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Topics in Compressed Sensing

Abstract

Compressed sensing has a wide range of applications that include error correc-

tion, imaging, radar and many more. Given a sparse signal in a high dimensional

space, one wishes to reconstruct that signal accurately and efficiently from a number

of linear measurements much less than its actual dimension. Although in theory it

is clear that this is possible, the difficulty lies in the construction of algorithms that

perform the recovery efficiently, as well as determining which kind of linear measure-

ments allow for the reconstruction. There have been two distinct major approaches

to sparse recovery that each present different benefits and shortcomings. The first,

ℓ1-minimization methods such as Basis Pursuit, use a linear optimization problem to

recover the signal. This method provides strong guarantees and stability, but relies on

Linear Programming, whose methods do not yet have strong polynomially bounded

runtimes. The second approach uses greedy methods that compute the support of

the signal iteratively. These methods are usually much faster than Basis Pursuit, but

until recently had not been able to provide the same guarantees. This gap between

the two approaches was bridged when we developed and analyzed the greedy algo-

rithm Regularized Orthogonal Matching Pursuit (ROMP). ROMP provides similar

guarantees to Basis Pursuit as well as the speed of a greedy algorithm. Our more

recent algorithm Compressive Sampling Matching Pursuit (CoSaMP) improves upon

these guarantees, and is optimal in every important aspect. Recent work has also

been done on a reweighted version of the ℓ1-minimization method that improves upon

the original version in the recovery error and measurement requirements. These al-

gorithms are discussed in detail, as well as previous work that serves as a foundation

for sparse signal recovery.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Main Idea

The phrase compressed sensing refers to the problem of realizing a sparse input x

using few linear measurements that possess some incoherence properties. The field

originated recently from an unfavorable opinion about the current signal compression

methodology. The conventional scheme in signal processing, acquiring the entire sig-

nal and then compressing it, was questioned by Donoho [20]. Indeed, this technique

uses tremendous resources to acquire often very large signals, just to throw away

information during compression. The natural question then is whether we can com-

bine these two processes, and directly sense the signal or its essential parts using few

linear measurements. Recent work in compressed sensing has answered this question

in positive, and the field continues to rapidly produce encouraging results.

The key objective in compressed sensing (also referred to as sparse signal recovery

or compressive sampling) is to reconstruct a signal accurately and efficiently from a
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set of few non-adaptive linear measurements. Signals in this context are vectors,

many of which in the applications will represent images. Of course, linear algebra

easily shows that in general it is not possible to reconstruct an arbitrary signal from

an incomplete set of linear measurements. Thus one must restrict the domain in

which the signals belong. To this end, we consider sparse signals, those with few

non-zero coordinates. It is now known that many signals such as real-world images

or audio signals are sparse either in this sense, or with respect to a different basis.

Since sparse signals lie in a lower dimensional space, one would think intuitively

that they may be represented by few linear measurements. This is indeed correct,

but the difficulty is determining in which lower dimensional subspace such a signal

lies. That is, we may know that the signal has few non-zero coordinates, but we do

not know which coordinates those are. It is thus clear that we may not reconstruct

such signals using a simple linear operator, and that the recovery requires more

sophisticated techniques. The compressed sensing field has provided many recovery

algorithms, most with provable as well as empirical results.

There are several important traits that an optimal recovery algorithm must pos-

sess. The algorithm needs to be fast, so that it can efficiently recover signals in

practice. Of course, minimal storage requirements as well would be ideal. The al-

gorithm should provide uniform guarantees, meaning that given a specific method

of acquiring linear measurements, the algorithm recovers all sparse signals (possibly

with high probability). Ideally, the algorithm would require as few linear measure-

ments as possible. Linear algebra shows us that if a signal has s non-zero coordinates,

then recovery is theoretically possible with just 2s measurements. However, recovery

using only this property would require searching through the exponentially large set

of all possible lower dimensional subspaces, and so in practice is not numerically fea-
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sible. Thus in the more realistic setting, we may need slightly more measurements.

Finally, we wish our ideal recovery algorithm to be stable. This means that if the

signal or its measurements are perturbed slightly, then the recovery should still be

approximately accurate. This is essential, since in practice we often encounter not

only noisy signals or measurements, but also signals that are not exactly sparse, but

close to being sparse. For example, compressible signals are those whose coefficients

decay according to some power law. Many signals in practice are compressible, such

as smooth signals or signals whose variations are bounded.

1.1.2 Problem Formulation

Since we will be looking at the reconstruction of sparse vectors, we need a way to

quantify the sparsity of a vector. We say that a d-dimensional signal x is s-sparse if

it has s or fewer non-zero coordinates:

x ∈ R
d, ‖x‖0 := |supp(x)| ≤ s≪ d,

where we note that ‖ · ‖0 is a quasi-norm. For 1 ≤ p < ∞, we denote by ‖ · ‖p the

usual p-norm,

‖x‖p :=
( d∑

i=1

|xi|p
)1/p

,

and ‖x‖∞ = max |xi|. In practice, signals are often encountered that are not exactly

sparse, but whose coefficients decay rapidly. As mentioned, compressible signals are

those satisfying a power law decay:

|x∗
i | ≤ Ri(−1/q), (1.1.1)
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where x∗ is a non-increasing rearrangement of x, R is some positive constant, and

0 < q < 1. Note that in particular, sparse signals are compressible.

Sparse recovery algorithms reconstruct sparse signals from a small set of non-

adaptive linear measurements. Each measurement can be viewed as an inner product

with the signal x ∈ Rd and some vector φi ∈ Rd (or in Cd)1. If we collect m

measurements in this way, we may then consider the m × d measurement matrix Φ

whose columns are the vectors φi. We can then view the sparse recovery problem as

the recovery of the s-sparse signal x ∈ R
d from its measurement vector u = Φx ∈ R

m.

One of the theoretically simplest ways to recover such a vector from its measurements

u = Φx is to solve the ℓ0-minimization problem

min
z∈Rd
‖z‖0 subject to Φz = u. (1.1.2)

If x is s-sparse and Φ is one-to-one on all 2s-sparse vectors, then the minimizer

to (1.1.2) must be the signal x. Indeed, if the minimizer is z, then since x is a feasible

solution, z must be s-sparse as well. Since Φz = u, z − x must be in the kernel of Φ.

But z − x is 2s-sparse, and since Φ is one-to-one on all such vectors, we must have

that z = x. Thus this ℓ0-minimization problem works perfectly in theory. However,

it is not numerically feasible and is NP-Hard in general [49, Sec. 9.2.2].

Fortunately, work in compressed sensing has provided us numerically feasible

alternatives to this NP-Hard problem. One major approach, Basis Pursuit, relaxes

the ℓ0-minimization problem to an ℓ1-minimization problem. Basis Pursuit requires a

condition on the measurement matrix Φ stronger than the simple injectivity on sparse

vectors, but many kinds of matrices have been shown to satisfy this condition with

1Although similar results hold for measurements taken over the complex numbers, for simplicity

of presentation we only consider real numbers throughout.
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number of measurements m = s logO(1) d. The ℓ1-minimization approach provides

uniform guarantees and stability, but relies on methods in Linear Programming.

Since there is yet no known strongly polynomial bound, or more importantly, no linear

bound on the runtime of such methods, these approaches are often not optimally fast.

The other main approach uses greedy algorithms such as Orthogonal Matching

Pursuit [62], Stagewise Orthogonal Matching Pursuit [23], or Iterative Threshold-

ing [27, 3]. Many of these methods calculate the support of the signal iteratively.

Most of these approaches work for specific measurement matrices with number of

measurements m = O(s log d). Once the support S of the signal has been calculated,

the signal x can be reconstructed from its measurements u = Φx as x = (ΦS)†u,

where ΦS denotes the measurement matrix Φ restricted to the columns indexed by

S and † denotes the pseudoinverse. Greedy approaches are fast, both in theory and

practice, but have lacked both stability and uniform guarantees.

There has thus existed a gap between the approaches. The ℓ1-minimization meth-

ods have provided strong guarantees but have lacked in optimally fast runtimes, while

greedy algorithms although fast, have lacked in optimal guarantees. We bridged this

gap in the two approaches with our new algorithm Regularized Orthogonal Matching

Pursuit (ROMP). ROMP provides similar uniform guarantees and stability results

as those of Basis Pursuit, but is an iterative algorithm so also provides the speed of

the greedy approach. Our next algorithm, Compressive Sampling Matching Pursuit

(CoSaMP) improves upon the results of ROMP, and is the first algorithm in sparse

recovery to be provably optimal in every important aspect.
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1.2 Applications

The sparse recovery problem has applications in many areas, ranging from medicine

and coding theory to astronomy and geophysics. Sparse signals arise in practice in

very natural ways, so compressed sensing lends itself well to many settings. Three

direct applications are error correction, imaging, and radar.

1.2.1 Error Correction

When signals are sent from one party to another, the signal is usually encoded and

gathers errors. Because the errors usually occur in few places, sparse recovery can be

used to reconstruct the signal from the corrupted encoded data. This error correction

problem is a classic problem in coding theory. Coding theory usually assumes the data

values live in some finite field, but there are many practical applications for encoding

over the continuous reals. In digital communications, for example, one wishes to

protect results of onboard computations that are real-valued. These computations

are performed by circuits that experience faults caused by effects of the outside world.

This and many other examples are difficult real-world problems of error correction.

The error correction problem is formulated as follows. Consider a m-dimensional

input vector f ∈ Rm that we wish to transmit reliably to a remote receiver. In coding

theory, this vector is referred to as the “plaintext.” We transmit the measurements

z = Af (or “ciphertext”) where A is the d ×m measurement matrix, or the linear

code. It is clear that if the linear code A has full rank, we can recover the input

vector f from the ciphertext z. But as is often the case in practice, we consider the

setting where the ciphertext z has been corrupted. We then wish to reconstruct the

input signal f from the corrupted measurements z′ = Af + e where e ∈ RN is the

sparse error vector. To realize this in the usual compressed sensing setting, consider
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a matrix B whose kernel is the range of A. Apply B to both sides of the equation

z′ = Af + e to get Bz′ = Be. Set y = Bz′ and the problem becomes reconstructing

the sparse vector e from its linear measurements y. Once we have recovered the error

vector e, we have access to the actual measurements Af and since A is full rank can

recover the input signal f .

1.2.2 Imaging

Many images both in nature and otherwise are sparse with respect to some basis.

Because of this, many applications in imaging are able to take advantage of the tools

provided by Compressed Sensing. The typical digital camera today records every

pixel in an image before compressing that data and storing the compressed image.

Due to the use of silicon, everyday digital cameras today can operate in the megapixel

range. A natural question asks why we need to acquire this abundance of data, just

to throw most of it away immediately. This notion sparked the emerging theory of

Compressive Imaging. In this new framework, the idea is to directly acquire random

linear measurements of an image without the burdensome step of capturing every

pixel initially.

Several issues from this of course arise. The first problem is how to reconstruct the

image from its random linear measurements. The solution to this problem is provided

by Compressed Sensing. The next issue lies in actually sampling the random linear

measurements without first acquiring the entire image. Researchers [25] are working

on the construction of a device to do just that. Coined the “single-pixel” compressive

sampling camera, this camera consists of a digital micromirror device (DMD), two

lenses, a single photon detector and an analog-to-digital (A/D) converter. The first

lens focuses the light onto the DMD. Each mirror on the DMD corresponds to a pixel
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in the image, and can be tilted toward or away from the second lens. This operation

is analogous to creating inner products with random vectors. This light is then

collected by the lens and focused onto the photon detector where the measurement

is computed. This optical computer computes the random linear measurements of

the image in this way and passes those to a digital computer that reconstructs the

image.

Since this camera utilizes only one photon detector, its design is a stark contrast to

the usual large photon detector array in most cameras. The single-pixel compressive

sampling camera also operates at a much broader range of the light spectrum than

traditional cameras that use silicon. For example, because silicon cannot capture a

wide range of the spectrum, a digital camera to capture infrared images is much more

complex and costly.

Compressed Sensing is also used in medical imaging, in particular with magnetic

resonance (MR) images which sample Fourier coefficients of an image. MR images

are implicitly sparse and can thus capitalize on the theories of Compressed Sensing.

Some MR images such as angiograms are sparse in their actual pixel representation,

whereas more complicated MR images are sparse with respect to some other basis,

such as the wavelet Fourier basis. MR imaging in general is very time costly, as the

speed of data collection is limited by physical and physiological constraints. Thus

it is extremely beneficial to reduce the number of measurements collected without

sacrificing quality of the MR image. Compressed Sensing again provides exactly this,

and many Compressed Sensing algorithms have been specifically designed with MR

images in mind [36, 46].
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1.2.3 Radar

There are many other applications to compressed sensing (see [13]), and one addi-

tional application is Compressive Radar Imaging. A standard radar system transmits

some sort of pulse (for example a linear chirp), and then uses a matched filter to corre-

late the signal received with that pulse. The receiver uses a pulse compression system

along with a high-rate analog to digital (A/D) converter. This conventional approach

is not only complicated and expensive, but the resolution of targets in this classical

framework is limited by the radar uncertainty principle. Compressive Radar Imag-

ing tackles these problems by discretizing the time-frequency plane into a grid and

considering each possible target scene as a matrix. If the number of targets is small

enough, then the grid will be sparsely populated, and we can employ Compressed

Sensing techniques to recover the target scene. See [1, 39] for more details.
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Chapter 2

Major Algorithmic Approaches

Compressed Sensing has provided many methods to solve the sparse recovery prob-

lem and thus its applications. There are two major algorithmic approaches to this

problem. The first relies on an optimization problem which can be solved using lin-

ear programming, while the second approach takes advantage of the speed of greedy

algorithms. Both approaches have advantages and disadvantages which are discussed

throughout this chapter along with descriptions of the algorithms themselves. First

we discuss Basis Pursuit, a method that utilizes a linear program to solve the sparse

recovery problem.

2.1 Basis Pursuit

Recall that sparse recovery can be formulated as the generally NP-Hard problem (1.1.2)

to recover a signal x. Donoho and his collaborators showed (see e.g. [21]) that for

certain measurement matrices Φ, this hard problem is equivalent to its relaxation,

min
z∈Rd
‖z‖1 subject to Φz = u. (2.1.1)
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Candès and Tao proved that for measurement matrices satisfying a certain quantita-

tive property, the programs (1.1.2) and (2.1.1) are equivalent [6].

2.1.1 Description

Since the problem (1.1.2) is not numerically feasible, it is clear that if one is to

solve the problem efficiently, a different approach is needed. At first glance, one

may instead wish to consider the mean square approach, based on the minimization

problem,

min
z∈Rd
‖z‖2 subject to Φz = u. (2.1.2)

Since the minimizer x∗ must satisfy Φx∗ = u = Φx, the minimizer must be in the

subspace K
def
= x + ker Φ. In fact, the minimizer x∗ to (2.1.2) is the contact point

where the smallest Euclidean ball centered at the origin meets the subspace K. As is

illustrated in Figure 2.1.1, this contact point need not coincide with the actual signal

x. This is because the geometry of the Euclidean ball does not lend itself well to

detecting sparsity.

We may then wish to consider the ℓ1-minimization problem (2.1.1). In this case,

the minimizer x∗ to (2.1.1) is the contact point where the smallest octahedron cen-

tered at the origin meets the subspace K. Since x is sparse, it lies in a low-dimensional

coordinate subspace. Thus the octahedron has a wedge at x (see Figure 2.1.1), which

forces the minimizer x∗ to coincide with x for many subspaces K.

Since the ℓ1-ball works well because of its geometry, one might think to then

use an ℓp ball for some 0 < p < 1. The geometry of such a ball would of course

lend itself even better to sparsity. Indeed, some work in compressed sensing has

used this approach (see e.g. [28, 17]), however, recovery using such a method has

not yet provided optimal results. The program (2.1.1) has the advantage over those
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with p < 1 because linear programming can be used to solve it. See Section 2.1.5

for a discussion on linear programming. Basis Pursuit utilizes the geometry of the

octahedron to recover the sparse signal x using measurement matrices Φ that satisfy

a deterministic property.

x = x*

x*

x

Figure 2.1.1: The minimizers to the mean square (left) and ℓ1 (right) approaches.

2.1.2 Restricted Isometry Condition

As discussed above, to guarantee exact recovery of every s-sparse signal, the measure-

ment matrix Φ needs to be one-to-one on all 2s-sparse vectors. Candès and Tao [6]

showed that under a slightly stronger condition, Basis Pursuit can recover every s-

sparse signal by solving (2.1.1). To this end, we say that the restricted isometry

condition (RIC) holds with parameters (r, δ) if

(1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2 (2.1.3)

holds for all r-sparse vectors x. Often, the quadratic form

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (2.1.4)
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is used for simplicity. Often the notation δr is used to denote the smallest δ for

which the above holds for all r-sparse signals. Now if we require δ to be small, this

condition essentially means that every subset of r or fewer columns of Φ is approxi-

mately an orthonormal system. Note that if the restricted isometry condition holds

with parameters (2s, 1), then Φ must be one-to-one on all s-sparse signals. Indeed, if

Φx = Φz for two s-sparse vectors x and z, then Φ(x−z) = 0, so by the left inequality,

‖x− z‖2 = 0. To use this restricted isometry condition in practice, we of course need

to determine what kinds of matrices have small restricted isometry constants, and

how many measurements are needed. Although it is quite difficult to check whether

a given matrix satisfies this condition, it has been shown that many matrices satisfy

the restricted isometry condition with high probability and few measurements. In

particular, it has been show that with exponentially high probability, random Gaus-

sian, Bernoulli, and partial Fourier matrices satisfy the restricted isometry condition

with number of measurements nearly linear in the sparsity level.

Subgaussian matrices: A random variable X is subgaussian if P(|X| > t) ≤ Ce−ct2

for all t > 0 and some positive constants C, c. Thus subgaussian random

variables have tail distributions that are dominated by that of the standard

Gaussian random variable. Choosing C = c = 1, we trivially have that stan-

dard Gaussian matrices (those whose entries are Gaussian) are subgaussian.

Choosing C = 1
e

and c = 1, we see that Bernoulli matrices (those whose entries

are uniform ±1) are also subgaussian. More generally, any bounded random

variable is subgaussian. The following theorem proven in [48] shows that any

subgaussian measurement matrix satisfies the restricted isometry condition with

number of measurements m nearly linear in the sparsity s.

Theorem 2.1.1 (Subgaussian measurement matrices). Let Φ be a m× d sub-
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gaussian measurement matrix, and let s ≥ 1, 0 < δ < 1, and 0 < ε < 0.5. Then

with probability 1−α the matrix 1√
m

Φ satisfies the restricted isometry condition

with parameters (s, ε) provided that the number of measurements m satisfies

m ≥ Cs

ε2
log
( d

ε2s

)
,

where C depends only on α and other constants in the definition of subgaussian

(for details on the dependence, see [48]).

Partial bounded orthogonal matrices: Let Ψ be an orthogonal d × d matrix

whose entries are bounded by C/
√

d for some constant C. A m × d partial

bounded orthogonal matrix is a matrix Φ formed by choosing m rows of such

a matrix Ψ uniformly at random. Since the d × d discrete Fourier transform

matrix is orthogonal with entries bounded by 1/
√

d, the m× d random partial

Fourier matrix is a partial bounded orthogonal matrix. The following theorem

proved in [59] shows that such matrices satisfy the restricted isometry condition

with number of measurements m nearly linear in the sparsity s.

Theorem 2.1.2 (Partial bounded orthogonal measurement matrices). Let Φ

be a m × d partial bounded orthogonal measurement matrix, and let s ≥ 1,

0 < δ < 1, and 0 < ε < 0.5. Then with probability 1 − α the matrix d√
m

Φ

satisfies the restricted isometry condition with parameters (s, ε) provided that

the number of measurements m satisfies

m ≥ C
(s log d

ε2

)
log
(s log d

ε2

)
log2 d,

where C depends only on the confidence level α and other constants in the
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definition of partial bounded orthogonal matrix (for details on the dependence,

see [59]).

2.1.3 Main Theorems

Candès and Tao showed in [6] that for measurement matrices that satisfy the re-

stricted isometry condition, Basis Pursuit recovers all sparse signals exactly. This is

summarized in the following theorem.

Theorem 2.1.3 (Sparse recovery under RIC [6]). Assume that the measurement

matrix Φ satisfies the restricted isometry condition with parameters (3s, 0.2). Then

every s-sparse vector x can be exactly recovered from its measurements u = Φx as a

unique solution to the linear optimization problem (2.1.1).

Note that these guarantees are uniform. Once the measurement matrix Φ satisfies

the restricted isometry condition, Basis Pursuit correctly recovers all sparse vectors.

As discussed earlier, exactly sparse vectors are not encountered in practice, but

rather nearly sparse signals. The signals and measurements are also noisy in practice,

so practitioners seek algorithms that perform well under these conditions. Candès,

Romberg and Tao showed in [5] that a version of Basis Pursuit indeed approximately

recovers signals contaminated with noise. It is clear that in the noisy case, (2.1.1) is

not a suitable method since the exact equality in the measurements would be most

likely unattainable. Thus the method is modified slightly to allow for small pertur-

bations, searching over all signals consistent with the measurement data. Instead of

(2.1.1), we consider the formulation

min ‖y‖1 subject to ‖Φy − u‖2 ≤ ε. (2.1.5)
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Candès, Romberg and Tao showed that the program (2.1.5) reconstructs the signal

with error at most proportional to the noise level. First we consider exactly sparse

signals whose measurements are corrupted with noise. In this case, we have the

following results from [5].

Theorem 2.1.4 (Stability of BP [5]). Let Φ be a measurement matrix satisfying the

restricted isometry condition with parameters (3s, 0.2). Then for any s-sparse signal

x and corrupted measurements u = Φx + e with ‖e‖2 ≤ ε, the solution x̂ to (2.1.5)

satisfies

‖x̂− x‖2 ≤ Cs · ε,

where Cs depends only on the RIC constant δ.

Note that in the noiseless case, this theorem is consistent with Theorem 2.1.3.

Theorem 2.1.4 is quite surprising given the fact that the matrix Φ is a wide rectangular

matrix. Since it has far more columns than rows, most of the singular values of Φ

are zero. Thus this theorem states that even though the problem is very ill-posed,

Basis Pursuit still controls the error. It is important to point out that Theorem 2.1.4

is fundamentally optimal. This means that the error level ε is in a strong sense

unrecoverable. Indeed, suppose that the support S of x was known a priori. The best

way to reconstruct x from the measurements u = Φx + e in this case would be to

apply the pseudoinverse Φ†
S

def
= (Φ∗

SΦS)−1Φ∗
S on the support, and set the remaining

coordinates to zero. That is, one would reconstruct x as

x̂ =





Φ†
Su on S

0 elsewhere

Since the singular values of ΦS are controlled, the error on the support is approxi-



2.1. Basis Pursuit 17

mately ‖e‖2 ≤ ε, and the error off the support is of course zero. This is also the error

guaranteed by Theorem 2.1.4. Thus no recovery algorithm can hope to recover with

less error than the original error introduced to the measurements.

Thus Basis Pursuit is stable to perturbations in the measurements of exactly

sparse vectors. This extends naturally to the approximate recovery of nearly sparse

signals, which is summarized in the companion theorem from [5].

Theorem 2.1.5 (Stability of BP II [5]). Let Φ be a measurement matrix satisfying

the restricted isometry condition with parameters (3s, 0.2). Then for any arbitrary

signal and corrupted measurements u = Φx+e with ‖e‖2 ≤ ε, the solution x̂ to (2.1.5)

satisfies

‖x̂− x‖2 ≤ Cs · ε + C ′
s ·
‖x− xs‖1√

s
,

where xs denotes the vector of the largest coefficients in magnitude of x.

Remark 2.1.6. In [8], Candès sharpened Theorems 2.1.3, 2.1.4, and 2.1.5 to work

under the restricted isometry condition with parameters (2s,
√

2− 1).

Theorem 2.1.5 says that for an arbitrary signal x, Basis Pursuit approximately

recovers its largest s coefficients. In the particularly useful case of compressible

signals, we have that for signals x obeying (1.1.1), the reconstruction satisfies

‖x̂− x‖2 ≤ Cs · ε + C ′s−q+1/2, (2.1.6)

where C ′ depends on the RIC constant and the constant R in the compressibility

definition eqrefcomp. We notice that for such signals we also have

‖xs − x‖2 ≤ CRs−q+1/2,
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where CR depends on R. Thus the error in the approximation guaranteed by Theo-

rem 2.1.5 is comparable to the error obtained by simply selecting the s largest coef-

ficients in magnitude of a compressible signal. So at least in the case of compressible

signals, the error guarantees are again optimal. See Section 2.1.6 for a discussion of

advantages and disadvantages to this approach.

2.1.4 Numerical Results

Many empirical studies have been conducted using Basis Pursuit. Several are in-

cluded here, other results can be found in [5, 22, 6]. The studies discussed here were

performed in Matlab, with the help of ℓ1-Magic code by Romberg [45]. The code

is given in Appendix A.1. In all cases here, the measurement matrix is a Gaussian

matrix and the ambient dimension d is 256. In the first study, for each trial we

generated binary signals with support uniformly selected at random as well as an

independent Gaussian matrix for many values of the sparsity s and number of mea-

surements m. Then we ran Basis Pursuit on the measurements of that signal and

counted the number of times the signal was recovered correctly out of 500 trials. The

results are displayed in Figure 2.1.2. The 99% recovery trend is depicted in Fig-

ure 2.1.3. This curve shows the relationship between the number of measurements m

and the sparsity level s to guarantee that correct recovery occurs 99% of the time.

Note that by recovery, we mean that the estimation error falls below the threshold of

10−5. Figure 2.1.4 depicts the recovery error of Basis Pursuit when the measurements

were perturbed. For this simulation, the signals were again binary (flat) signals, but

Gaussian noise was added to the measurements. The norm of the noise was chosen

to be the constant 1/2. The last figure, Figure 2.1.5 displays the recovery error when

Basis Pursuit is run on compressible signals. For this study, the Basis Pursuit was run
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on signals whose coefficients obeyed the power law (1.1.1). This simulation was run

with sparsity s = 12, dimension d = 256, and for various values of the compressibility

constant q. Note that the smaller q is, the more quickly the coefficients decay.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Measurements m

P
er

ce
nt

ag
e 

re
co

ve
re

d

Percentage of flat signals recovered with BP, d=256

 

 

s=4

s=12

s=20

s=28

s=36

Figure 2.1.2: The percentage of sparse flat signals exactly recovered by Basis Pursuit
as a function of the number of measurements m in dimension d = 256 for various
levels of sparsity s.

