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Abstract

This thesis examines the rank of elliptic curves. We first examine the cor-
respondences between projective space and affine space, and use the pro-
jective point at infinity to establish the group law on elliptic curves. We
prove a section of Mordell’s Theorem to establish that the abelian group of
rational points on an elliptic curve is finitely generated. We then use ho-
momorphisms established in our proof to find a formula for the rank, and
then provide examples of computations.
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Chapter 1

Projective Geometry

Most people are familiar with Euclidean geometry, with its two axes and
rectangular coordinates that are effective in describing our everyday world.
As the name implies, this geometry is based upon the work of Euclid. In
his book The Elements, Euclid assumes a set of self-evident postulates and
axioms, and builds his geometry based upon only these [5]. It is difficult
to disagree with the postulates and axioms because they are designed to be
brief, self-evident, and assuming no prior knowledge. However, the fifth
postulate is perhaps not quite so self-evident. It states that if a straight line
intersecting two straight lines makes the interior angles on the same side
less than two right angles, the two straight lines, if produced indefinitely,
meet on that side on which the angles are less than two right angles [6: 42].
The fifth postulate is known as the parallel postulate because it essentially
states that two parallel lines never intersect. Mathematicians have long
disagreed that the parallel postulate is self-evident. Most of us have grown
up with Euclidean geometry, so it seems perfectly reasonable and obvious
that parallel lines do not intersect. However, this does not have to be the
case. By supposing that the parallel postulate is false, one can create what
are known as non-Euclidean geometries. These geometries fulfill all of Eu-
clid’s other postulates and axioms and are legitimate geometries in their
own right.

Projective geometry is one such non-Euclidean geometry. In fact, Eu-
clidean geometry is a subset of projective geometry in which one assumes
the parallel postulate. Euclidean geometry tells us that all lines intersect
at exactly one point, except for parallel lines, which do not intersect. Pro-
jective geometry does not have this last condition, and tells us all lines in-
tersect at exactly one point, including parallel lines. We say that parallel
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lines intersect at infinity. This is an extra point in addition to the points
already in Euclidean, also known as affine, space. This point at infinity
cannot be graphed in R2, but we can imagine it if we think about the ef-
fects of visual perspective in everyday life. For example, a set of parallel
train tracks intersect at the horizon at what is known as the vanishing point.
The vanishing point is our point at infinity. We can deal with this point
at infinity algebraically, and indeed it is necessary to complete some of the
group structures we will be examining. Points at infinity are not in the
affine plane, but are what distinguish affine space and projective space.

In Euclidean geometry, properties of objects are unchanged by rigid mo-
tions. Rigid motions include distances, ratios of distances, angles, and par-
allelisms. Projective geometry does not preserve these traits, but projective
transformations do preserve the type of object, incidence (whether a point
lies on a line), and ratios between points. Projective geometry has a notion
of dimension, and like Euclidean geometry, exists in any number of dimen-
sions. We denote P1 as the projective line, P2 as the projective plane, and so
on.

1.1 Correspondences Between Projective and
Affine Space

Points in Euclidean space and points in projective space have an algebraic
correspondence. We can change points from affine space to projective space
and back. Recall that projective space does not preserve lengths; thus scal-
ing is unimportant. To take this into account, we define an equivalence
relation so that [A,B,C] ∼ [λA, λB, λC] for any λ 6= 0. Note that [A,B,C]
exists in some field. Recall that projective space preserves ratios. The ra-
tios between A, B, and C are what distinguish distinct points. Thus our
notation is to write points in the projective plane as [A : B : C].

A point in the projective plane [A : B : C] is sent to (A/C,B/C) in the
Euclidean plane. This means we must deal with rational numbers. Note
that we do not have to divide through by C, but can choose to divide
through by either A or B to perform the transformation; each will result in
a different point in affine space. Thus any object in projective space can be
transformed into affine space in multiple ways. We cannot allow [0 : 0 : 0]
to be a point, because if we did, the transformation to R2 would involve di-
viding by 0. A point (x, y) in the Euclidean plane is sent to [X : Y : 1] in the
projective plane. We define points [A : B : 0] to be the points at infinity. We
can think of the projective plane as P2 = R2 ∪ {∞}. The points at infinity
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are actually P1, so we can also write P2 = R2 ∪ P1. In our later work with
elliptic curves, we will be working in projective space because we will be
incorporating points at infinity.

Now let us turn our attention to polynomials and curves. An algebraic
curve is defined to be the set of solutions to a polynomial equation in two
variables [10: 225]. The study of algebraic curves falls under the study of
algebraic geometry, which uses techniques in geometry and abstract algebra
to study systems of algebraic equations and the sets of solutions to those
equations. We talk about these solutions as being zeros of a polynomial. The
fundamental objects that algebraic geometry deals with are called varieties.
A variety is an irreducible nonempty set that cannot be written as a union
of two proper sets. Single points are affine varieties with a dimension of
zero, and dimension one varieties are curves.

We homogenize polynomials so we that can talk about an equivalence
class of polynomials. A polynomial is homogeneous of degree n if the expo-
nents of the variables in each term sum to n. That is, if each term is axiyjzk

with a being a constant, then i + j + k = n. For example, F (x, y, z) =
4y3 + 5x2y − 3xz2 is homogeneous of degree three. If we have a polyno-
mial f(x, y), we can homogenize it by inserting powers of z to make the
polynomial homogeneous. For example, y2z = x3 − 82xz2 is the homog-
enized degree three version of y2 = x3 − 82x. One can dehomogenize a
polynomial by setting z equal to one. If F is homogeneous of degree n,
then F (x, y, z) = znf(x/z, y/z) and f(x, y) = F (x, y, 1). Homogenizing
polynomials is very similar to transforming points to and from affine and
projective space; if one homogenizes an affine polynomial, we get the cor-
responding projective polynomial.

We are interested in finding points on curves, and we will later develop
a geometric approach to do so. This requires that we understand at which
points curves and lines intersect. Let us examine the intersection of a line
and a cubic. Since a line is a degree one curve and a cubic is a degree three
curve, we know that they should intersect at three points.

In most cases the three points of intersection are visually apparent. If
the line is vertical, we have two special cases: either the line intersects two
points on the curve, or it is tangent to the curve and only intersects it at
one point. In order for our method of finding points to hold in both of
these cases, we need our point at infinity. When the vertical line intersects
the curve in two points, the third point of intersection is the point at in-
finity. When the vertical line is tangent to the curve, we take into account
multiplicity of roots. There is a double root at the point of tangency, so
the intersection is counted twice. A double root plus the point at infinity
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brings us to the required three intersection points. Note that every vertical
line intersects the point at infinity.

If the line and the cubic do not appear to intersect at all in R2, we can
algebraically find that they intersect in the complex plane. This tells us that
in order to find all of the intersections between the line and the curve, we
must allow complex coordinates. However, we are interested in the ratio-
nal points on curves, not complex points. In our approach to finding in-
tersection points, we will begin with two rational roots. Complex numbers
come in pairs, so our single remaining root cannot be complex and must be
rational. Thus we will not be working with complex numbers.

