbed measurements.

The stability of convex optimization algorithms for sparse recovery was studied in,3,15,9.5 Assuming that
one knows a bound on the magnitude of the error, ‖e‖ ≤ δ, it was shown in5 that the solution v̂ of the convex
program

min ‖u‖1 subject to ‖Φu− x‖2 ≤ δ (1.2)

is a good approximation to the unknown signal: ‖v − v̂‖2 ≤ Cδ.

In contrast, the stability of greedy algorithms for sparse recovery has not been well understood. Numerical
evidence9 suggests that OMP should be less stable than the convex program (1.2), but no theoretical results
have been known in either the positive or negative direction. The present paper seeks to remedy this situation.

We prove that ROMP is as stable as the convex program (1.2). This result essentially closes a gap between
convex programming and greedy approaches to sparse recovery.

1.3 Regularized OMP

This new algorithm for sparse recovery will perform correctly for all measurement matrices Φ satisfying the Re-
stricted Isometry Condition, and for all sparse signals. It will also be stable, in the sense that small perturbations
in the signal or measurements will not greatly affect recovery.

When we are trying to recover the signal v from its measurements x = Φv, we can use the observation vector
u = Φ∗x as a good local approximation to the signal v. Every n coordinates of the signal v look like correlations
of the measurement vector x with the almost orthonormal basis consisting of the columns of Φ, and therefore



are close in the Euclidean sense to the coefficients of v (see Proposition 2.2 below). To ensure that each of these
coordinates gets an even share of information, we enforce a new regularization step. This leads to the following
algorithm for stable sparse recovery:

Regularized Orthogonal Matching Pursuit (ROMP)

Input: Measurement vector x ∈ R
N and sparsity level n

Output: Index set I ⊂ {1, . . . , d}, reconstructed vector v̂ = y

Initialize Let the index set I = ∅ and the residual r = x.
Repeat the following steps n times or until |I| ≥ 2n:

Identify Choose a set J of the n biggest nonzero coordinates in magnitude of the observation vector
u = Φ∗r, or all of its nonzero coordinates, whichever set is smaller.

Regularize Among all subsets J0 ⊂ J with comparable coordinates:

|u(i)| ≤ 2|u(j)| for all i, j ∈ J0,

choose J0 with the maximal energy ‖u|J0
‖2.

Update Add the set J0 to the index set: I ← I ∪ J0, and update the residual:

y = argmin
z∈RI

‖x− Φz‖2; r = x− Φy.

Remark. The identification and regularization steps of ROMP can be performed efficiently. In particular,
the regularization step does not mean combinatorial complexity, but actually can be done in linear time. The
running time of ROMP is thus comparable to that of OMP in theory, and is often better than OMP in practice.
We discuss the runtime in detail in Section 3.

The main theorem of this paper states that ROMP yields exact sparse recovery in the noiseless case, and
approximate recovery in general, provided that the measurement matrix satisfies the Restricted Isometry Con-
dition.

Theorem 1.2 (Stability under measurement perturbations). Assume a measurement matrix Φ
satisfies the Restricted Isometry Condition with parameters (4n, ε) for ε = 0.01/

√
log n. Let v be an n-sparse

vector in R
d. Suppose that the measurement vector Φv becomes corrupted, so we consider x = Φv + e where e is

some error vector. Then ROMP produces a good approximation to v:

‖v − v̂‖2 ≤ 104
√

log n‖e‖2.

Remarks. 1. Theorem 1.2 guarantees exact sparse recovery in the noiseless situation. Indeed, if e = 0 the
reconstruction is exact: v̂ = v. In fact, for the noiseless case we actually only require ε ≤ 0.03/

√
log n and the

Restricted Isometry Condition with parameters (2n, ε).11

2. Theorem 1.2 gives uniform guarantees of sparse recovery. Indeed, once the measurement matrix satisfies
a deterministic condition (RIC), then our algorithm ROMP accurately recovers every sparse vector from its
measurements. Uniform guarantees have been shown to be impossible for OMP,13 and it has been an open
problem to find a version of OMP with uniform guarantees (see14). Theorem 1.2 says that ROMP essentially
settles this problem.