2.1.5 Linear Programming

Linear programming is a technique for optimization of a linear objective function

under equality and inequality constraints, all of which are linear [15]. The prob-

lem (2.1.1) can be recast as a linear program whose objective function (to be mini-

mized) is
d∑

i=1

ti,

with constraints

−ti ≤ zi ≤ ti, Φz = u.
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Figure 2.1.3: The 99% recovery trend of Basis Pursuit as a function of the number
of measurements m in dimension d = 256 for various levels of sparsity s.
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Figure 2.1.4: The recovery error of Basis Pursuit under perturbed measurements as
a function of the number of measurements m in dimension d = 256 for various levels
of sparsity s.
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Figure 2.1.5: The normalized recovery error ‖x−x̂‖2√
s‖x−xs‖1

of Basis Pursuit for compress-

ible signals as a function of the number of measurements m in dimension d = 256
with compressibility q = 0.6 for various levels of sparsity s.

Viewed geometrically, the set of linear constraints, making up the feasible region,

forms a convex polyhedron. By the Karush-Kuhn-Tucker conditions [44], all local

optima are also global optima. If an optimum exists, it will be attained at a vertex

of the polyhedron. There are several methods to search for this optimal vertex.

One of the most popular algorithms in linear programming is the simplex algo-

rithm, developed by George Dantzig [15]. The simplex method begins with some

admissible starting solution. If such a point is not known, a different linear program

(with an obvious admissible solution) can be solved via the simplex method to find

such a point. The simplex method then traverses the edges of the polytope via a

sequence of pivot steps. The algorithm moves along the polytope, at each step choos-

ing the optimal direction, until the optimum is found. Assuming that precautions

against cycling are taken, the algorithm is guaranteed to find the optimum. Although
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it’s worst-case behavior is exponential in the problem size, it is much more efficient

in practice. Smoothed analysis has explained this efficiency in practice [65], but it is

still unknown whether there is a strongly polynomial bound on the runtime.

The simplex algorithm traverses the polytope’s edges, but an alternative method

called the interior point method traverses the interior of the polytope [56]. One

such method was proposed by Karmarkar and is an interior point projective method.

Recently, barrier function or path-following methods are being used for practical

purposes. The best bound currently attained on the runtime of an interior point

method is O(m2d1.5). Other methods have been proposed, including the ellipsoid

method by Khachiyan which has a polynomial worst case runtime, but as of yet none

have provided strongly polynomial bounds.

2.1.6 Summary

Basis Pursuit presents many advantages over other algorithms in compressed sensing.

Once a measurement matrix satisfies the restricted isometry condition, Basis Pursuit

reconstructs all sparse signals. The guarantees it provides are thus uniform, meaning

the algorithm will not fail for any sparse signal. Theorem 2.1.5 shows that Basis

Pursuit is also stable, which is a necessity in practice. Its ability to handle noise and

non-exactness of sparse signals makes the algorithm applicable to real world problems.

The requirements on the restricted isometry constant shown in Theorem 2.1.5 along

with the known results about random matrices discussed in Section 2.1.2 mean that

Basis Pursuit only requires O(s log d) measurements to reconstruct d-dimensional

s-sparse signals. It is thought by many that this is the optimal number of measure-

ments.

Although Basis Pursuit provides these strong guarantees, its disadvantage is of
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course speed. It relies on Linear Programming which although is often quite efficient

in practice, has a polynomial runtime. For this reason, much work in compressed

sensing has been done using faster methods. This approach uses greedy algorithms,

which are discussed next.

2.2 Greedy Methods

An alternative approach to compressed sensing is the use of greedy algorithms.

Greedy algorithms compute the support of the sparse signal x iteratively. Once

the support of the signal is compute correctly, the pseudo-inverse of the measure-

ment matrix restricted to the corresponding columns can be used to reconstruct the

actual signal x. The clear advantage to this approach is speed, but the approach also

presents new challenges.

2.2.1 Orthogonal Matching Pursuit

One such greedy algorithm is Orthogonal Matching Pursuit (OMP), put forth by

Mallat and his collaborators (see e.g. [47]) and analyzed by Gilbert and Tropp [62].

OMP uses subGaussian measurement matrices to reconstruct sparse signals. If Φ

is such a measurement matrix, then Φ∗Φ is in a loose sense close to the identity.

Therefore one would expect the largest coordinate of the observation vector y = Φ∗Φx

to correspond to a non-zero entry of x. Thus one coordinate for the support of the

signal x is estimated. Subtracting off that contribution from the observation vector

y and repeating eventually yields the entire support of the signal x. OMP is quite

fast, both in theory and in practice, but its guarantees are not as strong as those of

Basis Pursuit.
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Description

The OMP algorithm can thus be described as follows:

Orthogonal Matching Pursuit (OMP)

Input: Measurement matrix Φ, measurement vector u = Φx, sparsity level s

Output: Index set I ⊂ {1, . . . , d}

Procedure:

Initialize Let the index set I = ∅ and the residual r = u.

Repeat the following s times:

Identify Select the largest coordinate λ of y = Φ∗r in absolute value. Break

ties lexicographically.

Update Add the coordinate λ to the index set: I ← I ∪ {λ}, and update the

residual:

x̂ = argmin
z
‖u− Φ|Iz‖2; r = u− Φx̂.

Once the support I of the signal x is found, the estimate can be reconstructed as

x̂ = Φ†
Iu, where recall we define the pseudoinverse by Φ†

I
def
= (Φ∗

IΦI)
−1Φ∗

I .

The algorithm’s simplicity enables a fast runtime. The algorithm iterates s times,

and each iteration does a selection through d elements, multiplies by Φ∗, and solves

a least squares problem. The selection can easily be done in O(d) time, and the

multiplication of Φ∗ in the general case takes O(md). When Φ is an unstructured

matrix, the cost of solving the least squares problem is O(s2d). However, maintaining

a QR-Factorization of Φ|I and using the modified Gram-Schmidt algorithm reduces

this time to O(|I|d) at each iteration. Using this method, the overall cost of OMP

becomes O(smd). In the case where the measurement matrix Φ is structured with a
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fast-multiply, this can clearly be improved.

Main Theorems and Results

Gilbert and Tropp showed that OMP correctly recovers a fixed sparse signal with

high probability. Indeed, in [62] they prove the following.

Theorem 2.2.1 (OMP Signal Recovery [62]). Fix δ ∈ (0, 0.36) and let Φ be an m×d

Gaussian measurement matrix with m ≥ Cm log(d/δ). Let x be an s-sparse signal in

Rd. Then with probability exceeding 1− 2δ, OMP correctly reconstructs the signal x

from its measurements Φx.

Similar results hold when Φ is a subgaussian matrix. We note here that although

the measurement requirements are similar to those of Basis Pursuit, the guarantees

are not uniform. The probability is for a fixed signal rather than for all signals. The

type of measurement matrix here is also more restrictive, and it is unknown whether

OMP works for the important case of random Fourier matrices.

Numerical Experiments

Many empirical studies have been conducted to study the success of OMP. One

study is described here that demonstrates the relationship between the sparsity level

s and the number of measurements m. Other results can be found in [62]. The study

discussed here was performed in Matlab, and is given in Appendix A.2.. In the study,

for each trial I generated binary signals with support uniformly selected at random

as well as an independent Gaussian measurement matrix, for many values of the

sparsity s and number of measurements m. Then I ran OMP on the measurements

of that signal and counted the number of times the signal was recovered correctly out

of 500 trials. The results are displayed in Figure 2.2.1. The 99% recovery trend is
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depicted in Figure 2.2.2. This curve shows the relationship between the number of

measurements m and the sparsity level s to guarantee that correct recovery occurs

99% of the time. In comparison with Figures 2.1.2 and 2.1.3 we see that Basis Pursuit

appears to provide stronger results empirically as well.
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Figure 2.2.1: The percentage of sparse flat signals exactly recovered by OMP as a
function of the number of measurements m in dimension d = 256 for various levels
of sparsity s.

Summary

It is important to note the distinctions between this theorem for OMP and Theo-

rem 2.1.3 for Basis Pursuit. The first important difference is that Theorem 2.2.1

shows that OMP works only for the case when Φ is a Gaussian (or subgaussian)

matrices, whereas Theorem 2.1.3 holds for a more general class of matrices (those

which satisfy the RIC). Also, Theorem 2.1.3 demonstrates that Basis Pursuit works

correctly for all signals, once the measurement matrix satisfies the restricted isometry
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Figure 2.2.2: The 99% recovery trend of OMP as a function of the number of mea-
surements m in dimension d = 256 for various levels of sparsity s.

condition. Theorem 2.2.1 shows only that OMP works with high probability for each

fixed signal. The advantage to OMP however, is that its runtime has a much faster

bound than that of Basis Pursuit and Linear Programming.

2.2.2 Stagewise Orthogonal Matching Pursuit

An alternative greedy approach, Stagewise Orthogonal Matching Pursuit (StOMP)

developed and analyzed by Donoho and his collaborators [23], uses ideas inspired by

wireless communications. As in OMP, StOMP utilizes the observation vector y = Φ∗u

where u = Φx is the measurement vector. However, instead of simply selecting the

largest component of the vector y, it selects all of the coordinates whose values are

above a specified threshold. It then solves a least-squares problem to update the

residual. The algorithm iterates through only a fixed number of stages and then

terminates, whereas OMP requires s iterations where s is the sparsity level.
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Description

The pseudo-code for StOMP can thus be described by the following.

Stagewise Orthogonal Matching Pursuit (StOMP)

Input: Measurement matrix Φ, measurement vector u = Φx,

Output: Estimate x̂ to the signal x

Procedure:

Initialize Let the index set I = ∅, the estimate x̂ = 0, and the residual r = u.

Repeat the following until stopping condition holds:

Identify Using the observation vector y = Φ∗r, set

J = {j : |yj| > tkσk},

where σk is a formal noise level and tk is a threshold parameter for iteration

k.

Update Add the set J to the index set: I ← I ∪J , and update the residual and

estimate:

x̂|I = (Φ∗
IΦI)

−1Φ∗
Iu, r = u− Φx̂.

The thresholding strategy is designed so that many terms enter at each stage,

and so that algorithm halts after a fixed number of iterations. The formal noise level

σk is proportional the Euclidean norm of the residual at that iteration. See [23] for

more information on the thresholding strategy.
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Main Results

Donoho and his collaborators studied StOMP empirically and have heuristically de-

rived results. Figure 6 of [23] shows results of StOMP when the thresholding strategy

is to control the false alarm rate and the measurement matrix Φ is sampled from the

uniform spherical ensemble. The false alarm rate is the number of incorrectly se-

lected coordinates (ie. those that are not in the actual support, but are chosen in

the estimate) divided by the number of coordinates not in the support of the signal

x. The figure shows that for very sparse signals, the algorithm recovers a good ap-

proximation to the signal. For less sparse signals the algorithm does not. The red

curve in this figure is the graph of a heuristically derived function which they call

the Predicted Phase transition. The simulation results and the predicted transition

coincide reasonably well. This thresholding method requires knowledge about the

actual sparsity level s of the signal x. Figure 7 of [23] shows similar results for a

thresholding strategy that instead tries to control the false discovery rate. The false

discovery rate is the fraction of incorrectly selected coordinates within the estimated

support. This method appears to provide slightly weaker results. It appears however,

that StOMP outperforms OMP and Basis Pursuit in some cases.

Although the structure of StOMP is similar to that of OMP, because StOMP

selects many coordinates at each state, the runtime is quite improved. Indeed, us-

ing iterative methods to solve the least-squares problem yields a runtime bound of

CNsd + O(d), where N is the fixed number of iterations run by StOMP, and C is a

constant that depends only on the accuracy level of the least-squares problem.
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Numerical Experiments

A thorough empirical study of StOMP is provided in [23]. An additional study on

StOMP was conducted here using a thresholding strategy with constant threshold

parameter. The noise level σ was proportional to the norm of the residual, as [23]

suggests. StOMP was run with various sparsity levels and measurement numbers,

with Gaussian measurement matrices for 500 trials. Figure 2.2.3 depicts the results,

and Figure 2.2.4 depicts the 99% recovery trend. Next StOMP was run in this same

way but noise was added to the measurements. Figure 2.2.5 displays the results of

this study. Since the reconstructed signal is always sparse, it is not surprising that

StOMP is able to overcome the noise level. Note that these empirical results are

not optimal because of the basic thresholding strategy. See [23] for empirical results

using an improved thresholding strategy.
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Figure 2.2.3: The percentage of sparse flat signals exactly recovered by StOMP as a
function of the number of measurements m in dimension d = 256 for various levels
of sparsity s.
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Figure 2.2.4: The 99% recovery trend of StOMP as a function of the number of
measurements m in dimension d = 256 for various levels of sparsity s.
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Figure 2.2.5: The normalized recovery error ‖x−x̂‖2/‖e‖2 of StOMP on sparse signals
with noisy measurements Φx + e.
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Summary

The empirical results of StOMP in [23] are quite promising, and suggest its improve-

ment over OMP. However, in practice, the thresholding strategy may be difficult and

complicated to implement well. More importantly, there are no rigorous results for

StOMP available. In the next subsection other greedy methods are discussed with

rigorous results, but that require highly structured measurement matrices.

2.2.3 Combinatorial Methods

The major benefit of the greedy approach is its speed, both empirically and the-

oretically. There is a group of combinatorial algorithms that provide even faster

speed, but that impose very strict requirements on the measurement matrix. These

methods use highly structured measurement matrices that support very fast recon-

struction through group testing. The work in this area includes HHS pursuit [32],

chaining pursuit [31], Sudocodes [60], Fourier sampling [33, 35] and some others by

Cormode–Muthukrishnan [12] and Iwen [40].

Descriptions and Results

Many of the sublinear algorithms such as HHS pursuit, chaining pursuit and Su-

docodes employ the idea of group testing. Group testing is a method which origi-

nated in the Selective Service during World War II to test soldiers for Syphilis [24],

and now it appears in many experimental designs and other algorithms. During this

time, the Wassermann test [66] was used to detect the Syphilis antigen in a blood

sample. Since this test was expensive, the method was to sample a group of men

together and test the entire pool of blood samples. If the pool did not contain the

antigen, then one test replaced many. If it was found, then the process could either
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be repeated with that group, or each individual in the group could then be tested.

These sublinear algorithms in compressed sensing use this same idea to test for

elements of the support of the signal x. Chaining pursuit, for example, uses a mea-

surement matrix consisting of a row tensor product of a bit test matrix and an

isolation matrix, both of which are 0-1 matrices. Chaining pursuit first uses bit tests

to locate the positions of the large components of the signal x and estimate those

values. Then the algorithm retains a portion of the coordinates that are largest

magnitude and repeats. In the end, those coordinates which appeared throughout

a large portion of the iterations are kept, and the signal is estimated using these.

Pseudo-code is available in [31], where the following result is proved.

Theorem 2.2.2 (Chaining pursuit [31]). With probability at least 1 − O(d−3), the

O(s log2 d) × d random measurement operator Φ has the following property. For

x ∈ Rd and its measurements u = Φx, the Chaining Pursuit algorithm produces a

signal x̂ with at most s nonzero entries. The output x̂ satisfies

‖x− x̂‖1 ≤ C(1 + log s)‖x− xs‖1.

The time cost of the algorithm is O(s log2 s log2 d).

HHS Pursuit, a similar algorithm but with improved guarantees, uses a mea-

surement matrix that consists again of two parts. The first part is an identification

matrix, and the second is an estimation matrix. As the names suggest, the identifi-

cation matrix is used to identify the location of the large components of the signal,

whereas the estimation matrix is used to estimate the values at those locations. Each

of these matrices consist of smaller parts, some deterministic and some random. Us-

ing this measurement matrix to locate large components and estimate their values,
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HHS Pursuit then adds the new estimate to the previous, and prunes it relative to

the sparsity level. This estimation is itself then sampled, and the residual of the

signal is updated. See [32] for the pseudo-code of the algorithm. Although the mea-

surement matrix is highly structured, again a disadvantage in practice, the results

for the algorithm are quite strong. Indeed, in [32] the following result is proved.

Theorem 2.2.3 (HHS Pursuit [32]). Fix an integer s and a number ε ∈ (0, 1). With

probability at least 0.99, the random measurement matrix Φ (as described above) has

the following property. Let x ∈ Rd and let u = Φx be the measurement vector.

The HHS Pursuit algorithm produces a signal approximation x̂ with O(s/ε2) nonzero

entries. The approximation satisfies

‖x− x̂‖2 ≤
ε√
s
‖x− xs‖1,

where again xs denotes the vector consisting of the s largest entries in magnitude

of x. The number of measurements m is proportional to (s/ε2) polylog(d/ε), and

HHS Pursuit runs in time (s2/ε4)polylog(d/ε). The algorithm uses working space

(s/ε2)polylog(d/ε), including storage of the matrix Φ.

Remark 2.2.4. This theorem presents guarantees that are stronger than those of

chaining pursuit. Chaining pursuit, however, still provides a faster runtime.

There are other algorithms such as the Sudocodes algorithm that as of now only

work in the noiseless, strictly sparse case. However, these are still interesting because

of the simplicity of the algorithm. The Sudocodes algorithm is a simple two-phase

algorithm. In the first phase, an easily implemented avalanche bit testing scheme

is applied iteratively to recover most of the coordinates of the signal x. At this

point, it remains to reconstruct an extremely low dimensional signal (one whose
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coordinates are only those that remain). In the second phase, this part of the signal

is reconstructed, which completes the reconstruction. Since the recovery is two-

phase, the measurement matrix is as well. For the first phase, it must contain a

sparse submatrix, one consisting of many zeros and few ones in each row. For the

second phase, it also contains a matrix whose small submatrices are invertible. The

following result for strictly sparse signals is proved in [60].

Theorem 2.2.5 (Sudocodes [60]). Let x be an s-sparse signal in Rd, and let the

m × d measurement matrix Φ be as described above. Then with m = O(s log d), the

Sudocodes algorithm exactly reconstructs the signal x with computational complexity

just O(s log s log d).

The Sudocodes algorithm cannot reconstruct noisy signals because of the lack of

robustness in the second phase. However, work on modifying this phase to handle

noise is currently being done. If this task is accomplished Sudocodes would be an

attractive algorithm because of its sublinear runtime and simple implementation.

Summary

Combinatorial algorithms such as HHS pursuit provide sublinear time recovery with

optimal error bounds and optimal number of measurements. Some of these are

straightforward and easy to implement, and others require complicated structures.

The major disadvantage however is the structural requirement on the measurement

matrices. Not only do these methods only work with one particular kind of measure-

ment matrix, but that matrix is highly structured which limits its use in practice.

There are no known sublinear methods in compressed sensing that allow for unstruc-

tured or generic measurement matrices.
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Chapter 3

Contributions

3.1 Regularized Orthogonal Matching Pursuit

As is now evident, the two approaches to compressed sensing each presented disjoint

advantages and challenges. While the optimization method provides robustness and

uniform guarantees, it lacks the speed of the greedy approach. The greedy methods

on the other hand had not been able to provide the strong guarantees of Basis Pur-

suit. This changed when we developed a new greedy algorithm, Regularized Orthog-

onal Matching Pursuit [55], that provided the strong guarantees of the optimization

method. This work bridged the gap between the two approaches, and provided the

first algorithm possessing the advantages of both approaches.

3.1.1 Description

Regularized Orthogonal Matching Pursuit (ROMP) is a greedy algorithm, but will

correctly recover any sparse signal using any measurement matrix that satisfies the

Restricted Isometry Condition (2.1.3). Again as in the case of OMP, we will use
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the observation vector Φ∗Φx as a good local approximation to the s-sparse signal

x. Since the Restricted Isometry Condition guarantees that every s columns of Φ

are close to an orthonormal system, we will choose at each iteration not just one

coordinate as in OMP, but up to s coordinates using the observation vector. It will

then be okay to choose some incorrect coordinates, so long as the number of those

is limited. To ensure that we do not select too many incorrect coordinates at each

iteration, we include a regularization step which will guarantee that each coordinate

selected contains an even share of the information about the signal. The ROMP

algorithm can thus be described as follows:



3.1. Regularized Orthogonal Matching Pursuit 38

Regularized Orthogonal Matching Pursuit (ROMP) [55]

Input: Measurement matrix Φ, measurement vector u = Φx, sparsity level s

Output: Index set I ⊂ {1, . . . , d}, reconstructed vector x̂ = w

Procedure:

Initialize Let the index set I = ∅ and the residual r = u.

Repeat the following steps until r = 0:

Identify Choose a set J of the s biggest coordinates in magnitude of the obser-

vation vector y = Φ∗r, or all of its nonzero coordinates, whichever set is

smaller.

Regularize Among all subsets J0 ⊂ J with comparable coordinates:

|y(i)| ≤ 2|y(j)| for all i, j ∈ J0,

choose J0 with the maximal energy ‖y|J0‖2.

Update Add the set J0 to the index set: I ← I ∪ J0, and update the residual:

w = argmin
z∈RI

‖u− Φz‖2; r = u− Φw.

Remarks.

1. We remark here that knowledge about the sparsity level s is required in

ROMP, as in OMP. There are several ways this information may be obtained. Since

the number of measurements m is usually chosen to be O(s log d), one may then

estimate the sparsity level s to be roughly m/ log d. An alternative approach would

be to run ROMP using various sparsity levels and choose the one which yields the
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least error ‖Φx̂ − Φx‖ for outputs x̂. Choosing testing levels out of a geometric

progression, for example, would not contribute significantly to the overall runtime.

2. Clearly in the case where the signal is not exactly sparse and the signal and

measurements are corrupted with noise, the algorithm as described above will never

halt. Thus in the noisy case, we simply change the halting criteria by allowing the

algorithm iterate at most s times, or until |I| ≥ s. We show below that with this

modification ROMP approximately reconstructs arbitrary signals.

3.1.2 Main Theorems

In this section we present the main theorems for ROMP. We prove these theorems

in Section 3.1.3. When the measurement matrix Φ satisfied the Restricted Isometry

Condition, ROMP exactly recovers all sparse signals. This is summarized in the

following theorem from [55].

Theorem 3.1.1 (Exact sparse recovery via ROMP [55]). Assume a measurement

matrix Φ satisfies the Restricted Isometry Condition with parameters (2s, ε) for ε =

0.03/
√

log s. Let x be an s-sparse vector in Rd with measurements u = Φx. Then

ROMP in at most s iterations outputs a set I such that

supp(x) ⊂ I and |I| ≤ 2s.

Remarks. 1. Theorem 3.1.1 shows that ROMP provides exact recovery of sparse

signals. Using the index set I, one can compute the signal x from its measurements

u = Φx as x = (ΦI)
−1u, where ΦI denotes the measurement matrix Φ restricted to

the columns indexed by I.

2. Theorem 3.1.1 provides uniform guarantees of sparse recovery, meaning that
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once the measurement matrix Φ satisfies the Restricted Isometry Condition, ROMP

recovers every sparse signal from its measurements. Uniform guarantees such as this

are now known to be impossible for OMP [57], and finding a version of OMP providing

uniform guarantees was previously an open problem [62]. Theorem 3.1.1 shows that

ROMP solves this problem.

3. Recall from Section 2.1.2 that random Gaussian, Bernoulli and partial

Fourier matrices with number of measurements m almost linear in the sparsity s,

satisfy the Restricted Isometry Condition. It is still unknown whether OMP works

at all with partial Fourier measurements, but ROMP gives sparse recovery for these

measurements, and with uniform guarantees.

4. In Section 3.1.4 we explain how the identification and regularization steps of

ROMP can easily be performed efficiently. In Section 3.1.4 we show that the running

time of ROMP is comparable to that of OMP in theory, and is better in practice.

Theorem 3.1.1 shows ROMP works correctly for signals which are exactly sparse.

However, as mentioned before, ROMP also performs well for signals and measure-

ments which are corrupted with noise. This is an essential property for an algorithm

to be realistically used in practice. The following theorem from [54] shows that

ROMP approximately reconstructs sparse signals with noisy measurements. Corol-

lary 3.1.3 shows that ROMP also approximately reconstructs arbitrary signals with

noisy measurements.

Theorem 3.1.2 (Stability of ROMP under measurement perturbations [54]). Let Φ

be a measurement matrix satisfying the Restricted Isometry Condition with parame-

ters (4s, ε) for ε = 0.01/
√

log s. Let x ∈ Rd be an s-sparse vector. Suppose that the

measurement vector Φx becomes corrupted, so that we consider u = Φx + e where e
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is some error vector. Then ROMP produces a good approximation x̂ to x:

‖x− x̂‖2 ≤ 104
√

log s‖e‖2.

Corollary 3.1.3 (Stability of ROMP under signal perturbations [54]). Let Φ be a

measurement matrix satisfying the Restricted Isometry Condition with parameters

(8s, ε) for ε = 0.01/
√

log s. Consider an arbitrary vector x in Rd. Suppose that the

measurement vector Φx becomes corrupted, so we consider u = Φx + e where e is

some error vector. Then ROMP produces a good approximation x̂ to x2s:

‖x̂− x2s‖2 ≤ 159
√

log 2s
(
‖e‖2 +

‖x− xs‖1√
s

)
. (3.1.1)

Remarks.

1. In the noiseless case, Theorem 3.1.2 coincides with Theorem 3.1.1 in showing

exact recovery.

2. Corollary 3.1.3 still holds (with only the constants changed) when the term

x2s is replaced by x(1+δ)s for any δ > 0. This is evident by the proof of the corollary

given below.

2. Corollary 3.1.3 also implies the following bound on the entire signal x:

‖x̂− x‖2 ≤ 160
√

log 2s
(
‖e‖2 +

‖x− xs‖1√
s

)
. (3.1.2)
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Indeed, we have

‖x̂− x‖2 ≤ ‖x̂− x2s‖2 + ‖x− x2s‖2

≤ 159
√

log 2s
(
‖e‖2 +

‖x− xs‖1√
s

)
+ ‖(x− xs)− (x− xs)s‖

≤ 159
√

log 2s
(
‖e‖2 +

‖x− xs‖1√
s

)
+
‖x− xs‖1√

s

≤ 160
√

log 2s
(
‖e‖2 +

‖x− xs‖1√
s

)
,

where the first inequality is the triangle inequality, the second uses Corollary 3.1.3

and the identity x− x2s = (x− xs)− (x− xs)s, and third uses Lemma 3.1.19 below.