We have now shown that in every case our line intersects the curve at
three points, as it should algebraically. Note that we draw our curves in R2,
but are dealing with them in Q.



Chapter 2

Elliptic Curves

If we have a connected non-singular projective curve of genus one de-
scribed by a cubic equation, we have what is known as an elliptic curve. Let
us look at the components of this definition. A connected space is a space
which we cannot represent as a union of two or more disjoint nonempty
subsets. The genus of an object can be thought of as how many ’holes’ an
object has topologically.

A sphere, with no holes, is of genus zero. A torus, with one hole, is
of genus one. Since an elliptic curve is of genus one, it is isomorphic to a
torus which, over the complex numbers, is a Riemann surface [11: 260-262].
We can look at elliptic curves over the complex numbers and other fields,
including the real numbers and the rational numbers. We are interested in
elliptic curves over the rationals.

There exist both singular and non-singular projective curves. A cubic is

(a)
Genus
0

(b)
Genus
1

(c)
Genus
2

(d)
Genus
3



6 Elliptic Curves

singular at a point (a, b) if

∂P

∂x
(a, b) = 0,

∂P

∂y
(a, b) = 0.

We say a cubic is non-singular if it has no points of singularity. When look-
ing at their graphs, singular curves can be identified if it has a cusp, a ’sharp’
point, or a node, where it intersects itself. Singular curves behave in a dif-

Figure 2.1: Examples of a cusp and a node

ferent fashion than non-singular curves, and in fact behave like conics. We
will restrict ourselves to non-singular curves.

Algebraically, an elliptic curve is a Diophantine equation of degree three
of the form

y2 = x3 + ax2 + bx+ c

where a, b and c are constants. This form of the equation is called the Weier-
strass normal form, and it is simpler than the general form of an elliptic curve
which is

y2 + a1xy + a3y = x3 + a2x
2 + a4x

4 + a6.

Since elliptic curves are projective curves, we can choose X,Y and Z axes
in the projective plane so that the equation for our curve is in Weierstrass
form. We will always assume our curves have already undergone the pro-
jective transformation necessary to obtain this simpler form, because it
is well known that any elliptic curve can be written in Weierstrass form
[10: 22-25].

We are interested in finding rational points on elliptic curves, and thus
we are interested in finding the roots of their associated cubic equations.
Points on an algebraic curve consist of coordinates which are the zeros of
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Figure 2.2: Examples of the forms in which elliptic curves can appear.

some polynomial. It has been shown that a cubic equation has only a finite
number of integer solutions, but there could be infinitely many rational
solutions, or possibly none at all [10: 6]. We are interested in discovering
which elliptic curves have rational points and how many such points exist.

2.1 The Group Law on Elliptic Curves

We will now examine how the rational points on an elliptic curve form a
group. If one begins with a finite set of solutions to the cubic equation,
there is a procedure to find more solutions, which we call adding points on
the curve. This group operation is denoted by +, since we are dealing with
an abelian group.

To add two points, P1 and P2, on an elliptic curve, we draw a line
through them. When we add a point to itself, we draw a line tangent to
the curve at that point. Out line will intersect the curve at our third point,
−P3. Note that elliptic curves are symmetric, so we can reflect−P3 over the
x-axis to obtain P3, a fourth point.

Recall our discussion of the intersections of a line and a curve. If our line
is vertical we need to take into account the point at infinity, which we will
call O, in addition to the visible points on our curve. We need O not only
to take into account all of the points of intersection, but also to complete
our group structure. We define the point at infinity as the additive identity
in our group so that P + O = P for any point P on our curve. We can see
geometrically that the operation of adding points is commutative, because
the line through P1 and P2 is the same as the line between P2 and P1. If
we have a point P3 and reflect it over the x-axis, we create its inverse, −P3,
and P + P ′ = O. We will not prove associativity here (see Silverman and
Tate [10: 19-20]), but our operation is indeed associative. Thus the rational
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Figure 2.3: Adding points on elliptic curves.

points on an elliptic curve satisfy the requirements to be a group. Note that
the point at infinity was necessary to complete our group, so we are looking
at elliptic curves in the projective plane.

2.2 Mordell’s Theorem

Now that we know our points form a group, we can examine its structure.
In 1922, Louis Mordell proved that the group of rational points on a non-
singular elliptic curve is a finitely generated abelian group. In other words,
there is a finite set of points which we can draw our lines through to create
new points which will give us all of the rational points on the elliptic curve.
Let C(Q) be the group of rational points on C.

Theorem 2.2.1 (Mordell’s Theorem). If C is an elliptic curve over Q, then the
abelian group C(Q) is finitely generated.

The proof of Mordell’s theorem uses Fermat’s method of descent. Proofs
using methods of descent require the notion of size, so we will need the idea
of the height of a rational point on an elliptic curve [10: 63].

Definition 1. Let x = m
n be a rational number written in lowest terms. Then we

define the height H(x) to be the maximum of the absolute values of the numerator
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and the denominator:

H(x) =
(m
n

)
= max{|m|, |n|}.

The height of a rational number is a positive integer.

We will define the height of a rational point P = (x, y) on a curve as the
height of its x coordinate, so that H(P ) = H(x) [10: 63].

The proof also requires an additive function, so we will define

h(P ) = logH(P )

so that h is a non-negative real number. We will now state the four lemmas
that the proof of Mordell’s Theorem requires [10: 64-65].

Lemma 2.2.2. For every real number M , the set

{P ∈ C(Q) : h(p) ≤M}

is finite.

Lemma 2.2.3. Let P0 be a fixed rational point on C. There is a constant κ0 de-
pending on P0 and on a, b, c, so that

h(P + P0) ≤ 2h(P ) + κ0

for all P ∈ C(Q).

Lemma 2.2.4. There is a constant κ, depending on a, b, c so that
h(2P ) ≥ 4h(P )− κ.

Lemma 2.2.5. The index (C(Q) : 2C(Q)) is finite.

The first three lemmas set up the descent method, and the fourth lemma
allows the proof to be completed. For the proof of the first three lemmas
see Silverman and Tate [10: 65-75]. We are interested in the fourth lemma
because it will set the foundation for our later work computing the size of
the set of rational points on elliptic curves, which is known as the rank.

Let us now begin our proof of Lemma 2.2.5. First, to ease notation, we
will rename our group of rational points on the elliptic curve C(Q) as Γ so
that (C(Q) : 2C(Q)) = (Γ : 2Γ). Let P be a point on an elliptic curve. Since
we are interested in Γ and 2Γ, we want to examine the points P and 2P .
The map P → 2P is known as the duplication map.
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Figure 2.4: Points of order two on C/Λ

Let us examine the duplication map geometrically. Recall that an elliptic
curve is isomorphic to a torus. We can examine the torus on the complex
projective plane as a lattice over the complex numbers. We call the lattice
Λ, and if C is our elliptic curve and R is our torus, then R = C/Λ.

