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Communicated by Richard S. \‘arga 

Two complex n x n matrices A = (aij) and B = (bij) are said to be 

equimodular if 1~~~1 = Ibijl for i, j = 1, 2, . . ., n. Let J&4) denote the set 

of all matrices equimodular with a given matrix A, and let Y(A) denote 

the set of all eigenvalues of all matrices in R(A). The class Q(A) is called 

regular if it contains only nonsingular matrices. 

The purpose of this paper is to examine the general properties of 

Y(P(A). Some of these properties are apparent. In particular, Y(A) is 

clearly symmetric about the origin of the complex plane, for if cx is an 

eigenvalue of B EL?(A), then tc exp(i8) is an eigenvalue of exp(i0)B. 

Moreover, if all multiplicities are taken into account, each matrix in Q(A) 

has exactly n eigenvalues, and since the eigenvalues of a matrix are known 

to vary continuously with its entries (e.g., see [7, pp. 192-1941) and since 

Q(A) is a compact, connected set in complex E”’ space, it follows that 

Y(A) is the union of at most +z closed, connected components. Therefore, 

Y(A) consists of Y < n closed, annular components centered at the origin. 

It is clearly possible for some of these rings to be circles, and if A is not 

regular, the innermost ring is actually a disk. It will be convenient to 

refer to the components of the complement of Y(A) as gaps in Y(A). 
Although the basic structure of Y(A) is rather simple, this set also 

has many interesting boundary and combinatorial properties, some of 

which are really quite subtle. For example, the well-known Perron- 

Frobenius theorem states that the largest nonnegative real boundary 
point of Y(A) is an eigenvalue of the nonnegative member of Q(A). 

We generalize this result by showing that each real boundary point of 

Y(A) is actually an eigenvalue of at least one real matrix inn(A). Further- 

more, in response to a request by 0. Taussky [lo], R. S. Varga and 
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106 G. L. BRADLEY 

B. W. Levinger [4] have given a complete characterization of Y(A) in 

terms of their concept of minimal Gerschgorin sets [5, 111. In this char- 

acterization, 9’(A) is significantly associated with a set of at most 12 + 1 

permutations, and the authors conjecture that this number can be reduced 

to n. Although our approach is entirely different from that of Varga and 

Levinger, we also show that Y(A) is related to a set of permutations and 

then verify that this set contains at most n distinct members. 

It will be seen that regular classes play a very important role in our 

analysis of 9’(A), and we ultimately require a complete characterization 

of such classes. P. Camion and A. Hoffman [Z] have shown that G(A) 

is regular if and only if there exist a permutation matrix P and a positive 

diagonal matrix D such that PAD is diagonally dominant, but this 

characterization is not ideally suited to our approach. Therefore, in 

addition to the results already mentioned, we also derive an alternate 

characterization of regular classes. 

The paper is divided into four sections, the first of which is basically 

introductory and contains definitions, notational conventions, and well- 

known results. The second section contains a fundamental theorem on 

multilinear polynomials which forms the crux of all our main results, 

and the final two sections are devoted to discussions of the combinatorial 

and boundary properties of Y(A), respectively. 

1. DEFINITIONS, NOTATIONAL CONVENTIONS, AND BASIC RESULTS 

We shall denote a x n complex matrices by upper case English 

letters, and the identity and null matrices will always be denoted by I 

and 0, respectively. The matrix whose entries are !u,~I will be denoted 

by IA/, andif A = iAl, we shall write A > 0. Similarly, if x = (xi,. . . , x,,) 

is a complex vector, the vector whose ith component is \xil will be 

denoted by 1x1, and if x = 1x1, we shall write x >, 0. As usual, the 

Kronecker 6 function will be denoted by 6,. 

A matrix P = (eij) is called a permutation matrix if its entries are 

all either 1 or 0 and it has exactly one nonzero entry in each row and 

column. The matrix A is said to be reducible if there exists a permutation 

matrix P such that 

PAP-l = 

where A, and A, are square submatrices of A. Otherwise, A is irreducible. 
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Ostrowski [8, 91 originally defined the concept of M-matrix in terms 

of the principal minors of a certain type of matrix, but the following 

equivalent definition (e.g., see [12, p. 851) IS more suitable to our approach. 

DEFINITION 1.1. A real n x n matrix A = (aij) with aij < 0 for all 

i f j is an M-matrix if A is nonsingular and A-1 > 0. 