3. The error bound for Basis Pursuit given in Theorem 2.1.5, is similar except

for the logarithmic factor. We again believe this to be an artifact of our proof, and

our empirical results in Section 3.1.5 show that ROMP indeed provides much better

results than the corollary suggests.

4. In the case of noise with Basis Pursuit, the problem (2.1.5) needs to be

solved, which requires knowledge about the noise vector e. ROMP requires no such

knowledge.

5. If instead one wished to compute a 2s-sparse approximation to the signal,

one may just retain the 2s largest coordinates of the reconstructed vector x̂. In this

case Corollary 3.1.3 implies the following:

Corollary 3.1.4. Assume a measurement matrix Φ satisfies the Restricted Isometry

Condition with parameters (8s, ε) for ε = 0.01/
√

log s. Then for an arbitrary vector

x in R
d,

‖x2s − x̂2s‖2 ≤ 477
√

log 2s
(
‖e‖2 +

‖x− xs‖1√
s

)
.
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This corollary is proved in Section 3.1.3.

6. As noted earlier, a special class of signals are compressible signals (1.1.1), and

for these it is straightforward to see that (3.1.2) gives us the following error bound

for ROMP:

‖x− x̂‖2 ≤ C ′
q

√
log s

sq−1/2
+ C ′′√log s‖e‖2.

As observed in [5], this bound is optimal (within the logarithmic factor), meaning no

algorithm can perform fundamentally better.

3.1.3 Proofs of Theorems

In this section we include the proofs of Theorems 3.1.1 and 3.1.2 and Corollaries 3.1.3

and 3.1.4. The proofs presented here originally appeared in [55] and [54].

Proof of Theorem 3.1.1

We shall prove a stronger version of Theorem 3.1.1, which states that at every itera-

tion of ROMP, at least 50% of the newly selected coordinates are from the support

of the signal x.

Theorem 3.1.5 (Iteration Invariant of ROMP). Assume Φ satisfies the Restricted

Isometry Condition with parameters (2s, ε) for ε = 0.03/
√

log s. Let x 6= 0 be a

s-sparse vector with measurements u = Φx. Then at any iteration of ROMP, after

the regularization step, we have J0 6= ∅, J0 ∩ I = ∅ and

|J0 ∩ supp(x)| ≥ 1

2
|J0|. (3.1.3)

In other words, at least 50% of the coordinates in the newly selected set J0 belong to

the support of x.
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In particular, at every iteration ROMP finds at least one new coordinate in the

support of the signal x. Coordinates outside the support can also be found, but

(3.1.3) guarantees that the number of such “false” coordinates is always smaller than

those in the support. This clearly implies Theorem 3.1.1.

Before proving Theorem 3.1.5 we explain how the Restricted Isometry Condition

will be used in our argument. RIC is necessarily a local principle, which concerns not

the measurement matrix Φ as a whole, but its submatrices of s columns. All such

submatrices ΦI , I ⊂ {1, . . . , d}, |I| ≤ s are almost isometries. Therefore, for every

s-sparse signal x, the observation vector y = Φ∗Φx approximates x locally, when

restricted to a set of cardinality s. The following proposition formalizes these local

properties of Φ on which our argument is based.

Proposition 3.1.6 (Consequences of Restricted Isometry Condition). Assume a

measurement matrix Φ satisfies the Restricted Isometry Condition with parameters

(2s, ε). Then the following holds.

1. (Local approximation) For every s-sparse vector x ∈ Rd and every set I ⊂

{1, . . . , d}, |I| ≤ s, the observation vector y = Φ∗Φx satisfies

‖y|I − x|I‖2 ≤ 2.03ε‖x‖2.

2. (Spectral norm) For any vector z ∈ Rm and every set I ⊂ {1, . . . , d}, |I| ≤ 2s,

we have

‖(Φ∗z)|I‖2 ≤ (1 + ε)‖z‖2.

3. (Almost orthogonality of columns) Consider two disjoint sets I, J ⊂ {1, . . . , d},

|I∪J | ≤ 2s. Let PI , PJ denote the orthogonal projections in Rm onto range(ΦI)
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and range(ΦJ), respectively. Then

‖PIPJ‖2→2 ≤ 2.2ε.

Proof. Part 1. Let Γ = I ∪ supp(x), so that |Γ| ≤ 2s. Let IdΓ denote the identity

operator on RΓ. By the Restricted Isometry Condition,

‖Φ∗
ΓΦΓ − IdΓ ‖2→2 = sup

w∈RΓ, ‖w‖2=1

∣∣‖ΦΓw‖22 − ‖w‖22
∣∣ ≤ (1 + ε)2 − 1 ≤ 2.03ε.

Since supp(x) ⊂ Γ, we have

‖y|Γ − x|Γ‖2 = ‖Φ∗
ΓΦΓx− Id

Γ
x‖2 ≤ 2.03ε‖x‖2.

The conclusion of Part 1 follows since I ⊂ Γ.

Part 2. Denote by QI the orthogonal projection in Rd onto RI . Since |I| ≤ 2s,

the Restricted Isometry Condition yields

‖QIΦ
∗‖2→2 = ‖ΦQI‖2→2 ≤ 1 + ε.

This yields the inequality in Part 2.

Part 3. The desired inequality is equivalent to:

|〈x, y〉|
‖x‖2‖y‖2

≤ 2.2ε for all x ∈ range(ΦI), y ∈ range(ΦJ).

Let K = I ∪ J so that |K| ≤ 2s. For any x ∈ range(ΦI), y ∈ range(ΦJ), there are
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a, b so that

x = ΦKa, y = ΦKb, a ∈ R
I , b ∈ R

J .

By the Restricted Isometry Condition,

‖x‖2 ≥ (1− ε)‖a‖2, ‖y‖2 ≥ (1− ε)‖b‖2.

By the proof of Part 2 above and since 〈ab〉 = 0, we have

|〈x, y〉| = |〈(Φ∗
KΦK − IdΓ)a, b〉| ≤ 2.03ε‖a‖2‖b‖2.

This yields

|〈x, y〉|
‖x‖2‖y‖2

≤ 2.03ε

(1− ε)2
≤ 2.2ε,

which completes the proof.

We are now ready to prove Theorem 3.1.5.

The proof is by induction on the iteration of ROMP. The induction claim is that

for all previous iterations, the set of newly chosen indices J0 is nonempty, disjoint

from the set of previously chosen indices I, and (3.1.3) holds.

Let I be the set of previously chosen indices at the start of a given iteration. The

induction claim easily implies that

|supp(x) ∪ I| ≤ 2s. (3.1.4)

Let J0, J , be the sets found by ROMP in the current iteration. By the definition of

the set J0, it is nonempty.
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Let r 6= 0 be the residual at the start of this iteration. We shall approximate r by

a vector in range(Φsupp(x)\I). That is, we want to approximately realize the residual

r as measurements of some signal which lives on the still unfound coordinates of the

the support of x. To that end, we consider the subspace

H := range(Φsupp(x)∪I)

and its complementary subspaces

F := range(ΦI), E0 := range(Φsupp(x)\I).

The Restricted Isometry Condition in the form of Part 3 of Proposition 3.1.6 ensures

that F and E0 are almost orthogonal. Thus E0 is close to the orthogonal complement

of F in H ,

E := F⊥ ∩H.

0E

x0

E

F

H

x r

We will also consider the signal we seek to identify at the current iteration, its
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measurements, and its observation vector:

x0 := x|supp(x)\I , u0 := Φx0 ∈ E0, y0 := Φ∗u0. (3.1.5)

Lemma 3.1.9 will show that ‖(y− y0)|T‖2 for any small enough subset T is small,

and Lemma 3.1.12 will show that ‖y|J0‖2 is not too small. First, we show that the

residual r has a simple description:

Lemma 3.1.7 (Residual). Here and thereafter, let PL denote the orthogonal projec-

tion in Rm onto a linear subspace L. Then

r = PEu.

Proof. By definition of the residual in the algorithm, r = PF⊥u. Since u ∈ H , we

conclude from the orthogonal decomposition H = F + E that u = PFu + PEu. Thus

r = u− PFu = PEu.

To guarantee a correct identification of x0, we first state two approximation lem-

mas that reflect in two different ways the fact that subspaces E0 and E are close to

each other. This will allow us to carry over information from E0 to E.

Lemma 3.1.8 (Approximation of the residual). We have

‖u0 − r‖2 ≤ 2.2ε‖u0‖2.

Proof. By definition of F , we have u−u0 = Φ(x−x0) ∈ F . Therefore, by Lemma 3.1.7,

r = PEu = PEu0, and so

u0 − r = u0 − PEu0 = PFu0 = PFPE0u0.
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Now we use Part 3 of Proposition 3.1.6 for the sets I and supp(x) \ I whose union

has cardinality at most 2s by (3.1.4). It follows that ‖PF PE0u0‖2 ≤ 2.2ε‖u0‖2 as

desired.

Lemma 3.1.9 (Approximation of the observation). Consider the observation vectors

y0 = Φ∗u0 and y = Φ∗r. Then for any set T ⊂ {1, . . . , d} with |T | ≤ 2s, we have

‖(y0 − y)|T‖2 ≤ 2.4ε‖x0‖2.

Proof. Since u0 = Φx0, we have by Lemma 3.1.8 and the Restricted Isometry Condi-

tion that

‖u0 − r‖2 ≤ 2.2ε‖Φx0‖2 ≤ 2.2ε(1 + ε)‖x0‖2 ≤ 2.3ε‖x0‖2.

To complete the proof, it remains to apply Part 2 of Proposition 3.1.6, which yields

‖(y0 − y)|T‖2 ≤ (1 + ε)‖u0 − r‖2.

We next show that the energy (norm) of y when restricted to J , and furthermore

to J0, is not too small. By the approximation lemmas, this will yield that ROMP

selects at least a fixed percentage of energy of the still unidentified part of the signal.

By the regularization step of ROMP, since all selected coefficients have comparable

magnitudes, we will conclude that not only a portion of energy but also of the support

is selected correctly. This will be the desired conclusion.

Lemma 3.1.10 (Localizing the energy). We have ‖y|J‖2 ≥ 0.8‖x0‖2.

Proof. Let S = supp(x) \ I. Since |S| ≤ s, the maximality property of J in the

algorithm implies that

‖y0|J‖2 ≥ ‖y0|S‖2.
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Furthermore, since x0|S = x0, by Part 1 of Proposition 3.1.6 we have

‖y0|S‖2 ≥ (1− 2.03ε)‖x0‖2.

Putting these two inequalities together and using Lemma 3.1.9, we conclude that

‖y|J‖2 ≥ (1− 2.03ε)‖x0‖2 − 2.4ε‖x0‖2 ≥ 0.8‖x0‖2.

This proves the lemma.

We next bound the norm of y restricted to the smaller set J0. We do this by first

noticing a general property of regularization:

Lemma 3.1.11 (Regularization). Let v be any vector in Rm, m > 1. Then there

exists a subset A ⊂ {1, . . . , m} with comparable coordinates:

|v(i)| ≤ 2|v(j)| for all i, j ∈ A, (3.1.6)

and with big energy:

‖v|A‖2 ≥
1

2.5
√

log m
‖v‖2. (3.1.7)

Proof. We will construct at most O(logm) subsets Ak with comparable coordinates

as in (3.1.6), and such that at least one of these sets will have large energy as in

(3.1.7).

Let v = (v1, . . . , vm), and consider a partition of {1, . . . , m} using sets with com-

parable coordinates:

Ak := {i : 2−k‖v‖2 < |vi| ≤ 2−k+1‖v‖2}, k = 1, 2, . . .
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Let k0 = ⌈log m⌉ + 1, so that |vi| ≤ 1
m
‖v‖2 for all i ∈ Ak, k > k0. Then the set

U =
⋃

k≤k0
Ak contains most of the energy of v:

‖v|Uc‖2 ≤
(
m(

1

m
‖v‖2)2

)1/2
=

1√
m
‖y‖2 ≤

1√
2
‖y‖2.

Thus
(∑

k≤k0

‖v|Ak
‖22
)1/2

= ‖v|U‖2 =
(
‖v‖22 − ‖v|Uc‖22

)1/2 ≥ 1√
2
‖v‖2.

Therefore there exists k ≤ k0 such that

‖v|Ak
‖2 ≥

1√
2k0

‖v‖2 ≥
1

2.5
√

log m
‖v‖2,

which completes the proof.

In our context, Lemma 3.1.11 applied to the vector y|J along with Lemma 3.1.10

directly implies:

Lemma 3.1.12 (Regularizing the energy). We have

‖y|J0‖2 ≥
0.32√
log s
‖x0‖2.

We now finish the proof of Theorem 3.1.5.

To show the first claim, that J0 is nonempty, we note that x0 6= 0. Indeed,

otherwise by (3.1.5) we have I ⊂ supp(x), so by the definition of the residual in

the algorithm, we would have r = 0 at the start of the current iteration, which is a

contradiction. Then J0 6= ∅ by Lemma 3.1.12.

The second claim, that J0 ∩ I = ∅, is also simple. Indeed, recall that by the

definition of the algorithm, r = PF⊥ ∈ F⊥ = (range(ΦI))
⊥. It follows that the
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observation vector y = Φ∗r satisfies y|I = 0. Since by its definition the set J contains

only nonzero coordinates of y we have J ∩ I = ∅. Since J0 ⊂ J , the second claim

J0 ∩ I = ∅ follows.

The nontrivial part of the theorem is its last claim, inequality (3.1.3). Suppose it

fails. Namely, suppose that |J0 ∩ supp(x)| < 1
2
|J0|, and thus

|J0\supp(x)| > 1

2
|J0|.

Set Λ = J0\supp(x). By the comparability property of the coordinates in J0 and

since |Λ| > 1
2
|J0|, there is a fraction of energy in Λ:

‖y|Λ‖2 >
1√
5
‖y|J0‖2 ≥

1

7
√

log s
‖x0‖2, (3.1.8)

where the last inequality holds by Lemma 3.1.12.

On the other hand, we can approximate y by y0 as

‖y|Λ‖2 ≤ ‖y|Λ − y0|Λ‖2 + ‖y0|Λ‖2. (3.1.9)

Since Λ ⊂ J and using Lemma 3.1.9, we have

‖y|Λ − y0|Λ‖2 ≤ 2.4ε‖x0‖2

Furthermore, by definition (3.1.5) of x0, we have x0|Λ = 0. So, by Part 1 of Proposi-

tion 3.1.6,

‖y0|Λ‖2 ≤ 2.03ε‖x0‖2.
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Using the last two inequalities in (3.1.9), we conclude that

‖y|Λ‖2 ≤ 4.43ε‖x0‖2.

This is a contradiction to (3.1.8) so long as ε ≤ 0.03/
√

log s. This proves Theo-

rem 3.1.5.

Proof of Theorem 3.1.2

The proof of Theorem 3.1.2 parallels that of Theorem 3.1.1. We begin by showing

that at every iteration of ROMP, either at least 50% of the selected coordinates from

that iteration are from the support of the actual signal v, or the error bound already

holds. This directly implies Theorem 3.1.2.

Theorem 3.1.13 (Stable Iteration Invariant of ROMP). Let Φ be a measurement

matrix satisfying the Restricted Isometry Condition with parameters (4s, ε) for ε =

0.01/
√

log s. Let x be a non-zero s-sparse vector with measurements u = Φx + e.

Then at any iteration of ROMP, after the regularization step where I is the current

chosen index set, we have J0 ∩ I = ∅ and (at least) one of the following:

(i) |J0 ∩ supp(v)| ≥ 1
2
|J0|;

(ii) ‖x|supp(x)\I‖2 ≤ 100
√

log s‖e‖2.

We show that the Iteration Invariant implies Theorem 3.1.2 by examining the

three possible cases:

Case 1: (ii) occurs at some iteration. We first note that since |I| is nonde-

creasing, if (ii) occurs at some iteration, then it holds for all subsequent iterations.

To show that this would then imply Theorem 3.1.2, we observe that by the Restricted
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Isometry Condition and since |supp(x̂)| ≤ |I| ≤ 3s,

(1− ε)‖x̂− x‖2 − ‖e‖2 ≤ ‖Φx̂− Φx− e‖2.

Then again by the Restricted Isometry Condition and definition of x̂,

‖Φx̂− Φx− e‖2 ≤ ‖Φ(x|I)− Φx− e‖2 ≤ (1 + ε)‖x|supp(x)\I‖2 + ‖e‖2.

Thus we have that

‖x̂− x‖2 ≤
1 + ε

1− ε
‖x|supp(x)\I‖2 +

2

1− ε
‖e‖2.

Thus (ii) of the Iteration Invariant would imply Theorem 3.1.2.

Case 2: (i) occurs at every iteration and J0 is always non-empty. In this

case, by (i) and the fact that J0 is always non-empty, the algorithm identifies at least

one element of the support in every iteration. Thus if the algorithm runs s iterations

or until |I| ≥ 2s, it must be that supp(x) ⊂ I, meaning that x|supp(x)\I = 0. Then by

the argument above for Case 1, this implies Theorem 3.1.2.

Case 3: (i) occurs at each iteration and J0 = ∅ for some iteration. By

the definition of J0, if J0 = ∅ then y = Φ∗r = 0 for that iteration. By definition of r,

this must mean that

Φ∗Φ(x− w) + Φ∗e = 0.

This combined with Part 1 of Proposition 3.1.6 below (and its proof, see [55]) applied

with the set I ′ = supp(x) ∪ I yields

‖x− w + (Φ∗e)|I′‖2 ≤ 2.03ε‖x− w‖2.
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Then combinining this with Part 2 of the same Proposition, we have

‖x− w‖2 ≤ 1.1‖e‖2.

Since x|supp(x)\I = (x − w)|supp(x)\I , this means that the error bound (ii) must hold,

so by Case 1 this implies Theorem 3.1.2.

We now turn to the proof of the Iteration Invariant, Theorem 3.1.13. We prove

Theorem 3.1.13 by inducting on each iteration of ROMP. We will show that at each

iteration the set of chosen indices is disjoint from the current set I of indices, and

that either (i) or (ii) holds. Clearly if (ii) held in a previous iteration, it would hold

in all future iterations. Thus we may assume that (ii) has not yet held. Since (i) has

held at each previous iteration, we must have

|I| ≤ 2s. (3.1.10)

Consider an iteration of ROMP, and let r 6= 0 be the residual at the start of that

iteration. Let J0 and J be the sets found by ROMP in this iteration. As in [55], we

consider the subspace

H := range(Φsupp(v)∪I)

and its complementary subspaces

F := range(ΦI), E0 := range(Φsupp(v)\I).

Part 3 of Proposition 3.1.6 states that the subspaces F and E0 are nearly orthogonal.
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For this reason we consider the subspace:

E := F⊥ ∩H.

First we write the residual r in terms of projections onto these subspaces.

Lemma 3.1.14 (Residual). Here and onward, denote by PL the orthogonal projection

in Rm onto a linear subspace L. Then the residual r has the following form:

r = PEΦx + PF⊥e.

Proof. By definition of the residual r in the ROMP algorithm, r = PF⊥u = PF⊥(Φx+

e). To complete the proof we need that PF⊥Φx = PEΦx. This follows from the

orthogonal decomposition H = F + E and the fact that Φx ∈ H .

Next we examine the missing portion of the signal as well as its measurements:

x0 := x|supp(x)\I , u0 := Φx0 ∈ E0. (3.1.11)

In the next two lemmas we show that the subspaces E and E0 are indeed close.

Lemma 3.1.15 (Approximation of the residual). Let r be the residual vector and u0

as in (3.1.11). Then

‖u0 − r‖2 ≤ 2.2ε‖u0‖2 + ‖e‖2.

Proof. Since x − x0 has support in I, we have Φx − u0 = Φ(x − x0) ∈ F . Then by

Lemma 3.1.7, r = PEΦx + PF⊥e = PEu0 + PF⊥e. Therefore,

‖x0 − r‖2 = ‖x0 − PEx0 − PF⊥e‖2 ≤ ‖PFx0‖2 + ‖e‖2.



3.1. Regularized Orthogonal Matching Pursuit 57

Note that by (3.1.10), the union of the sets I and supp(x) \ I has cardinality no

greater than 3s. Thus by Part 3 of Proposition 3.1.6, we have

‖PFu0‖2 + ‖e‖2 = ‖PFPE0u0‖2 + ‖e‖2 ≤ 2.2ε‖u0‖2 + ‖e‖2.

Lemma 3.1.16 (Approximation of the observation). Let y0 = Φ∗u0 and y = Φ∗r.

Then for any set T ⊂ {1, . . . , d} with |T | ≤ 3s,

‖(y0 − y)|T‖2 ≤ 2.4ε‖x0‖2 + (1 + ε)‖e‖2.

Proof. By Lemma 3.1.15 and the Restricted Isometry Condition we have

‖u0 − r‖2 ≤ 2.2ε‖Φx0‖2 + ‖e‖2 ≤ 2.2ε(1 + ε)‖x0‖2 + ‖e‖2 ≤ 2.3ε‖x0‖2 + ‖e‖2.

Then by Part 2 of Proposition 3.1.6 we have the desired result,

‖(y0 − y)|T‖2 ≤ (1 + ε)‖u0 − r‖2.

The result of the theorem requires us to show that we correctly gain a portion of

the support of the signal x. To this end, we first show that ROMP correctly chooses

a portion of the energy. The regularization step will then imply that the support is

also selected correctly. We thus next show that the energy of y when restricted to

the sets J and J0 is sufficiently large.
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Lemma 3.1.17 (Localizing the energy). Let y be the observation vector and x0 be

as in (3.1.11). Then ‖y|J‖2 ≥ 0.8‖x0‖2 − (1 + ε)‖e‖2.

Proof. Let S = supp(x) \ I be the missing support. Since |S| ≤ s, by definition of J

in the algorithm, we have

‖y|J‖2 ≥ ‖y|S‖2.

By Lemma 3.1.16,

‖y|S‖2 ≥ ‖y0|S‖2 − 2.4ε‖x0‖2 − (1 + ε)‖e‖2.

Since x0|S = x0, Part 1 of Proposition 3.1.6 implies

‖y0|S‖2 ≥ (1− 2.03ε)‖x0‖2.

These three inequalities yield

‖y|J‖2 ≥ (1− 2.03ε)‖x0‖2 − 2.4ε‖x0‖2 − (1 + ε)‖e‖2 ≥ 0.8‖x0‖2 − (1 + ε)‖e‖2.

This completes the proof.

Lemma 3.1.18 (Regularizing the energy). Again let y be the observation vector and

x0 be as in (3.1.11). Then

‖y|J0‖2 ≥
1

4
√

log s
‖x0‖2 −

‖e‖2
2
√

log s
.

Proof. By Lemma 3.1.11 applied to the vector y|J , we have

‖y|J0‖2 ≥
1

2.5
√

log s
‖y|J‖2.
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Along with Lemma 3.1.17 this implies the claim.

We now conclude the proof of Theorem 3.1.13. The claim that J0 ∩ I = ∅ follows

by the same arguments as in [55].

It remains to show its last claim, that either (i) or (ii) holds. Suppose (i) in the

theorem fails. That is, suppose |J0 ∩ supp(x)| < 1
2
|J0|, which means

|J0\supp(x)| > 1

2
|J0|.

Set Λ = J0\supp(x). By the definition of J0 in the algorithm and since |Λ| > 1
2
|J0|,

we have by Lemma 3.1.18,

‖y|Λ‖2 >
1√
5
‖y|J0‖2 ≥

1

4
√

5 log s
‖x0‖2 −

‖e‖2
2
√

5 log s
. (3.1.12)

Next, we also have

‖y|Λ‖2 ≤ ‖y|Λ − y0|Λ‖2 + ‖y0|Λ‖2. (3.1.13)

Since Λ ⊂ J and |J | ≤ s, by Lemma 3.1.16 we have

‖y|Λ − y0|Λ‖2 ≤ 2.4ε‖x0‖2 + (1 + ε)‖e‖2.

By the definition of x0 in (3.1.11), it must be that x0|Λ = 0. Thus by Part 1 of

Proposition 3.1.6,

‖y0|Λ‖2 ≤ 2.03ε‖x0‖2.
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Using the previous inequalities along with (3.1.13), we deduce that

‖y|Λ‖2 ≤ 4.43ε‖x0‖2 + (1 + ε)‖e‖2.

This is a contradiction to (3.1.12) whenever

ε ≤ 0.02√
log s

− ‖e‖2‖x0‖2
.

If this is true, then indeed (i) in the theorem must hold. If it is not true, then by the

choice of ε, this implies that

‖x0‖2 ≤ 100‖e‖2
√

log s.

This proves Theorem 3.1.13.

Proof of Corollary 3.1.3

Proof. We first partition x so that u = Φx2s + Φ(x− x2s) + e. Then since Φ satisfies

the Restricted Isometry Condition with parameters (8s, ε), by Theorem 3.1.2 and the

triangle inequality,

‖x2s − x̂‖2 ≤ 104
√

log 2s(‖Φ(x− x2s)‖2 + ‖e‖2), (3.1.14)

The following lemma as in [32] relates the 2-norm of a vector’s tail to its 1-norm. An

application of this lemma combined with (3.1.14) will prove Corollary 3.1.3.

Lemma 3.1.19 (Comparing the norms). Let v ∈ Rd, and let vT be the vector of the
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T largest coordinates in absolute value from v. Then

‖v − vT‖2 ≤
‖v‖1
2
√

T
.

Proof. By linearity, we may assume ‖v‖1 = d. Since vT consists of the largest T

coordinates of v in absolute value, we must have that ‖v − vT‖2 ≤
√

d− T . (This is

because the term ‖v−vT‖2 is greatest when the vector v has constant entries.) Then

by the AM-GM inequality,

‖v − vT‖2
√

T ≤
√

d− T
√

T ≤ (d− T + T )/2 = d/2 = ‖v‖1/2.

This completes the proof.

By Lemma 29 of [32], we have

‖Φ(x− x2s)‖2 ≤ (1 + ε)
(
‖x− x2s‖2 +

‖x− x2s‖1√
s

)
.

Applying Lemma 3.1.19 to the vector v = x− xs we then have

‖Φ(x− x2s)‖2 ≤ 1.5(1 + ε)
‖x− xs‖1√

s
.