To better understand how this lattice is a torus, one can imagine the
video arcade game ”Asteroids.” When the spaceship goes off the screen, it
comes back on the screen from the opposite side. In our lattice as in the
video game, the top and bottom edges are connected, and so are the left
and right edges. If we stretch our lattice to connect the top and bottom
edges, we have a tube. If we then stretch our tube to connect the remaining
two edges to each other, we form a torus. Note that 0 = τ = 1 + τ = 1.

Recall from basic abstract algebra that if we know how many points our
map sends to the kernel, we know that the map sends that same number of
points to any other point. On our lattice, (0, 0), 1/2τ, 1/2, and 1/2(1+ τ) are
points of order two. Since four points are in the kernel, we say that P → 2P
is a four-to-one map, or a map of degree four. To make things easier, we
can break our duplication map into two simpler pieces by composing two
maps of degree two. We will create our two maps so that they go from our
curve C to another, related, curve C̄, and then back again to C.

If we have at least one rational point of order two, we can always per-
form a change of coordinates to make that point (0, 0). From this point on,
we will be looking at the class of curves that go through the point (0, 0);
such curves have C = 0 and no constant term.
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We have that C : y2 = x3 +ax2 +bx. When define our new curve so that

C̄ : y2 = x3 + āx2 + b̄x

where ā = −2a and b̄ = a2 − 4b. Note that we can create ¯̄C, and when we
do we get

¯̄C : y2 = x3 + 4ax2 + 16bx.

If we set y = 8y and x = 4x and divide the equation by 64, we get C. Since
C and ¯̄C only differ by scaling, they are isomorphic.

We will define our map between C and C̄ so that we can relate the
points in Γ to the points in Γ̄ [10: 71-79].

Proposition 2.2.6. Let C and C̄ be the elliptic curves given by the equations

C : y2 = x3 + ax2 + bx

and
C̄ : y2 = x3 + āx2 + b̄x

where ā = −2a and b̄ = a2 − 4b.
Let T = (0, 0) ∈ C.
(a) There is a homomorphism φ : C → C̄ defined by

φ(P ) =

{(
y2

x2
, y(x2−b)

x2

)
if P = (x, y) 6= O, T

Ō if P = O or P = T.

The kernel of φ is {O, T}.
(b) There is a homomorphism ψ : C̄ → C defined by

ψ(P̄ ) =

{(
ȳ2

4x̄2
, ȳ(x̄2−b̄)

8x̄2

)
ifP̄ = (x̄, ȳ) 6= Ō, T̄

O ifP̄ = Ō or P̄ = T̄ .

The composition ψ ◦ φ : C → C is multiplication by two: ψ ◦ φ(P ) = 2P .

For the proof of this proposition, see Silverman and Tate [10: 80-82].
Now that we have our homomorphisms, we want to find out to where our
rational points are mapped. Let us examine the relationships between the
images of ψ and φ in regards to rational points.

Claim 1. The point Ō ∈ φ(Γ).

We have that Ō ∈ φ(Γ) since our homomorphism defines Ō = φ(O).
Now let us examine which rational points (x, y) in Γ are sent to T̄ =

(0, 0).
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Claim 2. The point T̄ = (0, 0) ∈ φ(Γ) if and only if b̄ = a2 − 4b is a perfect
square.

Proposition 2.2.6 tells us that

φ(T̄ ) =

(
y2

x2
,
y(x2 − b)

x2

)
.

We know that (x, y) 6= 0 since (0, 0) → O. So φ(T̄ ) = (0, 0) if and only if
x 6= 0 and y = 0. Now let us examine what is necessary for x to be rational
under these conditions. We plug y = 0 into our equation for C and get that
0 = x3 +ax2 +bx = x(x2 +ax+b). We need this to be nonzero and rational,
so we need x2 + ax + b to have a rational root. We solve for x using the
quadratic formula to find the roots and note that x is rational if and only if
x2 − 4b is a perfect square. Thus T̄ ∈ C if and only if a2 − 4b. Recall that
a2 − 4b = b̄.

Now that we have dealt with O and T , let us examine which points
P̄ = (x̄, ȳ) with x 6= 0 are in the image of φ(Γ). That is, we want to know
which rational points on C map to (x̄, ȳ).

Claim 3. Let P̄ = (x̄, ȳ) ∈ Γ̄ with x̄ 6= 0. Then P̄ ∈ φ(Γ) if and only if x̄ is the
square of a rational number.

First suppose that P̄ ∈ φ(Γ). Our definition of φ tells us that x̄ =
y2/x2 = (y/x)2, so x̄ is a square. Now suppose that x̄ is the square of a
rational number. We are working with (x̄, ȳ) ∈ Γ̄ which satisfies

ȳ2 = x̄3 − 2ax̄2 + a2x̄− 4bx̄.

Solving this for b, recalling that x̄ 6= 0, we get

x̄3 − 2ax̄2 + a2x̄− ȳ2

4x̄
= b.

We can further write this as

b =
1

4

(
(x̄2 − 2ax̄+ a2)− ȳ2

x̄

)
=

1

4

(
(x̄− a)2 − ȳ2

x̄

)
.

Our supposition is that x̄ is square of a rational number, so let x̄ = w2 with
w ∈ Q. Written like this, we see that we have a difference of squares:

1

4

(
(x̄− a)2 − ȳ2

x̄

)
=

1

4

(
(x̄− a)2 −

( ȳ
w

)2
)

=
1

4

((
x̄− a− ȳ

w

)(
x̄− a+

ȳ

w

))
.
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Let x1 = (x̄− a− ȳ/w) ∈ Q and x2 = (x̄− a+ ȳ/w) ∈ Q.
We now claim that (x1, y1) ∈ Γ where y1 = x1w, and to prove this we

want to show that y1 = (x1w)2 = x3
1 + ax2

1 + bx1. First we deal with the
right hand side, and we begin by dividing it by x2

1 so that we have

x3
1 + ax2

1 + bx1

x2
1

= x1 + a+ b/x1

= x1 + a+ x2

= x̄.

Now we divide right hand side by x2
1 to get

y1

x2
1

=
(x1w)2

x2
1

= w2

= x̄.

Thus we have proved Claim 3.
We now know that φ : Γ→ Γ̄ such that φ(x̄, ȳ) = (w2, ȳ). Now we need

to show that φ((x, y)) = (x̄, ȳ) such that

(x1, y1)→
(
y2

1

x2
1

,
y1(x2

1 − b)
x2

1

)
.

We already have that (y
x

)2
= w2 = x̄,

which takes care of the first component. For the second component we
need to show that

y1(x2
1 − b)
x2

1

= ȳ.

