
Claremont Colleges
Scholarship @ Claremont

CMC Faculty Publications and Research CMC Faculty Scholarship

1-1-2003

Software Requirements Specification of A
University Class Scheduler
Sergiu M. Dascalu
University of Nevada - Reno

Fredrick C. Harris Jr.
University of Nevada - Reno

Deanna Needell
Claremont McKenna College

Jeff A. Stuart
University of Nevada - Reno

Tamara C. Thiel
University of Nevada - Reno

This Conference Proceeding is brought to you for free and open access by the CMC Faculty Scholarship at Scholarship @ Claremont. It has been
accepted for inclusion in CMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information,
please contact scholarship@cuc.claremont.edu.

Recommended Citation
Dascalu, M., Harris, F. Jr., Needell, D., Stuart, J., Thiel, T., "Software requirements specification for a university class scheduler", Proc.
2003 International Conference on SERP, June 2003, Monte Carlo Resort, Las Vegas, NV.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/cmc_fac_pub
http://scholarship.claremont.edu/cmc_faculty
mailto:scholarship@cuc.claremont.edu

Software Requirements Specification of
A University Class Scheduler

Deanna M. Needell Jeff A. Stuart Tamara C. Thiel Sergiu M. Dascalu Frederick C. Harris, Jr.

Department of Computer Science

University of Nevada, Reno
1664 N. Virginia St.

Reno, NV, 89557, USA

Abstract

The University Class Scheduler (UCS) presented
in this paper is a novel scheduling tool intended
to be used by universities to schedule classes into
classrooms. In essence, UCS allows university
administrators to enter relevant college and
building information, schedule the input classes
(courses) into input classrooms, and create web
pages that provide detailed schedule information
on a semester-by-semester basis. The UCS, which
performs the scheduling of classes according to a
number of user-selected parameters, can be
easily adapted for applications outside the
academic realm. This paper presents the main
aspects of the University Class Scheduler’s
UML-based specification, gives details of the
UCS’ current development status, and points to a
series of possible extensions that we intend to
investigate in the near future.

Keywords: class scheduler, software tool,
requirements specification, use cases, scenarios,
class diagram, UML.

1 Introduction

The University Class Scheduler (UCS) that
we have recently developed is a software product
intended to be used by universities to schedule
classes (courses) offered during a semester into
available classrooms. The focus of this project
has been on academic scheduling for universities,
yet due to its flexible design the UCS can be
easily adapted for applications outside the
academic realm. The UCS program allows
university administrators to input relevant

college, department, and building information,
schedule courses into classrooms, and create web
pages linked to appropriate university pages
(specifically, college and department web pages).
Thus, via web posting, the UCS makes available
to the public detailed information on the
scheduling of classes.

The UCS performs the scheduling based on
certain parameters selected by the user, as
explained later in the paper. Besides its
scheduling algorithms, UCS incorporates a
generic XML parser that allows the manipulation
of large data files. In particular, the XML parser
is used to translate raw data files into XML-
defined storage files, thus reducing or eliminating
the user’s highly tedious and time consuming
task of entering large amounts of data.

There are rather few similar products
currently on the market, for instance the Astra
Schedule [1] and the Book King Online Sche-
duling Software [2]. However, these products are
more complex than ours and thus require more
extensive training of the user. Also, particularly
important, these products are rather expensive.
We have embarked in the UCS project with the
goal of developing a software product that
provides a simpler yet very efficient and flexible
class scheduler tool that can be made more easily
available to universities across the nation.

For development purposes we have followed
a software engineering approach along the lines
described in [3] and have used extensively the
Unified Modeling Language (UML) [4, 5] for
representing the model of the UCS software. The
specifications of the UCS’ requirements as well
as the descriptions of use cases and scenarios
have been written following the guidelines
presented in [6]. We have found that by

following a rigorous development process and by
relying on the UML as modeling notation both
the UCS’ functionality and overall architecture
have not only been better understood, defined,
and represented but also better planned to
accommodate future requirements.

This paper, in its remaining part, is structured
as follows: Section 2 presents a brief description
of the UCS, Section 3 describes the main
functional and non-functional requirements of the
scheduler, Section 4 provides details on use cases
and scenarios, Section 5 presents the class
diagram of the UCS, Section 6 reports on the
current status of the UCS tool, and Section 7
completes the paper with a number of pointers to
future work.

