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FUNDAMENTA 
MATHEMATICAE 

L (l9Iil) 

On the structure of a class of archillledean 
lattice-ordered algehras· 

by 

M. Henriksen and D. G. Johnson (Lafayette) 

By a <P-algebm A, we mean an archimedef1n lf1t,tiee-ordered algebra 
over the real field R which ha,s f1n identity element 1 that is a weak order 
nnit. The <P-algebras eonstitute the class of the title. It is shown that 
eveTY <P -algebra is isomorphic to an algebra of continuous functions 
on a compact spa"e sr into the two-point compactification of the real 
line R, each of which i.s real-valued on an (open) everywhere dense subset 
of sr. Under more restrictive assumptions on A, ropresentations of this 
sort have long been known. Au (incomplete) history of them is given 
briefly in Section 2. 

The compact space in question is the space CJ71(A) of maximal 
I-ideals of .1 with the Stone (= hull-kernel) tOl)ology. The snbset A* 
of bounded elements of A is also a lP-a,]gebra, and 'iil(A *) is homeomorphic 
to C)1l(A), 

The class of <P-algebras includes, of couTse, all lattice-ordered algebras 
of real-valued functions that eontf1in the constant functions_ In addition, 
it "onta.ins t,he algebfll. \8. of BaITe functioru; modulo null functions, ailld 
the algel)ra J}, of Lebesgue measurable functions modulo null functions, 
On the real line R. It is well known that neither 0.1 these is isomorphic 
(even a,s a vector-laHice) to any algebra of real-valued functions. 

If M. CJ71("1), then A./.M is a totally ordered integral domain con
ta,ining R. If A;'ill R, tl,en JJf is called a real maximal ideal; otherwise 
it is called h.YP"'-l'oal. 'R(A.) denotes the space of real maximal I-ideals 
of A. If A is a,n algebra. of real-valued funotions, then C;t;'(A) is dense 
in 91[(A), but 'R(!8o), and. 'l2(J},,) are empty. If a. A, then '1~(a) denotes 
the set of maximal/-ideal, of A snch that}f(lai) ill not infinitely large. 
For eaeh IX. A, 'R(a) is dense in C)1l(A). 

'Ve have summa.rized the main results of Section 2. In Section 3, 
we investigate <P-algebras that are utb'ifonn/:!I c/os6il, i.e, every OaucllY 
sequence of elements of A converges in A, It is an easy consequence of 

* This research was supported (in part) by the U. S. Offiee of Naval Reseamh 
under contract no. Nonr~1100 (12). 
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the Stone-Weierstra,ss theorem that if A is uniformly closed, then A * 
and the algebra o (Cfll: (A») of all continuous real-valued functions on 
Cfll:(A) are isomorphic. Moreover, if A is uniformly closed, and a. A, 
then every bounded f € 0 ('X'(a») has a continuous extension over lill:(,A). 
Not every <P-algebra is a sub-<P-algebra of a uniformly closed <P-algebra 
with the same space of maximal I-ideals. 

]'01' any compact space 'X, let IJ('X) denote the set of all continuous 
functions int-o the two point compaetification of R each of which is real 
on a dense subspace. \'inile D('X) need not always form an algebra, we 
show that A = IJ(CI1L(Alj if and only if A is uniformly closed and every 
element of A is either a divisor of zero or has an in verse. 

Consider the <P-algebra .11 as a subset of IJ(0Jl(A»). If a "(0) C 
c}lI:(A)~'X'(b) for some b. A implie,s that a is contained in no proper 
1-ideal of A, then A is said to be olosed undtY I--inversion. A <P -algebra A of 
real-valued functions is said to be olo8ed .<niter ilwersi-on if evc,ryelement 
of A that is contained in no real maximal 1- ideal of A is contained in 
no proper /- ideal of A. The consequences of these postulates, and the 
relations between them arc investigated in Section 4. 

In Section 5, we obtain internal eharact.erizations of the algebra 
0(3)) for seveml classes of topological spaces. A necessary, but not 
sufficient condition that a <P-algebra A be isomorphic to some 0('11) 
is that A. be a uniformly closed algebra, of re,al-valued functions that 
is closed unde,r inversion. By adding to these conditions we obtain char
acterizations of 0 CJ/) in case ']/ is either LindilHif, locally compact and 
a-eompact, enremally disconnected, or discrete. 

Ij)-alg~bras are also f-rings in the sense of Birkhoff ami Pierce, and 
we rely on known results on thc structure of f -rings given by these authors 
in [4], and given by D. Johnson in [23). We also rely heavily Oil known 
theorems on the algebraic strl1cture of the ring' O(!.i). In Section 1, ,ve 
summarize enough necessary background material to keep this paper 

. reasonably self cOiltained. For more backgrouml on 0 ('J/), the reader 
is referred to [16]. 

We a.re indebted to C, GoHman for a 111llllber of suggestions and 
r".fereneos. \'i-e are especially indebted to :ilL Jeri3011 for many valuable 
converS3,tious eoncBJ'ning this paper WhjJ0 it was in progress. 

1. Definitions and preliminary remarks. By a lattice-orderod 
ring A. ( +, " V, A), we mean a lattice-ordered group that is a ring in 
which the product of positive elements is positive. If, in addition, A. is 
a (real) vector lattice, then A is called a l<ltiice-OJ'dll'l'od algel>ra. 

Birkhoff and Pieme have called a lattiee-ordered ring A a,n I-ring 
if, for a, Il, c •• 4., a A b = 0 and" 0 imply ao {\ b = oa; 1\ b = 0 [4)). 
If A is also a vector 1a,ttiee, then it is called an f- algeo'ra. A lattice-orde,red 
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ring .tt is called aroh4--medean. if, for each,. E A which is different .from 0', 
the set {na: n = ±1, ±2, ... } has no npper bound in A. Birkhoff and 
Pierce have shown that every archimedean I-ring is commutative. 
(Indeed, they have shown that assoeiativity is a consequf'nce of the 
remaining postulates for an archimedcan I-ring ([.4J, Theorem 13, if.).) 

1.1. Let A be a ring or real-valued functions on a set eI, under the 
usual pointwisc addition and mUltiplication. Suppose t,hat for every 
f, g E A the function fvg defined by (fvg)($) = f(w)vg(w) for all i1J. el, 
and the function fAg defined by (f,\g)(i1J) = f(w)AfJ(w) for all W€el, 
are in A. Then A is an archimedeall f-ring, In particular, the algebra 
Gr']}) of all continnous real-valued functions on a topological space ey, 
and the subalgebra G'(ey) of bounded elements of G(ey), are archimedean 
I-algebras with the same identity element (the constant function 1). 

1.2. Let ~ denote t,he set of all Baire functions on the real line R, 
and let £ denote the set of all measurable functions on R. Under the 
usual point,wise opeTILtions, these are archimedean f-algebras with identity. 
Let ?B. and Eo denote, respemively, the f-algebras obtained from ~, 
respectively £, by identifying functions that ooincide almost everywhere. 
]'hen ?Bo and E. are arehimodean j-algebras with identity, bnt neither 
is isomorphic (eyen a,s a vector lattice) to ?bn algebra of real-yalned 
fnnct.ions. (See [1'7], and [19].) , 

1.3. If A is a lattice-ol'dered ring, then, as usual, we let A + = {a. A: 
a;;;, O}. For a€A., let a+ = avO, a- = (~a)VO, and ial = ave-a). Then 
,,+11 a- = 0, and 

(il a = a+ - a", and 

(ii) lal = a+ +,.-. 
If, in addition, A is an j -ring, then 

(iii) a';;;' 0 for each a. A, and 

(iy) labl = 1"'110 for all 11, b € A. 
For proof, see [4]. [But, note that these authors define "'- = ~ (~a) VO.) 