We have

y1(x2
1 − b)
x2

1

=
x1w(x2

1 − x1 − x1x2)

x2
1

= w(x1 − x2)

= w

(
1

2

ȳ

w
+

1

2

ȳ

w

)
= w

( ȳ
w

)
= ȳ.
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Thus we have shown that φ((x1, y1)) = (x̄, ȳ). A similar proof shows
that (x2, y2) → (x̄, ȳ), where y2 = −wx2 (see Silverman and Tate [10: 84-
85]). This is a two-to-one map, which results from the fact that rational
points on elliptic curves can be reflected over the x-axis.

We want to create a one-to-one homomorphism from this two-to-one
map. Let Q∗ be the multiplicative group of non-zero rational numbers, and
let Q∗2 be the subgroup of squares of elements of Q∗ such that

Q∗2 = {u2 : u ∈ Q∗}.

We will create a map α from Γ to Q∗/Q∗2 where

α(O) = 1 (mod Q∗2)

α(0, 0) = b (mod Q∗2)

α(x, y) = x (mod Q∗2) if x 6= 0.

We will now state the information about α, which maps points on our
curve to those points modulo squares [10: 85-86].

Proposition 2.2.7. (a) The map α : Γ→ Q∗/Q∗2 is a homomorphism.
(b) The kernel of α is the image ψ(Γ̄), and thus α induces a one-to-one homo-

morphism
Γ

ψ(Γ̄)
→ Q∗

Q∗2
.

(c) Let p1, p2, . . . , pt be the distinct primes dividing b. Then the image of α is
contained in the subgroup of Q∗/Q∗2 consisting of the elements

{±pε11 p
ε2
2 · · · p

εt
t : each εi equals 0 or 1}.

(d) The index (Γ : ψ(Γ̄)) is at most 2t+1.

For the proof of (a) see Silverman and Tate [10: 86]. For part (b), recall
that the image of ψ(Γ̄) consists of squares. Since α takes points in Γ to
Q∗/Q∗2, we can see that ψ(Γ̄) is the kernel of α. By taking Γ modulo the
kernel, ψ(Γ̄), we make the map injective.

To prove part (c), let us examine the image of α. As we have done
before, we begin by finding which rational numbers can occur as the x
coordinate of points in Γ. According to Silverman and Tate, such points
have coordinates x = m/e2 and y = n/e3 for integers m,n, and e with
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gcd (m, e) = gcd (n, e) = 1. We substitute this information into our equation
for an elliptic curve to obtain

y2 = x3 + ax2 + bx

(n/e3)2 = (m/e2)3 + a(m/e2)2 + b(m/e2)

n2/e6 = m5/e6 + am2/e4 + bm/e2

n2 = m3 + am2e2 + bme4

n2 = m(m2 + ame2 + be4).

Let d = gcd (m,m2 + ame2 + be4). Since d dividesm, it must also divide
be4 since every other term in m2 + ame2 + be4 has m in it. But since m and
e are relatively prime, d must divide b. We can write d as a product of its
prime factors, and those factors must divide either m, b or both.

We claim that every prime dividing m is to an even power, except for
possibly the primes that divide b. Suppose p1 is a prime factor of d that
does not divide b. Then p1 does not divide (m2 + ame2 + be4) and must
divide m. Since m(m2 + ame2 + be4) equals a square, p1 must be to an even
power.

Now we can write m = ±q2pε11 p
ε2
2 · · · p

εt
t where q is a rational number,

each εi is either zero or one, and p1, . . . , pt are the distinct primes dividing
b. Recall that α takes a point P on our curve and maps it to the x-coordinate
modulo squares. We can now write

α(P ) = x =
m

e2
≡ ±pε11 p

ε2
2 · · · p

εt
t (mod Q∗2).

Thus we have proved part (c) of Proposition 2.2.7.
Proving part (d) amounts to counting elements. The subgroup of part

(c) contains 2t+1 elements. From part (b), we know that our homomor-
phism, which maps Γ/ψ(Γ̄) to this subgroup, is injective. Thus the index of
ψ(Γ̄) inside Γ is finite and at most 2t+1.

The last piece of the proof of Lemma 2.2.5 is the following lemma [10: 87].

Lemma 2.2.8. Let A and B be abelian groups, and consider two homomorphisms
φ : A→ B and ψ : B → A. Suppose that

ψ ◦ φ(a) = 2a for all a ∈ A and φ ◦ ψ(b) = 2b for all b ∈ B.

Suppose further that φ(A) has a finite index in B, and ψ(B) has finite index in A.
Then 2A has finite index in A. More precisely, the index satisfies:

(A : 2A) ≤ (a : ψ(B))(B : φ(A)).
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Part (d) of Proposition 2.2.7 tells us that (Γ : ψ(Γ̄)) has a finite index.
This allows us to use Lemma 2.2.8 to state Lemma 2.2.5, that the index of
(C(Q) : 2C(Q)) is finite. Lemma 2.2.5 then completes the proof of Mordell’s
Theorem, that the abelian group of rational points on an elliptic curve is
finitely generated.

2.3 The Rank of an Elliptic Curve

Mordell’s theorem tells us we can find all of the rational points on an elliptic
curve from some finite set using our group law from Section 2.1.

A point in a group is called a torsion point if it has finite order. If all
points in a group are torsion points, that group is called a torsion group.
According to the Nagell-Lutz Theorem, rational points on elliptic curves
that are torsion points have integer coordinates [9: 391]. Mazur’s Theorem
tells us that a torsion group can contain at most sixteen points including O
[9: 391]. Torsion groups are completely understood, especially by Mazur’s
Theorem.

A group is said to be torsion-free when it contains no non-trivial torsion
elements, other than, of course, the identity. We call torsion-free groups
finitely generated free groups. A free group is a group in which every ele-
ment can be written as a finite unique linear combination of elements of a
generating set. That is, if P1, . . . Pr form a generating set for a free group G,
then every P ∈ G can be written as

P = n1P1 + · · ·+ nrPr

where the integers ni are uniquely determined by P . This gives us a group
isomorphism G ∼= Zr with r an integer that is greater than or equal to zero.

If S is the torsion subgroup of Γ, then Γ/S is the unique maximal torsion-
free quotient of Γ. Recall that Γ is a finitely generated abelian group; be-
cause of this, we can write Γ as the direct sum of its torsion subgroup and
a torsion-free subgroup so that Γ = S ⊕ G. Note that the torsion part is
finite, since each element is of finite order and it consists of a finite number
of generators. Thus we can write

S ∼= Cpν11
⊕ · · · ⊕ Cpνss

where Cpk is the cyclic group Z/pkZ. This gives us what is known as the
Structure Theorem for Finitely Generated Abelian Groups [11: 405].
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Proposition 2.3.1 (Structure Theorem). We can write any finitely generated
abelian group Γ as a direct sum of the form

Γ ∼= Cpν11
⊕ · · · ⊕ Cpνss ⊕ Zr.