Combined with (3.1.14), this proves the corollary.

Proof of Corollary 3.1.4

Often one wishes to find a sparse approximation to a signal. We now show that by

simply truncating the reconstructed vector, we obtain a 2s-sparse vector very close
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to the original signal.

Proof. Let xS := x2s and x̂T := x̂2s, and let S and T denote the supports of xS and

x̂T respectively. By Corollary 3.1.3, it suffices to show that ‖xS− x̂T‖2 ≤ 3‖xS− x̂‖2.

Applying the triangle inequality, we have

‖xS − x̂T‖2 ≤ ‖(xS − x̂T )|T‖2 + ‖xS|S\T‖2 =: a + b.

We then have

a = ‖(xS − x̂T )|T‖2 = ‖(xS − x̂)|T‖2 ≤ ‖xS − x̂‖2

and

b ≤ ‖x̂|S\T‖2 + ‖(xS − x̂)|S\T‖2.

Since |S| = |T |, we have |S\T | = |T\S|. By the definition of T , every coordinate of

x̂ in T is greater than or equal to every coordinate of x̂ in T c in absolute value. Thus

we have,

‖x̂|S\T‖2 ≤ ‖x̂|T\S‖2 = ‖(xS − x̂)|T\S‖2.

Thus b ≤ 2‖xS − x̂‖2, and so

a + b ≤ 3‖xS − x̂‖2.

This completes the proof.

Remark. Corollary 3.1.4 combined with Corollary 3.1.3 and (3.1.2) implies that we
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can also estimate a bound on the whole signal v:

‖x− x̂2s‖2 ≤ C
√

log 2s
(
‖e‖2 +

‖x− xs‖1√
s

)
.

3.1.4 Implementation and Runtime

The Identification step of ROMP, i.e. selection of the subset J , can be done by sorting

the coordinates of y in the nonincreasing order and selecting s biggest. Many sorting

algorithms such as Mergesort or Heapsort provide running times of O(d log d).

The Regularization step of ROMP, i.e. selecting J0 ⊂ J , can be done fast by

observing that J0 is an interval in the decreasing rearrangement of coefficients. More-

over, the analysis of the algorithm shows that instead of searching over all intervals

J0, it suffices to look for J0 among O(log s) consecutive intervals with endpoints where

the magnitude of coefficients decreases by a factor of 2. (these are the sets Ak in the

proof of Lemma 3.1.11). Therefore, the Regularization step can be done in time O(s).

In addition to these costs, the k-th iteration step of ROMP involves multiplication

of the d ×m matrix Φ∗ by a vector, and solving the least squares problem with the

d×|I| matrix ΦI , where |I| ≤ 2s. For unstructured matrices, these tasks can be done

in time dm and O(s2m) respectively [2]. Since the submatrix of Φ when restricted to

the index set I is near an isometry, using an iterative method such as the Conjugate

Gradient Method allows us to solve the least squares method in a constant number of

iterations (up to a specific accuracy) [2, Sec. 7.4]. Using such a method then reduces

the time of solving the least squares problem to just O(sm). Thus in the cases

where ROMP terminates after a fixed number of iterations, the total time to solve
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all required least squares problems would be just O(sm). For structured matrices,

such as partial Fourier, these times can be improved even more using fast multiply

techniques.

In other cases, however, ROMP may need more than a constant number of iter-

ations before terminating, say the full O(s) iterations. In this case, it may be more

efficient to maintain the QR factorization of ΦI and use the Modified Gram-Schmidt

algorithm. With this method, solving all the least squares problems takes total time

just O(s2m). However, storing the QR factorization is quite costly, so in situations

where storage is limited it may be best to use the iterative methods mentioned above.

ROMP terminates in at most 2s iterations. Therefore, for unstructured matrices

using the methods mentioned above and in the interesting regime m ≥ log d, the total

running time of ROMP is O(dNn). This is the same bound as for OMP [62].

3.1.5 Numerical Results

Noiseless Numerical Studies

This section describes our experiments that illustrate the signal recovery power of

ROMP, as shown in [55]. See Section A.3 for the Matlab code used in these studies.

We experimentally examine how many measurements m are necessary to recover

various kinds of s-sparse signals in Rd using ROMP. We also demonstrate that the

number of iterations ROMP needs to recover a sparse signal is in practice at most

linear the sparsity.

First we describe the setup of our experiments. For many values of the ambient

dimension d, the number of measurements m, and the sparsity s, we reconstruct

random signals using ROMP. For each set of values, we generate an m× d Gaussian

measurement matrix Φ and then perform 500 independent trials. The results we
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obtained using Bernoulli measurement matrices were very similar. In a given trial,

we generate an s-sparse signal x in one of two ways. In either case, we first select the

support of the signal by choosing s components uniformly at random (independent

from the measurement matrix Φ). In the cases where we wish to generate flat signals,

we then set these components to one. Our work as well as the analysis of Gilbert and

Tropp [62] show that this is a challenging case for ROMP (and OMP). In the cases

where we wish to generate sparse compressible signals, we set the ith component of

the support to plus or minus i−1/p for a specified value of 0 < p < 1. We then execute

ROMP with the measurement vector u = Φx.

Figure 3.1.1 depicts the percentage (from the 500 trials) of sparse flat signals that

were reconstructed exactly. This plot was generated with d = 256 for various levels

of sparsity s. The horizontal axis represents the number of measurements m, and

the vertical axis represents the exact recovery percentage. We also performed this

same test for sparse compressible signals and found the results very similar to those

in Figure 3.1.1. Our results show that performance of ROMP is very similar to that

of OMP which can be found in [62].

Figure 3.1.2 depicts a plot of the values for m and s at which 99% of sparse flat

signals are recovered exactly. This plot was generated with d = 256. The horizontal

axis represents the number of measurements m, and the vertical axis the sparsity

level s.

Theorem 3.1.1 guarantees that ROMP runs with at most O(s) iterations. Fig-

ure 3.1.3 depicts the number of iterations executed by ROMP for d = 10, 000 and

m = 200. ROMP was executed under the same setting as described above for sparse

flat signals as well as sparse compressible signals for various values of p, and the

number of iterations in each scenario was averaged over the 500 trials. These aver-
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ages were plotted against the sparsity of the signal. As the plot illustrates, only 2

iterations were needed for flat signals even for sparsity s as high as 40. The plot also

demonstrates that the number of iterations needed for sparse compressible is higher

than the number needed for sparse flat signals, as one would expect. The plot sug-

gests that for smaller values of p (meaning signals that decay more rapidly) ROMP

needs more iterations. However it shows that even in the case of p = 0.5, only 6

iterations are needed even for sparsity s as high as 20.
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Figure 3.1.1: The percentage of sparse flat signals exactly recovered by ROMP as a
function of the number of measurements in dimension d = 256 for various levels of
sparsity.

Noisy Numerical Studies

This section describes our numerical experiments that illustrate the stability of ROMP

as shown in [54]. We study the recovery error using ROMP for both perturbed mea-

surements and signals. The empirical recovery error is actually much better than
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Figure 3.1.2: The 99% recovery limit as a function of the sparsity and the number of
measurements for sparse flat signals.

that given in the theorems.

First we describe the setup to our experimental studies. We run ROMP on various

values of the ambient dimension d, the number of measurements m, and the sparsity

level s, and attempt to reconstruct random signals. For each set of parameters, we

perform 500 trials. Initially, we generate an m × d Gaussian measurement matrix

Φ. For each trial, independent of the matrix, we generate an s-sparse signal x by

choosing s components uniformly at random and setting them to one. In the case of

perturbed signals, we add to the signal a d-dimensional error vector with Gaussian

entries. In the case of perturbed measurements, we add an m-dimensional error vector

with Gaussian entries to the measurement vector Φx. We then execute ROMP with

the measurement vector u = Φx or u + e in the perturbed measurement case. After

ROMP terminates, we output the reconstructed vector x̂ obtained from the least

squares calculation and calculate its distance from the original signal.
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Figure 3.1.3: The number of iterations executed by ROMP as a function of the
sparsity in dimension d = 10, 000 with 200 measurements.

Figure 3.1.4 depicts the recovery error ‖x− x̂‖2 when ROMP was run with per-

turbed measurements. This plot was generated with d = 256 for various levels of

sparsity s. The horizontal axis represents the number of measurements m, and the

vertical axis represents the average normalized recovery error. Figure 3.1.4 confirms

the results of Theorem 3.1.2, while also suggesting the bound may be improved by

removing the
√

log s factor.

Figure 3.1.5 depicts the normalized recovery error when the signal was perturbed

by a Gaussian vector. The figure confirms the results of Corollary 3.1.3 while also

suggesting again that the logarithmic factor in the corollary is unnecessary.

3.1.6 Summary

There are several critical properties that an ideal algorithm in compressed sensing

should possess. One such property is stability, guaranteeing that under small pertur-
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Figure 3.1.4: The error to noise ratio ‖x̂−x‖2

‖e‖2
as a function of the number of measure-

ments m in dimension d = 256 for various levels of sparsity s.

bations of the inputs, the algorithm still performs approximately correct. Secondly,

the algorithm needs to provide uniform guarantees, meaning that with high proba-

bility the algorithm works correctly for all inputs. Finally, to be ideal in practice,

the algorithm would need to have a fast runtime. The ℓ1-minimization approach to

compressed sensing is stable and provides uniform guarantees, but since it relies on

the use of Linear Programming, lacks a strong bound on its runtime. The greedy ap-

proach is quite fast both in theory and in practice, but had lacked both stability and

uniform guarantees. We analyzed the restricted isometry property in a unique way

and found consequences that could be used in a greedy fashion. Our breakthrough

algorithm ROMP is the first to provide all these benefits (stability, uniform guaran-

tees, and speed), and essentially bridges the gap between the two major approaches

in compressed sensing.
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Figure 3.1.5: The error to noise ratio ‖x̂−x2s‖2

‖x−xs‖1/
√

s
using a perturbed signal, as a function

of the number of measurements m in dimension d = 256 for various levels of sparsity
s.

3.2 Compressive Sampling Matching Pursuit

Regularized Orthogonal Matching Pursuit bridged a critical gap between the major

approaches in compressed sensing. It provided the speed of the greedy approach and

the strong guarantees of the convex optimization approach. Although its contribu-

tions were significant, it still left room for improvement. The requirements imposed by

ROMP on the restricted isometry condition were slightly stronger than those imposed

by the convex optimization approach. This then in turn weakened the error bounds

provided by ROMP in the case of noisy signals and measurements. These issues were

resolved by our algorithm Compressive Sampling Matching Pursuit (CoSaMP). A

similar algorithm, Subspace Matching Pursuit was also developed around this time,

which provides similar benefits to those of CoSaMP. See [14] for details.
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3.2.1 Description

One of the key differences between ROMP and OMP is that at each iteration ROMP

selects more than one coordinate to be in the support set. Because of this, ROMP

is able to make mistakes in the support set, while still correctly reconstructing the

original signal. This is accomplished because we bound the number of incorrect

choices the algorithm can make. Once the algorithm chooses an incorrect coordinate,

however, there is no way for it to be removed from the support set. An alternative

approach would be to allow the algorithm to choose incorrectly as well as fix its

mistakes in later iterations. In this case, at each iteration we select a slightly larger

support set, reconstruct the signal using that support, and use that estimation to

calculate the residual.

Tropp and Needell developed a new variant of OMP, Compressive Sampling

Matching Pursuit (CoSaMP) [53, 52]. This new algorithm has the same uniform

guarantees as ROMP, but does not impose the logarithmic term for the Restricted

Isometry Property or in the error bounds. Since the sampling operator Φ satisfies

the Restricted Isometry Property, every s entries of the signal proxy y = Φ∗Φx are

close in the Euclidean norm to the s corresponding entries of the signal x. Thus as

in ROMP, the algorithm first selects the largest coordinates of the signal proxy y

and adds these coordinates to the running support set. Next however, the algorithm

performs a least squares step to get an estimate b of the signal, and prunes the signal

to make it sparse. The algorithm’s major steps are described as follows:

1. Identification. The algorithm forms a proxy of the residual from the current

samples and locates the largest components of the proxy.

2. Support Merger. The set of newly identified components is united with the
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set of components that appear in the current approximation.

3. Estimation. The algorithm solves a least-squares problem to approximate the

target signal on the merged set of components.

4. Pruning. The algorithm produces a new approximation by retaining only the

largest entries in this least-squares signal approximation.

5. Sample Update. Finally, the samples are updated so that they reflect the

residual, the part of the signal that has not been approximated.

These steps are repeated until the halting criterion is triggered. Initially, we concen-

trate on methods that use a fixed number of iterations. Section 3.2.4 discusses some

other simple stopping rules that may also be useful in practice. Using these ideas,

the pseudo-code for CoSaMP can thus be described as follows.
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Compressive Matching Pursuit (CoSaMP) [53]

Input: Measurement matrix Φ, measurement vector u = Φx, sparsity level s

Output: s-sparse reconstructed vector x̂ = a

Procedure:

Initialize Set a0 = 0, v = u, k = 0. Repeat the following steps and increment k

until the halting criterion is true.

Signal Proxy Set y = Φ∗v, Ω = suppy2s and merge the supports: T = Ω ∪

suppak−1.

Signal Estimation Using least-squares, set b|T = Φ†
T u and b|T c = 0.

Prune To obtain the next approximation, set ak = bs.

Sample Update Update the current samples: v = u− Φak.

There are a few major concepts of which the algorithm CoSaMP takes advan-

tage. Unlike some other greedy algorithms, CoSaMP selects many components at

each iteration. This idea can be found in theoretical work on greedy algorithms by

Temlyakov as well as some early work of Gilbert, Muthukrishnan, Strauss and Tropp

[34],[63]. It is also the key idea of recent work on the Fourier sampling algorithm [35].

The ROMP and StOMP algorithms also incorporate this notion [55], [23].

The application of the Restricted Isometry Property to compare the norms of

vectors under the action of the sampling operator and its adjoint is also key in this

algorithm and its analysis. The Restricted Isometry Property is due to Candès and

Tao [9]. The application of the property to greedy algorithms is relatively new, and

appears in [32] and [55].

Another key idea present in the algorithm is the pruning step to maintain sparsity
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of the approximation. This also has significant ramifications in other parts of the

analysis and the running time. Since the Restricted Isometry Property only holds for

sparse vectors, it is vital in the analysis that the approximation remain sparse. This

idea also appears in [32].

Our analysis focuses on mixed-norm error bounds. This idea appears in the work

of Candès, Romberg, Tao [5] as well as [32] and [10]. In our analysis, we focus on the

fact that if the error is large, the algorithm must make progress. This idea appears

in work by Gilbert and Strauss, for example [32].

The L1-minimization method and the ROMP algorithm provide the strongest

known guarantees of sparse recovery. These guarantees are uniform in that once

the sampling operator satisfies the Restricted Isometry Property, both methods work

correctly for all sparse signals. L1-minimization is based on linear programming,

which provides only a polynomial runtime. Greedy algorithms such as OMP and

ROMP on the other hand, are much faster both in theory and empirically. Our

algorithm CoSaMP provides both uniform guarantees as well as fast runtime, while

improving upon the error bounds and Restricted Isometry requirements of ROMP.

We describe these results next as we state the main theorems.

3.2.2 Main Theorem

Next we state the main theorem which guarantees exact reconstruction of sparse

signals and approximate reconstruction of arbitrary signals. The proof of the theorem

is presented in Section 3.2.3.

Theorem 3.2.1 (CoSaMP [53]). Suppose that Φ is an m × d sampling matrix with

restricted isometry constant δ2s ≤ c, as in (2.1.4). Let u = Φx + e be a vector

of samples of an arbitrary signal, contaminated with arbitrary noise. For a given
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precision parameter η, the algorithm CoSaMP produces an s-sparse approximation x̂

that satisfies

‖x− x̂‖2 ≤ C ·max

{
η,

1√
s

∥∥x− xs/2

∥∥
1
+ ‖e‖2

}

where xs/2 is a best (s/2)-sparse approximation to x. The running time is O(L ·

log(‖x‖2 /η)), where L bounds the cost of a matrix–vector multiply with Φ or Φ∗.

Working storage is O(d).

Remarks. 1. We note that as in the case of ROMP, CoSaMP requires knowledge

of the sparsity level s. As described in Section 3.1.1, there are several strategies to

estimate this level.

2. In the hypotheses, a bound on the restricted isometry constant δ2s also

suffices. Indeed, Corollary 3.2.7 of the sequel implies that δ4s ≤ 0.1 holds whenever

δ2s ≤ 0.025.

3. Theorem 3.2.1 is a result of running CoSaMP using an iterative algorithm

to solve the least-squares step. We analyze this step in detail below. In the case of

exact arithmetic, we again analyze CoSaMP and provide an iteration count for this

case:

Theorem 3.2.2 (Iteration Count). Suppose that CoSaMP is implemented with exact

arithmetic. After at most 6(s + 1) iterations, CoSaMP produces an s-sparse approx-

imation x̂ that satisfies

‖x− a‖2 ≤ 20ν,

where ν is the unrecoverable energy (3.2.1).

See Theorem 3.2.22 in Section 3.2.3 below for more details.

The algorithm produces an s-sparse approximation whose ℓ2 error is comparable

with the scaled ℓ1 error of the best (s/2)-sparse approximation to the signal. Of
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course, the algorithm cannot resolve the uncertainty due to the additive noise, so we

also pay for the energy in the noise. This type of error bound is structurally optimal,

as discuss when describing the unrecoverable energy below. Some disparity in the

sparsity levels (here, s versus s/2) seems to be necessary when the recovery algorithm

is computationally efficient [58].

To prove our theorem, we show that CoSaMP makes significant progress during

each iteration where the approximation error is large relative to unrecoverable energy

ν in the signal. This quantity measures the baseline error in our approximation that

occurs because of noise in the samples or because the signal is not sparse. For our

purposes, we define the unrecoverable energy by the following.

ν = ‖x− xs‖2 +
1√
s
‖x− xs‖1 + ‖e‖2 . (3.2.1)

The expression (3.2.1) for the unrecoverable energy can be simplified using Lemma 7

from [32], which states that, for every signal y ∈ CN and every positive integer t, we

have

‖y − yt‖2 ≤
1

2
√

t
‖y‖1 .

Choosing y = x− xs/2 and t = s/2, we reach

ν ≤ 1.71√
s

∥∥x− xs/2

∥∥
1
+ ‖e‖2 . (3.2.2)

In words, the unrecoverable energy is controlled by the scaled ℓ1 norm of the signal

tail.

The term “unrecoverable energy” is justified by several facts. First, we must pay

for the ℓ2 error contaminating the samples. To check this point, define S = suppxs.

The matrix ΦS is nearly an isometry from ℓS
2 to ℓm

2 , so an error in the large components
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of the signal induces an error of equivalent size in the samples. Clearly, we can never

resolve this uncertainty.

The term s−1/2 ‖x− xs‖1 is also required on account of classical results about the

Gel’fand widths of the ℓd
1 ball in ℓd

2, due to Kashin [42] and Garnaev–Gluskin [30].

In the language of compressive sampling, their work has the following interpretation.

Let Φ be a fixed m×d sampling matrix. Suppose that, for every signal x ∈ Cd, there

is an algorithm that uses the samples u = Φx to construct an approximation a that

achieves the error bound

‖x− a‖2 ≤
C√
s
‖x‖1 .

Then the number m of measurements must satisfy m ≥ cs log(d/s).

3.2.3 Proofs of Theorems

Theorem 3.2.1 will be shown by demonstrating that the following iteration invariant

holds. These results can be found in [53].

Theorem 3.2.3 (Iteration Invariant). For each iteration k ≥ 0, the signal approxi-

mation ak is s-sparse and

∥∥x− ak+1
∥∥

2
≤ 0.5

∥∥x− ak
∥∥

2
+ 10ν.

In particular,
∥∥x− ak

∥∥
2
≤ 2−k ‖x‖2 + 20ν.

We will first show this holds for sparse input signals, and then derive the general

case.

When the sampling matrix satisfies the restricted isometry inequalities (2.1.4), it
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has several other properties that we require repeatedly in the proof that the CoSaMP

algorithm is correct. Our first observation is a simple translation of (2.1.4) into other

terms, in the same light as Proposition 3.1.6 used in the proof of ROMP.

Proposition 3.2.4. Suppose Φ has restricted isometry constant δr. Let T be a set

of r indices or fewer. Then

∥∥Φ∗
T u
∥∥

2
≤
√

1 + δr ‖u‖2
∥∥Φ†

T u
∥∥

2
≤ 1√

1− δr

‖u‖2
∥∥Φ∗

T ΦT x
∥∥

2
S (1± δr) ‖x‖2

∥∥(Φ∗
T ΦT )−1x

∥∥
2

S 1

1± δr
‖x‖2 .

where the last two statements contain an upper and lower bound, depending on the

sign chosen.

Proof. The restricted isometry inequalities (2.1.4) imply that the singular values of

ΦT lie between
√

1− δr and
√

1 + δr. The bounds follow from standard relationships

between the singular values of ΦT and the singular values of basic functions of ΦT .

A second consequence is that disjoint sets of columns from the sampling matrix

span nearly orthogonal subspaces. The following result quantifies this observation.

Proposition 3.2.5 (Approximate Orthogonality). Suppose Φ has restricted isometry

constant δr. Let S and T be disjoint sets of indices whose combined cardinality does

not exceed r. Then

‖Φ∗
SΦT‖ ≤ δr.

Proof. Abbreviate R = S ∪ T , and observe that Φ∗
SΦT is a submatrix of Φ∗

RΦR − Id.
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The spectral norm of a submatrix never exceeds the norm of the entire matrix. We

discern that

‖Φ∗
SΦT‖ ≤ ‖Φ∗

RΦR − Id‖ ≤ max{(1 + δr)− 1, 1− (1− δr)} = δr

because the eigenvalues of Φ∗
RΦR lie between 1− δr and 1 + δr.

This result will be applied through the following corollary.

Corollary 3.2.6. Suppose Φ has restricted isometry constant δr. Let T be a set of

indices, and let x be a vector. Provided that r ≥ |T ∪ suppx|,

‖Φ∗
T Φ · x|T c‖2 ≤ δr ‖x|T c‖2 .

Proof. Define S = suppx \ T , so we have x|S = x|T c . Thus,

‖Φ∗
T Φ · x|T c‖2 = ‖Φ∗

T Φ · x|S‖2 ≤ ‖Φ∗
T ΦS‖ ‖x|S‖2 ≤ δr ‖x|T c‖2 ,

owing to Proposition 3.2.5.

As a second corollary, we show that δ2r gives weak control over the higher re-

stricted isometry constants.

Corollary 3.2.7. Let c and r be positive integers. Then δcr ≤ c · δ2r.

Proof. The result is clearly true for c = 1, 2, so we assume c ≥ 3. Let S be an

arbitrary index set of size cr, and let M = Φ∗
SΦS − Id. It suffices to check that

‖M‖ ≤ c · δ2r. To that end, we break the matrix M into r × r blocks, which we

denote Mij. A block version of Gershgorin’s theorem states that ‖M‖ satisfies at
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least one of the inequalities

|‖M‖ − ‖Mii‖| ≤
∑

j 6=i
‖Mij‖ where i = 1, 2, . . . , c.

The derivation is entirely analogous with the usual proof of Gershgorin’s theorem,

so we omit the details. For each diagonal block, we have ‖Mii‖ ≤ δr because of

the restricted isometry inequalities (2.1.4). For each off-diagonal block, we have

‖Mij‖ ≤ δ2r because of Proposition 3.2.5. Substitute these bounds into the block

Gershgorin theorem and rearrange to complete the proof.

Finally, we present a result that measures how much the sampling matrix inflates

nonsparse vectors. This bound permits us to establish the major results for sparse

signals and then transfer the conclusions to the general case.

Proposition 3.2.8 (Energy Bound). Suppose that Φ verifies the upper inequality of

(2.1.4), viz.

‖Φx‖2 ≤
√

1 + δr ‖x‖2 when ‖x‖0 ≤ r.

Then, for every signal x,

‖Φx‖2 ≤
√

1 + δr

[
‖x‖2 +

1√
r
‖x‖1

]
.

Proof. First, observe that the hypothesis of the proposition can be regarded as a

statement about the operator norm of Φ as a map between two Banach spaces. For

a set I ⊂ {1, 2, . . . , N}, write BI
2 for the unit ball in ℓ2(I). Define the convex body

S = conv

{⋃
|I|≤r

BI
2

}
⊂ C

N ,



3.2. Compressive Sampling Matching Pursuit 81

and notice that, by hypothesis, the operator norm

‖Φ‖S→2 = max
x∈S
‖Φx‖2 ≤

√
1 + δr.

Define a second convex body

K =

{
x : ‖x‖2 +

1√
r
‖x‖1 ≤ 1

}
⊂ C

N ,

and consider the operator norm

‖Φ‖K→2 = max
x∈K
‖Φx‖2 .

The content of the proposition is the claim that

‖Φ‖K→2 ≤ ‖Φ‖S→2 .

To establish this point, it suffices to check that K ⊂ S.

Choose a vector x ∈ K. We partition the support of x into sets of size r. Let I0

index the r largest-magnitude components of x, breaking ties lexicographically. Let

I1 index the next largest r components, and so forth. Note that the final block IJ

may have fewer than r components. We may assume that x|Ij
is nonzero for each j.

This partition induces a decomposition

x = x|I0 +
∑J

j=0
x|Ij

= λ0y0 +
∑J

j=0
λjyj

where

λj =
∥∥x|Ij

∥∥
2

and yj = λ−1
j x|Ij

.
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By construction, each vector yj belongs to S because it is r-sparse and has unit ℓ2

norm. We will prove that
∑

j λj ≤ 1, which implies that x can be written as a convex

combination of vectors from the set S. As a consequence, x ∈ S. It emerges that

K ⊂ S.

Fix j in the range {1, 2, . . . , J}. It follows that Ij contains at most r elements

and Ij−1 contains exactly r elements. Therefore,

λj =
∥∥x|Ij

∥∥
2
≤ √r

∥∥x|Ij

∥∥
∞ ≤

√
r · 1

r

∥∥x|Ij−1

∥∥
1

where the last inequality holds because the magnitude of x on the set Ij−1 dominates

its largest entry in Ij . Summing these relations, we obtain

∑J

j=1
λj ≤

1√
r

∑J

j=1

∥∥x|Ij−1

∥∥
1

=
1√
r
‖x‖1 .