1.4. Theke1'lld of a homomorphism of a lattice-ordered ring A into 
a lattice-ordered ring B is called an [-ideal. (We assume, of coun6, tliat 
both the "n,g and the lattice op&rat-ions are preserved by a iwrno-m&rpMsrn.) 

An [-ideal of A is a ring ideal I which satisfies: a EI, bEA, and Ib!';; 1"'1 
imply b € I. If A has an identity elemellt, then every proper I-ideal 
of A is eontained in a maximal I-ideal of A. 

If A is an t-ring, and M is a maximal {-ideal of A, then A/JJi is 
totally ordered. Indeed, A is an j -]"lng if and only if A is a su bdirect 
union of totany ordered rings ([4J, 1'. 56). 

Every maximal ideal, and every prime ideal of a 0 CY) is an [- ideal 
([16J, Chapter 5). 
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1.5. DEFINITION. A <fj. algebra is an arohim{Jaean. t . algebra with iilentity 
element 1. 

As remarked above, every <fj. algebra is commutative. 'rhe purpose 
of this paper is to describe the structure of <fj·algebTas. 

In [23J, D. Johnson gave a stmcture theory for ;. rings analogous 
to the .Jacobson theory for abstract, rings. \Ve now quote, in the special 
context of <fj.a!gebras, some of these results. 

An t·ring A is sa,id t,o be I·simple if A' * {OJ, and if it contains 
no non·zero proper I-ideals. (Note that every I-simple t·ring is totally 
ordered.) 

1.6. If A iR fl, <fj·algebra, then 

(i) the intersection of all m .. ximal I·ideals of A is {OJ, 

(ii) every maximal /. ideal M of L1 is a prime ideal; indeed, Aj.M 
is a (totally ordered) I·simple I-algebra without non-zero divisors of zero, 

(iii) every prime I·ideal of A is contained il1 a unique maximal 
/- ideal of A, and 

(iy) if I is an I-irleal of A disjoint from a multiplicative system T 
of A, theu I is cont,aine,d in ,. prime /. ideal of A disjoint from T. See [3], 
Oha.pter I and II. 

1.7. A maxima,l I-ideal of a <fj·algebm A need l10t be maximal as 
a ring ideal of "~. 

For, let R+ donot,e the spar" of nonnegative real numbers, and let A 
denote the <fj-aJgebra of all continuous functions on R+ that are eYen
tually polynomials. That tEA if and ouly if ! • CCR+), and there is 
a y • R+, and a polynomifll p s!leh that f(1lJ) = P (x) for all x :;;, y. It is 
easily verified that.M {f € A: f is e,Ycntnally O} is a maximal I·ideal 
of A. Olearly 111 is not a maximal ring ideal of A. 

1.8. A lattice·ordered algebra A is called oo'f/~plde (re,spectively, 
a-com.plete) if every (respectiyely, every countable) b01mdcd subset of A 
has a least upper bOlmd. Enn'y a· complete la,ttict'-ordered algebra with 
identity is ar(,himedea,n ([4], p. 65). 

1.9. \Ve now review some known fac1;s about the <fj-algebra CCY) 
of all eontinuons rmtl·yalued functions on a topological space y, 

(i) li;veq C(])) is isomorphic to C(]}') for 80nle completely regular 
(Hausdorff) space 'Y', so, in stndying the struc'ture of C( :i1), there is 
no loss of generali1;y in assuming that ,y is cmnpletely regular, 

A Sl1 bspace c5 of .. space y is said to be 0* -.;",wed,ied inY if every 
t. C*( 0) has an extension 1 € C*( Y). 

(ii) }Jyery eompletely regnl",r spaee Y is (homeomorphic to) a dense 
subspace of a compact (Hausdolff) space {JJj snch that .!J is C*· imbedded 
in {J'Y. If is a eompact spacE' containing Y as a dense Bubspac{l, and 
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':1] is a'-imbedded in :X, then there is a homeomorphism of fFY onto 
keeping (y elementwise fixed. fFY is called the Stone-Ceeh compacti!i
cation of cy. 

(iii) Let cy be a dense subspace of a cvmpact space SL Then, in 
vrder that there erist a homeomorphism of IfY onto :x keeping 'Y 
pointwise fixed, it is necessary and sufficient that whenever /" /2 • a'(ey) 
with 11'(0) n 1:;:'(0) ~ 0, then !1'(0) and 1.'(0) have disjoint cloBures 
in :X. 

(iv) If f is a continnons mappiug of a completely regular space 'y 
iuto a compact spaee :X, then them is a continuous extensiou 1 of f over 
fJey into :X. 

For proofs, See [16], Ohapter 6. 

1.10. If A is a <l>-algebra, then A' ~ {a. A: lal 
;.. R} is also a qJ-algebra. A* is called the subset 
ments of A. 

A·1 for 80me 
of bouni/.eiJ, ele-

1.11. In a vector-lattice A, an element a € A+ is called a <veal. ori/.l1f 
unit of A if b. A and a.'. b ~ 0 imply b 0, and it is called a st-rong 
order unit if b • A + implies b ~ na for some integer n. Clearly the identity 
element 1 of a <l>-algebra A is a weak order unit, and it is a strong order 
nnit if and only if A ~ A'. 

Indeed, an arehimedean lattice-ordered algebra A with identity 
element 1 is a <l>-algebra if and only if 1 is a weak order unit of A ([4], 
p. 61). 

1.12. A ring A is called reg·u.la1·, if for every a € A, there is an OJ • A 
such that axa. = a. It is easily seen that the examples lB, E, lBo, and .Il" 
of 1.2 are regular. 

2. The representation theorem. If is a compact space, 
let ])(X) denote the set of all eontirmoUl! mappings of X into the two
point compactification y R ~ R v { ± oo} of the reM field R that arc 
real-valued on an (open) everywhere dense set. ,The elements of ])(X) 
are called wtendei/. (real-valued) tunetion.~. 

For each t € D(X), let 'R(f) deno1:e the set of points at which I is 
real-valued, and let W(f) ~ :x ~'R(f). 

T"",t t,g.D(:X) and A.R. Then the functioJ1Jl AI, fvg, and f,\g 
defined in the usual manner (i.e., pointwise) am in D(:X). If there are 
func1;ions h, k. fleX) whieh satisfy 

hex) ~ f(x)+g(x) , "(x) I(x)· gem) 

for each m. 'R (/) "C)( (y), then h a,nd k are called the sum a,nd p-rolZulJI. 
of 1 and g, and are denoted /.+-g and f·g. Since c'R(f)n'C)(g) is dense 
in :X, these operations are uniquely defined. However, a,s the following 
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example shows, D(C;(J is not, in general, closed under addit,ion and 
multiplication. 

2.1. EXAMPLE. Let eX = :N v {w} denote the one point compacti
fication of the discrete space :N of positiTe intege.~s. JJ8t Mx) x T sin x, 
I,(ro) = (lim)smx, g(x)~-m jf mEN, and let 1,(0))=00, f,(w) 0, while 
y( co) = - 00. Then I" i" and 9 < D(:X), but neither f, + 9 nor I,y is defined. 

A subset A of D(CX) closed nnder all of these operations will be 
ca.lled a,n algebra of eaJtende(1 lunotions on CX. Note that any such A will 
be archimedean. 