It will be convenient to call A a generalized M-matrix if there exists 

a permutation matrix P such that PA is an M-matrix. 

Finally, in terms of our definitions, the Perron-Frobenius theorem 

takes the following form. 

THEOREM 1.1 (Perron-Frobedus). If A > 0 is irreducible and if a(A) 

denotes the largest nonnegative boundary point of Y(A), then 

(i) a(A) is an eigenvalue of A of multifilicity one and corresponds 

to a positive eigenvector ; 

(ii) a(A) is an eigenvalue of B EQ(A) if and only if B has the form 

B = DAD-l, where D is a complex diagonal matrix whose diagonal entries 

have unit modulus ; 

(iii) if C - A > 0, then a(C) 3 o(A) with equality only i,t C = A. 

2. A FUNDAMENTAL THEOREM ON MULTILINEAR POLYNOMIALS 

This section is devoted to the proof of a general theorem concerning 

the coefficients of a multilinear polynomial which does not vanish on the 

region lxil = 1. Accordingly, let K, denote the set of all polynomials 

in m variables which are of maximal degree one in each variable, and 

note that each member of K, can be written in the form 2 a(S) nieS x,, 

where the sum is extended over the 2” subsets of (1, 2, . . . , m}. 

THEOREM 2.1. Let p be a member of K,. If there exists a q E K, such 

that IPC4 1 > Id4 I f ora com$4exvectorsxforwhichlxjl=1,~=1,2,...,m, 11 
then 

(i) one coefficient of p strictly dominates all the other coefficients of 

p and all those of q-i.e., there exists a subset S, of (1, 2, . . . , m} such that 

la(S) I < M%) I for every S # S, 

and 

lb(S) I -=c Wo) I for every S; 
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(ii) p does not vanish on the region described by the following conditions: 

lXjl> 1 for jES,; IXjl d 1 for i$S,. 

Proof. To simplify notation, let X, denote the set of all vectors 

with m unimodular complex components. The proof of part (i) is by 

induction on the number m of the variables. 

For m = 0, the theorem is trivial. In the general case, there exist 

unique pi, 9s E K,,+, such that p(x) = P,(U) + x,&s(~), where u E X,,_,. 

Since Ip(%)I > Iq(x)l 3 0 for all x E X,, and since X,_, is a connected 

set, it follows that exactly one of the following situations occurs: 

lP&4 > lPd4 for all ~E-Ll; (2.1) 

lP&)l > IP1(41 for all uE-%-,. (2.2) 

In either case, it follows from the inductive hypothesis that a certain 

coefficient of p strictly dominates all the other coefficients of 9. 

Assume for the moment that situation (2.1) occurs, and write q(x) = 

qi(z~) + x%qs(~). For each fixed u, we have the following inequalities: 

and 

- IP&) I > I Id4 I - Mu.) I I. 

Adding these two inequalities, we obtain 

and since this inequality holds for each u E X,,_i, it follows from the induc- 

tive hypothesis that the dominant coefficient of p also dominates all 

the coefficients of both q1 and q2 and hence of q. Furthermore, it follows 

from inequality (2.1) that this dominant term must be found in $r rather 

than 9,. An entirely analogous argument shows that if situation (2.2) 

occurs, then ~3 has a dominant coefficient which is found in 9, and which 

dominates all the coefficients of q. 

Now, for i=O,l,..., m, let Tj denote the set of all vectors z such 

that /zij = 1 if i > j; and for i < j, lz,l > 1 if i E S, and lzzl < 1 if i $ S,. 

We shall prove part (ii) of the theorem by induction on j. 
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Since IP(4 I > 14(x) 1 b 0 f or all x E X,, the theorem certainly holds 

for To. To prove the general case, choose $a, 9, E K,,_, so that if x E X,, 

then p(x) = p,(t) + x&,(t) for TV X,-i. Assume for the moment that 

j E S,. Then the dominant coefficient of p is found in p,, and as before, 

it follows that 1$,(t) 1 > I&(t) / for all t E X,-r. If w is a member of Tj_l, 

we can write ze, = (y, We) where y = (wr, . . ., w~_~, w~+~, . . . , w,). By 

the inductive hypothesis, p(w) # 0 for all ze, E T,_,, and since Tj_l is 

a connected set, it follows that lp,(y)l > lp,(y)l for all such y. If z is a 

member of Tj, we have p(z) = p,(y) + z3p4(y), where y is a vector of the 

type just described. Therefore, 1~~1 3 1 since j E Se, and it follows that 

p(z) cannot be zero. The proof for i 6 S, is entirely analogous to the one 

just given, and we conclude that p(z) f 0 for all z E Ti, as desired. 