It is clear that λ0 = ‖x|I0‖2 ≤ ‖x‖2. We may conclude that

∑J

j=0
λj ≤ ‖x‖2 +

1√
r
‖x‖1 ≤ 1

because x ∈ K.

Iteration Invariant: Sparse Case

We now commence the proof of Theorem 3.2.3. For the moment, let us assume that

the signal is actually sparse. We will remove this assumption later.

The result states that each iteration of the algorithm reduces the approximation

error by a constant factor, while adding a small multiple of the noise. As a con-

sequence, when the approximation error is large in comparison with the noise, the
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algorithm makes substantial progress in identifying the unknown signal.

Theorem 3.2.9 (Iteration Invariant: Sparse Case). Assume that x is s-sparse. For

each k ≥ 0, the signal approximation ak is s-sparse, and

∥∥x− ak+1
∥∥

2
≤ 0.5

∥∥x− ak
∥∥

2
+ 7.5 ‖e‖2 .

In particular,
∥∥x− ak

∥∥
2
≤ 2−k ‖x‖2 + 15 ‖e‖2 .

The argument proceeds in a sequence of short lemmas, each corresponding to one

step in the algorithm. Throughout this section, we retain the assumption that x is

s-sparse.

Fix an iteration k ≥ 1. We write a = ak−1 for the signal approximation at the

beginning of the iteration. Define the residual r = x − a, which we interpret as the

part of the signal we have not yet recovered. Since the approximation a is always s-

sparse, the residual r must be 2s-sparse. Notice that the vector v of updated samples

can be viewed as noisy samples of the residual:

v
def
= u− Φa = Φ(x− a) + e = Φr + e.

The identification phase produces a set of components where the residual signal

still has a lot of energy.

Lemma 3.2.10 (Identification). The set Ω = suppy2s, where y = Φ∗v is the signal

proxy, contains at most 2s indices, and

‖r|Ωc‖2 ≤ 0.2223 ‖r‖2 + 2.34 ‖e‖2 .
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Proof. The identification phase forms a proxy y = Φ∗v for the residual signal. The

algorithm then selects a set Ω of 2s components from y that have the largest magni-

tudes. The goal of the proof is to show that the energy in the residual on the set Ωc

is small in comparison with the total energy in the residual.

Define the set R = suppr. Since R contains at most 2s elements, our choice of Ω

ensures that ‖y|R‖2 ≤ ‖y|Ω‖2. By squaring this inequality and canceling the terms

in R ∩ Ω, we discover that
∥∥y|R\Ω

∥∥
2
≤
∥∥y|Ω\R

∥∥
2
.

Since the coordinate subsets here contain few elements, we can use the restricted

isometry constants to provide bounds on both sides.

First, observe that the set Ω\R contains at most 2s elements. Therefore, we may

apply Proposition 3.2.4 and Corollary 3.2.6 to obtain

∥∥y|Ω\R
∥∥

2
=
∥∥Φ∗

Ω\R(Φr + e)
∥∥

2

≤
∥∥Φ∗

Ω\RΦr
∥∥

2
+
∥∥Φ∗

Ω\Re
∥∥

2

≤ δ4s ‖r‖2 +
√

1 + δ2s ‖e‖2 .

Likewise, the set R\Ω contains 2s elements or fewer, so Proposition 3.2.4 and Corol-

lary 3.2.6 yield

∥∥y|R\Ω
∥∥

2
=
∥∥Φ∗

R\Ω(Φr + e)
∥∥

2

≥
∥∥Φ∗

R\ΩΦ · r|R\Ω
∥∥

2
−
∥∥Φ∗

R\ΩΦ · r|Ω
∥∥

2
−
∥∥Φ∗

R\Ωe
∥∥

2

≥ (1− δ2s)
∥∥r|R\Ω

∥∥
2
− δ2s ‖r‖2 −

√
1 + δ2s ‖e‖2 .

Since the residual is supported on R, we can rewrite r|R\Ω = r|Ωc. Finally, combine
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the last three inequalities and rearrange to obtain

‖r|Ωc‖2 ≤
(δ2s + δ4s) ‖r‖2 + 2

√
1 + δ2s ‖e‖2

1− δ2s
.

Invoke the numerical hypothesis that δ2s ≤ δ4s ≤ 0.1 to complete the argument.

The next step of the algorithm merges the support of the current signal approx-

imation a with the newly identified set of components. The following result shows

that components of the signal x outside this set have very little energy.

Lemma 3.2.11 (Support Merger). Let Ω be a set of at most 2s indices. The set

T = Ω ∪ suppa contains at most 3s indices, and

‖x|T c‖2 ≤ ‖r|Ωc‖2 .

Proof. Since suppa ⊂ T , we find that

‖x|T c‖2 = ‖(x− a)|T c‖2 = ‖r|T c‖2 ≤ ‖r|Ωc‖2 ,

where the inequality follows from the containment T c ⊂ Ωc.

The estimation step of the algorithm solves a least-squares problem to obtain

values for the coefficients in the set T . We need a bound on the error of this approx-

imation.

Lemma 3.2.12 (Estimation). Let T be a set of at most 3s indices, and define the

least-squares signal estimate b by the formulae

b|T = Φ†
T u and b|T c = 0,
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where u = Φx + e. Then

‖x− b‖2 ≤ 1.112 ‖x|T c‖2 + 1.06 ‖e‖2 .

This result assumes that we solve the least-squares problem in infinite precision.

In practice, the right-hand side of the bound contains an extra term owing to the

error from the iterative least-squares solver. Below, we study how many iterations of

the least-squares solver are required to make the least-squares error negligible in the

present argument.

Proof. Note first that

‖x− b‖2 ≤ ‖x|T c‖2 + ‖x|T − b|T‖2 .

Using the expression u = Φx + e and the fact Φ†
T ΦT = IdT , we calculate that

‖x|T − b|T‖2 =
∥∥x|T − Φ†

T (Φ · x|T + Φ · x|T c + e)
∥∥

2

=
∥∥Φ†

T (Φ · x|T c + e)
∥∥

2

≤
∥∥(Φ∗

T ΦT )−1Φ∗
T Φ · x|T c

∥∥
2
+
∥∥Φ†

T e
∥∥

2
.

The cardinality of T is at most 3s, and x is s-sparse, so Proposition 3.2.4 and Corol-

lary 3.2.6 imply that

‖x|T − b|T‖2 ≤
1

1− δ3s

‖Φ∗
T Φ · x|T c‖2 +

1√
1− δ3s

‖e‖2

≤ δ4s

1− δ3s
‖x|T c‖2 +

‖e‖2√
1− δ3s

.
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Combine the bounds to reach

‖x− b‖2 ≤
[
1 +

δ4s

1− δ3s

]
‖x|T c‖2 +

‖e‖2√
1− δ3s

.

Finally, invoke the hypothesis that δ3s ≤ δ4s ≤ 0.1.

The final step of each iteration is to prune the intermediate approximation to its

largest s terms. The following lemma provides a bound on the error in the pruned

approximation.

Lemma 3.2.13 (Pruning). The pruned approximation bs satisfies

‖x− bs‖2 ≤ 2 ‖x− b‖2 .

Proof. The intuition is that bs is close to b, which is close to x. Rigorously,

‖x− bs‖2 ≤ ‖x− b‖2 + ‖b− bs‖2 ≤ 2 ‖x− b‖2 .

The second inequality holds because bs is the best s-sparse approximation to b. In

particular, the s-sparse vector x is a worse approximation.

We now complete the proof of the iteration invariant for sparse signals, Theo-

rem 3.2.9. At the end of an iteration, the algorithm forms a new approximation

ak = bs, which is evidently s-sparse. Applying the lemmas we have established, we
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easily bound the error:

∥∥x− ak
∥∥

2
= ‖x− bs‖2

≤ 2 ‖x− b‖2 Pruning (Lemma 3.2.13)

≤ 2 · (1.112 ‖x|T c‖2 + 1.06 ‖e‖2) Estimation (Lemma 3.2.12)

≤ 2.224 ‖r|Ωc‖2 + 2.12 ‖e‖2 Support merger (Lemma 3.2.11)

≤ 2.224 · (0.2223 ‖r‖2 + 2.34 ‖e‖2) + 2.12 ‖e‖2 Identification (Lemma 3.2.10)

< 0.5 ‖r‖2 + 7.5 ‖e‖2

= 0.5
∥∥x− ak−1

∥∥
2
+ 7.5 ‖e‖2 .

To obtain the second bound in Theorem 3.2.9, simply solve the error recursion and

note that

(1 + 0.5 + 0.25 + . . . ) · 7.5 ‖e‖2 ≤ 15 ‖e‖2 .

This point completes the argument.

Before extending the iteration invariant to the sparse case, we first analyze in

detail the least-sqaures step. This will allow us to completely prove our main result,

Theorem 3.2.1.

Least Squares Analysis

To develop an efficient implementation of CoSaMP, it is critical to use an iterative

method when we solve the least-squares problem in the estimation step. Here we

analyze this step for the noise-free case. The two natural choices are Richardson’s

iteration and conjugate gradient. The efficacy of these methods rests on the assump-

tion that the sampling operator has small restricted isometry constants. Indeed, since
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the set T constructed in the support merger step contains at most 3s components,

the hypothesis δ4s ≤ 0.1 ensures that the condition number

κ(Φ∗
T ΦT ) =

λmax(Φ
∗
T ΦT )

λmin(Φ
∗
T ΦT )

≤ 1 + δ3s

1− δ3s

< 1.223.

This condition number is closely connected with the performance of Richardson’s

iteration and conjugate gradient. In this section, we show that Theorem 3.2.9 holds

if we perform a constant number of iterations of either least-squares algorithm.

For completeness, let us explain how Richardson’s iteration can be applied to

solve the least-squares problems that arise in CoSaMP. Suppose we wish to compute

A†u where A is a tall, full-rank matrix. Recalling the definition of the pseudoinverse,

we realize that this amounts to solving a linear system of the form

(A∗A)b = A∗u.

This problem can be approached by splitting the Gram matrix:

A∗A = Id +M

where M = A∗A− Id. Given an initial iterate z0, Richardon’s method produces the

subsequent iterates via the formula

zℓ+1 = A∗u−Mzℓ.

Evidently, this iteration requires only matrix–vector multiplies with A and A∗. It

is worth noting that Richardson’s method can be accelerated [2, Sec. 7.2.5], but we

omit the details.
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It is quite easy to analyze Richardson’s iteration [2, Sec. 7.2.1]. Observe that

∥∥zℓ+1 −A†u
∥∥

2
=
∥∥M(zℓ −A†u)

∥∥
2
≤ ‖M‖

∥∥zℓ −A†u
∥∥

2
.

This recursion delivers

∥∥zℓ −A†u
∥∥

2
≤ ‖M‖ℓ

∥∥z0 −A†u
∥∥

2
for ℓ = 0, 1, 2, . . . .

In words, the iteration converges linearly.

In our setting, A = ΦT where T is a set of at most 3s indices. Therefore, the

restricted isometry inequalities (2.1.4) imply that

‖M‖ = ‖Φ∗
T ΦT − Id‖ ≤ δ3s.

We have assumed that δ3s ≤ δ4s ≤ 0.1, which means that the iteration converges

quite fast. Once again, the restricted isometry behavior of the sampling matrix plays

an essential role in the performance of the CoSaMP algorithm.

Conjugate gradient provides even better guarantees for solving the least-squares

problem, but it is somewhat more complicated to describe and rather more difficult

to analyze. We refer the reader to [2, Sec. 7.4] for more information. The follow-

ing lemma summarizes the behavior of both Richardson’s iteration and conjugate

gradient in our setting.

Lemma 3.2.14 (Error Bound for LS). Richardson’s iteration produces a sequence

{zℓ} of iterates that satisfy

∥∥zℓ − Φ†
T u
∥∥

2
≤ 0.1ℓ ·

∥∥z0 − Φ†
T u
∥∥

2
for ℓ = 0, 1, 2, . . . .
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Conjugate gradient produces a sequence of iterates that satisfy

∥∥zℓ − Φ†
T u
∥∥

2
≤ 2 · ρℓ ·

∥∥z0 − Φ†
T u
∥∥

2
for ℓ = 0, 1, 2, . . . .

where

ρ =

√
κ(Φ∗

T ΦT )− 1√
κ(Φ∗

T ΦT ) + 1
≤ 0.072.

This can even be improved further if the eigenvalues of Φ∗
T ΦT are clustered [64].

Iterative least-squares algorithms must be seeded with an initial iterate, and their

performance depends heavily on a wise selection thereof. CoSaMP offers a natural

choice for the initializer: the current signal approximation. As the algorithm pro-

gresses, the current signal approximation provides an increasingly good starting point

for solving the least-squares problem. The following shows that the error in the initial

iterate is controlled by the current approximation error.

Lemma 3.2.15 (Initial Iterate for LS). Let x be an s-sparse signal with noisy samples

u = Φx+e. Let ak−1 be the signal approximation at the end of the (k−1)th iteration,

and let T be the set of components identified by the support merger. Then

∥∥ak−1 − Φ†
T u
∥∥

2
≤ 2.112

∥∥x− ak−1
∥∥

2
+ 1.06 ‖e‖2

Proof. By construction of T , the approximation ak−1 is supported inside T , so

∥∥x|T c

∥∥
2

=
∥∥(x− ak−1)|T c

∥∥
2
≤
∥∥x− ak−1

∥∥
2
.

Using Lemma 3.2.12, we may calculate how far ak−1 lies from the solution to the
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least-squares problem.

∥∥ak−1 − Φ†
T u
∥∥

2
≤
∥∥x− ak−1

∥∥
2
+
∥∥x− Φ†

T u
∥∥

2

≤
∥∥x− ak−1

∥∥
2
+ 1.112

∥∥x|T c

∥∥
2
+ 1.06 ‖e‖2

≤ 2.112
∥∥x− ak−1

∥∥
2
+ 1.06 ‖e‖2 .

We need to determine how many iterations of the least-squares algorithm are

required to ensure that the approximation produced is sufficiently good to support

the performance of CoSaMP.

Corollary 3.2.16 (Estimation by Iterative LS). Suppose that we initialize the LS

algorithm with z0 = ak−1. After at most three iterations, both Richardson’s iteration

and conjugate gradient produce a signal estimate b that satisfies

∥∥x− b
∥∥

2
≤ 1.112

∥∥x|T c

∥∥
2
+ 0.0022

∥∥x− ak−1
∥∥

2
+ 1.062 ‖e‖2 .

Proof. Combine Lemma 3.2.14 and Lemma 3.2.15 to see that three iterations of

Richardson’s method yield

∥∥z3 − Φ†
T u
∥∥

2
≤ 0.002112

∥∥x− ak−1
∥∥

2
+ 0.00106 ‖e‖2 .

The bound for conjugate gradient is slightly better. Let b|T = z3. According to the

estimation result, Lemma 3.2.12, we have

∥∥x− Φ†
T u
∥∥

2
≤ 1.112

∥∥x|T c

∥∥
2
+ 1.06 ‖e‖2 .
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An application of the triangle inequality completes the argument.

Finally, we need to check that the sparse iteration invariant, Theorem 3.2.9 still

holds when we use an iterative least-squares algorithm.

Theorem 3.2.17 (Sparse Iteration Invariant with Iterative LS). Suppose that we use

Richardson’s iteration or conjugate gradient for the estimation step, initializing the

LS algorithm with the current approximation ak−1 and performing three LS iterations.

Then Theorem 3.2.9 still holds.

Proof. We repeat the calculation from the above case using Corollary 3.2.16 instead

of the simple estimation lemma. To that end, recall that the residual r = x − ak−1.

Then

∥∥x− ak
∥∥

2
≤ 2 ‖x− b‖2

≤ 2 · (1.112 ‖x|T c‖2 + 0.0022 ‖r‖2 + 1.062 ‖e‖2)

≤ 2.224 ‖r|Ωc‖2 + 0.0044 ‖r‖2 + 2.124 ‖e‖2

≤ 2.224 · (0.2223 ‖r‖2 + 2.34 ‖e‖2) + 0.0044 ‖r‖2 + 2.124 ‖e‖2

< 0.5 ‖r‖2 + 7.5 ‖e‖2

= 0.5
∥∥x− ak−1

∥∥
2
+ 7.5 ‖e‖2 .

This bound is precisely what is required for the theorem to hold.

We are now prepared to extend the iteration invariant to the general case, and

prove Theorem 3.2.1.
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Extension to General Signals

In this section, we finally complete the proof of the main result for CoSaMP, Theo-

rem 3.2.3. The remaining challenge is to remove the hypothesis that the target signal

is sparse, which we framed in Theorems 3.2.9 and 3.2.17. Although this difficulty

might seem large, the solution is simple and elegant. It turns out that we can view

the noisy samples of a general signal as samples of a sparse signal contaminated with

a different noise vector that implicitly reflects the tail of the original signal.

Lemma 3.2.18 (Reduction to Sparse Case). Let x be an arbitrary vector in CN .

The sample vector u = Φx + e can also be expressed as u = Φxs + ẽ where

‖ẽ‖2 ≤ 1.05

[
‖x− xs‖2 +

1√
s
‖x− xs‖1

]
+ ‖e‖2 .

Proof. Decompose x = xs + (x− xs) to obtain u = Φxs + ẽ where ẽ = Φ(x− xs) + e.

To compute the size of the error term, we simply apply the triangle inequality and

Proposition 3.2.8:

‖ẽ‖2 ≤
√

1 + δs

[
‖x− xs‖2 +

1√
s
‖x− xs‖1

]
+ ‖e‖2 .

Finally, invoke the fact that δs ≤ δ4s ≤ 0.1 to obtain
√

1 + δs ≤ 1.05.

This lemma is just the tool we require to complete the proof of Theorem 3.2.3.

Proof of Theorem 3.2.3. Let x be a general signal, and use Lemma 3.2.18 to write

the noisy vector of samples u = Φxs + ẽ. Apply the sparse iteration invariant,

Theorem 3.2.9, or the analog for iterative least-squares, Theorem 3.2.17. We obtain

∥∥xs − ak+1
∥∥

2
≤ 0.5

∥∥xs − ak
∥∥

2
+ 7.5 ‖ẽ‖2 .
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Invoke the lower and upper triangle inequalities to obtain

∥∥x− ak+1
∥∥

2
≤ 0.5

∥∥x− ak
∥∥

2
+ 7.5 ‖ẽ‖2 + 1.5 ‖x− xs‖2 .

Finally, recall the estimate for ‖ẽ‖2 from Lemma 3.2.18, and simplify to reach

∥∥x− ak+1
∥∥

2
≤ 0.5

∥∥x− ak
∥∥

2
+ 9.375 ‖x− xs‖2 +

7.875√
s
‖x− xs‖1 + 7.5 ‖e‖2

< 0.5
∥∥x− ak

∥∥
2
+ 10ν.

where ν is the unrecoverable energy (3.2.1).

We have now collected all the material we need to establish the main result. Fix

a precision parameter η. After at most O(log(‖x‖2 /η)) iterations, CoSaMP produces

an s-sparse approximation a that satisfies

‖x− a‖2 ≤ C · (η + ν)

in consequence of Theorem 3.2.3. Apply inequality (3.2.2) to bound the unrecoverable

energy ν in terms of the ℓ1 norm. We see that the approximation error satisfies

‖x− a‖2 ≤ C ·max

{
η,

1√
s

∥∥x− xs/2

∥∥
1
+ ‖e‖2

}
.

According to Theorem 3.2.23, each iteration of CoSaMP is completed in time O(L ),

where L bounds the cost of a matrix–vector multiplication with Φ or Φ∗. The total

runtime, therefore, is O(L log(‖x‖2 /η)). The total storage is O(N).

Finally, in the statement of the theorem, we replace δ4s with δ2s by means of

Corollary 3.2.7, which states that δcr ≤ c · δ2r for any positive integers c and r.
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Iteration Count for Exact Arithmetic

As promised, we now provide an iteration count for CoSaMP in the case of exact

arithmetic. These results can be found in [52].

We obtain an estimate on the number of iterations of the CoSaMP algorithm

necessary to identify the recoverable energy in a sparse signal, assuming exact arith-

metic. Except where stated explicitly, we assume that x is s-sparse. It turns out that

the number of iterations depends heavily on the signal structure. Let us explain the

intuition behind this fact.

When the entries in the signal decay rapidly, the algorithm must identify and re-

move the largest remaining entry from the residual before it can make further progress

on the smaller entries. Indeed, the large component in the residual contaminates each

component of the signal proxy. In this case, the algorithm may require an iteration

or more to find each component in the signal.

On the other hand, when the s entries of the signal are comparable, the algorithm

can simultaneously locate many entries just by reducing the norm of the residual

below the magnitude of the smallest entry. Since the largest entry of the signal has

magnitude at least s−1/2 times the ℓ2 norm of the signal, the algorithm can find all s

components of the signal after about log s iterations.

To quantify these intuitions, we want to collect the components of the signal into

groups that are comparable with each other. To that end, define the component bands

of a signal x by the formulae

Bj
def
=
{
i : 2−(j+1) ‖x‖22 < |xi|2 ≤ 2−j ‖x‖22

}
for j = 0, 1, 2, . . . . (3.2.3)
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The profile of the signal is the number of bands that are nonempty:

profile(x)
def
= #{j : Bj 6= ∅}.

In words, the profile counts how many orders of magnitude at which the signal has

coefficients. It is clear that the profile of an s-sparse signal is at most s.

See Figure 3.2.1 for images of stylized signals with different profiles.
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Figure 3.2.1: Illustration of two unit-norm signals with sharply different profiles (left:
low, right: high).

First, we prove a result on the number of iterations needed to acquire an s-sparse

signal. At the end of the section, we extend this result to general signals, which yields

Theorem 3.2.2.

Theorem 3.2.19 (Iteration Count: Sparse Case). Let x be an s-sparse signal, and

define p = profile(x). After at most

p log4/3(1 + 4.6
√

s/p) + 6
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iterations, CoSaMP produces an approximation a that satisfies

‖x− a‖2 ≤ 17 ‖e‖2 .

For a fixed s, the bound on the number of iterations achieves its maximum value

at p = s. Since log4/3 5.6 < 6, the number of iterations never exceeds 6(s + 1).

Let us instate some notation that will be valuable in the proof of the theorem.

We write p = profile(x). For each k = 0, 1, 2, . . . , the signal ak is the approximation

after the kth iteration. We abbreviate Sk = suppak, and we define the residual signal

rk = x− ak. The norm of the residual can be viewed as the approximation error.

For a nonnegative integer j, we may define an auxiliary signal

yj def
= x|S

i≥j Bi

In other words, yj is the part of x contained in the bands Bj , Bj+1, Bj+2, . . . . For

each j ∈ J , we have the estimate

∥∥yj
∥∥2

2
≤
∑

i≥j
2−i ‖x‖22 · |Bi| (3.2.4)

by definition of the bands. These auxiliary signals play a key role in the analysis.

The proof of the theorem involves a sequence of lemmas. The first object is

to establish an alternative that holds in each iteration. One possibility is that the

approximation error is small, which means that the algorithm is effectively finished.

Otherwise, the approximation error is dominated by the energy in the unidentified

part of the signal, and the subsequent approximation error is a constant factor smaller.

Lemma 3.2.20. For each iteration k = 0, 1, 2, . . . , at least one of the following
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alternatives holds. Either
∥∥rk
∥∥

2
≤ 70 ‖e‖2 (3.2.5)

or else

∥∥rk
∥∥

2
≤ 2.3

∥∥x|Sc
k

∥∥
2

and (3.2.6)

∥∥rk+1
∥∥

2
≤ 0.75

∥∥rk
∥∥

2
. (3.2.7)

Proof. Define Tk as the merged support that occurs during iteration k. The pruning

step ensures that the support Sk of the approximation at the end of the iteration is

a subset of the merged support, so

∥∥x|T c
k

∥∥
2
≤
∥∥x|Sc

k

∥∥
2

for k = 1, 2, 3, . . . .

At the end of the kth iteration, the pruned vector bs becomes the next approximation

ak, so the estimation and pruning results, Lemmas 3.2.12 and 3.2.13, together imply

that

∥∥rk
∥∥

2
≤ 2 · (1.112

∥∥x|T c
k

∥∥
2
+ 1.06 ‖e‖2)

≤ 2.224
∥∥x|Sc

k

∥∥
2
+ 2.12 ‖e‖2 for k = 1, 2, 3, . . . . (3.2.8)

Note that the same relation holds trivially for iteration k = 0 because r0 = x and

S0 = ∅.

Suppose that there is an iteration k ≥ 0 where

∥∥x|Sc
k

∥∥
2

< 30 ‖e‖2 .
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We can introduce this bound directly into the inequality (3.2.8) to obtain the first

conclusion (3.2.5).

Suppose on the contrary that in iteration k we have

∥∥x|Sc
k

∥∥
2
≥ 30 ‖e‖2 .

Introducing this relation into the inequality (3.2.8) leads quickly to the conclusion

(3.2.6). We also have the chain of relations

∥∥rk
∥∥

2
≥
∥∥rk|Sc

k

∥∥
2

=
∥∥(x− ak)|Sc

k

∥∥
2

=
∥∥x|Sc

k

∥∥
2
≥ 30 ‖e‖2 .

Therefore, the sparse iteration invariant, Theorem 3.2.9 ensures that (3.2.7) holds.

The next lemma contains the critical part of the argument. Under the second

alternative in the previous lemma, we show that the algorithm completely identifies

the support of the signal, and we bound the number of iterations required to do so.

Lemma 3.2.21. Fix K = ⌊p log4/3(1 + 4.6
√

s/p)⌋. Assume that (3.2.6) and (3.2.7)

are in force for each iteration k = 0, 1, 2, . . . , K. Then suppaK = suppx.

Proof. First, we check that, once the norm of the residual is smaller than each element

of a band, the components in that band persist in the support of each subsequent

approximation. Define J to be the set of nonempty bands, and fix a band j ∈ J .

Suppose that, for some iteration k, the norm of the residual satisfies

∥∥rk
∥∥

2
≤ 2−(j+1)/2 ‖x‖2 . (3.2.9)

Then it must be the case that Bj ⊂ suppak. If not, then some component i ∈ Bj
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appears in the residual: rk
i = xi. This supposition implies that

∥∥rk
∥∥

2
≥ |xi| > 2−(j+1)/2 ‖x‖2 ,

an evident contradiction. Since (3.2.7) guarantees that the norm of the residual

declines in each iteration, (3.2.9) ensures that the support of each subsequent ap-

proximation contains Bj.