We call the size of the smallest torsion-free generating set, r, the rank of
the curve. As opposed to the torsion group, the rank is not well understood.
Among many other questions, it is not known if the set of ranks of elliptic
curves over the rationals is bounded. Even though we will find a formula
for the rank, it can be very difficult to obtain the information necessary to
use the formula. We will examine various methods one can employ in the
computations, but there is no method that guarantees that we can find the
necessary information to compute the rank.

2.4 Finding a Formula for the Rank

We will begin our quest to find a formula for the rank with what we know
from Mordell’s Theorem, that we have a finite set of generators. Since every
rational point on our curve can be written as a linear combination of these
generators, for any point P belonging to Γ,

P = n1P1 + · · ·+ nrPr +m1Q1 · · ·msQs

where P1, . . . , Pr is a generating set for G, the free part of Γ, and Q1, . . . , Qs
is a generating set for S, the torsion part of Γ, and nr and ms are integers.
The ni are uniquely determined by P , while thems are determined modulo
the order of the generators.

Recall that in the proof of Mordell’s Theorem we dealt with the quotient
group Γ/2Γ. The subgroup 2Γ, written as the direct sum of its torsion parts
and free parts, looks like

2Γ ∼= 2Z⊕ · · · ⊕ 2Z⊕ 2Cpν11
⊕ 2Cpνss

with each Cpνss having finite order pνss . So our quotient group looks like

Γ

2Γ
∼=

Z
2Z
⊕ · · · ⊕ Z

2Z
⊕

Cpν11
2Cpν11

⊕ · · · ⊕
Cpνss
2Cpνss

.

We note that
Cpνii
2Cpνii

∼=
Z
2Z
∼= C2
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is cyclic of order two. We also can see that

Cpνii
2Cpνii

∼=

{
C2 if pi = 2

0 if pi 6= 2.

Let w be the number of j with pj = 2. We can write

(Γ : 2Γ) = 2r+w.

Now let us look at Γ[2], the subgroup of points belonging to Γ such that
2Q = O. Since we are dealing with a subgroup of Γ, we can write each
element of this subgroup as a linear combination of the generators. Thus
we can write 2Q = O as

2(n1P1 + · · ·+ nrPr +m1Q1 + · · ·+msQs) = O.

This equation has solutions only if ni = 0 for each i and 2mj ≡ 0 (mod p
νj
j ).

We have two cases: either p is odd or even. If p is odd and 2m ≡ 0 (mod pν),
then we must have thatm ≡ 0 (mod pν). If p is even and 2m ≡ 0 (mod 2ν),
then m ≡ 0 (mod pν−1). Thus if w is the number of j with pj = 2, then

#Γ[2] = 2w.

Recall that (Γ : 2Γ) = 2r+w. With our new information, we can write

(Γ : 2Γ) = 2r+w = 2r ·#Γ[2].

Since we have done this work in general, our new result holds for any
finitely generated abelian group of rank r.

Recall our homomorphisms φ and ψ, and recall that φ ◦ ψ is multiplica-
tion by two. We can write

(Γ : 2Γ) = (Γ : ψ ◦ φ(Γ)).

Note that Γ ≤ ψ(Γ̄) ≤ 2Γ. From abstract algebra, we have the fact that if G
is a group and A ≤ B ≤ G, then (G : A) = (G : B)(B : A). Using this, we
can write

(Γ : 2Γ) = (Γ : ψ(Γ̄))(ψ(Γ̄) : ψ ◦ φ(Γ)).

We are interested in the rightmost index because it will help us obtain our
formula for the rank.

Suppose ψ : A→ A′ and B is a subgroup of A to ease notation. Now let
us examine (ψ(A) : ψ(B)). Recall from abstract algebra the Second Isomor-
phism Theorem. [4: 97]
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Theorem 2.4.1 (The Second Isomorphism Theorem). Let G be a group, and
let A and B be subgroups of G. Then AB/B ∼= A/A ∪B.

We can apply this theorem to get

(ψ(A) : ψ(B) ∼=
A

B + ker (ψ)

∼=
A/B

(B + ker(ψ))/B

∼=
A/B

ker(ψ)/(ker(ψ) ∪B)

∼=
(A : B)

(ker(ψ) : ker(ψ)) ∩B
.

Let us use this new formula in conjunction with our formula for (Γ :
2Γ). Let A = Γ̄ and B = φ(Γ). Then

(Γ : 2Γ) = (Γ : ψ(Γ̄)(ψ(Γ̄) : ψ ◦ φ(Γ)

= (Γ : ψ(A))(ψ(A) : ψ(B))

=
(Γ : ψ(A))(A : B)

(ker(ψ) : ker(ψ) ∩B)

=
(Γ : ψ(Γ̄))(Γ̄ : φ(B))

(ker(ψ) : ker(ψ) ∩B)
.

Recall that T̄ ∈ φ(Γ) where T̄ = (0, 0) if and only if b̄ = a2 − 4b is a
square. Thus

(ker(ψ) : ker(ψ) ∩ φ(Γ)) =

{
2 if b̄ is not a square
1 if b̄ is a square.

Recall that (Γ : 2Γ) = 2r ·#Γ[2]. Recall that in Section 2.2 we found that
there are four complex points of order two. Recall that such points have
y = 0, so our equation becomes 0 = x(x2 + ax+ b). Then if a2− 4b from the
quadratic formula is a square, x is rational, giving us that all four points of
order two are rational. If a2 − 4b is not a square, then we have only two
rational points of order two: O and (0, 0). We can write this conclusion as

#Γ[2] =

{
2 if a2 − 4b is not a square
4 if a2 − 4b is a square.
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We note that

#Γ[2] · (ker(ψ) : ker(ψ) ∩ φ(Γ)) =

{
4 if a2 − 4b is not a square
4 if a2 − 4b is a square.

Thus we have

2r =
(Γ : 2Γ)

#Γ[2]
=

(Γ : ψ(Γ̄)) · (Γ̄ : φ(Γ))

(ker(ψ) : ker(ψ) ∩ φ(Γ))
.

The indices in the numerator will be each a power of two, so we will be
dealing with integers. We do not want to have to find the indices in our
future computations, so our next task is to change them to an easier to use
form. Recall our homomorphism ᾱ : Γ̄ → Q ∗ /Q∗2 [10: 91]. We showed
that ker(α) = ψ(Γ̄). So we can write

α(Γ) ∼=
Γ

ker(α)
∼=

Γ

ψ(Γ̄)
.

Thus
(Γ : ψ(Γ̄)) = #α(Γ).

Using this same concept on ᾱ, we get that

(Γ̄ : φ(Γ)) = #α(Γ).

So we can now write our formula as

2r =
#α(Γ) ·#ᾱ(Γ̄)

4
.

This is the final version of the formula we will use to calculate the rank of
an elliptic curve. Note that we need to know the number of points in α(Γ)
and ᾱ(Γ̄) in order to use this formula. We can usually find lower bounds
on these sets and thus on the rank, but it can be extremely difficult to prove
that we have found every point in the sets, which we would need in order
to know the rank exactly.