2.2. PROPOSITION. D(CX) is 1M algebra of eaJtenrle(l funmions if and 
only if each open, e·verywhC're dense li'd·set in CX is C·-i'fl~I)eaaed in CX.' 

Proof. Suppose that each open, everywhere ,lense Fa-subset of CX 
is G'-imbedded. Then, for /, g. D(CX), "R.(f) r, 'X'(g) is C··imbedded 
in CX. So, by 1.9 (ii), CX = P ('R. (f) _" 'R(g)) , whenee by 1.9 (iv), I+-g and 
fg < D(CX). It follows that D(CX) is an algebm of extended functions. 

Oonve.rsely, suppose that c3 is an open, everywhere dense Fa·set 
in ex: on which is defined & bounded eontinuous real-Talued function I 
without a continuous extension ovor' ~X:. Now CX-'eel is a closed G,-set 
in the compact space CX, sO there is a 9 € C(X) such that y ~ 0 and 
g-l(O) CX~c5. Since g-I(O) is nowhcl'e den"e, 1/g € D(CX). The function h 
defined by 

7I(x) = I ::,~) + f(x) , 
ifx€c\, 

if rolf d 

1 
is in D(SY.). But h--l/g' D(CX), since h(m)-- = j(aJ) if x € eI. 

9 
The condition of 2.2 indicates two large classes of examples of 

compact spaces CX such that D(CX) is an algebra. ]'ir8t, if flTery closed 
G. in CX has a non-empty interior (e.g., if 'X is the one point compacti
fication of an uncountable discrete spa.ce), then D('X:) = C('X). 

A completely regular spacey is called an 11' - space if for eTery 
f. C(Y), there is g, k. C('Jj) such that 1 = kill. If is any locally c{lmpact, 
a· compact space, then (3'Y ~Y is an F -space, is an 11' -space if and 
ouly if ey-r'(O) .is C"-imbedded in 'Y for every I. CCYl. (Fol' proofs, 
see [14], Section 2, or [16), Ohapter 14.) Thus the compact F· spa.ces 
provide a second class of spaces for which the eondition of 2.2 holds. 

A completely Tegular spacBY is cailed extremally disconnected (re
spectively, ba8';oany disoIYrbnr;r;1ed) if the closure of eTery open set 
(respectiTely, ew;ry open set of the form li -r'(O) fOT some f. G(ey») 
is open. Every basically diseonnecwd space is an F-space. That II('X) 
is an algebra in case is basie&Uy disconnected has long been known 
(cf., e.g., [26]). If li is completely regular, then GCYl is a·complete 
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(respectively, complete) if and only if cy is basically (respectively, ex
tremally) disconnected. This statement remains trne if "or'Y)" is replaced 
by "V·(Ji)". It follows that Ji is basically or extremally disconnected 
if and only if fJ:Y is ([14], Section 8, [16], Chapter 6). 

Let A denote a <Xl·algebra, and let c)'ll(A) denote the Bet of maximal 
1- ideals of A. The Stone t{)po/{)gy on 'fll (A) is defined in the following 
way. For any d C 0llrA~), the kernel kid) of d is n P1: 11:[. d} (where 
it is nnderstood t.hat /c(O) = A). If I is an I-ideal of A, the hull /b(I) 

of I is PI" 91l(A): 1f1 J I}. A subset d of CfiL(A) is said to be c/osca if 
c5 = hiked»). 

It is readily verified that with this definition of closed set, 0ll(A) 
becomes a, P,-space such that every open covering has a finite 8ub
covering. These assertions can be verified by examining [22], [12], or 
the more abstract formulatiou given in [2]. Unless otherwise stated, 
'Ill (A) will deuot(, the topological space defined above. Note that the sots 

0ll(a) ~ {M E 0ll(A): a. J1} 

for a. A, form a base for the closed sets in 0ll (A). 
The main result of this .86tion is the following representation theorem. 

2.3. 'l'HEORE::Il. Eve'!'.'! r:[j-algebra A is isorn(}I'phio to an algebra A 
ot em/enaea tIme/ions on 'IIl(A~). M(}reov&r, 

(i) c):1L(A) ';S a tornpact space (in particular, lJ. is a Ha'1saorf! 81J1we), 
and 

(ii) 'it d , a1ul d, "te aisjoint el.osea subsets of '111'(A), then tlw,.e i8 an 
a <"4 8'1011 that a[d,] = 0, a[d.] = 1, and 0";; a 0( l. 

Proof. If a < A, and llI.crJlCA), let 111 (a) denote the image of a under 
the natmal isomorphism of A onto AI ;'If. With each a E A, we associate 
a function a on CfIL(A) into -;R as follows. If a < ~A +, let 

(where inf 0 is understood to be + =). If a • A is arbitrary, let 

Since a+t,a- = 0, either M(a+) = 0 or M(a-) 0, so a is well defined. 
Let.4: denote the eollectioll of all functions a, fo.r a • A. The noxt. 

two observations are easily verified. 
(1) If 1 denot.es the identity element of A, then 1 iB t,he constant 

function 1, and W = ;, for all.),. R, 
(2) For eMh a" A, a,nd A. R, (a -!:j) = a +" and Nt = ).0;. 

For eaeh a E A, the set (;'I'I.0ll(A): .'VI (a) > O} (;'If. '0ll(A): M (a+) > O} 
= {.11:[ E CJ1r(A): a+ ~ .tI} is a basic open set in 'II[(A) , We UBe this fact 
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to demonstrate continuity of it at each point, "lIo of 'l11:(A"). We may 
assume that a(1If,) ;;:, O. 

Suppose first that a (lIIo) + (Xl. Then, for ea{)h t. < H, the set 
{M <'!7f(A): arM) > t.} contains t,he open neighborhood 

{M .C)'7f(A): Jli(a) > A+l} = {M .'fIL(A): lI[(a-I.-l) > O} 

Df Mo. Hence a is continuou,. at Mo. 
If a( Mo) ). < R, then for each real e> 0, the set pvf € 'lIL(A): 

).-8 < a(l'1) < I. 8} cont,ains the open neighborhood 

PI{ € 'l}[(A): ).- 8/2 < Jli (a) < A + e!2} 

= pvl < c'iI1:(A): 1v1(1£- i. + £/2) > O} r> {M < CJ71(A): M (-1£+). + e/2) > OJ 

.of ;lio• Thus, we haye proved. 

(3) For each a. A, a is a continuous Im'pping of CJ7l(A") into yR. 

Now let "~f, and ;vl, be distinct maximal {-ideals of 11, and choose 
a positive element, a in M, but not in M,. Then, by 1.6 (ii), since AI"v1, 
is an I-simple j-algebra, there is a b £ A+ such that Jl[2(ab);;:, 1. Let 
{J = ab,\1. Then c(lI[l) 0, and c(JvI,) = 1. So, by (3), 

{ll[ < CflZ(A): c(lII) < H and {)}1 € CJ7l(A): o()}I) > D 
are disjoint open neighborhoods of 11[" respectiveJy M 2 • Henee CJ1[(A) 
is a HmL'5dorn ~pace. Indeed, as remarke(l above, CJ7l(A) is compact. 
'l'hus (1) has been established. 

Now (ii) holds when 0, and each consist of a single point. 
A standard compactness argument may be used to extend this first to 
the ease in which d, consists of a single point and is arbitrary, and 
then to the general case. 