Next, we bound the number of iterations required to find the next nonempty

band Bj , given that we have already identified the bands Bi where i < j. Formally,

assume that the support Sk of the current approximation contains Bi for each i < j.

In particular, the set of missing components Sc
k ⊂ suppyj. It follows from relation

(3.2.6) that
∥∥rk
∥∥

2
≤ 2.3

∥∥yj
∥∥

2
.

We can conclude that we have identified the band Bj in iteration k + ℓ if

∥∥rk+ℓ
∥∥

2
≤ 2−(j+1)/2 ‖x‖2 .

According to (3.2.7), we reduce the error by a factor of β−1 = 0.75 during each

iteration. Therefore, the number ℓ of iterations required to identify Bj is at most

logβ

⌈
2.3 ‖yj‖2

2−(j+1)/2 ‖x‖2

⌉

We discover that the total number of iterations required to identify all the (nonempty)

bands is at most

k⋆
def
=
∑

j∈J
logβ

⌈
2.3 · 2

(j+1)/2 ‖yj‖2
‖x‖2

⌉
.
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For each iteration k ≥ ⌊k⋆⌋, it follows that suppak = suppx.

It remains to bound k⋆ in terms of the profile p of the signal. For convenience, we

focus on a slightly different quantity. First, observe that p = |J |. Using the geometric

mean–arithmetic mean inequality, we discover that

exp

{
1

p

∑
j∈J

log

⌈
2.3 · 2

(j+1)/2 ‖yj‖2
‖x‖2

⌉}
≤ exp

{
1

p

∑
j∈J

log

(
1 + 2.3 · 2

(j+1)/2 ‖yj‖2
‖x‖2

)}

≤ 1

p

∑
j∈J

(
1 + 2.3 · 2

(j+1)/2 ‖yj‖2
‖x‖2

)

= 1 +
2.3

p

∑
j∈J

(
2j+1 ‖yj‖22
‖x‖22

)1/2

.

To bound the remaining sum, we recall the relation (3.2.4). Then we invoke Jensen’s

inequality and simplify the result.

1

p

∑

j∈J

(
2j+1 ‖yj‖22
‖x‖22

)1/2

≤ 1

p

∑
j∈J

(
2j+1

∑
i≥j

2−i |Bi|
)1/2

≤
(

1

p

∑
j∈J

2j+1
∑

i≥j

2−i |Bi|
)1/2

≤
(

1

p

∑
i≥0
|Bi|

∑
j≤i

2j−i+1

)1/2

≤
(

4

p

∑
i≥0
|Bi|

)1/2

= 2
√

s/p.

The final equality holds because the total number of elements in all the bands equals

the signal sparsity s. Combining these bounds, we reach

exp

{
1

p

∑
j∈J

log

⌈
2.3 · 2

(j+1)/2 ‖yj‖2
‖x‖2

⌉}
≤ 1 + 4.6

√
s/p.

Take logarithms, multiply by p, and divide through by log β. We conclude that the
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required number of iterations k⋆ is bounded as

k⋆ ≤ p logβ(1 + 4.6
√

s/p).

This is the advertised conclusion.

Finally, we check that the algorithm produces a small approximation error within

a reasonable number of iterations.

Proof of Theorem 3.2.19. Abbreviate K = ⌊p log(1+4.6
√

s/p)⌋. Suppose that (3.2.5)

never holds during the first K iterations of the algorithm. Under this circumstance,

Lemma 3.2.20 implies that both (3.2.6) and (3.2.7) hold during each of these K iter-

ations. It follows from Lemma 3.2.21 that the support SK of the Kth approximation

equals the support of x. Since SK is contained in the merged support TK , we see that

the vector x|T c
K

= 0. Therefore, the estimation and pruning results, Lemmas 3.2.12

and 3.2.13, show that

∥∥rK
∥∥

2
≤ 2 ·

(
1.112

∥∥x|T c
K

∥∥
2
+ 1.06 ‖e‖2

)
= 2.12 ‖e‖2 .

This estimate contradicts (3.2.5).

It follows that there is an iteration k ≤ K where (3.2.5) is in force. Repeated

applications of the iteration invariant, Theorem 3.2.9, allow us to conclude that

∥∥rK+6
∥∥

2
< 17 ‖e‖2 .

This point completes the argument.

Finally, we extend the sparse iteration count result to the general case.
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Theorem 3.2.22 (Iteration Count). Let x be an arbitrary signal, and define p =

profile(xs). After at most

p log4/3(1 + 4.6
√

s/p) + 6

iterations, CoSaMP produces an approximation a that satisfies

‖x− a‖2 ≤ 20 ‖e‖2 .

Proof. Let x be a general signal, and let p = profile(xs). Lemma 3.2.18 allows us

to write the noisy vector of samples u = Φxs + ẽ. The sparse iteration count result,

Theorem 3.2.19, states that after at most

p log4/3(1 + 4.6
√

s/p) + 6

iterations, the algorithm produces an approximation a that satisfies

‖xs − a‖2 ≤ 17 ‖ẽ‖2 .

Apply the lower triangle inequality to the left-hand side. Then recall the estimate

for the noise in Lemma 3.2.18, and simplify to reach

‖x− a‖2 ≤ 17 ‖ẽ‖2 + ‖x− xs‖2

≤ 18.9 ‖x− xs‖2 +
17.9√

s
‖x− xs‖1 + 17 ‖e‖2

< 20ν,

where ν is the unrecoverable energy.
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Proof of Theorem 3.2.2. Invoke Theorem 3.2.22. Recall that the estimate for the

number of iterations is maximized with p = s, which gives an upper bound of 6(s+1)

iterations, independent of the signal.

3.2.4 Implementation and Runtime

CoSaMP was designed to be a practical method for signal recovery. An efficient

implementation of the algorithm requires some ideas from numerical linear algebra,

as well as some basic techniques from the theory of algorithms. This section discusses

the key issues and develops an analysis of the running time for the two most common

scenarios.

We focus on the least-squares problem in the estimation step because it is the

major obstacle to a fast implementation of the algorithm. The algorithm guarantees

that the matrix ΦT never has more than 3s columns, so our assumption δ4s ≤ 0.1

implies that the matrix ΦT is extremely well conditioned. As a result, we can apply

the pseudoinverse Φ†
T = (Φ∗

T ΦT )−1Φ∗
T very quickly using an iterative method, such

as Richardson’s iteration [2, Sec. 7.2.3] or conjugate gradient [2, Sec. 7.4]. These

techniques have the additional advantage that they only interact with the matrix ΦT

through its action on vectors. It follows that the algorithm performs better when the

sampling matrix has a fast matrix–vector multiply.

Let us stress that direct methods for least squares are likely to be extremely inef-

ficient in this setting. The first reason is that each least-squares problem may contain

substantially different sets of columns from Φ. As a result, it becomes necessary to

perform a completely new QR or SVD factorization during each iteration at a cost

of O(s2m). The second problem is that computing these factorizations typically re-

quires direct access to the columns of the matrix, which is problematic when the
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matrix is accessed through its action on vectors. Third, direct methods have storage

costs O(sm), which may be deadly for large-scale problems.

The remaining steps of the algorithm involve standard techniques. Let us estimate

the operation counts.

Proxy Forming the proxy is dominated by the cost of the matrix–vector multiply

Φ∗v.

Identification We can locate the largest 2s entries of a vector in time O(N) using

the approach in [11, Ch. 9]. In practice, it may be faster to sort the entries of

the signal in decreasing order of magnitude at cost O(N log N) and then select

the first 2s of them. The latter procedure can be accomplished with quicksort,

mergesort, or heapsort [11, Sec. II]. To implement the algorithm to the letter,

the sorting method needs to be stable because we stipulate that ties are broken

lexicographically. This point is not important in practice.

Support Merger We can merge two sets of size O(s) in expected time O(s) using

randomized hashing methods [11, Ch. 11]. One can also sort both sets first and

use the elementary merge procedure [11, p. 29] for a total cost O(s log s).

LS estimation We use Richardson’s iteration or conjugate gradient to compute

Φ†
T u. Initializing the least-squares algorithm requires a matrix–vector multiply

with Φ∗
T . Each iteration of the least-squares method requires one matrix–vector

multiply each with ΦT and Φ∗
T . Since ΦT is a submatrix of Φ, the matrix–vector

multiplies can also be obtained from multiplication with the full matrix. We

proved above that a constant number of least-squares iterations suffices for

Theorem 3.2.3 to hold.

Pruning This step is similar to identification. Pruning can be implemented in time
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O(s), but it may be preferable to sort the components of the vector by magni-

tude and then select the first s at a cost of O(s log s).

Sample Update This step is dominated by the cost of the multiplication of Φ with

the s-sparse vector ak.

Table 3.1 summarizes this discussion in two particular cases. The first column

shows what happens when the sampling matrix Φ is applied to vectors in the standard

way, but we have random access to submatrices. The second column shows what

happens when the sampling matrix Φ and its adjoint Φ∗ both have a fast multiply

with cost L , where we assume that L ≥ N . A typical value is L = O(N log N). In

particular, a partial Fourier matrix satisfies this bound.

Table 3.1: Operation count for CoSaMP. Big-O notation is omitted for legibility. The
dimensions of the sampling matrix Φ are m×N ; the sparsity level is s. The number
L bounds the cost of a matrix–vector multiply with Φ or Φ∗.

Step Standard multiply Fast multiply

Form proxy mN L

Identification N N

Support merger s s

LS estimation sm L

Pruning s s

Sample update sm L

Total per iteration O(mN) O(L )

Finally, we note that the storage requirements of the algorithm are also favorable.

Aside from the storage required by the sampling matrix, the algorithm constructs

only one vector of length N , the signal proxy. The sample vectors u and v have

length m, so they require O(m) storage. The signal approximations can be stored
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using sparse data structures, so they require at most O(s log N) storage. Similarly,

the index sets that appear require only O(s log N) storage. The total storage is at

worst O(N).

The following result summarizes this discussion.

Theorem 3.2.23 (Resource Requirements). Each iteration of CoSaMP requires O(L )

time, where L bounds the cost of a multiplication with the matrix Φ or Φ∗. The al-

gorithm uses storage O(N).

Algorithmic Variations

This section describes other possible halting criteria and their consequences. It also

proposes some other variations on the algorithm.

There are three natural approaches to halting the algorithm. The first, which we

have discussed in the body of the paper, is to stop after a fixed number of iterations.

Another possibility is to use the norm ‖v‖2 of the current samples as evidence about

the norm ‖r‖2 of the residual. A third possibility is to use the magnitude ‖y‖∞ of

the entries of the proxy to bound the magnitude ‖r‖∞ of the entries of the residual.

It suffices to discuss halting criteria for sparse signals because Lemma 3.2.18 shows

that the general case can be viewed in terms of sampling a sparse signal. Let x be

an s-sparse signal, and let a be an s-sparse approximation. The residual r = x− a.

We write v = Φr + e for the induced noisy samples of the residual and y = Φ∗v for

the signal proxy.

The discussion proceeds in two steps. First, we argue that an a priori halting

criterion will result in a guarantee about the quality of the final signal approximation.
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Theorem 3.2.24 (Halting I). The halting criterion ‖v‖2 ≤ ε ensures that

‖x− a‖2 ≤ 1.06 · (ε + ‖e‖2).

The halting criterion ‖y‖∞ ≤ η/
√

2s ensures that

‖x− a‖∞ ≤ 1.12η + 1.17 ‖e‖2 .

Proof. Since r is 2s-sparse, Proposition 3.2.4 ensures that

√
1− δ2s ‖r‖2 − ‖e‖2 ≤ ‖v‖2 .

If ‖v‖2 ≤ ε, it is immediate that

‖r‖2 ≤
ε + ‖e‖2√

1− δ2s

.

The definition r = x− a and the numerical bound δ2s ≤ δ4s ≤ 0.1 dispatch the first

claim.

Let R = suppr, and note that |R| ≤ 2s. Proposition 3.2.4 results in

(1− δ2s) ‖r‖2 −
√

1 + δ2s ‖e‖2 ≤ ‖y|R‖2 .

Since

‖y|R‖2 ≤
√

2s ‖y|R‖∞ ≤
√

2s ‖y‖∞ ,

we find that the requirement ‖y‖∞ ≤ η/
√

2s ensures that

‖r‖∞ ≤
η +
√

1 + δ2s ‖e‖2
1− δ2s

.
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The numerical bound δ2s ≤ 0.1 completes the proof.

Second, we check that each halting criterion is triggered when the residual has

the desired property.

Theorem 3.2.25 (Halting II). The halting criterion ‖v‖2 ≤ ε is triggered as soon as

‖x− a‖2 ≤ 0.95 · (ε− ‖e‖2).

The halting criterion ‖y‖∞ ≤ η/
√

2s is triggered as soon as

‖x− a‖∞ ≤
0.45η

s
− 0.68 ‖e‖2√

s
.

Proof. Proposition 3.2.4 shows that

‖v‖2 ≤
√

1 + δ2s ‖r‖2 + ‖e‖2 .

Therefore, the condition

‖r‖2 ≤
ε− ‖e‖2√

1 + δ2s

ensures that ‖v‖2 ≤ ε. Note that δ2s ≤ 0.1 to complete the first part of the argument.

Now let R be the singleton containing the index of a largest-magnitude coefficient

of y. Proposition 3.2.4 implies that

‖y‖∞ = ‖y|R‖2 ≤
√

1 + δ1 ‖v‖2 .

By the first part of this theorem, the halting criterion ‖y‖∞ ≤ η/
√

2s is triggered as



3.2. Compressive Sampling Matching Pursuit 111

soon as

‖x− a‖2 ≤ 0.95 ·
(

η√
2s
√

1 + δ1

− ‖e‖2
)

.

Since x− a is 2s-sparse, we have the bound ‖x− a‖2 ≤
√

2s ‖x− a‖∞. To wrap up,

recall that δ1 ≤ δ2s ≤ 0.1.

Next we discuss other variations of the algorithm.

Here is a version of the algorithm that is, perhaps, simpler than that described

above. At each iteration, we approximate the current residual rather than the entire

signal. This approach is similar to HHS pursuit [32]. The inner loop changes in the

following manner.

Identification As before, select Ω = suppy2s.

Estimation Solve a least-squares problem with the current samples instead of the

original samples to obtain an approximation of the residual signal. Formally,

b = Φ†
Ωv. In this case, one initializes the iterative least-squares algorithm with

the zero vector to take advantage of the fact that the residual is becoming small.

Approximation Merger Add this approximation of the residual to the previous

approximation of the signal to obtain a new approximation of the signal: c =

ak−1 + b.

Pruning Construct the s-sparse signal approximation: ak = cs.

Sample Update Update the samples as before: v = u− Φak.

By adapting the argument in this paper, we have been able to show that this

algorithm also satisfies Theorem 3.2.1. We believe this version is quite promising for

applications.
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An alternative variation is as follows. After the inner loop of the algorithm is

complete, we can solve another least-squares problem in an effort to improve the

final result. If a is the approximation at the end of the loop, we set T = suppa. Then

solve b = Φ†
T u and output the s-sparse signal approximation b. Note that the output

approximation is not guaranteed to be better than a because of the noise vector e,

but it should never be much worse.

Another variation is to prune the merged support T down to s entries before

solving the least-squares problem. One may use the values of the proxy y as surrogates

for the unknown values of the new approximation on the set Ω. Since the least-squares

problem is solved at the end of the iteration, the columns of Φ that are used in the

least-squares approximation are orthogonal to the current samples v. As a result,

the identification step always selects new components in each iteration. We have not

attempted an analysis of this algorithm.

3.2.5 Numerical Results

Noiseless Numerical Studies

This section describes our experiments that illustrate the signal recovery power of

CoSaMP. See Section A.4 for the Matlab code used in these studies. We experi-

mentally examine how many measurements m are necessary to recover various kinds

of s-sparse signals in Rd using ROMP. We also demonstrate that the number of it-

erations CoSaMP needs to recover a sparse signal is in practice at most linear the

sparsity, and in fact this serves as a successful halting criterion.

First we describe the setup of our experiments. For many values of the ambient

dimension d, the number of measurements m, and the sparsity s, we reconstruct

random signals using CoSaMP. For each set of values, we generate an m×d Gaussian
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measurement matrix Φ and then perform 500 independent trials. The results we

obtained using Bernoulli measurement matrices were very similar. In a given trial,

we generate an s-sparse signal x in one of two ways. In either case, we first select the

support of the signal by choosing s components uniformly at random (independent

from the measurement matrix Φ). In the cases where we wish to generate flat signals,

we then set these components to one. In the cases where we wish to generate sparse

compressible signals, we set the ith component of the support to plus or minus i−1/p

for a specified value of 0 < p < 1. We then execute CoSaMP with the measurement

vector u = Φx.

Figure 3.2.2 depicts the percentage (from the 500 trials) of sparse flat signals that

were reconstructed exactly. This plot was generated with d = 256 for various levels

of sparsity s. The horizontal axis represents the number of measurements m, and the

vertical axis represents the exact recovery percentage.

Figure 3.2.3 depicts a plot of the values for m and s at which 99% of sparse flat

signals are recovered exactly. This plot was generated with d = 256. The horizontal

axis represents the number of measurements m, and the vertical axis the sparsity

level s.

Our results guarantee that CoSaMP reconstructs signals correctly with just O(s)

iterations. Figure 3.2.4 depicts the number of iterations needed by CoSaMP for

d = 10, 000 and m = 200 for perfect reconstruction. CoSaMP was executed under the

same setting as described above for sparse flat signals as well as sparse compressible

signals for various values of p, and the number of iterations in each scenario was

averaged over the 500 trials. These averages were plotted against the sparsity of the

signal. The plot demonstrates that often far fewer iterations are actually needed in

some cases. This is not surprising, since as we discussed above alternative halting
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criteria may be better in practice. The plot also demonstrates that the number

of iterations needed for sparse compressible is higher than the number needed for

sparse flat signals, as one would expect. The plot suggests that for smaller values of

p (meaning signals that decay more rapidly) CoSaMP needs more iterations.
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Figure 3.2.2: The percentage of sparse flat signals exactly recovered by CoSaMP as
a function of the number of measurements in dimension d = 256 for various levels of
sparsity.

Noisy Numerical Studies

This section describes our numerical experiments that illustrate the stability of CoSaMP.

We study the recovery error using CoSaMP for both perturbed measurements and

signals. The empirical recovery error confirms that given in the theorems.

First we describe the setup to our experimental studies. We run CoSaMP on

various values of the ambient dimension d, the number of measurements m, and the

sparsity level s, and attempt to reconstruct random signals. For each set of param-
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Figure 3.2.3: The 99% recovery limit as a function of the sparsity and the number of
measurements for sparse flat signals.

eters, we perform 500 trials. Initially, we generate an m× d Gaussian measurement

matrix Φ. For each trial, independent of the matrix, we generate an s-sparse signal x

by choosing s components uniformly at random and setting them to one. In the case

of perturbed signals, we add to the signal a d-dimensional error vector with Gaussian

entries. In the case of perturbed measurements, we add an m-dimensional error vec-

tor with Gaussian entries to the measurement vector Φx. We then execute ROMP

with the measurement vector u = Φx or u + e in the perturbed measurement case.

After CoSaMP terminates (using a fixed number of iterations of 10s), we output the

reconstructed vector x̂ obtained from the least squares calculation and calculate its

distance from the original signal.

Figure 3.2.5 depicts the recovery error ‖x − x̂‖2 when CoSaMP was run with

perturbed measurements. This plot was generated with d = 256 for various levels of

sparsity s. The horizontal axis represents the number of measurements m, and the



3.2. Compressive Sampling Matching Pursuit 116

0 5 10 15 20 25
1

2

3

4

5

6

7

8

9

10

Sparsity Level (s)

N
um

be
r o

f I
te

ra
tio

ns

Number of Iterations needed to reconstruct (d=10,000, m=200) (Gaussian)

 

 

p = 0.5

p = 0.7

p = 0.9

Flat Signal

Figure 3.2.4: The number of iterations needed by CoSaMP as a function of the
sparsity in dimension d = 10, 000 with 200 measurements.

vertical axis represents the average normalized recovery error.

Figure 3.2.6 depicts the normalized recovery error when the signal was perturbed

by a Gaussian vector. Again these results are consistent with our proven theorems,

but notice that we normalize here by ‖x−xs‖1/
√

s rather than ‖x−xs/2‖1/
√

s as our

theorems suggest. These plots show that perhaps the former normalization factor is

actually more accurate, and the latter may be a consequence of our analysis only.

3.2.6 Summary

CoSaMP draws on both algorithmic ideas and analytic techniques that have appeared

before. Here we summarize the results in the context of other work. This discussion

can also be found in [53]. The initial discovery works on compressive sampling pro-

posed to perform signal recovery by solving a convex optimization problem [4, 19]

(see also Section 2.1 above). Given a sampling matrix Φ and a noisy vector of sam-
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Figure 3.2.5: The error to noise ratio ‖x̂−x‖2

‖e‖2
as a function of the number of measure-

ments m in dimension d = 256 for various levels of sparsity s.

ples u = Φx + e with ‖e‖2 ≤ ε, we consider the mathematical program (2.1.5). In

words, we look for a signal reconstruction that is consistent with the samples but

has minimal ℓ1 norm. The intuition behind this approach is that minimizing the ℓ1

norm promotes sparsity, so allows the approximate recovery of compressible signals.

Candès, Romberg, and Tao established in [5] that a minimizer a of (2.1.5) satisfies

‖x− a‖2 ≤ C

[
1√
s
‖x− xs‖1 + ε

]
(3.2.10)

provided that the sampling matrix Φ has restricted isometry constant δ4s ≤ 0.2. In

[8], the hypothesis on the restricted isometry constant is sharpened to δ2s ≤
√

2− 1.

The error bound for CoSaMP is equivalent, modulo the exact value of the constants.

The literature describes a huge variety of algorithms for solving the optimization

problem (2.1.5). The most common approaches involve interior-point methods [4,
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Figure 3.2.6: The error to noise ratio ‖x̂−xs‖2

‖x−xs‖1/
√

s
using a perturbed signal, as a function

of the number of measurements m in dimension d = 256 for various levels of sparsity
s.

43], projected gradient methods [26], or iterative thresholding [16] The interior-point

methods are guaranteed to solve the problem to a fixed precision in time O(m2d1.5),

where m is the number of measurements and d is the signal length [56]. Note that

the constant in the big-O notation depends on some of the problem data. The other

convex relaxation algorithms, while sometimes faster in practice, do not currently

offer rigorous guarantees. CoSaMP provides rigorous bounds on the runtime that are

much better than the available results for interior-point methods.

Tropp and Gilbert proposed the use of a greedy iterative algorithm called orthog-

onal matching pursuit (OMP) for signal recovery [62] (see also Section 2.2.1 above).

Tropp and Gilbert were able to prove a weak result for the performance of OMP

[62]. Suppose that x is a fixed, s-sparse signal, and let m = Cs log s. Draw an m× s

sampling matrix Φ whose entries are independent, zero-mean subgaussian random

variables with equal variances. Given noiseless measurements u = Φx, OMP recon-
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structs x after s iterations, except with probability s−1. In this setting, OMP must

fail for some sparse signals[57], so it does not provide the same uniform guarantees

as convex relaxation. It is unknown whether OMP succeeds for compressible signals

or whether it succeeds when the samples are contaminated with noise.

Donoho et al. invented another greedy iterative method called stagewise OMP, or

StOMP [23] (see also Section 2.2.2 above). This algorithm uses the signal proxy to

select multiple components at each step, using a rule inspired by ideas from wireless

communications. The algorithm is faster than OMP because of the selection rule, and

it sometimes provides good performance, although parameter tuning can be difficult.

There are no rigorous results available for StOMP.

Needell and Vershynin developed and analyzed another greedy approach, called

regularized OMP, or ROMP [55, 54] (see also Section 3.1 above). The work on

ROMP represents an advance because the authors establish under restricted isometry

hypotheses that their algorithm can approximately recover any compressible signal

from noisy samples. More precisely, suppose that the sampling matrix Φ has restricted

isometry constant δ8s ≤ 0.01/
√

log s. Given noisy samples u = Φx + e, ROMP

produces a 2s-sparse signal approximation a that satisfies

‖x− a‖2 ≤ C
√

log s

[
1√
s
‖x− xs‖1 + ‖e‖2

]
.

This result is comparable with the result for convex relaxation, aside from the ex-

tra logarithmic factor in the restricted isometry hypothesis and the error bound.

The results for CoSaMP show that it does not suffer these parasitic factors, so its

performance is essentially optimal.
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3.3 Reweighted L1-Minimization

As discussed in Section 2.1, the ℓ1-minimization problem (2.1.1) is equivalent to

the nonconvex problem (1.1.2) when the measurement matrix Φ satisfies a certain

condition. Let us first state the best known theorem for recovery using ℓ1, provided

by Candès, in more detail. We will rely on this result to prove the new theorems.

Theorem 3.3.1 (ℓ1-minimization from [8]). Assume Φ has δ2s <
√

2 − 1. Let x

be an arbitrary signal with noisy measurements Φx + e, where ‖e‖2 ≤ ε. Then the

approximation x̂ to x from ℓ1-minimization satisfies

‖x− x̂‖2 ≤ Cε + C ′‖x− xs‖1√
s

,

where C = 2α
1−ρ

, C ′ = 2(1+ρ)
1−ρ

, ρ =
√

2δ2s

1−δ2s
, and α = 2

√
1+δ2s√
1−δ2s

.

The key difference between the two problems of course, is that the ℓ1 formulation

depends on the magnitudes of the coefficients of a signal, whereas the ℓ0 does not. To

reconcile this imbalance, a new weighted ℓ1-minimization algorithm was proposed by

Candès, Wakin, and Boyd [7]. This algorithm solves the following weighted version

of (L1) at each iteration:

min
x̂∈Rd

d∑

i=1

δix̂i subject to Φx = Φx̂. (WL1)

It is clear that in this formulation, large weights δi will encourage small coordinates

of the solution vector, and small weights will encourage larger coordinates. Indeed,

suppose the s-sparse signal x was known exactly, and that the weights were set as

δi =
1

|xi|
. (3.3.1)
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Notice that in this case, the weights are infinite at all locations outside of the support

of x. This will force the coordinates of the solution vector x̂ at these locations to

be zero. Thus if the signal x is s-sparse with s ≤ m, these weights would guarantee

that x̂ = x. Of course, these weights could not be chosen without knowing the actual

signal x itself, but this demonstrates the positive effect that the weights can have on

the performance of ℓ1-minimization.