Chapter 3

Computing the Rank of Elliptic
Curves

3.1 Determining the Order of α(Γ) and ᾱ(Γ̄)

Using our formula for the rank,

2r =
#α(Γ) ·#ᾱ(Γ̄)

4
,

involves knowing how many points belong to α(Γ) and ᾱ(Γ̄). We will de-
termine an equation to tell us which rational numbers modulo squares can
occur as points on Γ. Our work can then be applied to ᾱ(Γ̄) in exactly the
same way.

According to Silverman and Tate, points on our curve have coordinates
of the form x = m/e2 and y = n/e3 [10: 92]. First suppose that m = 0. Then
(x, y) = (0, 0) and α((0, 0)) = b by how we defined our homomorphism.
This tells us that b modulo squares is always in α(Γ). If b is a square, then
we know automatically two points on Γ. Let a2 − 4b = d2 so that b =
(d2 − a2)/(−4). Then modulo squares, we have the points(

−a+ d

2
, 0

)
and

(
−a− d

2
, 0

)
.

Thus ifm = 0, we know that b ∈ α(Γ), and if it is a square, we further know
that (−a± d)/2 ∈ α(Γ).

Now suppose that m,n 6= 0. Recall from Section 2.2 that such points
satisfy

n2 = m(m2 + ame2 + be4).
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Let b1 = ± gcd (m, b), and let us choose the sign that makes it so mb1 ≥ 0.
We can then writem = b1m1 and b = b1b2 with gcd (m1, b1) = 1 andm1 ≥ 0.
When we substitute this information into the equation for our curve, we get

n2 = b1m1(b21m
2
1 + ab1m1e

2 + b1b2e
4) = b21m1(b1m

2
1 + am1e

2 + b2e
4).

We want to simplify this further, so we note that since b21 divides n2, b1
divides n. Let n = b1n1. Then

n2
1 = m1(b1m

2
1 + am1e

2 + b2e
4).

Recall that when m1 ≥ 0, we have gcd (b2,m1) = 1 and gcd (e,m) = 1.
Since m1 divides m, we also note that gcd (e,m1) = 1. From this informa-
tion we can see that m1 and b1m2

1 +am1e
2 + b2e

4 are relatively prime. If the
product of two relatively prime numbers is a square, then each of those two
numbers must also be a square. To represent this, we say that n1 = MN
where

M2 = m1 and N2 = b1m
2
1 + am1e

2 + b2e
4.

These two equations can be combined to write

N2 = b1M
4 + aM2e2 + b2e

4.

This is the version of our equation that we will use to compute the rank.
Using this equation, we know that if we begin with a point (x, y) ∈ Γ with
y 6= 0, then we can write

x =
m

e2
=
b1m1

e2
=
b1M

2

e2

and
y =

n

e3
=
b1n1

e3
=
b1MN

e3
.

From our assumption that gcd (b2,m1) = 1 and the fact that x and y are in
lowest terms, we obtain the side conditions that

gcd (M, e) = gcd (n, e) = gcd (b1, e) = gcd (b2,M) = gcd (M,N) = 1.

Thus we know what the image of α(Γ) looks like.
In order to compute the rank, we will need to find #α(Γ) and #ᾱ ¯(Γ).

We do this by first dealing with C and then working with C̄ in the same
way. For each possible factorization of b = b1b2, we write N2 = b1M

4 +
aM2e2 + b2e

4. We will then attempt to determine if each equation has a
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solution or not. Recall that b is always in α(Γ), and that we are looking for
points with m,n 6= 0 with

gcd (M, e) = gcd (N, e) = gcd (b1, e) = gcd (b2,M) = gcd (M,N) = 1.

For the most part, this will involve crunching numbers, but we will develop
techniques to allow us to obtain multiple results at once.

3.2 Computational Examples

We will go through three computational examples to demonstrate methods
that are used to find the rank. We will look at the curves y2 = x3 − 82, y2 =
x3 + 3x, and y2 = x3 + 73x. These are carefully chosen examples intended
to allow the demonstration of various ad hoc methods that we can use to
compute the rank.

Example 1. Our first example will be to find the rank of C : y2 = x3 − 82x.
Recall that the formula we use to find the rank is

2r =
#α(Γ) ·#ᾱ(Γ̄)

4
.

We will now explicitly find #α(Γ) and #ᾱ(Γ̄).
To begin finding points, we first examine C. We have that a = 0 and b =

−82. We now factor b into b = b1b2 modulo squares, and list the different
factorizations as the ordered pairs

(b1, b2) : (1,−82), (−1, 82), (2,−41), (−2, 41), (41,−2),

(−41, 2), (82,−1), (−82, 1).

For each factorization, we plug b1, b2 into N2 = b1M
4 +aM2e2 + b2e

4 to get
a list of equations:

N2 = M4 − 82e4 (3.1)
N2 = −M4 + 82e4 (3.2)
N2 = 2M4 − 41e4 (3.3)
N2 = −2M4 + 41e4 (3.4)
N2 = 41M4 − 2e4 (3.5)
N2 = −41M4 + 2e4 (3.6)
N2 = 82M4 − e4 (3.7)
N2 = −82M4 + e4. (3.8)
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We note that equations (3.5) through (3.8) have a corresponding equa-
tion in (3.1) through (3.4) where (b1, b2) = (b2, b1). If we find a solution
to one equation, we automatically know the solution to its corresponding
equation. Thus we only need to examine the first half of this list. We will
put solutions in the form (M, e,N). If an equation has a solution, then
b1 ∈ α(Γ).

First, recall that b ∈ α(Γ) automatically. This tells us without any com-
putations that equation (3.7) as well as its corresponding equation (3.2) both
have solutions. Note that α(Γ) is a group and thus needs to contain the
identity element, so equation (3.1), where b1 = 1, has a solution in addition
to its corresponding equation (3.8). So far we have

α(Γ) ⊇ {−82,−1, 1, 82}.

Now we need to examine the rest of the equations. First we try plugging
in some small numbers to see if there are any easily found solutions. In
doing so, we find that equation (3.4) has (2, 1, 3) as a solution, which tells
us that equation (3.5) also has a solution, giving us

α(Γ) ⊇ {−82,−2− 1, 1, 41, 82}.

Upon further examination, there are no more readily apparent solu-
tions. We will next develop a trick using the fact that α(Γ) is a group. Ex-
amining the group structure of α(Γ) so far, we see that it is not yet closed. If
we multiply our current elements together, we find that α(Γ) must contain
2 and −41 in order to complete the group. With the addition of these two,
we have all of the points in α(Γ).

We have found that

α(Γ) = {−82,−41,−2,−1, 1, 2, 41, 82}

and
#α(Γ) = 8.