3. The logarithmic factor in ε may be an artifact of the proof. At this moment, we do not know how to
remove it.



4. Measurement matrices known to satisfy the Restricted Isometry Condition include random Gaussian,
Bernoulli and partial Fourier matrices, with number of measurements N almost linear in the sparsity n, i.e. as in
(1.1). See11 for detailed information. It has been unknown whether OMP gives sparse recovery for partial Fourier
measurements (even with non-uniform guarantees). ROMP gives sparse recovery for these measurements, and
even with uniform guarantees.

Our stability result extends naturally to the even more realistic scenario where the signals are only approx-
imately sparse. Here and henceforth, denote by fm the vector of the m biggest coefficients in absolute value of
f . The following Corollary is proved in.12

Corollary 1.3 (Stability of ROMP under signal perturbations). Assume a measurement matrix
Φ satisfies the Restricted Isometry Condition with parameters (8n, ε) for ε = 0.01/

√
log n. Consider an arbitrary

vector v in R
d. Suppose that the measurement vector Φv becomes corrupted, so we consider x = Φv + e where e

is some error vector. Then ROMP produces a good approximation to v2n:

‖v̂ − v2n‖2 ≤ 159
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

. (1.3)

Remarks. 1. The term v2n in the corollary can be replaced by v(1+δ)n for any δ > 0. This change will only
affect the constant terms in the corollary.

2. We also have the error bound for the entire vector v (see12):

‖v̂ − v‖2 ≤ 160
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

. (1.4)

3. For the convex programming method (1.2), the stability bound (1.4) was proved in,5 and even without
the logarithmic factor. We conjecture that this factor is also not needed in our results for ROMP.

4. Unlike the convex program (1.2), ROMP succeeds with absolutely no prior knowledge about the error
e; its magnitude can be arbitrary. In the terminology of,9 the convex programming approach needs to be
“noise-aware” while ROMP needs not.

5. One can use ROMP to approximately compute a 2n-sparse vector that is close to the best 2n-term
approximation v2n of an arbitrary signal v. To this end, one just needs to retain the 2n biggest coordinates of v̂.
Indeed,12 shows that the best 2n-term approximations of the original and the reconstructed signals are close:

‖v2n − v̂2n‖2 ≤ 477
√

log 2n
(

‖e‖2 +
‖v − vn‖1√

n

)

.

6. An important special case of Corollary 1.3 is for the class of compressible vectors, which is a common
model in signal processing, see,6.8 Suppose v is a compressible vector in the sense that its coefficients obey a
power law: for some p > 1, the k-th largest coefficient in magnitude of v is bounded by Cpk

−p. Then (1.4) yields
the following bound on the reconstructed signal:

‖v − v̂‖2 ≤ C ′
p

√
log n

np−1/2
+ C ′′

√

log n‖e‖2. (1.5)

As observed in,5 this bound is optimal (within the logarithmic factor); no algorithm can perform fundamentally
better.

The rest of the paper is organized as follows. In Section 2, we prove our main result, Theorem 1.2. In
Section 3, we discuss implementation, running time, and empirical performance of ROMP and also demonstrate
some numerical experiments that illustrate the stability of ROMP.



2. PROOF OF THEOREM

We shall prove a stronger version of Theorem 1.2, which states that at every iteration of ROMP, either at least
50% of the newly selected coordinates are from the support of the signal v, or the error bound already holds.

Theorem 2.1 (Iteration Invariant of ROMP). Assume Φ satisfies the Restricted Isometry Condition
with parameters (4n, ε) for ε = 0.01/

√
log n. Let v 6= 0 be an n-sparse vector with measurements x = Φv + e.