2 General Description

The UCS is intended to provide a means for
entering the necessary information for class
scheduling, viewing and modifying this
information, storing the information into XML-
defined files, parsing XML files into ready-to-
process data, scheduling classes into classrooms
based on user-selected parameters, and creating
web pages with scheduling details about courses
offered and their assigned classrooms.

From an organizational point of view the
UCS software tool has two main components: the
scheduler itself and the publisher of the schedule.
The first component, the scheduler, is used by the
administrators of each university department to
enter, either manually or by loading data from
existing files, the department’s classes, times,
and professors. Information on buildings and
classrooms is also entered. As soon as all the
necessary information is entered into the system
the UCS can schedule the specified classes into
available classrooms without overlap, based on
certain parameters selected by the user.
Specifically, these parameters are classroom size,
classroom type (e.g., regular room, distance
education room, or “smart” room), and distance
from department. Once the scheduling is
complete, the second component of the UCS, the
publisher, can be invoked to create an HTML file
with detailed schedule information and pointers
to appropriate web pages. Such pointers include
links to the University’s online map system, as
well as to department and professor home pages.

3 Requirements Specification

Following the guidelines and notations
presented in [6], the requirements for the UCS
have been specified as detailed below.

3.1 Functional Requirements

The main functional requirements of the
UCS are the following:

1. The UCS shall provide a means for entering

and storing:
a. college information;
b. department information;
c. professor information;
d. class information;
e. building information;
f. classroom information.

2. The UCS shall schedule, if possible, the
classes into classrooms.

3. The UCS shall take into consideration for
generating the schedule the following
parameters: classroom size, classroom type,
and distance from the department. These
parameters shall be selected by the user from
a list of pre-defined values.

4. The UCS shall save the schedule in a format
that can be used to generate a University
Semester Catalog that is readable by humans.

5. The UCS shall notify the user if no valid
schedule can be generated and shall indicated
the causes that prevent the generation of a
valid schedule.

6. The UCS shall write the schedule containing
class and classroom information to a file that
can be read by supplied web pages so that
these can be posted onto the university web
server.

3.2 Non-functional Requirements

The most important non-functional require-
ments for the UCS are the following:

1. The UCS shall be written in C++.
2. The interfaces of the UCS shall be

implemented using the QT Non-Commercial
Toolkit [7].

3. The UCS shall store its files using XML tags
[8].

4. The UCS will be platform independent.

4 Use Case Modeling

 As part of the modeling process, the
functionality of the UCS has been defined using
use cases and scenarios. At a high level of
abstraction the entire functionality of the class
scheduler is captured in the use case diagram
shown in Figure 1, a couple of major parts of
UCS functionality are presented in use cases
shown in Figures 2 and 3, and examples of
specific ways of using the software are provided
as scenarios in Figures 4 and 5. According to
Rumbaugh, a use case is “a specification of
sequences of actions, including variant sequences
and error sequences, that a system, subsystem, or
class can perform by interacting with outside
actors” [9]. One the other hand, as pointed out by
Booch, “scenarios are to uses cases as instances
are to classes, meaning that a scenario is
basically one instance of a use case” [5]. We
have relied extensively on use cases and
scenarios to define the expected functionality of

the UCS and better describe its intended
behavior.

4.1 Use Case Diagram

The use case diagram shown in Figure 1

depicts the interactions between the actors (the
staff, the students, and the professors of the
university) and the UCS software system. First,
the department staff will enter information about
professors, colleges, buildings, departments,
classes, and classrooms. Once this is done, a
university administrator will use the UCS to
generate the classroom schedule. The university
catalog creators will then use the generated
classroom schedule to create the semester class
catalog. The university webmaster will post the
web pages and the generated schedule file to the
university server. Consequently, the students, the
professors and, generally speaking, the public,
can view these web pages.