In this case, every equation has a solution.
We next examine C̄ = x3 + 328x using the same technique. We have

b̄ = a2 − 4b = 328, which is not a square. Listing the factors of b̄ modulo
squares we have

¯(b1, b̄2) : (−1,−82), (1, 82), (2, 41), (−2,−41), (41, 2), (−41,−2),

(82, 1), (−82,−1).
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Note that we used the facts that 328 ≡ 82 (mod Q∗2), 8 ≡ 2 (mod Q∗2),
and 164 ≡ 41 (mod Q∗2). We plug each factorization into N2 = b̄1M

4 +
āM2e2 + b̄2e

4 to get:

N2 = −M4 − 82e4 (3.9)
N2 = M4 + 82e4 (3.10)
N2 = 2M4 + 41e4 (3.11)
N2 = −2M4 − 41e4 (3.12)
N2 = 41M4 + 2e4 (3.13)
N2 = −41M4 − 2e4 (3.14)
N2 = 82M4 + 2e4 (3.15)
N2 = −82M4 − 2e4 (3.16)

First we note our corresponding equations: (3.10) and (3.14), and (3.11)
and (3.13). Note that this time there are not any equations we can eliminate
with (b̄1, b̄2) = (b̄2, b̄1).

We note that if both b̄1 and b̄2 are negative, N2 would be negative. Thus
any pairs where both b̄1 and b̄2 are negative can be eliminated because they
have no solutions. In our case, we can eliminate the equations (3.9), (3.12),
(3.14), and (3.16) as not having solutions. The following is our reduced list
of equations:

N2 = M4 + 82e4 (3.17)
N2 = 2M4 + 41e4 (3.18)
N2 = 41M4 + 2e4 (3.19)
N2 = 82M4 + 2e4. (3.20)

We have that b̄1 = 328 ≡ 82 (mod Q∗2) and b̄1 = 1 are automatically in our
set, so equations (3.17) and (3.20) have solutions. By trying small numbers,
we find that both equation (3.18) and its corresponding equation (3.19) have
the solution (1, 1, 7). We have now found solutions to all of our equations
and know that

ᾱ(Γ̄) = {82, 1, 2, 41},
and thus

#ᾱ(Γ̄) = 4.

Compiling our information, we have found that #α(Γ) = 8 and #ᾱ(Γ̄) =
4. We can now plug these numbers into our equation for the rank to get

2r =
8 · 4

4
= 23.
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Thus the rank of C : y2 = x3 − 82x is three.

Example 2. Now let us find the rank of C : y2 = x3 + 3x.
Note that on C we have a = 0, and b = 3. We begin by factoring b and

writing all of the possible factors as the ordered pairs modulo squares to
obtain

(b1, b2) : (1, 3), (−1,−3), (3, 1), (−3,−1).

We plug each factorization into N2 = b1M
4 + aM2e2 + b2e

4 to get

N2 = M4 + 3e4 (3.21)
N2 = −M4 − 3e4 (3.22)
N2 = 3M4 + e4 (3.23)
N2 = −3M4 − e4. (3.24)

Immediately we see that equations (3.22) and (3.24) do not have solu-
tions because both b1 and b2 are negative. Since the remaining two equa-
tions (3.21) and (3.23) are corresponding equations, we only have to see if
one of the two equations has a solution on C. By plugging in small num-
bers, we can find that (1, 1, 2) is a solution to (3.21) and (3.23). However, we
could have known that such a solution existed without any computations
because in equation (3.21), b1 = 1. We have found that

α(Γ) = {1,−1}

and
#α(Γ) = 2.

Now we examine C̄ = x3 − 12x where b̄ = −12 ≡ −3 (mod Q∗2). We
write the factors of b̄ as the ordered pairs modulo squares

(b̄1, b̄2) : (1,−12), (−1, 12), (2,−6), (−2, 6)(3,−4), (−3, 4), (4,−3), (−4, 3),

(6,−2), (−6, 2).
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We plug each factorization into N2 = b̄1M
4 + āM2e2 + b̄2e

4 to get

N2 = M4 − 3e4 (3.25)
N2 = −M4 + 3e4 (3.26)
N2 = 2M4 − 6e4 (3.27)
N2 = −2M4 + 6e4 (3.28)
N2 = 3M4 − e4 (3.29)
N2 = −3M4 + e4 (3.30)
N2 = M4 − 3e4 (3.31)
N2 = −M4 + 3e4 (3.32)
N2 = 6M4 − 2e4 (3.33)
N2 = −6M4 + 2e4. (3.34)

We cannot immediately eliminate any equations as not having solu-
tions. As always, we do know that b1 and the identity are in α(Γ), which
tells us that equations (3.26), (3.31) and (3.32) have solutions. By plugging
in small numbers we find that (1, 1, 2) is a solution for (3.29) and (3.34), and
(1, 1, 1) is a solution for (3.31) and (3.32).

We need to develop new methods in order to check the rest of our equa-
tions. First note that if an equation does not have a solution modulo some
number, it does not have a solution at all, and that M4 ≡ e4 ≡ 1 (mod 3).
Let us look at equation (3.29) modulo three, and suppose it has a solution:

N2 ≡ −1 ≡ 2 (mod 3).

This equation does not have a solution because 2 is not a square. Similarly,
we can write equation (3.27) as

N2 ≡ −4 ≡ 2 (mod 3).

Once again, this equation does not have a solution. We look at our final
equation, (3.26), in the same way to obtain

N2 ≡ 2 (mod 3),

which also has no solutions.
With that, we have eliminated the rest of our equations. We have found

that equations (3.25), (3.28), (3.30), and (3.33) have solutions, and have
shown that the rest of the equations cannot have solutions. Thus we know
that

ᾱ(Γ̄) = {−3,−2, 1, 6}
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and
#ᾱ(Γ̄) = 4.

We now apply our equation for the rank to find

2r =
24

4
= 4.

Thus the rank of C : y2 = x3 + 3x is one.

Example 3. Now let us find the rank of C : y2 = x3 + 73x.
As before, we find the factors of b = 73, and we obtain four equations

that do not correspond. Two of the equations are subsequently eliminated
because b1 and b2 are both negative, and we know that the other two equa-
tions must have solutions because b = 1 and b = 73 are automatically in
α(Γ). So we have

α(Γ) = {1, 73}.

Now we look at C̄ : y2 = x3 − 292x. Note that −292 ≡ −73. Taking
into account that the equations with b̄1 = 1 or b̄1 = b̄ automatically have
solutions, we are left with:

N2 = −M4 − 292e4 (3.35)
N2 = 2M4 − 146e4 (3.36)
N2 = −2M4 + 146e4 (3.37)
N2 = 73M4 − 4e4. (3.38)

By plugging in small numbers, we find that (1, 2, 3) is a solution to equa-
tion (3.38). We add the b1’s in these equations as well as those in their cor-
responding equations into our set of points in ᾱ(Γ̄). Stopping here briefly,
we note that so far we have

#α(Γ) = 2

and
ᾱ(Γ̄) ⊇ {−73, 1, 2,−146}.