Then at any iteration of ROMP, after the regularization step where I is the current chosen index set, we have
J0 ∩ I = ∅ and (at least) one of the following:

(i) |J0 ∩ supp(v)| ≥ 1
2 |J0|;

(ii) ‖v|supp(v)\I‖2 ≤ 100
√

log n‖e‖2.

In other words, either at least 50% of the coordinates in the newly selected set J0 belong to the support of v or
the bound on the error already holds.

We show that the Iteration Invariant implies Theorem 1.2 by examining the three possible cases:

Case 1: (ii) occurs at some iteration. We first note that since |I| is nondecreasing, if (ii) occurs at
some iteration, then it holds for all subsequent iterations. To show that this would then imply Theorem 1.2, we
observe that by the Restricted Isometry Condition and since |supp(v̂)| ≤ |I| ≤ 3n,

(1− ε)‖v̂ − v‖2 − ‖e‖2 ≤ ‖Φv̂ − Φv − e‖2.

Then again by the Restricted Isometry Condition and definition of v̂,

‖Φv̂ − Φv − e‖2 ≤ ‖Φ(v|I)− Φv − e‖2 ≤ (1 + ε)‖v|supp(v)\I‖2 + ‖e‖2.

Thus we have that

‖v̂ − v‖2 ≤
1 + ε

1− ε
‖v|supp(v)\I‖2 +

2

1− ε
‖e‖2.

Thus (ii) of the Iteration Invariant would imply Theorem 1.2.

Case 2: (i) occurs at every iteration and J0 is always non-empty. In this case, by (i) and the fact
that J0 is always non-empty, the algorithm identifies at least one element of the support in every iteration. Thus
if the algorithm runs n iterations or until |I| ≥ 2n, it must be that supp(v) ⊂ I, meaning that v|supp(v)\I = 0.
Then by the argument above for Case 1, this implies Theorem 1.2.

Case 3: (i) occurs at each iteration and J0 = ∅ for some iteration. By the definition of J0, if J0 = ∅
then u = Φ∗r = 0 for that iteration. By definition of r, this must mean that

Φ∗Φ(v − y) + Φ∗e = 0.

This combined with Part 1 of Proposition 2.2 below (and its proof, see11) applied with the set I ′ = supp(v) ∪ I
yields

‖v − y + (Φ∗e)|I′‖2 ≤ 2.03ε‖v − y‖2.
Then combinining this with Part 2 of the same Proposition, we have

‖v − y‖2 ≤ 1.1‖e‖2.

Since v|supp(v)\I = (v − y)|supp(v)\I , this means that the error bound (ii) must hold, so by Case 1 this implies
Theorem 1.2.

We now turn to the proof of the Iteration Invariant, Theorem 2.1. We will use the following proposition
from.11

Proposition 2.2 (Consequences of Restricted Isometry Condition11). Assume a measurement
matrix Φ satisfies the Restricted Isometry Condition with parameters (2n, ε). Then the following holds.



1. (Local approximation) For every n-sparse vector v ∈ R
d and every set I ⊂ {1, . . . , d}, |I| ≤ n, the

observation vector u = Φ∗Φv satisfies

‖u|I − v|I‖2 ≤ 2.03ε‖v‖2.

2. (Spectral norm) For any vector z ∈ R
N and every set I ⊂ {1, . . . , d}, |I| ≤ 2n, we have

‖(Φ∗z)|I‖2 ≤ (1 + ε)‖z‖2.

3. (Almost orthogonality of columns) Consider two disjoint sets I, J ⊂ {1, . . . , d}, |I ∪ J | ≤ 2n. Let PI , PJ

denote the orthogonal projections in R
N onto range(ΦI) and range(ΦJ ), respectively. Then

‖PIPJ‖2→2 ≤ 2.2ε.