For each a. A, let 'h'(it) = {M € l/}[(A): ilt(;l[), eft Go}. We will show 
that CR(a) is dense in "'ye(A). 1<'01', suppose that Ii € A+, and M(b) ~ 0 
for all M € c);'(a). Then, for' 'it = 1,2, ... , "'[(n(bAll) = 0 if J}[ c'h'(a), 

and M(n.(blll)) 0( J'[(ca') if 3[ e le(a), 80 n(bt"l) 0( lal. Thus, sine" A 
is archimedean, bAl = O. But, by 1.11, 1 is a weak order unit of A, 
80 b = O.Thus, each a € A is a continuom fUlletion on 'lIl(A) into yR 

- th8,t is real·valued on a dense subset. Hence 
(,1) A C D('lIt(A)). 

,Ye now define operations on it by inducing those of D(CfJ[(A)) on it, 
and proceed to show that the mapping a -+a is an isomorphism of A 
<mto A. 

Suppose that a, b € A, and let 1l[ € 'R(lt) " CR(Ii). It is easily verified 
that (a+b)("tl) = (a~b)(llI) and that ab(JW) ab(lli). Since a+b, and 
ab < A CD(91[(A)), It Ii and ab exist and aJ'e in A. 

If a. A is such that It = 0, th"n for each M < ')71(a),M(a) 0 or 
IM(a)1 is infinitely small. Hence 1I[(nJal) 0( 11[(1) for each positive integer 
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n, and for all M € 'lli:(A). Since A iR archimedean, lal = 0, whence a = O. 
Thus: 

(5) a; = 0 implies a = 0, 

The lattice opemtions indueed on A by D(C)1{(A)) yield the usual 
pointwise order on .1. Hence our proof of Theorom 2.3 will be completed 
as soon as we show that 

(6) a € A + if and only if a; € A+. 
If a; ~ 0, then a-PI) = 0 for each ME CfI[(A), so a- = 0 by (5). 

Conversely, if a ~ 0, then clearly a ~ o. 
This completes the proof of Theorem 2.3, 
There aTe a large number of representation theorems similar to 

Theorem 2.3. T-he earliest seems to be due to ~L H. Stone, and requires 
that A be (conditionally) a-complete as a lattice ([34], [35]). Similar 
theorems were obtained by Dieudonnc (['7], [8]), liakano ([31]) and 
Yosida ([37]). Representations of A as a vector lattice abound; Birkhoff's 
book [3J, Chapter 15, and the latter's paper with Pierce, [4}, contain 
several sueh referenoes. Particular Care has been given by Kadison ([24]), 
and Kakutani ([25]) in case A has a strong order unit. The work of Fell 
and Kelley ([10]), Kantoroviii, Pinsker, and Vulih ([26]), Shirota ([33]), 
and Vulih ([36]) also deserve mention. Representations of a different 
sort have been obt.ained by Goffman ([18]) and Ol.JnBtead ([32]). 

The theories closest to the present work seem to be those of DomI'a
ceva ([9]) and Za.wadowski ([37]). These authors do not rely on com
pleteness assumptions. On the other hand, they do not work with objects 
readily identified as <Ii-algebras, and it does not seem possible to apply 
their work direcUy to Theorem 2.3 or to the sequel. Henee a fresh ex
position see.ms in order . 

.FIen{]lfjo-rth, 'we will iikntiiY, whenever it -is cGnllenw'nt to do 80, the 
<l>-alge/wa A with the isomorphw algebra D(CfI[(A») at wtended tunations 
obtained from- ThefWem 2.3. 

Recall that A' denotes the set of bOlmded elements of A. An i-ideal 
I of A or A* is called fixed if there is an elf € C)1[(A) snch that a. I 
implies a (llf) = O. 

2.4. I.<J1l.!iIMA. If I i8 a proper I-ideal of A QI' A*, tlil7n I i8 fi:rAld. 

Proof. Sinee every propel' I-ideal of A is a subset of a maximal 
I-ideal of A, the lemma is immediate for A. 

If I is an i- ideal of A * that is not fixed, then for every M € erl[ (A), 
there is all alii' I such that aM("'l[) > O. Since C)J[(A) is compact, a finite 
nnmber of the open sets C'JLM = {llf' • CJ'tl(A): aM("'l[') > O} cover 97[(A), 
say cllM " ... ,C'JLM •• Then a = laM,[+ ... +iaM.I.I, and there is a real 
number l> 0 such that a;;',1.·1. Then l~(l/l)a.I, whence lis not proper. 
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Now suppose th<1t t,he <p-algebr<1 A is giveu to us explicitly as an 
algebra of extended functions on a compact space 'X such that 'X = CJ1l(A). 
The following ]lroposition descr1bes the JIlltximal 1- ideals of A in terms 
of this representation. It generalizes a result ohtained. by Gelfand and 
Kolmogoroff in case A = 0 (9) for some completely regnlar space 'Y. 

2.5. TRJ]'.oREM. A s?bset 1'/;[ of A i8 amMl'imal I-iaeal at Ait and 
on/yi! there is a 11l,cique X < CfIL (A) 81JAJh that 

Jf=j'[.,={a.A: (ab)(x) =0 to," all b<A}. 

Proof. Clearly M., thUil defined, is anI-ideal of A. If Of J1" then 
there is a il < A such that iC(J' (x) ;;a, 1. Let '11 denote a closed neighborhood 
of x disjoint. from (Ca)-I(O). By Theorem 2.3 (ii), there is an a < A+ such 
that a['l(f = 0, and a[(Gil)-I(O)] = 1. Since 12(b) is dense in ''iJ1:(A) for 
every b < A, we L"loW that a < M... But there is a A € R such that 
A(a+lcdi);;a, 1. Hence ]1-1x and c together generate A. Thus, "W. is 
a maximal 1- ideal. 

That every maximal 1-ideal of A takes this form follows from 
Lemma 2.4. The uniqueness of x is an immediate consequence of 'Theo
rem 2.3 (iil. 

If x < CJ71(A) and a(x) = 0, then (abl(x) = 0 for all b < A*. Thus, 
we have 

2.6. COROLLARY. A sub8et 111* at A* is a ')naxi-mal i-i(],eal, of A* it 
and only it there is a unique x < CJJ1:(A) such that 

.M' = JlI.~ = {a < A *: a(x) = O} . 

If lW is a JIlltximal I-ideal of A, then the totally ordered algebra 
Ai JlI cnntains R as a subfield. JlI is called "eal or hyper-'real according 
as Aj1i'I = R 01' A/Jll contains R ]lroperly. 

If x € 0'1[(A), then the mapping a-+a(x) is clearly a, homomorphism 
of A * onto R. Rence, we have 

2.7. CORm~L\RY. Every maximal I-ideal ot A* i., ,,·cal. 

The weak topology for c[ll(A) induced by the elements of A' is the 
smallest topology for Cfll(A) in which all of the functions i.u .4* are con
tinuous. An immediate oonsequence of part (ii) of Theorem 2.3 is that 
the Stone topology for CfIl(A) coincides with the wCll,k topology induced 
by the bounded elements of A. Sirrrilarly, the Stone topology for Cfll(A*) 
is the weak topology indueed by all of the elements of A'. 