3. COMBINATORIAL PROPERTIES OF THE SET Y(A) 

We now apply Theorem 2.1 to a set of r matrices {A,, . . ., A,}, where 

A, = (at)). For each fixed k, let xi;) be n2 independent complex variables, 

and denote by Bk(x) the (variable) matrix whose entries are a$)@. It 

is the fact that F(x) = det zi=, BR(x) is a member of K,,, which enables 

us to use Theorem 2.1 as a tool in investigating the properties of regular 

classes and the set Y(A). 

Several new terms must be defined before Theorem 2.1 can be effec- 

tively applied to sets of matrices. First of all, let &?(A,, . . . , A,) denote 

the set of all matrices of the form 2;1=i C,, where C, EG(A,)-i.e., 

Q(A,, . . . , A,) is the direct sum of the equimodular classes Q(A,), Q(A,), 

. . ., O(A,). If Q(A,, . . _, A,) contains only nonsingular matrices, it will 

be called a regular class. Second, the ordered r-tuple (Pi, . . . , P,) of 

matrices will be called a partition of the permutation matrix P if 

~~=l P, = P and the entries # are all either 0 or 1. 

The notion of a partition of a permutation matrix provides a convenient 

means for describing the coefficients of the functionF(x) = det C;=rBI(~), 

where the BJx) are the variable matrices defined above. In fact, we have 

where the products are extended over all triples (i, j, k) for which pi;) = 1 

and the sum is extended over all partitions of all permutation matrices. 

The coefficients f n uij) of F(x) are appropriately called the partitioned 

generalized diagonal products of the matrices A,. In terms of this new 

notation, Theorem 2.1 takes the following form. 

Linear Algebra and Its Applications 2(1969), 105- 116 



110 G. L. BRADLEY 

THEOREM 3.1. IfG(A,, . . . , A,) is a regular class, there exists a unique 

permutation matrix P and a unique partition (PI, . . . , P,) of P such that 

(i) the partitioned generalized diagonal product associated with the 

partitiolz (PI, . . . , P,) strictly dominates all others ; 

(ii) any matrix C = (cij) whose elements satisfy the following conditions 

is nonsingular: 

if pij = 0. 

Since il $ Y(A) if and only if &‘(A, Jr) is regular, we shall be particularly 

interested in the special case where {A,, . . ., A,} is (A, 11}. In this case, 

Theorem 3.1 yields the following theorem. 

THEOREM 3.2. Let A, and 1, be the nonnegative boundary points of a 

‘gap in Y(A). If ;I . zs any number in the open interval (al, &.), there exists 

a unique partition (Q, R) of a unique permutation matrix P such that 

(3.1) 

where (S, T) is any other partition of a permutation matrix. 

(ii) The partition (Q, R) does not depend on the choice of I from the 

interval (A,, A,). 

(iii) The matrix C = (cij) is nonsingular if 

1Cjjj.l 2 llajjl - Jdij/, Pjj = 1, 

IC;jl < lajil + a6{j, p, = 0. 
(3.2) 

Proof. Since O(A, U) is regular, parts (i) and (iii) are immediate 

consequences of Theorem 3.1. Therefore, an inequality such as (3.1) 

must hold for each il in (I,, A,), and since the terms in (3.1) are continuous 

functions of 1, it follows that as )3 varies over the connected set (;Ir, A,), 

the dominant partitioned generalized diagonal product is always associated 

with the partition (Q, R). 

We shall refer to the matrix P and the partition (Q, R) which appear 

in Theorem 3.2 as the permutation matrix and the partition associated 

with the gap (A,, A,), respectively. Since there exist at most n + 1 gaps 
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in Y(A), it is clear that the set of all permutation matrices associated 

with gaps in Y(A) contains at most n + 1 members. Using inequality 

(3.1), we now prove that this set contains at most n different members, 

a result which establishes the conjecture of Varga and Levinger mentioned 

in the introduction. 

THEoREal 3.3. The set of all permdation matrices associated with 

gaps in 9’(A) contains at most n different members. 