The helpful effect of the weights can also be viewed geometrically. Recall that the

solution to the problem (L1) is the contact point where the smallest ℓ1-ball meets the

subspace x + ker Φ. When the solution to (L1) does not coincide with the original

signal x, it is because there is an ℓ1-ball smaller than the one containing x, which

meets the subspace x + ker Φ. The solution to problem (WL1), however, is the place

where the weighted ℓ1-ball meets the subspace. When the weights are appropriate,

this is an ℓ1-ball that has been pinched toward the signal x (see Figure 3.3.1). This

new geometry reduces the likelihood of the incorrect solution.

x = x*
x

x*

Figure 3.3.1: Weighted ℓ1-ball geometry (right) versus standard (left).

Although the weights might not initially induce this geometry, one hopes that

by solving the problem (WL1) at each iteration, the weights will get closer to the

optimal values (3.3.1), thereby improving the reconstruction of x. Of course, one
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cannot actually have an infinite weight as in (3.3.1), so a stability parameter must

also be used in the selection of the weight values. The reweighted ℓ1-minimization

algorithm can thus be described precisely as follows.

Reweighted ℓ1-minimization
Input: Measurement vector u ∈ R

m, stability parameter a

Output: Reconstructed vector x̂

Initialize Set the weights δi = 1 for i = 1 . . . d.

Repeat the following until convergence or a fixed number of times:

Approximate Solve the reweighted ℓ1-minimization problem:

x̂ = argmin
x̂∈Rd

d∑

i=1

δix̂i subject to u = Φx̂ (or ‖Φx̂− u‖2 ≤ ε).

Update Reset the weights:

δi =
1

|x̂i|+ a
.

Remark 3.3.2. Note that the optional set of constraints given in the algorithm is

only for the case in which the signal or measurements may be corrupted with noise.

It may also be advantageous to decrease the stability parameter a so that a → 0 as

the iterations tend to infinity. See the proof of Theorem 3.3.3 below for details.

In [7], the reweighted ℓ1-minimization algorithm is discussed thoroughly, and

experimental results are provided to show that it often outperforms the standard

method. However, no provable guarantees have yet been made for the algorithm’s

success. Here we analyze the algorithm when the measurements and signals are

corrupted with noise. Since the reweighted method needs a weight vector that is
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somewhat close to the actual signal x, it is natural to consider the noisy case since

the standard ℓ1-minimization method itself produces such a vector. We are able to

prove an error bound in this noisy case that improves upon the best known bound

for the standard method. We also provide numerical studies that show the bounds

are improved in practice as well.

3.3.1 Main Results

The main theorem of this paper guarantees an error bound for the reconstruction

using reweighted ℓ1-minimization that improves upon the best known bound of The-

orem 3.3.1 for the standard method. For initial simplicity, we consider the case where

the signal x is exactly sparse, but the measurements u are corrupted with noise. Our

main theorem, Theorem 3.3.3 will imply results for the case where the signal x is

arbitrary.

Theorem 3.3.3 (Reweighted ℓ1, Sparse Case). Assume Φ satisfies the restricted

isometry condition with parameters (2s, δ) where δ <
√

2 − 1. Let x be an s-sparse

vector with noisy measurements u = Φx + e where ‖e‖2 ≤ ε. Assume the smallest

nonzero coordinate µ of x satisfies µ ≥ 4αε
1−ρ

. Then the limiting approximation from

reweighted ℓ1-minimization satisfies

‖x− x̂‖2 ≤ C ′′ε,

where C ′′ = 2α
1+ρ

, ρ =
√

2δ
1−δ

and α = 2
√

1+δ
1−δ

.

Remarks.
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1. We actually show that the reconstruction error satisfies

‖x− x̂‖2 ≤
2αε

1 +
√

1− 4αε
µ
− 4αερ

µ

. (3.3.2)

This bound is stronger than that given in Theorem 3.3.3, which is only equal to this

bound when µ nears the value 4αε
1−ρ

. However, the form in Theorem 3.3.3 is much

simpler and clearly shows the role of the parameter δ by the use of ρ.

2. For signals whose smallest non-zero coefficient µ does not satisfy the condition

of the theorem, we may apply the theorem to those coefficients that do satisfy this

requirement, and treat the others as noise. See Theorem 3.3.4 below.

3. Although the bound in the theorem is the limiting bound, we provide a recur-

sive relation (3.3.9) in the proof which provides an exact error bound per iteration.

In Section 3.3.3 we use dynamic programming to show that in many cases only a very

small number of iterations are actually required to obtain the above error bound.

We now discuss the differences between Theorem 3.3.1 and our new result Theo-

rem 3.3.3. In the case where δ nears its limit of
√

2−1, the constant ρ increases to 1,

and so the constant C in Theorem 3.3.1 is unbounded. However, the constant C ′′ in

Theorem 3.3.3 remains bounded even in this case. In fact, as δ approaches
√

2 − 1,

the constant C ′′ approaches just 4.66. The tradeoff of course, is in the requirement

on µ. As δ gets closer to
√

2− 1, the bound needed on µ requires the signal to have

unbounded non-zero coordinates relative to the noise level ε. However, to use this

theorem efficiently, one would select the largest δ <
√

2− 1 that allows the require-

ment on µ to be satisfied, and then apply the theorem for this value of δ. Using this

strategy, when the ratio µ
ε

= 10, for example, the error bound is just 3.85ε.

Theorem 3.3.3 and a short calculation will imply the following result for arbitrary
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signals x.

Theorem 3.3.4 (Reweighted ℓ1). Assume Φ satisfies the restricted isometry condi-

tion with parameters (2s,
√

2− 1). Let x be an arbitrary vector with noisy measure-

ments u = Φx + e where ‖e‖2 ≤ ε. Assume the smallest nonzero coordinate µ of xs

satisfies µ ≥ 4αε0

1−ρ
, where ε0 = 1.2(‖x − xs‖2 + 1√

s
‖x − xs‖1) + ε. Then the limiting

approximation from reweighted ℓ1-minimization satisfies

‖x− x̂‖2 ≤
4.1α

1 + ρ

(‖x− xs/2‖1√
s

+ ε
)
,

and

‖x− x̂‖2 ≤
2.4α

1 + ρ

(
‖x− xs‖2 +

‖x− xs‖1√
s

+ ε
)
,

where ρ and α are as in Theorem 3.3.3.

Again in the case where δ nears its bound of
√

2− 1, both constants C and C ′ in

Theorem 3.3.1 approach infinity. However, in Theorem 3.3.4, the constant remains

bounded even in this case. The same strategy discussed above for Theorem 3.3.3

should also be used for Theorem 3.3.4. Next we begin proving Theorem 3.3.3 and

Theorem 3.3.4.

3.3.2 Proofs

We will first utilize a lemma that bounds the ℓ2 norm of a small portion of the

difference vector x− x̂ by the ℓ1-norm of its remainder. This lemma is proved in [8]

and essentially in [5] as part of the proofs of the main theorems of those papers. We

include a proof here as well since we require the final result as well as intermediate

steps for the proof of our main theorem.
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Lemma 3.3.5. Set h = x̂− x, and let α, ε, and ρ be as in Theorem 3.3.3. Let T0 be

the set of s largest coefficients in magnitude of x and T1 be the s largest coefficients

of hT c
0
. Then

‖hT0∪T1‖2 ≤ αε +
ρ√
s
‖hT c

0
‖1.

Proof. Continue defining sets Tj by setting T1 to be the s largest coefficients of hT c
0
,

T2 the next s largest coefficients of hT c
0
, and so on. We begin by applying the triangle

inequality and using the fact that x itself is feasible in (WL1). This yields

‖Φh‖2 ≤ ‖Φx̂− u‖2 + ‖Φx− u‖2 ≤ 2ε. (3.3.3)

By the decreasing property of these sets and since each set Tj has cardinality at

most s, we have for each j ≥ 2,

‖hTj
‖2 ≤

√
s‖hTj

‖∞ ≤
1√
s
‖hTj−1

‖1.

Summing the terms, this gives

∑

j≥2

‖hTj
‖2 ≤

1√
s
‖hT c

0
‖1. (3.3.4)

By the triangle inequality, we then also have

‖h(T0∪T1)c‖2 ≤
1√
s
‖hT c

0
‖1. (3.3.5)

Now by linearity we have

‖ΦhT0∪T1‖22 = 〈ΦhT0∪T1 , Φh〉 − 〈ΦhT0∪T1 ,
∑

j≥2

ΦhTj
〉.
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By (3.3.3) and the restricted isometry condition, we have

|〈ΦhT0∪T1 , Φh〉| ≤ ‖ΦhT0∪T1‖2‖Φh‖2 ≤ 2ε
√

1 + δ‖hT0∪T1‖2.

As shown in Lemma 2.1 of [8], the restricted isometry condition and parallelogram

law imply that for j ≥ 2,

|〈ΦhT0 , ΦhTj
〉| ≤ δ‖ΦhT0‖2‖ΦhTj

‖2 and |〈ΦhT1 , ΦhTj
〉| ≤ δ‖ΦhT1‖2‖ΦhTj

‖2.

Since all sets Tj are disjoint, the above three inequalities yield

(1− δ)‖hT0∪T1‖22 ≤ ‖ΦhT0∪T1‖22 ≤ ‖hT0∪T1‖2(2ε
√

1 + δ +
√

2δ
∑

j≥2

‖hTj
‖2).

Therefore by (3.3.4), we have

‖hT0∪T1‖2 ≤ αε +
ρ√
s
‖hT c

0
‖1.

We will next require two lemmas that give results about a single iteration of

reweighted ℓ1-minimization.

Lemma 3.3.6 (Single reweighted ℓ1-minimization). Assume Φ satisfies the restricted

isometry condition with parameters (2s,
√

2 − 1). Let x be an arbitrary vector with

noisy measurements u = Φx + e where ‖e‖2 ≤ ε. Let w be a vector such that

‖w − x‖∞ ≤ A for some constant A. Denote by xs the vector consisting of the

s (where s ≤ |supp(x)|) largest coefficients of x in absolute value. Let µ be the

smallest coordinate of xs in absolute value, and set b = ‖x − xs‖∞. Then when
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µ ≥ A and ρC1 < 1, the approximation from reweighted ℓ1-minimization using weights

δi = 1/(wi + a) satisfies

‖x− x̂‖2 ≤ D1ε + D2
‖x− xs‖1

a
,

where D1 = (1+C1)α
1−ρC1

, D2 = C2 + (1+C1)ρC2

1−ρC1
, C1 = A+a+b

µ−A+a
, C2 = 2(A+a+b)√

s
, and ρ and α

are as in Theorem 3.3.3.

Proof of Lemma 3.3.6. Set h and Tj for j ≥ 0 as in Lemma 3.3.5. For simplicity,

denote by ‖ · ‖w the weighted ℓ1-norm:

‖z‖w def
=

d∑

i=1

1

|wi|+ a
zi.

Since x̂ = x + h is the minimizer of (WL1), we have

‖x‖w ≥ ‖x+h‖w = ‖(x+h)T0‖w +‖(x+h)T c
0
‖w ≥ ‖xT0‖w−‖hT0‖w+‖hT c

0
‖w−‖xT c

0
‖w.

This yields

‖hT c
0
‖w ≤ ‖hT0‖w + 2‖xT c

0
‖w.

Next we relate the reweighted norm to the usual ℓ1-norm. We first have

‖hT c
0
‖w ≥

‖hT c
0
‖1

A + a + b
,

by definition of the reweighted norm as well as the values of A, a, and b. Similarly

we have

‖hT0‖w ≤
‖hT0‖1

µ− A + a
.
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Combining the above three inequalities, we have

‖hT c
0
‖1 ≤ (A + a + b)‖hT c

0
‖w ≤ (A + a + b)(‖hT0‖w + 2‖xT c

0
‖w)

≤ A + a + b

µ− A + a
‖hT0‖1 + 2(A + a + b)‖xT c

0
‖w. (3.3.6)

Using (3.3.5) and (3.3.6) along with the fact ‖hT0‖1 ≤
√

s‖hT0‖2, we have

‖h(T0∪T1)c‖2 ≤ C1‖hT0‖2 + C2‖xT c
0
‖w, (3.3.7)

where C1 = A+a+b
µ−A+a

and C2 = 2(A+a+b)√
s

. By Lemma 3.3.5, we have

‖hT0∪T1‖2 ≤ αε +
ρ√
s
‖hT c

0
‖1,

where ρ =
√

2δ2s

1−δ2s
and α = 2

√
1+δ2s√
1−δ2s

. Thus by (3.3.6), we have

‖hT0∪T1‖2 ≤ αε+
ρ√
s
(C1‖hT0‖1+2(A+a+b)‖xT c

0
‖w) = αε+ρC1‖hT0∪T1‖2+ρC2‖xT c

0
‖w.

Therefore,

‖hT0∪T1‖2 ≤ (1− ρC1)
−1(αε + ρC2‖xT c

0
‖w). (3.3.8)

Finally by (3.3.7) and (3.3.8),

‖h‖2 ≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)c‖2

≤ (1 + C1)‖hT0∪T1‖2 + C2‖xT c
0
‖w

≤ (1 + C1)((1− ρC1)
−1(αε + ρC2‖xT c

0
‖w)) + C2‖xT c

0
‖w.

Applying the inequality ‖xT c
0
‖w ≤ (1/a)‖xT c

0
‖1 and simplifying completes the claim.
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Lemma 3.3.7 (Single reweighted ℓ1-minimization, Sparse Case). Assume Φ satisfies

the restricted isometry condition with parameters (2s,
√

2− 1). Let x be an s-sparse

vector with noisy measurements u = Φx + e where ‖e‖2 ≤ ε. Let w be a vector such

that ‖w − x‖∞ ≤ A for some constant A. Let µ be the smallest non-zero coordinate

of x in absolute value. Then when µ ≥ A, the approximation from reweighted ℓ1-

minimization using weights δi = 1/(wi + a) satisfies

‖x− x̂‖2 ≤ D1ε.

Here D1 = (1+C1)α
1−ρC1

, C1 = A+a
µ−A+a

, and α and ρ are as in Theorem 3.3.3.

Proof. This is the case of Lemma 3.3.6 where x− xs = 0 and b = 0.

Proof of Theorem 3.3.3. The proof proceeds as follows. First, we use the error bound

in Theorem 3.3.1 as the initial error, and then apply Lemma 3.3.7 repeatedly. We

show that the error decreases at each iteration, and then deduce its limiting bound

using the recursive relation. To this end, let E(k) for k = 1, . . ., be the error bound

on ‖x − x̂k‖2 where x̂k is the reconstructed signal at the kth iteration. Then by

Theorem 3.3.1 and Lemma 3.3.7, we have the recursive definition

E(1) =
2α

1− ρ
ε, E(k + 1) =

(1 + E(k)
µ−E(k)

)α

1− ρ E(k)
µ−E(k)

ε. (3.3.9)

Here we have taken a → 0 iteratively (or if a remains fixed, a small constant O(a)

will be added to the error). First, we show that the base case holds, E(1) ≤ E(2).
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Since µ ≥ 4αε
1−ρ

, we have that

E(1)

µ− E(1)
=

2αε
1−ρ

µ− 2αε
1−ρ

≤ 1.

Therefore we have

E(2) =
(1 + E(1)

µ−E(1)
)α

1− ρ E(1)
µ−E(1)

ε ≤ 2α

1− ρ
ε = E(1).

Next we show the inductive step, that E(k+1) ≤ E(k) assuming the inequality holds

for all previous k. Indeed, if E(k) ≤ E(k − 1), then we have

E(k + 1) =
(1 + E(k)

µ−E(k)
)α

1− ρ E(k)
µ−E(k)

ε ≤
(1 + E(k−1)

µ−E(k−1)
)α

1− ρ E(k−1)
µ−E(k−1)

ε = E(k).

Since µ ≥ 4αε
1−ρ

and ρ ≤ 1 we have that µ − E(k) ≥ 0 and ρ E(k)
µ−E(k)

≤ 1, so E(k) is

also bounded below by zero. Thus E(k) is a bounded decreasing sequence, so it must

converge. Call its limit L. By the recursive definition of E(k), we must have

L =
(1 + L

µ−L
)α

1− ρ L
µ−L

ε.

Solving this equation yields

L =
µ−

√
µ2 − 4µαε− 4µαερ

2(1 + ρ)
,

where we choose the solution with the minus since E(k) is decreasing and E(1) < µ/2

(note also that L = 0 when ε = 0). Multiplying by the conjugate and simplifying
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yields

L =
4µαε + 4µαερ

2(1 + ρ)(µ +
√

µ2 − 4µαε− 4µαερ)
=

2αε

1 +
√

1− 4αε
µ
− 4αερ

µ

.

Then again since µ ≥ 4αε
1−ρ

, we have

L ≤ 2αε

1 + ρ
.

Proof of Theorem 3.3.4. By Lemma 6.1 of [53] and Lemma 7 of [32], we can rewrite

Φx + e as Φxs + ẽ where

‖ẽ‖2 ≤ 1.2(‖x− xs‖2 +
1√
s
‖x− xs‖1) + ‖e‖2 ≤ 2.04

(‖x− xs/2‖1√
s

)
+ ‖e‖2.

This combined with Theorem 3.3.3 completes the claim.

3.3.3 Numerical Results and Convergence

Our main theorems prove bounds on the reconstruction error limit. However, as is

the case with many recursive relations, convergence to this threshold is often quite

fast. To show this, we use dynamic programming to compute the theoretical error

bound E(k) given by (3.3.9) and test its convergence rate to the threshold given

by eqrefactualbnd. Since the ratio between µ and ε is important, we fix µ = 10 and

test the convergence for various values of ε and δ. We conclude that the error bound

has achieved the threshold when it is within 0.001 of it. The results are displayed in

Figure 3.3.2.
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Figure 3.3.2: The number of iterations required for the theoretical error
bounds eqrefEk to reach the theoretical error threshold (3.3.2) when (a) µ = 10,
ε = 0.01, (b) µ = 10, ε = 0.1, (c) µ = 10, ε = 0.5, (d) µ = 10, ε = 1.0.

We observe that in each case, as δ increases we require slightly more iterations.

This is not surprising since higher δ means a lower bound. We also confirm that less

iterations are required when the ratio µ/ε is smaller.

Next we examine some numerical experiments conducted to test the actual error

with reweighted ℓ1-minimization versus the standard ℓ1 method. In these experiments

we consider signals of dimension d = 256 with s = 30 non-zero entries. We use a 128×

256 measurement matrix Φ consisting of Gaussian entries. We note that we found

similar results when the measurement matrix Φ consisted of symmetric Bernoulli

entries. Sparsity, measurement, and dimension values in this range demonstrate

a good example of the advantages of the reweighted method. Our results above

suggest that improvements are made using the reweighted method when δ cannot be

forced very small. This means that in situations with sparsity levels s much smaller
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or measurement levels m much larger, the reweighted method may not offer much

improvements. These levels are not the only ones that show improvements, however,

see for example those experiments in [7].

For each trial in our experiments we construct an s-sparse signal x with uniformly

chosen support and entries from either the Gaussian distribution or the symmetric

Bernoulli distribution. All entries are chosen independently and independent of the

measurement matrix Φ. We then construct the noise vector e to have independent

Gaussian entries, and normalize the vector to have norm a fraction (1/5) of the

noiseless measurement vector Φx norm. We then run the reweighted ℓ1-algorithm

using ε such that ε2 = σ2(m + 2
√

2m) where σ2 is the variance of the normalized

error vectors. This value is likely to provide a good upper bound on the noise norm

(see e.g. [5], [7]). The stability parameter a tends to zero with increased iterations.

We run 500 trials for each parameter selection and signal type. We found similar

results for non-sparse signals such as noisy sparse signals and compressible signals.

This is not surprising since we can treat the signal error as measurement error after

applying the the measurement matrix (see the proof of Theorem 3.3.4).

Figure 3.3.3 depicts the experiment with Gaussian signals and decreasing stability

parameter a. In particular, we set a = 1/(1000k) in the kth iteration. The plot

(left) depicts the error after a single ℓ1-minimization and after 9 iterations using the

reweighted method. The histogram (right) depicts the improvements ‖x− x̂‖2/‖x−

x∗‖2 where x̂ and x∗ are the reconstructed vectors after 9 iterations of reweighted

and a single ℓ1-minimization, respectively.

Figure 3.3.4 depicts the same results as Figure 3.3.3 above, but for the exper-

iments with Bernoulli signals. We see that in this case again reweighted ℓ1 offers

improvements. In this setting, the improvements in the Bernoulli signals seem to be
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Figure 3.3.3: Improvements in the ℓ2 reconstruction error using reweighted ℓ1-
minimization versus standard ℓ1-minimization for Gaussian signals.

slightly less than in the Gaussian case. It is clear that in the case of flat signals like

Bernoulli, the requirement on µ in Theorem 3.3.3 may be easier to satisfy, since the

signal will have no small components unless they are all small. However, in the case of

flat signals, if this requirement is not met, then the Theorem guarantees no improve-

ments whatsoever. In the Gaussian case, even if the requirement on µ is not met, the

Theorem still shows that improvements will be made on the larger coefficients.
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Figure 3.3.4: Improvements in the ℓ2 reconstruction error using reweighted ℓ1-
minimization versus standard ℓ1-minimization for Bernoulli signals.
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3.4 Randomized Kaczmarz

Although the algorithms in compressed sensing themselves are not random, the mea-

surement matrices used in the compression step are. The suggestion that randomness

often makes things easier is the key to the idea of randomized algorithms. It is often

the case that a deterministic algorithm’s flaw can be fixed by introducing randomness.

This notion is at the heart of a new randomized version of the well known Kaczmarz

algorithm. Although the work on Kaczmarz is outside the realm on compressed

sensing, it does bare some striking similarities.

The Kaczmarz method [41] is one of the most popular solvers of overdetermined

linear systems and has numerous applications from computer tomography to image

processing. The algorithm consists of a series of alternating projections, and is often

considered a type of Projection on Convex Sets (POCS) method. Given a consistent

system of linear equations of the form

Ax = b,

the Kaczmarz method iteratively projects onto the solution spaces of each equation

in the system. That is, if a1, . . . , am ∈ Rn denote the rows of A, the method cycli-

cally projects the current estimate orthogonally onto the hyperplanes consisting of

solutions to 〈ai, x〉 = bi. Each iteration consists of a single orthogonal projection.

The algorithm can thus be described using the recursive relation,

xk+1 = xk +
bi − 〈ai, xk〉
‖ai‖22

ai,

where xk is the kth iterate and i = (k mod m) + 1.
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Theoretical results on the convergence rate of the Kaczmarz method have been

difficult to obtain. Most known estimates depend on properties of the matrix A

which may be time consuming to compute, and are not easily comparable to those

of other iterative methods (see e.g. [18], [29], [37]). Since the Kaczmarz method

cycles through the rows of A sequentially, its convergence rate depends on the order

of the rows. Intuition tells us that the order of the rows of A does not change the

difficulty level of the system as a whole, so one would hope for results independent of

the ordering. One natural way to overcome this is to use the rows of A in a random

order, rather than sequentially. Several observations were made on the improvements

of this randomized version [50, 38], but only recently have theoretical results been

obtained [61].

In designing a random version of the Kaczmarz method, it is necessary to set

the probability of each row being selected. Strohmer and Vershynin propose in [61]

to set the probability proportional to the Euclidean norm of the row. Their revised

algorithm can then be described by the following:

xk+1 = xk +
bp(i) − 〈ap(i), xk〉
‖ap(i)‖22

ap(i),

where p(i) takes values in {1, . . . , m} with probabilities
‖ap(i)‖2

2

‖A‖2
F

. Here and throughout,

‖A‖F denotes the Frobenius norm of A and ‖·‖2 denotes the usual Euclidean norm or

spectral norm for vectors or matrices, respectively. We note here that of course, one

needs some knowledge of the norm of the rows of A in this version of the algorithm.

In general, this computation takes O(mn) time. However, in many cases such as

the case in which A contains Gaussian entries, this may be approximately or exactly

known.
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In [61], Strohmer and Vershynin prove the following exponential bound on the

expected rate of convergence for the randomized Kaczmarz method,

E‖xk − x‖22 ≤
(
1− 1

R

)k

‖x0 − x‖22, (3.4.1)

where R = ‖A−1‖2‖A‖2F and x0 is an arbitrary initial estimate. Here and throughout,

‖A−1‖ def
= inf{M : M‖Ax‖2 ≥ ‖x‖2 for all x}.

The first remarkable note about this result is that it is essentially independent

of the number m of equations in the system. Indeed, by the definition of R, R is

proportional to n within a square factor of the condition number of A. Also, since

the algorithm needs only access to the randomly chosen rows of A, the method need

not know the entire matrix A. Indeed, the bound (3.4.1) and the relationship of R to

n shows that the estimate xk converges exponentially fast to the solution in just O(n)

iterations. Since each iteration requires O(n) time, the method overall has a O(n2)

runtime. Thus this randomized version of the algorithm provides advantages over all

previous methods for extremely overdetermined linear systems. There are of course

situations where other methods, such as the conjugate gradient method, outperform

the randomized Kaczmarz method. However, numerical studies in [61] show that in

many scenarios (for example when A is Gaussian), the randomized Kaczmarz method

provides faster convergence than even the conjugate gradient method.

The remarkable benefits provided by the randomized Kaczmarz algorithm lead one

to question whether the method works in the more realistic case where the system

is corrupted by noise. In this paper we provide theoretical and empirical results to

suggest that in this noisy case the method converges exponentially to the solution

within a specified error bound. The error bound is proportional to
√

R, and we also

provide a simple example showing this bound is sharp in the general setting.
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3.4.1 Main Results

In this section we discuss the results by Needell in [51].

Theoretical and empirical studies have shown the randomized Kaczmarz algorithm

to provide very promising results. Here we show that it also performs well in the case

where the system is corrupted with noise. In this section we consider the system

Ax = b after an error vector r is added to the right side:

Ax ≈ b + r.