By 2.5 and 2.6, there is a one-to-one cOlTespondence M <-+JlI* between 
CJ1[(A) and CJ1l(A *). We show that this is a· homeomorphism by showing 
that, for a € A', the value of t,he function a < D(0:11(A») atJi is the sa.me 
as the value of the function a at 11-1*, where a-+a denotes the representa
tion of A* as an algebra of extended funetions on CJ1l(A*). Nnw, by 2.7, 
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M* is a real maximal I-ideal of A*, so aOlf*) )If*(a) = r € B. Thus, 
a-r < )1:[*. Since M* is the unique maximal l-ideal of A.* containing 
the prime I-ideal M n A* (see 1.6 (iii», ar < M* if and only if a-r 
is infinitely small modulo 11[ n L1', hence if and only if a ~ r is infinitely 
small modulo M (in A). Thus, a(il[*) = r if a.nd only if arM) = r. Hence, 
we have established. 

2.8. COROLLARY. C)'!(A) and Cfll(A *) are homeomorphic. 
That c!IL(A) and CJ7l(A *) am homeomorphic in cailC rl is the ring 

of all continuous functions on a completely regular space y was shown 
by Gelfand and Kolmogoroff in [11]. (See also [Ii'i].) Indeed, in this case 
they are homeomorphic to {J!J. In case A is <r-complete a.nd regular, 
Oorollary 2.8 was obtained by Brainerd ill 

If x<Cf!l(A), let. 

N x = {a< A: a vanishes on a neighborhood of xl. 

If a, b € N x , then it is clear that (~- b < N x , and if c ul, and 1"1 ~ lal, 
then c € N x • Thus, to show that .N x is an I-ideal of A, we must show that 
ad € N" for all d < A. There is an open neighborhood elf of X on which (~ 

vanishes. Olearly (ad)(y) = 0 for ~"n 11. '12 (d) r. '/[. But C'f2(d) is dense 
in "(!l(A), so (ad)(z) = 0 for fll,d. z < clf. Hence, ad. N x • Thus, we have 

2.9. It A is a rp-alget".a, then for each Ie < cYIl(A), Hx is an l-i'/PAI, 
and ev&ry l-iaAJal 01 A oontaining N x i8 in the unique 'in4xim·all-ideal Mx. 

We coneiude this section with a theorcITl eoneerning prime I-ideals. 

2.10. THEOJl.EM. Let A be a <1>-algebra 4nd let P be a pr·i-me l-i(/eal 
of A. T1"3'n there i8 a Il.~iq1W IV € Cf11:(A) suoh t],at NxCPC Mx. Jvloreo·ver, 
N {J1 u; the inte.·section of all the p1"i-me 1- ideals oontwining it. 

Proof. By 1.6 (iii), P is contained in a unique maximal I-ideal 
Mx of A. If a € H., then ther" is an open neighborhood "11 of x on which 
it vanishes. By Theorem 2.3 (ii), t,here is a b < A such that hex) = 1 
and b[(7f[(A)~'-1l] = o. Then ab 0 € P. Sinee b ¢ JJ1., b if P. So, since P 
is prime, a < P. Hence Hx C P. 

To prove the last ilt,atement, suppoile a E lUx, and a f N •. Then no 
power of a is in N x • Hence {a, a.z, ... ~ an, ... } is a nlillt,iplica,tive system 
disjoint froITl N~. By 1.6 (iv), there is a prime I-ideal P of A containing 
N:t and not eontaining a. 

We remark, finally, tha.t the fh'st part of Theorem 2.10 (lan be 
inferred from results d Gillman given in [12]. 

3. Uniformly closed ,z;-algebras. A sequence {an: n = 1, 2, ... } 
of elements of a <1> -algebra A is a Cauchy sequenoe if for each real 8 > 0, 
there is a positivB integer nl) :m(!.}l that ~an~ a,.n~ < B w'henever 12, 'rt/. ~ 'no. 
Taking 8 = 1, we obtain 
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3.1. If {an: n ~ 1, 2, ... } is a Oauchy sequence in a <P-algebra A then 
there is a positive integer no such that 'R(an) ~ 'R(an,) fo'r n ~ no. 

A sequence {an: n ~ 1, 2, ... } of elements of A is said to converge 
to a. A if for each real s > 0, there is a positive integer no such that 
[an-a[ < s for n ~ no' If {an: n ~ 1, 2, ... } converges to both a and b 
in A, then a ~ b. For, given any real s > 0, there is an integer no such 
that [an-a[<sI2 and [an-b[<sI2 for n~n", so [a-b[,,;;[a-an[+ 
+[an-b[ < s. Hence, since A is archimedean, a ~ b. 

A <P-algebra A is said to be uniformly closed if every Cauchy sequence 
in A converges in A. If A is an algebra of real-valued functions, then 
this notion coincides with the usual notion of being closed under uniform 
convergence. 

If A is a uniformly closed <P-algebra, then A *, considered as a subset 
of D (CJ7[(A»), is by Theorem 2.3, a uniformly closed algebra of continuous 
real-valued functions on a compact space. Moreover, it contains the 
constant functions and separates points. Hence, by the Stone-Weierstrass 
theorem, we have: 

3,2. If A is a uniformly closed <P-algeb'ra, then A* and o (C)J[(A») 
(JJre isomorphic. 

A <P-algebra A is said to be closed uncle?' bounded inversion if, for 
a € A, a ~ 1 implies 1/a. A. Thus, by 3.2, we have: 

3.3. Every uniformly closed <P-algeb'ra is closed unde?' bounded inve'rsion. 

For any a. A, we denotc the smallest I-ideal containing a by (a>. 
Suppose that A is closed under bounded inversion, and a € A is such 

that (a> ~ A. Then there is a b. A such that [ab[ ~ 1. Thus, 1/[ab[ € A, 
so 1/[a[ € A. Thus 1I1a[' ~ 1/a' € A, whencc 1/a. A. So we have proved 

3.4. If A is a <P-algebra closcd ,under b01!nded invers,;on, then for 
a € A, (a> ~ A if and only if 1/a € A. 

3.5. LEMMA. If A is a <P-algebra such that A' is uniformly closed, 
then CR(a) is O*-imbedderl in CJ7l(A) for each a € A. Thus C)J[(A) ~ fJ'R(a). 

Proof. By 3.2, we may identify A* with o (CJ7[(A») , Let a € A, Since 

'R(a) ~ 'R(a'v1), we may assume that a ~ 1. Let g € O*('R(a»). Let 
I(x) ~ g (x)la (x) if x € 'R(a), and f(x) ~ 0 if x € CJl(a). Then, since g is 
bounded, f € O(C)J[(A») ~ A*. Thus fa is the desired continuous extension 
of g over CJ7[(A). 

With the aid of Lemma 3.5, we are now able to produce an example 
of a <P-algebra that cannot be imbedded in a uniformly closed <P-algebra 
with the same space of maximal 1-ideals. 

3.6. EXAMPLE. Let R+ denote the space of non-negative real numbers 
with its usual topology, and, as in 1.7, let A denote the <P-algebra of 
all continuous real-valued functions on R+ that are eventually polynomials, 
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i.e. if j • A, then j e G(B+), and then: is an $. B+ and a polynomial p 
such that j(y) = P (1/) for all y ~ $. It is easily verified that every maximal 
I-ideal of A either takes the form Mx = {f. A: I(a,) = OJ, for $ E ET, 
or the form "'Ifill = {f e A: there is an a) e B+ such that 11 ~ $ implies 
/(y) = 0). Thus CJ'11(A) is homeomorphic with the one-point compacti
fication aR+ = R+ v {w} of BT. 

If it were possible to imbed A as a subalgebra. of a uniformly closed 
<1)-algebra B such that CJ'l[(B) C)J[(A), then, by Lemma 3.5, for eaeh 
a E A, 9?(a) would be G*-imbedded in <[J1:(A). Bnt this is not the case 
if a is a non-constant polyno):nial in A. 