The proof of Theorem 2.1 is by induction on the iteration of ROMP. The induction claim is that for all
previous iterations, the set of newly chosen indices is disjoint from the set of previously chosen indices I, and
either (i) or (ii) holds. Clearly if (ii) held in a previous iteration, it would hold in all future iterations. Thus we
may assume that (ii) has not yet held. Since (i) has held at each previous iteration, we must have

|I| ≤ 2n. (2.1)

Let r 6= 0 be the residual at the start of this iteration, and let J0, J be the sets found by ROMP in this
iteration. As in,11 we consider the subspace

H := range(Φsupp(v)∪I)

and its complementary subspaces

F := range(ΦI), E0 := range(Φsupp(v)\I).

The Restricted Isometry Condition in the form of Part 3 of Proposition 2.2 ensures that F and E0 are almost
orthogonal. Thus E0 is close to the orthogonal complement of F in H,

E := F⊥ ∩H.

The residual r thus still has a simple description:

Lemma 2.3 (Residual). Here and thereafter, let PL denote the orthogonal projection in R
N onto a linear

subspace L. Then
r = PEΦv + PF⊥e.

Proof. By definition of the residual in the algorithm, r = PF⊥x = PF⊥(Φv + e). To complete the proof
we need that PF⊥Φv = PEΦv. This follows from the orthogonal decomposition H = F + E and the fact that
Φv ∈ H.

Now we consider the signal we seek to identify at the current iteration, and its measurements:

v0 := v|supp(v)\I , x0 := Φv0 ∈ E0. (2.2)

To guarantee a correct identification of v0, we first state two approximation lemmas that reflect in two different
ways the fact that subspaces E0 and E are close to each other.

Lemma 2.4 (Approximation of the residual). We have

‖x0 − r‖2 ≤ 2.2ε‖x0‖2 + ‖e‖2.



Proof. By definition of F , we have Φv− x0 = Φ(v− v0) ∈ F . Therefore, by Lemma 2.3, r = PEΦv + PF⊥e =
PEx0 + PF⊥e, and so

‖x0 − r‖2 = ‖x0 − PEx0 − PF⊥e‖2 ≤ ‖PF x0‖2 + ‖e‖2.
Now we use Part 3 of Proposition 2.2 for the sets I and supp(v) \ I whose union has cardinality at most 3n by
(2.1). It follows that

‖PF x0‖2 + ‖e‖2 = ‖PF PE0
x0‖2 + ‖e‖2 ≤ 2.2ε‖x0‖2 + ‖e‖2

as desired.

Lemma 2.5 (Approximation of the observation). Consider the observation vectors u0 = Φ∗x0 and
u = Φ∗r. Then for any set T ⊂ {1, . . . , d} with |T | ≤ 3n,

‖(u0 − u)|T ‖2 ≤ 2.4ε‖v0‖2 + (1 + ε)‖e‖2.

Proof. Since x0 = Φv0, we have by Lemma 2.4 and the Restricted Isometry Condition that

‖x0 − r‖2 ≤ 2.2ε‖Φv0‖2 + ‖e‖2 ≤ 2.2ε(1 + ε)‖v0‖2 + ‖e‖2 ≤ 2.3ε‖v0‖2 + ‖e‖2.

To complete the proof, it remains to apply Part 2 of Proposition 2.2, which yields ‖(u0−u)|T ‖2 ≤ (1+ε)‖x0−r‖2.

We next show that the energy (norm) of u when restricted to J , and furthermore to J0, is not too small. By
the regularization step of ROMP, since all selected coefficients have comparable magnitudes, we will conclude
that not only a portion of energy but also of the support is selected correctly, or else the error bound must already
be attained. This will be the desired conclusion.

Lemma 2.6 (Localizing the energy). We have ‖u|J‖2 ≥ 0.8‖v0‖2 − (1 + ε)‖e‖2.
Proof. Let S = supp(v) \ I. Since |S| ≤ n, the maximality property of J in the algorithm implies that

‖u|J‖2 ≥ ‖u|S‖2.

By Lemma 2.5,
‖u|S‖2 ≥ ‖u0|S‖2 − 2.4ε‖v0‖2 − (1 + ε)‖e‖2.