First we present a simple example to gain intuition about how drastically the noise

can affect the system. To that end, consider the n× n identity matrix A. Set b = 0,

x = 0, and suppose the error is the vector whose entries are all one, r = (1, 1, . . . , 1).

Then the solution to the noisy system is clearly r itself, and so by (3.4.1), the iterates

xk of randomized Kaczmarz will converge exponentially to r. Since A is the identity

matrix, we have R = n. Then by (3.4.1) and Jensen’s inequality, we have

E‖xk − r‖2 ≤
(
1− 1

R

)k/2

‖x0 − r‖2.

Then by the triangle inequality, we have

E‖xk − x‖2 ≥ ‖r − x‖2 −
(
1− 1

R

)k/2

‖x0 − r‖2.

Finally by the definition of r and R, this implies

E‖xk − x‖2 ≥
√

R −
(
1− 1

R

)k/2

‖x0 − r‖2.
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This means that the limiting error between the iterates xk and the original solution

x is
√

R. In [61] it is shown that the bound provided in (3.4.1) is optimal, so if we

wish to maintain a general setting, the best error bound for the noisy case we can

hope for is proportional to
√

R. Our main result proves this exact theoretical bound.

Theorem 3.4.1 (Noisy randomized Kaczmarz). Let x∗
k be the kth iterate of the noisy

Randomized Kaczmarz method run with Ax ≈ b+r, and let a1, . . . am denote the rows

of A. Then we have

E‖x∗
k − x‖2 ≤

(
1− 1

R

)k/2

‖x0‖2 +
√

Rγ,

where R = ‖A−1‖2‖A‖2F and γ = maxi
|ri|

‖ai‖2
.

Remark 3.4.2. In the case discussed above, note that we have γ = 1, so the example

indeed shows the bound is sharp.

Before proving the theorem, it is important to first analyze what happens to the

solution spaces of the original equations Ax = b when the error vector is added.

Letting a1, . . . am denote the rows of A, we have that each solution space 〈ai, x〉 = bi

of the original system is a hyperplane whose normal is ai

‖ai‖2
. When noise is added,

each hyperplane is translated in the direction of ai. Thus the new geometry consists

of hyperplanes parallel to those in the noiseless case. A simple computation provides

the following lemma which specifies exactly how far each hyperplane is shifted.

Lemma 3.4.3. Let Hi be the affine subspace of Rn consisting of the solutions to

〈ai, x〉 = bi. Let H∗
i be the solution space of the noisy system 〈ai, x〉 = bi + ri. Then

H∗
i = {w + αiai : w ∈ Hi} where αi = ri

‖ai‖2
2
.

Proof. First, if w ∈ Hi then 〈ai, w + αai〉 = 〈ai, w〉+α‖ai‖22 = bi+ri, so w+αai ∈ H∗
i .
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Next let u ∈ H∗
i . Set w = u− αai. Then 〈ai, w〉 = 〈ai, u〉 − ri = bi + ri − ri = bi, so

w ∈ H∗
i . This completes the proof.

We will also utilize the following lemma which is proved in the proof of Theorem

2 in [61].

Lemma 3.4.4. Let x∗
k−1 be any vector in Rn and let xk be its orthogonal projection

onto a random solution space as in the noiseless randomized Kaczmarz method run

with Ax = b. Then we have

E‖xk − x‖22 ≤
(
1− 1

R

)
‖x∗

k−1 − x‖22,

where R = ‖A−1‖2‖A‖2F .

We are now prepared to prove Theorem 3.4.1.

Proof of Theorem 3.4.1. Let x∗
k−1 denote the (k − 1)th iterate of noisy Randomized

Kaczmarz. Using notation as in Lemma 3.4.3, let H∗
i be the solution space chosen

in the kth iteration. Then x∗
k is the orthogonal projection of x∗

k−1 onto H∗
i . Let xk

denote the orthogonal projection of x∗
k−1 onto Hi (see Figure 3.4.1).

kx

kx*

kx*
k−1

H i

H i
*

ai

Figure 3.4.1: The parallel hyperplanes Hi and H∗
i along with the two projected

vectors xk and x∗
k.
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By Lemma 3.4.3 and the fact that ai is orthogonal to Hi and H∗
i , we have that

x∗
k−x = xk−x+αiai. Again by orthogonality, we have ‖x∗

k−x‖22 = ‖xk−x‖22+‖αiai‖22.

Then by Lemma 3.4.4 and the definition of γ, we have

E‖x∗
k − x‖22 ≤

(
1− 1

R

)
‖x∗

k−1 − x‖22 + γ2,

where the expectation is conditioned upon the choice of the random selections in the

first k− 1 iterations. Then applying this recursive relation iteratively and taking full

expectation, we have

E‖x∗
k − x‖22 ≤

(
1− 1

R

)k

‖x0 − x‖22 +
k−1∑

j=0

(
1− 1

R

)j

γ2

≤
(
1− 1

R

)k

‖x0 − x‖22 + Rγ2.

By Jensen’s inequality we then have

E‖x∗
k − x‖2 ≤

((
1− 1

R

)k

‖x0 − x‖22 + Rγ2

)1/2

≤
(
1− 1

R

)k/2

‖x0 − x‖2 +
√

Rγ.

This completes the proof.

3.4.2 Numerical Examples

In this section we describe some of our numerical results for the randomized Kacz-

marz method in the case of noisy systems. The results displayed in this section use

matrices with independent Gaussian entries. Figure 3.4.2 depicts the error between

the estimate by randomized Kaczmarz and the actual signal, in comparison with the

predicted threshold value. This study was conducted for 100 trials using 100 × 50
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Gaussian matrices and independent Gaussian noise. The systems were homogeneous,

meaning x = 0 and b = 0. The thick line is a plot of the threshold value, γ
√

R for

each trial. The thin line is a plot of the error in the estimate after 1000 iterations

for the corresponding trial. As is evident by the plots, the error is quite close to the

threshold. Of course in the Gaussian case depicted, it is not surprising that often the

error is below the threshold. As discussed above, the threshold is sharp for certain

kinds of matrices and noise vectors.
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Error in estimation: Gaussian 100 by 50 after 1000 iterations.

 

 

Error
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Figure 3.4.2: The comparison between the actual error in the randomized Kaczmarz
estimate (thin line) and the predicted threshold (thick line).

Our next study investigated the convergence rate for the randomized Kaczmarz

method with noise for homogeneous systems. Again we let our matrices A be 100×50

Gaussian matrices, and our error vector be independent Gaussian noise. Figure 3.4.3

displays a scatter plot of the results of this study over various trials. It is not sur-

prising that the convergence appears exponential as predicted by the theorems.



3.4. Randomized Kaczmarz 144

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2
Error in estimation: Gaussian 100 by 50

Iterations

E
rr

or

Figure 3.4.3: Convergence rate for randomized Kaczmarz over various trials.
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Chapter 4

Summary

Compressed sensing is a new and fast growing field of applied mathematics that ad-

dresses the shortcomings of conventional signal compression. Given a signal with

few nonzero coordinates relative to its dimension, compressed sensing seeks to recon-

struct the signal from few nonadaptive linear measurements. As work in this area

developed, two major approaches to the problem emerged, each with its own set of

advantages and disadvantages. The first approach, L1-Minimization [6, 5], provided

strong results, but lacked the speed of the second, the greedy approach. The greedy

approach, while providing a fast runtime, lacked stability and uniform guarantees.

This gap between the approaches has led researchers to seek an algorithm that could

provide the benefits of both. In collaboration, my adviser Roman Vershynin and I

have bridged this gap and provided a breakthrough algorithm, called Regularized

Orthogonal Matching Pursuit (ROMP) [55, 54]. ROMP is the first algorithm to pro-

vide the stability and uniform guarantees similar to those of L1-Minimization, while

providing speed as a greedy approach. After analyzing these results, my colleague

Joel Tropp and I developed the algorithm Compressive Sampling Matching Pursuit

(CoSaMP), which improved upon the guarantees of ROMP [53, 52]. CoSaMP is the
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first algorithm to have provably optimal guarantees in every important aspect.

It was the negative opinions about conventional signal compression that spurred

the development of compressed sensing. The traditional methodology is a costly

process, which acquires the entire signal, compresses it, and then throws most of the

information away. However, new ideas in the field combine signal acquisition and

compression, significantly improving the overall cost. The problem is formulated as

the realization of such a signal x from few linear measurements, of the form Φx where

Φ is a (usually random) measurement matrix. Since Linear Algebra clearly shows

that recovery in this fashion is not possible, the domain from which the signal is

reconstructed must be restricted. Thus the domain that is considered is the domain

of all sparse vectors. In particular, we call a signal s-sparse when it has s or less

nonzero coordinates. It is now well known that many signals in practice are sparse

in this sense or with respect to a different basis.

As discussed, there are several critical properties that an ideal algorithm in com-

pressed sensing should possess. The algorithm clearly needs to be efficient in practice.

This means it should have a fast runtime and low memory requirements. It should

also provide uniform guarantees so that one measurement matrix works for all signals

with high probability. Lastly, the algorithm needs to provide stability under noise in

order to be of any use in practice. The second approach uses greedy algorithms and

is thus quite fast both in theory and in practice, but lacks both stability and uniform

guarantees. The first approach relies on a condition called the Restricted Isometry

Property (RIP), which had never been usefully applied to greedy algorithms. For a

measurement matrix Φ, we say that Φ satisfies the RIP with parameters (s, ε) if

(1− ε)‖v‖2 ≤ ‖Φv‖2 ≤ (1 + ε)‖v‖2
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holds for all s-sparse vectors v. We analyzed this property in a unique way and found

consequences that could be used in a greedy fashion. Our breakthrough algorithm

ROMP is the first to provide all these benefits (stability, uniform guarantees, and

speed), while CoSaMP improves upon these significant results and provides com-

pletely optimal runtime bounds.

One of the basic greedy algorithms which inspired our work is Orthogonal Match-

ing Pursuit (OMP), which was analyzed by Gilbert and Tropp [62]. OMP uses the

observation vector u = Φ∗Φx to iteratively calculate the support of the signal x (which

can then be used to reconstruct x). At each iteration, OMP selects the largest com-

ponent of the observation vector u to be in the support, and then subtracts off its

contribution. Although OMP is very fast, it does not provide uniform guarantees.

Indeed, the algorithm correctly reconstructs a fixed signal x with high probability,

rather than all signals. It is also unknown whether OMP is stable.

Our new algorithm ROMP is similar in spirit to OMP, in that it uses the obser-

vation vector u to calculate the support of the signal x. One of the key differences in

the algorithm is that ROMP selects many coordinates of u at each iteration. The reg-

ularization step of ROMP guarantees that each of the selected coordinates have close

to an equal share of the information about the signal x. This allows us to translate

captured energy of the signal into captured support of the signal. We show that when

the measurement matrix Φ satisfies the Restricted Isometry Property with parame-

ters (2s, c/ log s), ROMP exactly reconstructs any s-sparse signal in just s iterations.

Our stability results show that for an arbitrary signal x with noisy measurements

Φx + e, ROMP provides an approximation x̂ to x that satisfies

‖x̂− x‖2 ≤ C
√

log s
(
‖e‖2 +

‖x− xs‖1√
s

)
, (4.0.1)
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where xs is the vector of the s largest coordinates of x in magnitude. ROMP is thus

the first greedy algorithm providing the strong guarantees of the L1-Minimization

approach, and bridges the gap between the two approaches.

After the breakthrough of ROMP, Needell and Tropp developed a new algorithm,

Compressive Sampling Matching Pursuit (CoSaMP) [53, 52]. CoSaMP maintains

an estimation of the support as well as an estimation of the signal throughout each

iteration. It again is a greedy algorithm that provides the uniform and stability

guarantees of the L1 approach. CoSaMP improves upon the stability bounds of

ROMP as well as the number of measurements required by the algorithm. Indeed we

show that for any measurement matrix satisfying the Restricted Isometry Property

with parameters (2s, c), CoSaMP approximately reconstructs any arbitrary signal x

from its noisy measurements u = Φx + e in at most 6s iterations:

‖x̂− x‖2 ≤ C
(
‖e‖2 +

‖x− xs‖1√
s

)
.

We also provide a rigorous analysis of the runtime, which describes how exactly

the algorithm should be implemented in practice. CoSaMP thus provides optimal

guarantees at every important aspect.
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Appendix A

Matlab Code

This section contains original Matlab code used to produce the figures contained

within this work.

A.1 Basis Pursuit

%NAME: Basis Pursuit Tester

%PURPOSE: Tests sparse, noisy, compressible signals on Basis Pursuit

%AUTHOR: Deanna Needell

%OUTSIDE FUNCTIONS: l1eq_pd (L1-Magic, J. Romberg)

clear all

warning off all

%Variables

N=[10:5:250];

d=[256];

n=[2:2:90];

p=[0.2:0.2:1]; %Used for compressible signals

%Number of Trials for each parameter set

numTrials = 500;
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%Counters

numN = size(N, 2);

numd = size(d, 2);

numn = size(n, 2);

nump = size(p, 2);

%Data Collection

numCorr = zeros(numN, numd, numn);

minMeas = zeros(numN);

AvgerrorNormd = zeros(numN, numd, numn, nump);

Avgerror = zeros(numN, numd, numn, nump);

%for ip:=1:nump %USED FOR COMPRESSIBLE SIGNALS

for id = 1:numd

for iN=1:numN

in=1;

done=0;

while in <= numn && ~done

for trial = 1:numTrials

tN = N(1, iN);

td = d(1, id);

tn = n(1, in);

tp = p(1, ip);

%Set Matrix

Phi = randn(tN, td);

Phi = sign(Phi);

I = zeros(1,1);

%Set signal

z = randperm(td);

v = zeros(td, 1);

for t = 1:tn

v(z(t))=1;

end

%USED IN THE CASE OF COMPRESSIBLE SIGNALS

%y = sign(randn(td, 1));

%noiErr=0;

%for i=1:tn

%v(z(i)) = i^(-1/tp)*y(i);
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%if i > tn

% noiErr = noiErr + abs(v(z(i)));

%end

%end

%Set measurement and residual

x = Phi * v;

%USED IN THE CASE OF NOISE

%e = randn(tN, 1);

%x = x + e / norm(e, 2) / 2;

%Set initial estimate

x0 = Phi’*x;

%Run Basis Pursuit (via L1-Magic)

xp = l1eq_pd(x0, Phi, [], x, 1e-6);

%Collect Data

if norm(xp-v, 2) < 0.01

numCorr(iN, id, in) = numCorr(iN, id, in) +1;

end

AvgerrorNormd(iN, id, in, ip) = (AvgerrorNormd(iN, id, in, ip) *

(counted-1) + (norm(xp-v,2)/noiErr*(tn)^0.5))/counted;

Avgerror(iN, id, in, ip) = (Avgerror(iN, id, in, ip) *

(counted-1) + norm(xp-v, 2))/counted;

end % end Trial

if numCorr(iN, id, in) / numTrials > 0.98

minMeas(iN) = tn;

else

done=1;

end

in = in +1;

end % n

end % N

end % d

%end % p
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A.2 Orthogonal Matching Pursuit

%NAME: Orthogonal Matching Pursuit Tester

%PURPOSE: Tests sparse signals on Orthogonal Matching Pursuit

%AUTHOR: Deanna Needell

%OUTSIDE FUNCTIONS: None

clear all

warning off all

%Variables

N=[10:5:250];

d=[256];

n=[2:2:90];

numTrials = 500;

numN = size(N, 2);

numd = size(d, 2);

numn = size(n, 2);

%Data Collection

numCorr = zeros(numN, numd, numn);

mostSpars = zeros(numN);

for id = 1:numd

for iN=1:numN

in=1;

done=1;

keepGo=1;

while in <= numn && keepGo

for trial = 1:numTrials

tN = N(1, iN);

td = d(1, id);

tn = n(1, in);

%Set Matrix

Phi = randn(tN, td);

Phi = sign(Phi);

I = zeros(1,1);

%Set signal

z = randperm(td);
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supp=z(1:tn);

v = zeros(td, 1);

for t = 1:tn

v(z(t))=1;

end

x = Phi * v;

r = x;

%Run OMP

while length(I)-1 < tn

u = Phi’ * r;

absu = abs(u);

[b, ix] = sort(absu, ’descend’);

bestInd = ix(1);

bestVal = b(1);

%Update I

I(length(I)+1) = bestInd;

%Update the residual

PhiSubI = Phi(:, I(2));

for c=3:length(I)

if ~isMember(I(2:c-1),I(c))

PhiSubI(:,c-1) = Phi(:, I(c));

end

end

y = lscov(PhiSubI, x);

r = x - PhiSubI * y;

end

if isMember(supp, I);

numCorr(iN, id, in) = numCorr(iN, id, in) +1;

end

end % end Trial

if numCorr(iN, id, in) / numTrials > 0.98 && done

mostSpars(iN) = tn;

else

done=0;

end
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if numCorr(iN, id, in) <= 0.01

keepGo=0;

end

in = in +1;

end % n

end % N

end % d

A.3 Regularized Orthogonal Matching Pursuit

function [vOut, numIts] = romp(n, Phi, x)

% [vOut] = romp(n, Phi, x)

%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%

% d = ambient dimension of the signal v

% N = number of measurements

% n = sparsity level of n

% Phi = N by d measurement matrix

% x = measurement vector (Phi * v)

% vOut = reconstructed signal

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% FUNCTION DESCRIPTION %%%%%%%%%%%%%%%%%

% romp takes parameters as described

% above. Given the sparsity level n and

% the N by d measurement matrix Phi, and

% the measurement vector x = Phi * v, romp

% reconstructs the original signal v.

% This reconstruction is the output.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear r I J J0 u b ix numIts Jvals

warning off all

N = size(Phi, 1);

d = size(Phi, 2);

% Set residual

r = x;
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%Set index set to "empty"

I = zeros(1,1);

%Counter (to be used optionally)

numIts = 0;

%Run ROMP

while length(I)-1 < 2*n && norm(r) > 10^(-6)

numIts = numIts + 1;

%Find J, the biggest n coordinates of u

u = Phi’ * r;

absu = abs(u);

[b, ix] = sort(absu, ’descend’);

J = ix(1:n);

Jvals = b(1:n);

%Find J0, the set of comparable coordinates with maximal energy

w=1;

best = -1;

J0 = zeros(1);

while w <= n

first = Jvals(w);

firstw = w;

energy = 0;

while ( w <= n ) && ( Jvals(w) >= 1/2 * first )

energy = energy + Jvals(w)^2;

w = w+1;

end

if energy > best

best = energy;

J0 = J(firstw:w-1);

end

end

%Add J0 to the index set I

I(length(I)+1: length(I)+length(J0)) = J0;

%Update the residual

PhiSubI = Phi(:, I(2));
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for c=3:length(I)

if ~isMember(I(2:c-1),I(c))

PhiSubI(:,c-1) = Phi(:, I(c));

end

end

y = lscov(PhiSubI, x);

r = x - PhiSubI * y;

end % end Run IRA

vSmall = PhiSubI \ x;

vOut = zeros(d, 1);

for c=2:length(I)

vOut(I(c)) = vSmall(c-1);

end

A.4 Compressive Sampling Matching Pursuit

%NAME: CoSaMP Tester

%PURPOSE: Tests sparse signals on CoSaMP

%AUTHOR: Deanna Needell

%OUTSIDE FUNCTIONS: None

%Testing Parameters

sVals=[1:1:55]; % Sparsity levels

mVals=[5:5:250]; %Measurement levels

dVals=[256]; %dimension

numTrials=500; %Number of trials per parameter set

%Set Variable lengths and Data Collection

nums=length(sVals);

numm=length(mVals);

numd=length(dVals);

numCorrect = zeros(nums, numm, numd);

trend99 = zeros(numm, 1);

for is=1:nums
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for im=1:numm

for id=1:numd

%Set Parameters

s = sVals(is);

m = mVals(im);

d = dVals(id);

%Start a trial

for trial=1:numTrials

%Generate Measurement matrix

Phi = randn(m,d);

%Generate sparse signal

z = randperm(d);

x = zeros(d, 1);

x(z(1:s)) = sign(randn(s,1));

%Generate measurements

u = Phi*x;

%Begin CoSaMP

%Initialize

a = zeros(d,1);

v = u;

it=0;

stop = 0;

while ~stop

%Signal Proxy

y = Phi’*v;

[tmp, ix] = sort(abs(y), ’descend’);

Omega = ix(1:2*s);

[tmp, ix] = sort(abs(a), ’descend’);

T = union(Omega, ix(1:s));

%Signal Estimation

b = zeros(d, 1);

b(T) = Phi(:, T) \ u;
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%Prune

[tmp, ix] = sort(abs(b), ’descend’);

a = zeros(d, 1);

a(ix(1:s), 1) = b(ix(1:s), 1);

%Sample Update

v = u - Phi*a;

%Iteration counter

it = it + 1;

%Check Halting Condition

if norm(a-x) <= 10^(-4) || it > max(8*s, 60)

stop = 1;

end

end %End CoSaMP iteration

%Collect Data

if norm(a-x) <= 10^(-4)

numCorrect(is, im, id) = numCorrect(is, im, id) + 1;

end

end % End trial

end %d

if trend99(im) == 0 && numCorrect(is, im, id) >= 0.99*numTrials

trend99(im) = s;

end

end %m

end %s

A.5 Reweighted L1 Minimization

%NAME: Reweighted L1-Minimization Tester

%PURPOSE: Tests sparse and noisy signals on Reweighted L1

%AUTHOR: Deanna Needell

%OUTSIDE FUNCTIONS: CVX package (Michael Grant and Stephen Boyd)

N = 256; %dimension
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M = 128; %measurements

kVals = [30]; %sparsity

eepsVals = [1];

numTrials = 500;

maxIter = 9;

errorVecDecoding = zeros(length(kVals),length(eepsVals),maxIter,numTrials);

errors = zeros(numTrials,1);

for trial = 1:numTrials

for kIndex = 1:length(kVals)

K = kVals(kIndex);

for eIndex = 1:length(eepsVals)

eeps = eepsVals(eIndex);

% Gaussian spikes in random locations

x = zeros(N,1); q = randperm(N);

x(q(1:K)) = sign(randn(K,1));

% measurement matrix

Phi = sign(randn(M,N))/sqrt(M);

% observations

err = randn(M, 1);

sigma = 0.2*norm(Phi*x,2)/norm(err,2);

err = sigma*err;

y = Phi*x + err;

errors(trial) = norm(err,2);

for iter = 1:maxIter

%Set the weights

if iter > 1

weights = 1./(abs(xDecoding)+eeps/(1000*iter));

else

weights = 1*ones(N,1);

end

%Set noise tolerance parameter

delta=sqrt(sigma^2*(M+2*sqrt(2*M)));

%Use CVX to perform minimization
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cvx_begin

cvx_quiet(true)

variable xa(N);

minimize( norm(diag(weights)*xa,2) );

subject to

norm(Phi*xa - y, 2) <= delta;

cvx_end

%Collect results

xDecoding = xa;

errorVecDecoding(kIndex,eIndex,iter,trial) = norm((x-xDecoding),2);

end

end

end

end

A.6 Randomized Kaczmarz

%NAME: Randomized Kaczmarz Tester

%PURPOSE: Tests RK on noisy systems

%AUTHOR: Deanna Needell

%OUTSIDE FUNCTIONS: none

clear all

warning off all

m = 100; %rows

n=100; %columns

numIts = 1000;

numTrials = 100;

A = zeros(numTrials, m, n);

e = zeros(numTrials, m);

x = zeros(numTrials, n);

b = zeros(numTrials, m);
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est = zeros(numTrials, numIts, n); %estimations

initErr = zeros(numTrials);

R = zeros(numTrials, 1); %Value of R (as in paper)

mu = zeros(numTrials); %Coherence

gamma = zeros(numTrials, 1); %worst error to row norm ratio

beta = zeros(numTrials); %beta is in theorem

errorsRK = zeros(numTrials, numIts);

errorsCG = zeros(numTrials, numIts);

for trial=1:numTrials

if mod(trial, 1) == 0

display([’Trial ’, num2str(trial)]);

end

%Set matrix equation

A(trial, :, :) = sign(randn(m,n));

x = zeros(n, 1)’;

b(trial,:) = reshape(A(trial, :, :), m, n)*(x’);

%Set initial guess, ||x - x0|| = 1

est(trial, 1, :) = randn(1, n);

est(trial, 1, :) = est(trial, 1, :) / norm(reshape(est(trial, 1, :), 1, n),2) ;

origest = reshape(est(trial, 1, :), 1, n)’;

%Add error to RHS of Ax=0

e(trial, :) = randn(1, m)*2;

e(trial, :) = e(trial, :) / norm(e(trial, :), 2) / 10;

b(trial, :) = b(trial, :)+e(trial, :); %%%%NOISY!!

%Calculate stats

initErr = norm(reshape(est(trial, 1, :), 1, n) - x,2);

fronorm = norm(reshape(A(trial, :, :), m, n), ’fro’);

R(trial) = norm(pinv(reshape(A(trial, :, :), m, n)),2)*fronorm;

temp = zeros(1, m);

for i=1:m

temp(i) = norm(reshape(A(trial, i, :), 1, n), 2);

end

gamma(trial) = max(abs( e(trial, :)./temp ));

errorsRK(trial, 1) = norm(reshape(est(trial, 1, :), 1, n)-x,2);

errorsCG(trial, 1) = norm(reshape(est(trial, 1, :), 1, n)-x,2);

%Run RK



A.6. Randomized Kaczmarz 162

for it=2:numIts

%Select random hyperplane

pick = rand * fronorm^2;

counter = 0;

index = 1;

while counter + norm(reshape(A(trial, index, :),1, n), 2)^2 < pick

counter = counter + norm(reshape(A(trial, index, :),1, n), 2)^2;

index = index + 1;

end

%Modify estimation

est(trial, it, :) = est(trial, it-1, :) + (b(index) - dot((A(trial, index,

(est(trial, it-1, :))) )/ (norm(reshape(A(trial, index, :), 1, n),2)^2) * A(trial,

errorsRK(trial, it) = norm(reshape(est(trial, it, :), 1, n)-x,2);

end

%Run CG

for it=1:numIts

[estcg,flag] = cgs(reshape(A(trial, :, :),m, n),b(trial,:)’,10^(-10), it);

errorsCG(trial, it) = norm(estcg-x’,2);

end

end
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