A subset S of 11 partial1y ordered set T is c&iled order-conuaJ if 
a, bE 13, and x E T with a,s;; $ ,s;; b, imply $ E S. 

3.7. LBMMA. ]/01' a <1)-algebm A, tI,e following ate eq'lfiva!ent. 
(i) A is""ilorrnl!f closed. 

(ii) A' iii unij01,tn1!f closed. 
(iii) jt i8 (i1Jo)c.orphie with) 11fr! order-cOIwex g,,,bset 01 D(CJ'l[(A»). 

(iv) A* is (iso'morpMc with) an onleT-convex s"bset of D(CJ'ii(Al). 
Proof, It is obvious tha;t (i) implies (ii) and (iii) implies (iv). By 3.2, 

it is clear that (ii) ana (iv) are equivalent. Next, we show that (il) 
implies (iii). 

First consider a E Lt, and g E DICJl1(A)) such that 1 ~ g ,s;; a. On 
')2 (a), gia is a, bounded continuous function. By Lemma 3.5, it has a eon
tinuous extension t. G(Cfll(A)) = A'. Sinc0 g(x) = j(x)a(xl for iJJ in the 
dense subset '/2(a) of A, g = fa. A. 

Now suppose that a, b. A, g. n(CJrl(A)), and a,s;; g,s;; b, Then 
g+ ~ 191,s;; 'a!+lbl, so 1,s;; g++l ~ :al+lb~l .A. Thus, the a;rgument 
"bove shows that g++1 EA. Hence, g+ E A, and simimrly g~ E A. Hence 
9 ~ gT-g~<A. 

Finally, we show that (ii) implies (i). If {an: 1L = 1, 2, ... J is a Oauchy 
sequence in A, then there is a positive integer no such that I a". -.- a".,j 
< 1 if n~no. Then, the seqllenee {a"Tk-an,: k 1,2, ... } is a Oauchy 
sequence in A *, which eonveI'ges, by hypothesis, to some b < A *. Thus, 
{a".: n =1, 2, ... } converge,s to b+a".,.A, 

The next rosult of t,his section shows that the lattice structure of 
a uniformly closed <1)- a,lgebm iR uniquely determined by. its algebraic 
structnre. That, is, all of the axioms fol' uniformly elosed <1)-algebras 
could be rephrased in terms of the a,lgebraie operations &ione. 

3.S. TH:EOREM. It A. i.s au,nilonnly closed <1l-algebra, then a E A+ 
il and only if a ~ b' 101' sorne b. A. 

Proof. Let a • .'1+. 'fhen a is a non-negative extended ,function 
on 1ii(A), HO a1!2ED(Cfl1(AJ}. Now 0 ";;'alI2~(a+l)''''';;'a+1 EA. ThUS, 
by Lemma 3.7, a1/zE A. 
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For the converse, recall that squares are posit,ive in any <i)-algebra 
(1.3 (i). 

We close this section with the following eharacterizat;ion theorem. 
bote fn-st that an element a of a (P-algelFra A of extenaea functions is 
a itivisor of zero if ana only if a-'eO) has a non-em,pty interior. For, if the 
latter holds there ill an {j) < a-'tO), and an open neighborhood "If. of {j) on 
whleh a vanishes. By Theorem 2.3, there is a h < A such that h(m) = 1, 
and b [X-'ll] = O. Clearly ah = O. The converse is obvious. 

3.9. TREOll.EM. A <1>-algebra A i8 isom,ql'phio to D(ex) for Some compact 
spaee ex if and onl1! if 

(i) A is uniformly closed, atuJ. 
(ti) if a < A, then either a is a divisor of zero ()j' (a) = A. 
Proof. Suppose first that (i) and (ii) hold. If f E D(cm(A»), aud 

f ;;, 1, then by 3.2, g l/f € A*. Now, Ir'(O) 9[(f) is nowhere dense, 
so by (ti), (11) = A. Then, by 3.4, 1/g = f € A. 

If h is any element of D(cm(A)), the above shows that h+ +1 and 
h- +1 are in A. Hence h = (h+ +1)- (h- +1) € A. Thus A = D(C)T[(A»). 

Conversely, if A = D('X.) for some compact space 'X, then clearly 
st = cm(A), and A is uniformly closed. If a < A" and ab = 0 i):nplies 
b = 0, then a-leO) is nowhere dense, so 1!a € D('711(A)j = A. Thus (ti) holds. 

If A is a regular ring (1.12), theu for every a • A, there is ac € A 
such that a(ac-1L= O. Thus (ii) holds. Rence we have: 

3.10. CORQLI,ARY. If A is a 'uniformly closed, rerwlar <i)ea1gebl"G, then 
A = D(Cm(A)). 

Corollary 3.10 shows that if A is the ring £ of Lebesgue measurable 
flmctioDS on R, the ring' '8 of Baire f.mctions on R, or the rings £, 01' 

'80 obtained by reducing these rings modulo t,lle ideal of null functions 
(see 1.2), then ,A = D('771(A)). • 

4. Algebras of real-valued functions. If a is an clement of 
3, <i)-algebra A, let 

,2'(a) = {M € 91Z(A): a(_7j<[) =, OJ. 

Thus M € ,2'(a) if and only if M(iaj) is infinitely small or zero. Hence, 
if M is real, a("'1) = 0 implies a € 11[. 

Let C)2(A) denot{) the subspace of real maximal ideals of A. That is, 

C)2(A) = n{C)2(a): a€A}. 

In this section, we will consider <i)-algebras A whl()h satisfy one or 
more of the following restrictions. 

4,1, A <i)ealgebra A 'i8 said to be closed 'UnfUr [-inversion if, for 
a, b. A, ,2'(a) CCft.(b) implies (a) = A. 
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4.2. A <1>-algebra A is called an algellm oj "ea!-val',wd JUMtions it 
n {M: M € 'RCA)} = {O}. 

4.3. A <1>-a!gell'l'a A of real-valued f-unctions is said to be closed '''nder 
inveI'sion it, for a € A, ,'Z(a) n ')2 (A) = 0 implies (a) = A, 

Condition 4.1 makes sense, of course, even if A is not an algebra 
of l'eal-valued functions. It holds, in particular, if D(cm:(A») is an algebra 
and A = D(9ll(A»), and hence it holds in the <1>-algebras £. and ))3. of 
1.2 by Corollary 3.10. 

Note that the c.ondition of ,1.2 states that '/l(A) is dense in Cfll(A), 
80 that A, is, in fact, an algebra of (continuous) real-valued fuuctious 
Oll 'telA). As mentioned earlier, not every <1>-aJgebra is an algebra of 
real-valued functions; it may be that 'R(A) = 0. 'l'his is, indeed, the 
case if A = £. 01' A = ))30' 

By 3.3 and 3,4, in a uniformly closed <,!I-algebra A, (a> A if and 
only if l/a < A. 

4.4. A 'wrvitorllbly closed <,!I-algebra A is closed 'undo'r inversion (re-
spectively, /-,/:nvo'l'sion) it and only it, for a<A, (a)(~')2(A) 0 
("espectively, S~:(a) C Cfl(II) tor some II < A) implies Ija < A. 

It is clear that evelY <,!I-a.lgebra of real-valued functions closed under 
inversion is closed under I-inversion. That the converse is not true will 
be sho"l'm by an example at the end of this seetion. Next, we give an 
example of a uniformly closed <1>-algebra of real-valued functions that 
is not closed under either type of inversion. 