Furthermore, since v0|S = v0, by Part 1 of Proposition 2.2 we have

‖u0|S‖2 ≥ (1− 2.03ε)‖v0‖2.

Putting these three inequalities together, we conclude that

‖u|J‖2 ≥ (1− 2.03ε)‖v0‖2 − 2.4ε‖v0‖2 − (1 + ε)‖e‖2 ≥ 0.8‖v0‖2 − (1 + ε)‖e‖2.

This proves the lemma.

We next bound the norm of u restricted to the smaller set J0, again using the general property of regulariza-
tion. In our context, Lemma 3.7 of11 applied to the vector u|J yields

‖u|J0
‖2 ≥

1

2.5
√

log n
‖u|J‖2.

Along with Lemma 2.6 this directly implies:

Lemma 2.7 (Regularizing the energy). We have

‖u|J0
‖2 ≥

1

4
√

log n
‖v0‖2 −

‖e‖2
2
√

log n
.



We now finish the proof of Theorem 2.1. The claim that J0 ∩ I = ∅ follows by the same arguments as in.11

The nontrivial part of the theorem is its last claim, that either (i) or (ii) holds. Suppose (i) in the theorem
fails. Namely, suppose that |J0 ∩ supp(v)| < 1

2 |J0|, and thus

|J0\supp(v)| > 1

2
|J0|.

Set Λ = J0\supp(v). By the comparability property of the coordinates in J0 and since |Λ| > 1
2 |J0|, there is a

fraction of energy in Λ:

‖u|Λ‖2 >
1√
5
‖u|J0

‖2 ≥
1

4
√

5 log n
‖v0‖2 −

‖e‖2
2
√

5 log n
, (2.3)

where the last inequality holds by Lemma 2.7.

On the other hand, we can approximate u by u0 as

‖u|Λ‖2 ≤ ‖u|Λ − u0|Λ‖2 + ‖u0|Λ‖2. (2.4)

Since Λ ⊂ J , |J | ≤ n, and using Lemma 2.5, we have

‖u|Λ − u0|Λ‖2 ≤ 2.4ε‖v0‖2 + (1 + ε)‖e‖2.

Furthermore, by definition (2.2) of v0, we have v0|Λ = 0. So, by Part 1 of Proposition 2.2,

‖u0|Λ‖2 ≤ 2.03ε‖v0‖2.

Using the last two inequalities and (2.4), we conclude that

‖u|Λ‖2 ≤ 4.43ε‖v0‖2 + (1 + ε)‖e‖2.

This is a contradiction to (2.3) so long as

ε ≤ 0.02√
log n

− ‖e‖2‖v0‖2
.

If this is true, then indeed (i) in the theorem must hold. If it is not true, then by the choice of ε, this implies
that

‖v0‖2 ≤ 100‖e‖2
√

log n.

This proves Theorem 2.1. Next we turn to the proof of Corollary 1.3.

3. IMPLEMENTATION AND EMPIRICAL PERFORMANCE OF ROMP

3.1 Running time

The Identification step of ROMP, i.e. selection of the subset J , can be done by sorting the coordinates of u in
the nonincreasing order and selecting n biggest. Many sorting algorithms such as Mergesort or Heapsort provide
running times of O(d log d).

The Regularization step of ROMP, i.e. selecting J0 ⊂ J , can be done fast by observing that J0 is an interval
in the decreasing rearrangement of coefficients. Moreover, the analysis of the algorithm shows that instead of
searching over all intervals J0, it suffices to look for J0 among O(log n) consecutive intervals with endpoints
where the magnitude of coefficients decreases by a factor of 2. (these are the sets Ak in the proof of Lemma 3.7
in11). Therefore, the Regularization step can be done in time O(n).