Proof. Assume there are n + 1 gaps in Y(A), First of all, note that 

if a gap is associated with the partition (Q, R), then the dominant variable 

partitioned generalized diagonal product which appears on the left side 

of inequality (3.1) may be written in the form KR, where Y is the number 

of nonzero diagonal entries of R. Call this number the characteristic 

of the gap. 

If (T 3 0 and p > 0 are contained in gaps associated with different 

permutation matrices, it follows from inequality (3.1) that there exist 

constants K,, K,, rl, and y2 such that 

K1ayl > K2arz and K,p” > K,p”; 

and it is clear from these inequalities that ri f ~a. Therefore, two gaps 

which are associated with different permutation matrices cannot have 

the same characteristic, and it follows that at least two of the gaps in 

Y(A) must be associated with the same permutation matrix unless each 

of the integers 0, 1, . . . , n is the characteristic of exactly one gap in Y(A). 

However, since I is the only permutation matrix which can be associated 

with a gap whose characteristic is n - 1 or n, we conclude that in any case 

at least two of the gaps in 9’(A) must be associated with the same permuta- 

tion matrix, and this completes the proof of the theorem. 

The set of permutation matrices associated with gaps in Y(A) has 

several interesting properties in addition to the one described in Theorem 

3.3. First of all, the unbounded gap in Y(A) is always associated with 

the partition (0, I) of the identity matrix since for large 2, the variable 

partitioned generalized product 2” dominates allothers. Moreover, for essen- 

tially the same reason, every gap in Y(A) which is further from the origin 

than a gap associated with I must also be associated with I. While it 

is clearly possible for several gaps to be associated with the same permuta- 

tion matrix, it can be shown [l, pp. 47-711 that no two gaps can be asso- 
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ciated with the same partition, but the proof of this result is too long and 

complicated to be included in the present paper. 

4. BOUNDARY PROPERTIES OF Y(A) 

In this section, we generalize part of the Perron-Frobenius theorem 

by showing that each real boundary point of Y(A) is actually an eigenvalue 

of at least one real matrix in Q(A). It should not be too surprising that 

our approach is similar to that used in the study of M-matrices, for we 

have already shown that each gap is associated with a collection of regular 

classes, and it is clear that the concept of matrix regularity is closely 

related to the more familiar strong nonsingularity concepts of diagonal 

dominance and M-matrix. In fact, a byproduct of our results is a complete 

characterization of regular classes in terms of generalized M-matrices. 

We begin with the following useful definition. 

DEFINITION 4.1. A real matrix is said to be of type r if in each 

row it has at most one positive term. If A = (u,~) is of type 9, we denote 

by 9(A) the set of all complex matrices B = (bcj) for which 

lbijl 3 aij if aii > 0, 

Ibijj < - aU if aij < 0. 

Our first goal is to show that if A is of type 5, then every matrix in 

9(A) is nonsingular if and only if A-l exists and A-l 3 0. In particular, 

this criterion can be used to determine whether or not a matrix of type 

y is regular. The following lemma is the key to the proof of this result. 

LEMMA 4.1. If A is of type F, and if B EL@(A), then A/xl < jBxl 

for every x. 

Proof. For fixed i, denote by J the set {#qj > 0} and by J’ the 

complementary set. If x = (x1,. . ., x,), we have 

and since J has at most one term, 

Therefore, Alxl < IBxl, as desired. 
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THEOREM 4.1. If A is of ty;be T, then every member of 9(A) is non- 

singular if and only if A is nonsignular and A-l >, 0. 

Proof. Assume that A-l > 0, and let B be an arbitrary member of 

g(A). If By = 0, it follows from Lemma 4.1 that Alyj ,( 0. Let AJyl = z. 

Then ly1 = A-?z < 0 since A-’ > 0 and z < 0, and we conclude that 

y = 0. Therefore, B is nonsingular. 

Conversely, assume that every matrix in 9(A) is nonsingular, and let 

x be a column vector of A-l. Let y = 1x1 - X. Since Ax = IAXI 3 AIxI, 

we have Ay < 0, and it follows that By = 0, where B = (b,j) is that 

member of 9(A) whose elements satisfy the following conditions: 

I 0 if for m # j, a;, > 0 and ym = 0, 

a;j - yjj-’ 2 a;kyk if l&j > 0 and yj # 0, 
k 

l&i otherwise. 

Since we have assumed that every member of .9(A) is nonsingular, it 

follows that y = 0. Therefore, x = jx[ > 0, and A-1 > 0, as desired. 