Fig. 1 Use Case Diagram of the UCS

4.2 Detailed Use Cases

Due to space limitations we present in the
following only two examples of use cases and
two sample scenarios. Specifically, with respect
to use cases, Figure 2 depicts the “Enter class
information” use case, in which relevant data
pertaining to a class (course) offered during the
semester is entered, while Figure 3 shows the
“Create classroom schedule” scenario. It is
worth noting that each use case has a primary
scenario which describes the normal, most
common way of using the UCS software to
perform the respective use case, as well as a
number of secondary scenarios, which describe
the less likely to occur, less common, or
“exceptional” execution paths of the use case.

Use Case: Enter Class Information

ID: UC5
Actor:
Department staff
Precondition:

1. Class information needs to be entered
or modified.

Flow of events:
1. The use case starts before scheduling

is done.
2. The system prompts the user to enter

the following class information:
college name, department name, class
number, call number, professor name,
number of students, days and times
for lectures, classroom type, lab
information, if any, and cross-list
information, if any.

3. The user enters all the above class
information.

4. The system validates the entry.
5. The system saves the information

entered to file.
Secondary scenarios:
Entered Class Already Exists
Required Information Is Missing
User Cancels Enter Class Information
Postcondition:

1. Entered class information is saved.

Fig. 2 UCS Use Case “Enter Class Information”

Use Case: Create Classroom Schedule

ID: UC7
Actor:
University administrator
Precondition:

1. All semester information has been
entered.

Flow of events:

1. The use case starts after all semester
information has been entered.

2. The system prompts the user to
choose which parameter(s) he or she
wishes to schedule by.

3. The system schedules, as much as
possible, the classes into classrooms.

4. The system notifies the user whether
it has successfully scheduled all
classes into classrooms.

5. The system saves the schedule even
if it was not successful (in all cases,
the portion that is successfully
scheduled is saved).

Secondary Scenarios:
No Valid Schedule Solution Is Possible
Ran Out of Memory
User Cancels Schedule Creation
Postconditions:

1. A schedule file is created.
2. The user knows whether the schedule

was created successfully or if
changes to the information are
needed.

Fig. 3 UCS Use Case “Create Classroom Schedule”

4.3 Scenarios

For the “Enter class information” use case
described above both the primary scenario and a
secondary scenario are presented in the figures
that follow. More exactly, Figure 4 presents the
normal scenario of the “Enter class information”
use case, while Figure 5 shows the “Entered
class already exists” scenario of this particular
use case.

Scenario for Use Case:
Enter Class Information

Primary scenario

Scenario ID: S5.1

Actor:
Department staff
Precondition:
1. Class information needs to be entered or
 modified.

Flow of events:

1. When the user chooses to enter class

information, a window is displayed with
fields in which to enter or to select for
existing values the following class
information: college name, department
name, class number, call number, professor
name, number of students, and classroom
type. There are also fields to enter or select
the date and time(s) of both lecture and, if
there is one, the lab. If there is a lab, fields
allowing the user enter or select classroom
parameters for the lab are also displayed.

2. The user enters class information by
providing all the items indicated in step 1.

3. The user clicks the “Done” button. (Note
that if the user clicks the “Cancel” button,
the scenario “User Cancels Enter Class
Information” takes place.)

4. The system validates the class information
entry. (Note that if the entry is invalid,
either the scenario “Entered Class Already
Exists”or the scenario “Required
Information Is Missing” takes place.)

5. The system saves the class information to
file.

Postcondition:
1. Entered class information is saved.

Fig. 4 Primary Scenario of the “Enter Class

Information” Use Case

Scenario for Use Case:
Enter Class Information

Secondary scenario:
Entered Class Already Exists

Scenario ID: S5.2

Actor:
Department staff
Precondition:
1. Class information needs to be entered or
 modified.

Flow of events:

1. This scenario starts following step 3 of

scenario S5.1, after the user clicks “Done”.
If the program detects that the class entered
already exists, the program will display an
error message and prompt the user for a
valid class name and department.

 2. The program detects that a class with the
same class name and same department

 has previously been entered.
 3. An error message is displayed notifying the

user that the entered class already exists.
The user is asked to enter a different class
name or department.

4. The user clicks the “OK” button.
5. The window for the use case “Enter Class

Information” is displayed, as indicated in
step 1 of scenario S5.1. The user has the
option of either updating the required
information in the fields provided (and
continue as in scenario S5.1) or clicking the
“Cancel” button. In the latter case the
scenario “User Cancels Enter Class
Information” takes place from here.