4.5. EXA3U'LE. Let A = U € O(R'): limf(x)e~'" 0 for all real a> o}. 

It is ea,sily verified that A is a uniformly closed <1> -algebra.. Since A' 
and O'(R~) aTe isomorphie, CJ/lUl) = ,BR+. The function g such that 
gem) ~ e~· for all m < R+ is in A. s10reover (g) CJl(f) .8R+~R+, 

where f(m) ~ x for all m € R+. IIowever Ijg EA. 
In case A = DC]}) for some completely regular space '}j, the follOwing 

result is due to Gelfand and Kohnogoroff (lU]). (See, also [15].) For 
this special case, it is equivalent to Theorem 2.5. 

4.6. TJillOREM. If A is a <,!I-algehra of re{},l-·val-ued function" which 
is closed undflr invflrsion, then for each x € em (A), 

Proo f. For a G A +, let ,'Z = .9' (a) " 92 (A), aud suppose that x If 90. 
Then we may choose a closed neighborhood 01 of a; disjoint from ;Z-. 
By Theorem 2.3, there is a b € A + such that b[01] = 0, and b[9O] = 1. 
Xow, since ,'Z(a+b) "CR(A) =0 and A is closed unlier inversion, there 
is aCE A such that (alb)c ~ I. Since b[01] = 0, (ac)(y) ~ 1 for all 
y € "if" 'R(A). Sine" c}z(A) is dense in 9!t(A), this means that (acHm) ~ 1. 
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Thus, by Theorem 2.5, a ¢ Mx. Since a is in a I-ideal of A if and only 
if ;a: is, we have shown that 2IixC{a.A: x€(2:(a),-,c)2{A)q. 

Conversely, if x € (2:{a) r. C)2{A)t, then every neighborhood of IX 

contains points of '!t{A) at which a vanishes. Thus, in every neighborhood 
of x, there are point.s at which ab vanishes for any b € A. Hence, by 
Theorem 2.5, a € Mx. This completes the proof of the Theorem 4.6. 

It is easily seen that closure under inversion is aJso necessary for 
this description of the, maximaJ /- ideals of A. For, if a € A is such that 
2:(a) r. CR{A) = 0, and (a> oF A, then a is eontalned in some marimaJ 
I-idea.! 21iz of A, and no such descript,ion of 2!fz is available. 

,Ye close this section with an example of a lmiformly closed iP-algebra 
of real-valued functions that is closed under I-inversion, but is not closed 
under inversion, 

4.7. EXAI.!PLE. I,et N denote the discrete space of positive integers, 
and let 'Ij denote any locally eompact, a-compact space that is not 
compact. Let 'L = N x:Y, and, fOT each n € N, let = {n} X ~~!/. Let 
A = {t • D(P1:): fiT is real-vaJued, and there is an nf € N snch that 
m ~ nl implies hE .. is boumied}. 

Cl'hus, if t. A, then f is real-valued on all but finitely many of the 
spaces ,E;;'. It is easily seen that A is a <P -aigebra such that A' and 0*( r:) 
are isomorphic, so 97[{A) = P1:. Thus, by Lemma 3.7, 

(1) A is a uniformly closed <P-algebra with 91l{A) = pr:o 
Since :y is locally compact and (J'- compact, there is an II € 0 (ff.!J) 

that never vanishes on such th'1t 10 [pey - 'y] = O. Observe, also, that 
for ea.ch n • N, E;; and /fJ/ are homeomorphic, 

We wish to show that ij p.p'r:--.JC, then Mv¢':)({A). Suppose first 
that there is an m € N such t,hat p E • Define the function f on 'r: by 
letting fin, y) = ljk(y) if n = m, fin, 1{) = 0 if n * In, for all y €:y. 
By 1.9 (lv), t has a continnons ext<?nsion f over PT. into yR. Clearly .f. A, 
and f{p) = 00. 

If, for every n € N, I) 1 E;;, t.hen every neighborhood of p meets 
infinitely many of the spaces En. Thus, if g(", y) = n for aU ,,~N, 
Y € :y, then the continuous eJ<i;emion {j of g over P(C into yR is sueh that 
yep) = ce. Sinee fj EA, we have: 

(2) 91' (A) = 

As observed above, we also have: 
(3) If a.A, then {nEN: 91:{a) r. * 0} is finite. 
Now, if a, b € A are such that 2:(a) C c)f.(b), then there is an na € N 

such that m ~ na implies .'il(ih) r. E;;; = 0. Hence 1n ~ na implies that 
aiE., is bounded away from 0, so ljlt € A. ThUll, 

(4) A is dosed under I-inversion. 
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l!':inally, we observe that .A is not closed under inversion. The function 
k defined by letting k(n, 1/) = h(yj for all n. H, y .y has a continuous 
extension k over (J'l:. Clearly k E A'*. Now, 9:{k) n 0\'(A) = 0, bnt 11k f A. 

5. Some internal characterizations of Or]}). In this section, 
the algebra O('Yl is cha.racterized among the class of 4l-algebras for 
several classes of topological spaces 'Y by means of fnternal properties 
of 4l- algebras. In each case, one of the requirement.s is UmfOl'l11 olosul'e, 
80, in view of Theorem 3.8, the characterizations are, in reality, purely 
algebraic. 

In ce.se Y is compact, the celebrated Stone-Weierstrass theorem 
provides an interna.l characterization of Cr]j). In t,his case, a cha:rac
terization of O(·y) as a ring was provided by McKnight in 1953 ([30]), 
and it was improved by Kohls in 1957 ([28]). Characterizations of 0 (cy) 
in the general (completely regula.r) ea·se were provided by Anderson 
and Blair in 1959 ([1]), both as a ring, and as a lett,iee-ordered ring. 
TlJese characterizations, however, are eaJteTnal in nature. In ea.eb case, 
one milllt examine a larg .. elass of extensions of t,be algebra in question 
in order to det,el'mine if tbis is a C Cy). The demand that the eharac
teriza,tion be int,emal seems to make the problem more difficult. 

The assumpt,ions that are common to most of our results are that, 
the <1>-algebra A he a uniformly dosed algebra of reaJ-valued funetjons 
that is closed under inversion. Obviously, each of these eonditions is 
necessary. Isbell has supplied an example of a 4l-algebra A sa,tisfying 
all of these conditions the,t is not isomorphic to 0CYl for any eompletely 
regular 'Jj ([21J, p. 108). Below, we give a few other such examples, whieh, 
we believe are simpler in chamcter. Note that if a 4l- algebra A. is iso
morphic to some CCY), then it is isomorphic. to C (0\' (A)). 

0.1. EXA]\iPLE. Oonsider the q, -algebra )8 of Baire functions on the 
real line. (Sec 1.2.) It is an algebra of rcal-valucd functions and, since 
)8 is closed under point-wise convergence, it is umformly closed. Let M 
be a real maxima.l I-ideaJ of )8. Now, C(R) is a subalgebra of )8, so 

C(E) O(E);JIf, '8 
jlf n (] (E) ~ --Jjci'- C ::::: E . 

Since the left-hand member contains R, we must have M n O(E) a r(''at 
maximal ideal of O(R). Hence ([16], Ohapter 5) there is an x< R such 
t,hat M n C(R) = It. O(Jl): t(m) = O}. There is a k. O(E) such that 
k-1 (O) = {m). Thus, if g.)8, and gem) * 0, then Ikl Igl is a positive 
element, of '8 tbat vanishes nowhere, and hence has an inverse. So, 
.M = 1'1f~ = {t.)8: I(x) = 0). 