Recall that our equation for the rank is

2r =
#α(Γ) ·#ᾱ(Γ̄)

4
.
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Once we can prove if some of the equations either have solutions or do not
have solutions, we can narrow down what the rank can possibly be. In this
case, if we can prove that if at least one equation has no solution, the rank
must be one. If we can find one more solution, then the rank must be two,
because ᾱ(Γ̄) must have four more points in order for the equation to be
satisfied. The rank cannot be any higher because we have eight original
equations. Thus if we can learn about one more equation we find the rank
and do not have to do any more work.

In this case, we next find that (3, 1, 4) is a solution to equation (3.36) so
that b1 = 73 ∈ ᾱ(Γ̄). We do not need to explicitly find any more solutions,
because the rank of C : y2 = x3 + 73x must be two.

To determine if our equations have solutions, we either have to explic-
itly find a solution, show that one has to exist, or show that one cannot
exist. We have developed several techniques to help us with this task.

First, we noted that if two equations correspond, what we know about
one applies to the other. Often this means we only have to check half of our
equations. We next noted that if b1 and b2 are both negative, the equation
does not have a solution in the real numbers and thus does not have a
rational solution. If in our equation for C our b is positive, we immediately
know that we can use this trick and dramatically reduce the number of
equations we have to examine.

When we only have a couple of equations left, it can be useful to check
the group structure to see which points must be included in order for the
group to be closed. We then looked at equations modulo three to prove
that equations did not have solutions. We can also use this trick modulo
other numbers. For example, from Fermat’s Little Theorem we know that
M4 ≡ e4 ≡ 1 (mod 5). We then get that N2 ≡ c (mod 5) where c is an
integer. As when working in modulo three, if c is not a square, the equation
has no solutions.

One further trick is keeping track of how many equations we have
solved. It is possible to find the rank without explicitly finding every solu-
tion due to the nature of the rank formula.

Though we have a nice selection of techniques, in practice one will come
across many situations in which further ad hoc techniques must be devel-
oped. Though computing the rank of some curves is simple, there is no
known method for determining the rank that always works in general be-
cause of the difficulty of proving that we have found all of the possible
points in α(Γ) and ᾱ(Γ̄).





Chapter 4

Current Information About
Elliptic Curves

In closing, we will put elliptic curves and their ranks in context by dis-
cussing record ranks and applications of elliptic curves. So far we have
concentrated on the proof of Mordell’s Theorem and the methods used to
compute the rank. Our examples are meant to demonstrate how calculat-
ing the rank uses primarily ad hoc methods. Much about the rank is not
fully understood.

One of the Clay Mathematics Institute Millennium Prize Problems is
the Birch and Swinnerton-Dyer Conjecture [2]. An elliptic curve E has an
associated zeta function ζE(s). One version of the conjecture says s = 1 is a
zero at ζE if and only if the rank of E is greater than or equal to one. More
generally, the rank of E equals the order of vanishing of ζ at s = 1. As of
the time of writing, only special cases of this conjecture have been proven
correct.

4.1 Record and Average Ranks

The elliptic curves in our examples have low ranks, but it is possible to
construct curves with much higher ranks. It is not known what values of
the rank are possible for elliptic curves over the rationals, but many math-
ematicians informally conjecture that the rank can be arbitrarily large. It is
easier to figure out within what range the rank falls than to calculate the
exact rank. Even curves with record ranks often have a lower bound but
are not known exactly.
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The current curve of a record rank was found by Elkies in 2006 and is
of rank greater than or equal to 28 [3]. If

a = 20067762415575526585033208209338542750930230312178956502

and

b = 34481611795030556467032985690390720374855944359319180361266

008296291939448732243429,

then the curve is
y2 + xy + y = x3 − x2 − ax+ b.

The current curve with highest rank that is known exactly was found by
Elkies in 2009, and has rank 19 [3]. If

c = 31368015812338065133318565292206590792820353345

and

d = 3020388026985660873356431884295434986245220416838744935

55186062568159847

then the curve is
y2 + xy + y = x3 − x2 + cx+ d.

The curves with record ranks all contain large numbers, which demon-
strates that we would not come across these curves by accident. Indeed,
computers are used to compute these high ranks. Though such computer
programs use different methods than the one we used, they similarly in-
volve solving linear equations.

While we might not know how high ranks can be, we do have informa-
tion about how many high-rank curves exist. In 1997, Nagao found that
there are infinitely many elliptic curves over Q with a non-trivial rational
2-torsion point and with rank greater than or equal to six [7]. Though it is
possible to construct high-rank curves, the probability of randomly coming
across a high-rank curve is very low. In fact, Bhargava and Shankar proved
that the average rank of elliptic curves is bounded, and is at most 1.5 [1].
Thus the majority of elliptic curves have small ranks.

4.2 Applications of Elliptic Curves

It is valuable to mention that there are broader applications of elliptic curves
beyond calculations of the rank, particularly in the study of cryptography
and Fermat’s Last Theorem.
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4.2.1 Elliptic Curve Cryptography

Cryptography is the study and practice of transmitting data securely. New
techniques are constantly being developed in order to continually keep in-
formation secure. Elliptic curve cryptography, first presented in 1985, has
over time remained resilient in the face of new attacks [8]. In addition, it
uses fewer bits and is faster in many situations than other cryptographic
systems [11: 159]. The majority of cryptographic systems use the discrete
logarithm problem. This is the difficulty of finding an integer k such that
ak ≡ b (mod p). The integers a and b could belong to any group. If our
group is an elliptic curve, then a and b are points on that curve. The curves
used in cryptography are chosen so that the discrete logarithm problem is
difficult on them. Note that ak ≡ b (mod p) is written multiplicatively, but
in the case of elliptic curves we use addition.

4.2.2 Fermat’s Last Theorem

A famous mathematical application of elliptic curves is their use in the
proof of Fermat’s Last Theorem. Fermat’s Last Theorem, conjectured by
Pierre de Fermat in 1637, says that the equation an + bn = cn has no solu-
tions in positive integers if n ≥ 3. Over the years, many mathematicians
worked on this problem unsuccessfully, though much of their work built
the foundation for the final proof.

In 1986, Gerhard Frey suggested what would be the ultimately success-
ful strategy. We will go into a sketch of the proof. Frey suggested using
what is now known as the Frey curve: y2 = x(x + Ap)(x − Bp) where
(A,B,C) is a supposed solution to Fermat’s equation and p is a prime. Frey
conjectured that a curve such as the Frey curve could not exist. In 1986, Ken
Ribet proved that the Frey curve, if it exists, is not modular. Andrew Wiles
then proved that curves in the special class of elliptic curves we deal with
must all be modular. Thus ap + bp = cp has no nonzero integer solutions,
and neither does Fermat’s equation.

Although Fermat’s Last Theorem itself is mostly just a curiosity with
no applications, its proof greatly stimulated the study of algebraic number
theory. A great number of new techniques were developed to prove the
many theorems that lead to the final result.
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