Postcondition:

1. Class information remains unchanged.

Fig. 5 A Secondary Scenario of the “Enter

Class Information” Use Case

5 Class Diagram

 The class diagram of UCS is presented in
Figure 6. This diagram has been developed
iteratively along the guidelines suggested in [6].
Specifically, we have developed first an analysis
class diagram, with the less detailed analysis
classes indicated.

 Then, the class diagram has evolved into a
structural model for the UCS that contains the
more refined design classes of the system. The
variant we present in Figure 6 is the design class
diagram of UCS, showing the complete high
level architecture of the UCS software and
details on attributes, operations, relationships,
and multiplicity constraints.

Fig. 6 The Class Diagram of the UCS

6 Current Status

 Although we have focused in this paper on
the specification of the UCS software, we note
that the development of the UCS has already led
to a first, fully operational version of the
scheduler. This version has been written in C++,
and its interfaces were implemented using the
QT Non-Commercial Toolkit [7]. In addition,
UCS stores all its data files in XML format [8].
 The UCS has been successfully tested at the
University of Nevada, Reno using information
pertaining to the last semester. The results of the
complete scheduling were more than
encouraging: the UCS has provided a better
allocation of classes to classrooms than the one
previously used (done manually). In particular,
more classes were assigned to classrooms in
buildings belonging to the offering departments,
thus shortening considerably the distances bet-
ween the departments that offer the courses and
the locations where the courses are delivered.
 More details on the design, implementation,
integration, and testing of the UCS are beyond
the scope of this paper. For more information on
the UCS the reader is invited to have a look at
[10].

7 Conclusions

 The UCS tool whose specification has been
presented in this paper provides a simple but
efficient means of scheduling university classes
into classrooms. We believe that the UCS not
only represents a useful, practical tool, but also a
research proof of concept based on which many
possible extensions to this project can be further
investigated.
 A very useful addition to the UCS would be
the inclusion of time scheduling. Thus, the UCS
would schedule classes not only into classrooms
but also into time slots. Also, the UCS could
suggest optimal courses of actions for resolving

scheduling conflicts of various types, including
time conflicts. Another possible extension would
be to elaborate the web pages associated with
UCS so that they could link to campus maps,
campus images, and so forth. Enhancement of
scheduling algorithms is another potential area
of research and development for the UCS.
Finally, the UCS could evolve into a generic
scheduler that could be used in numerous
applications outside the university environment.

References

[1] Ad Astra Information Systems, Astra

Schedule, accessed May 4, 2003 at
http://www.aais.com/as.html

[2] Book King Online Scheduling Software,
accessed May 4, 2003 at
http://www.bookking.ca/index.asp

[3] I. Jacobson, G. Booch, and J. Rumbaugh,
The Unified Software Development Process,
Addison-Wesley, 1999.

[4] OMG’s UML Resource Page, accessed
April 25, 2003 at http://www.omg.org/uml.

[5] G. Booch, J. Rumbaugh, and I. Jacobson,
The Unified Modeling Language User
Guide, Addison-Wesley, 1998.

[6] J. Arlow and I. Neustadt, UML and the
Unified Process: Practical Object-Oriented
Analysis & Design, Addison-Wesley, 2002.

[7] Trolltech AS, QT Overview, accessed at
www.trolltech.com/products/qt/index.html,
May 4, 2003.

 [8] E. R. Harold and W. S. Means, XML in A
Nutshell, 2nd Ed., O’Reilly and Associates,
Inc., 2002.

[9] J. Rumbaugh, I. Jacobson, and G. Booch,
The Unified Modeling Language Reference
Manual, Addison-Wesley, 1999.

[10] Group 8 UCS Project web-site, accessed at
http://www.cs.unr.edu/~needell/cs426/, May
4, 2003.

	Claremont Colleges
	Scholarship @ Claremont
	1-1-2003

	Software Requirements Specification of A University Class Scheduler
	Sergiu M. Dascalu
	Fredrick C. Harris Jr.
	Deanna Needell
	Jeff A. Stuart
	Tamara C. Thiel
	Recommended Citation