Theorems 4.1 and 3.2 can now be combined to yield necessary and 

sufficient conditions for a number I to be in the complement of Y(A). 

THEOREM 4.2. For A 3 0 and il > 0, i 4 Y(A) if and only if there 

exists a permutation matrix P such that the folloz+g matrix B = (bij) is 

nonsingular and B-l >, 0: 

bij = 
{- 

ja;j - 16ij1 if p;j=1, 

C&j - ?dij if pij=O. 

Proof. If 14 Y(A), the existence of P and the fact that B-l > 0 

follow from part (iii) of Theorem 3.2 and from Theorem 4.1, respectively. 

Conversely, let il be a number for which there exist matrices P and 

B which satisfy the conditions of the theoretn, and let C be an arbitrary 

member of Q(A). Then, for all i, j we have 

(qj - 16tjl < lcjj - )36jjj < aij + ;id,, 

which implies that C - ;II E 9(B). By hypothesis, C - 21 is nonsingular, 
and it follows that 1$ Y(A). 
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In particular, G(A) is regular if and only if 0 $ Y(A), and the following 

characterization of regular classes is an immediate consequence of Theorem 

4.2. 

COROLLARY 4.1. A class Q(A) is regular if and only if it contains 

a generalized M-matrix. 

Using Theorem 4.2, we can now prove the main result of this section. 

THEOREM 4.3. Each real boundary point of Y(A) is an eigenvalue of 

at least one real matrix in Q(A). 

Proof. Assume A 3 0, and let Ai and a, be the nonnegative boundary 

points of a gap in Y(A) which is associated with the permutation matrix 

P. Let B, = (bJz)) be the following variable matrix: 

bag = ( _laiy 1 z8,1 if PG = lp 

a,, Z&J if p, = 0. 

We prove the theorem by showing that B,l is singular. The explicit 

form of a real matrix in Q(A) which has J.r as an eigenvalue will be given 

in Corollary 4.2. 

It follows from Theorem 4.2 that B,-l > 0 for all il in the open interval 

(jlr, a,), and since the entries of B,-l are continuous functions of L, we 

conclude that B,,-l > 0 if B,, is nonsingular. However, since il, E Y(A), 

it follows from Theorem 4.2 that B,,-l cannot be nonnegative if B,, is 

nonsingular, and we conclude that B,, is singular, as desired. 

COROLLARY 4.2. If il > 0 is a boundary point of a gap in Y(A) which 

is associated with the partition (Q, R) of the permutation matrix P, then 

;i is an eigelzvalzle of C = (cij) where 

( lakkl if $&=I, 

“’ = \- iakkl if pkk = 0, 

and for i # y’ 

J lad if ~5, = 1 or if 7,,=1, 

% = I- Ia,] if p, = 0 and 7,, = 0. 

COROLLARY 4.3 (Perron-Frobenius). If A > 0, the largest nonnegative 

boundary point of Y(A) is an eigemvalue of A. 
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Proof. Since the unbounded gap in Y(A) is associated with the 

partition (0, I) of I, the matrix C of Corollary 4.2 is nonnegative. 

Theorems 3.3, 4.2, and 4.3 give a fairly clear idea of the main features 

of Y(A). First of all, Y(A) consists of a set of r < n annular components 

separated by Y or Y + 1 gaps, depending on whether or not Q(A) is regular. 

Each of these gaps is significantly associated with a unique partition of 

a unique permutation matrix, and the set of all permutation matrices 

associated with gaps in Y(A) has at most n different members, at least 

one of which is the identity matrix. Finally, each real boundary point 

of 9’(A) is actually an eigenvalue of a real matrix in Q(A) which may be 

determined by the conditions given in Corollary 4.2 once the gap partitions 

have been found. 

In conclusion, the author would like to thank Professors John Todd 

and H. F. Bohnenblust of the California Institute of Technology for 

their many helpful suggestions during the preparation of this paper. 

Professor Bohnenblust has observed that Theorem 3.1 implies that the 

set of all regular matrix pairs, regarded as a set in complex E2”’ space, 

consists of 2”n! open connected components, each of which contains 

exactly one partition of a permutation matrix. He has also pointed out 

to the author- that the results of this paper can probably be fruitfully 

extended and generalized in several directions. In particular, it seems 

clear that Theorem 3.1 must play a key role in any study of the properties 

of regular equimodular classes. 
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