In addition to these costs, the k-th iteration step of ROMP involves multiplication of the d×N matrix Φ∗ by a
vector, and solving the least squares problem with the N × |I| matrix ΦI , where |I| ≤ 2k ≤ 2n. For unstructured



matrices, these tasks can be done in time dN and O(n2N) respectively. Since the submatrix of Φ when restricted
to the index set I is near an isometry, using an iterative method such as the Conjugate Gradient Method allows
us to solve the least squares method in a constant number of iterations (up to a specific accuracy.) Using such
a method then reduces the time of solving the least squares problem to just O(nN). Thus in the cases where
ROMP terminates after a fixed number of iterations, the total time to solve all required least squares problems
would be just O(nN). For structured matrices, such as partial Fourier, these times can be improved even more
using fast multiply techniques.

In other cases, however, ROMP may need more than a constant number of iterations before terminating, say
the full O(n) iterations. In this case, it may be more efficient to maintain the QR factorization of ΦI and use the
Modified Gram-Schmidt algorithm. With this method, solving all the least squares problems takes total time
just O(n2N). However, storing the QR factorization is quite costly, so in situations where storage is limited it
may be best to use the iterative methods mentioned above.

ROMP terminates in at most 2n iterations. Therefore, for unstructured matrices using the methods mentioned
above and in the interesting regime N ≥ log d, the total running time of ROMP is O(dNn). This is the same
bound as for OMP.14

3.2 Experiments

This section describes our experiments that illustrate the signal recovery power of ROMP. We experimentally
examine how many measurements N are necessary to recover various kinds of n-sparse signals in R

d using ROMP.
We also demonstrate that the number of iterations ROMP needs to recover a sparse signal is in practice at most
linear the sparsity.

First we describe the setup of our experiments. For many values of the ambient dimension d, the number
of measurements N , and the sparsity n, we reconstruct random signals using ROMP. For each set of values, we
generate an N × d Gaussian measurement matrix Φ and then perform 500 independent trials. In a given trial,
we generate an n-sparse signal v in one of two ways. In either case, we first select the support of the signal by
choosing n components uniformly at random (independent from the measurement matrix Φ). In the cases where
we wish to generate flat signals, we then set these components to one. In the cases where we wish to generate
sparse compressible signals, we set the ith component of the support to plus or minus i−1/p for a specified value
of 0 < p < 1. We then execute ROMP with the measurement vector x = Φv.

Figure 1 depicts the percentage (from the 500 trials) of sparse flat signals that were reconstructed exactly.
This plot was generated with d = 256 for various levels of sparsity n. The horizontal axis represents the number
of measurements N , and the vertical axis represents the exact recovery percentage. Our results show that
performance of ROMP is very similar to that of OMP which can be found in.14

Figure 2 demonstrates that the number of iterations needed for sparse compressible is higher than the number
needed for sparse flat signals, as one would expect. The plot shows the average number of iterations (vertical
axis) needed to recover a sparse compressible signal for various levels of sparsity n (horizontal axis). The plot
was generated for various values of the parameter p (as discussed above) with d = 10, 000 and N = 200. The plot
suggests that for smaller values of p (meaning signals that decay more rapidly) ROMP needs more iterations.

Figure 3 depicts the recovery error ‖v − v̂‖2 when ROMP was run with perturbed measurements. This
plot was generated with d = 256 for various levels of sparsity n. The horizontal axis represents the number of
measurements N , and the vertical axis represents the average normalized recovery error. Figure 3 confirms the
results of the Theorem, while also suggesting the bound may be improved by removing the

√
log n factor.
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Figure 1. The percentage of sparse flat signals exactly recovered by ROMP as a function of the number of measurements
N in dimension d = 256 for various levels of sparsity n.
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Figure 2. The number of iterations executed by ROMP as a function of the sparsity n in dimension d = 10, 000 with
N = 200 for sparse compressible signals.
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Figure 3. The error to noise ratio ‖v̂−v‖2

‖e‖2
as a function of the number of measurements N in dimension d = 256 for various

levels of sparsity n.
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Figure 4. The error to noise ratio ‖v̂−v2n‖2

‖v−vn‖1/
√

n
using a perturbed signal, as a function of the number of measurements N

in dimension d = 256 for various levels of sparsity n.
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