We bave shown that 0\'()8) consists precisely of the I-ideals "WZ) 

tV • E. Since )8 contains aJl charaet.eristic fnnct.ions of one-point subsets 
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of R, the Stone topology on 'ii?(lB) is discrete. Hence CR(lB) ill homeo
morphic to the space of real numbers with the discrete topology. It is 
now clear that lB is closed under inversion. 

Not only is lB not isomorphic to O('R(lB»), but card O('R(lB») = 2<, 
while eaTd lB = c ([19J). 

The aI'gument just given applies verbatim to the <1l-aIgebra of all 
function" in any Baire class, except that the latter need not be closed 
under point-wise convergence. lB, however, has the advantage that is 
both a-complete and regnlar (1.12). 

A Similar argument shows t,hat the <1l-algebra lJ of all measurable 
functions on R is not isomorphic to a full algebra of continuous functions. 
In this case, however .2 and O(CR(lJ») have the same cardinal number. 
Note that E is alilo regular and a-complete (l.12). 

For a <1l-algebra A of real-valued functions that is closed under 
inversion, a necessary and sufficient condit,ion t.hat A be isomorphic 
to a (c);'.(A)) is that c'fI[(A) = P(rR(A)j. In fact, we may weaken this 
condition slightly. 

5.2, LE:MMA, A <1l- algebra A is isomorphic to C ('Y) tor same (Jomplmely 
reg,;.lar .• paoe lJ il and onlll it 

(i) A is an algebra of real-·,'aZ"ed !'AT/dians, 
(ii) A i.911.niformly closed, 

(iii) A is alosed ,mdlYf inv&rsion, and 
(iv) it f < O(R[A)j, then there is an a<A 8u£h that r'(O) 9': (a) " 

.. 'R(A). 

Proof. 'I'hese conditions are obvioasly neoossary. To prove sufficiency 
we show first that C)'JL(A) = P'R(A). Now, by 1.9 (iii), this is true if and 
only if whenever III f2 E a (CR(AJ), and /;-'(0) and 12'(0) are disjoint, then 
1-;'(0) and 12'(0) have disjoint closures in c7IL(A), By (iv), there are. elements 
o,j < A snch that f;-'(O) = 9': (aj) " 'R(A), for ,I 1,2. 50w 2'(a;+a;) " 
,,'n(Al = 0, so by (iii), there is a b € A,. such that b(ai-'-a;) = 1. Now 
aib[/-;'(O)] = 0, and a';b[f;"(O)] 1. Hence, since ,iib is continuous on 
CfrC(A), 1-;'(0) and /2'(0) have disjoint closure,; in cm(A). 

By 3.2, to show that A is isomorphic to a ('I? (AJ), it suffices to show 

that if 1 9 < O('R(A)), then there is an a E A such that 0 al'X'(A). 

50'11' I/O € C*(92(A»), so, by the above, it has ,m extension b € A *. But 
<'Z(b) r. 'R(A) = 0, so by (iii),'o, = lib EA. Olearly a!7l(A) O. 

The authors are indebted M M. Jerison for the following lemma. 
Recall that a Ha usdorlf space lJ is called a Linde/of space if every open 
COver of 'Y has a eounta,ble "ubeover, 

5.3. LEmIA. It lJ ,is a Lindeliif spaee contdi'flOlZ ,in a (cornpaat) 
spaC<l :X, then, for every t € O(Yl, the'!"c is an a € O(:X) 8u<Jh that 
r'(O) a-,(O)." 'Ji. 
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Proof. For each y €JJ~rl(O), there is an ay • O(X) such that 
ay(y) = 1, layl ,,::; I, and a.[r'(O)] = O. Lf't c)L. = {;y' € cy: ay(y') > t}. Then 
{C)L.: Y' cy~rl(O)} is an open eov(,ling of cy~rl(O). 

Now cy~rl(O) is an F.-subset of the LindelOf spat'e cy, and henco 
is a LindelOf space. 80, there exist countably many elements y" y" ... , Yn, ... 

of cy such that ~r'(O) (0 {'Ifyn : n=I,2, ... }. Thus, if a= J; ;nlay.l, 
n=l "'" 

then rl(O) a-1(0) r; 

The hypothesis that (lj be a LindelOf space in I,emma 5.3 cannot 
be deleted. In particular, if '}; is an unc01mtabJe discrete space, and 
X is its one-point compactification, then the conclusion of JJemma 5.3 
need not hold. 

We are now ready to give OUT first chamcterizat.ion. 

5.4. THEOREM. A <P-algebra A is isomorphie to C(']j) for some Unil,eWf 
"-paee (]I if and onl;q if 

(i) A is an aJgebra ot real-valued t·uneti01~~, 

(ii) A is ,,,,iformly elosed, 
(ifi) A is closed ·under in'Version, and 
(iv) it {an: a < r} is a eoUamio'/! of elements of A ",wh that for each 

M € 'N(A), there is an a. r with an ¢ M, thcn there i8 a co'untab!e sub.~et 
~,a" ... , an, ... of r such that (a",: i = 1, 2, ... J has this property. 

Proof. Condition (iv) state.'! that every open cover of 'N(A) by 
basic open sets of the form (Cfll'(A)~.;e(a») r; 'N(A), a € A, has a countable 
subeover. Thus, (iv) is equivalent to the stat.ement t,hat eJil (A) is a, Linde-
1M space. Hence the theorem follows from l,emmas 5,3 and 5.2. 

In case (]I iR locally compact and cr- compact, we have a somewhat 
simpler characterization of 0 (Jj), but we cannot claim that it is original. 
It differs only superficially from a result of Isbell, [21], Lemma 1.18. 
\Yhile we could prove OUT theorem by reducing it to his, it seems easier 
to give a direct proof. 

5.5, THEOnml:. A <P - alge/>ra A is isom01'pkw to C ('lj) tor ']I 7J)caUy 
compad and cr-eo1Ybpam it anil, only it 

(i) A is an algebra of l'cal-valueil f"notions, 
(ii) A i8 um;itc;rmly closed, 

(iii) A is doseil 7lndlJ<J' 1- inversion and 
(iv) there is an 1>. A such that 'N(A) = 'Ie(h). 

Proof. These conditions are obviously necessary. If a. A is such 
that .;e(a) r\ 'R(A) = 13, then, by (iv), .;e(a) C91.(I», whence by (iii), 
lia. A. Thus, in the pl'esenee of (iv), closm8 under I-mvel'sion implies 
cloSUl'o under inversion. By Len= 3.5, 'N(A) = 'N(h) is O'-imbedded 
in c)lI'(A), so 'meA) P'R(A). 'l'hu8, by Lemma 5.2, A is isomorphic 
to C I'N(A»). 
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We require a,n addit,ional fact about e:x:tremally disconnected spaces. 
(See the discussion following Proposition 2.2.) Every dense subspace of 
an ext;remal1ydisconnectedspaceisO·-imbedded([29J).Hence.by 
Lennna 5.2, we have 

5.6. THEOREM. A </>·algebra .A. is isomorphio to Ocy) tor some ea;· 
trernally disconnected space 'Y if and only if 

(i) A is an algebra of 'real·valiled funci'ions, 
(ii) .A is ilwiforrn/;y closed, 

(iii) A is closed ilndm' inversion, and 
(iv) A is complete. 

The algebra l!3 of Ba,ire fuuctions of Example 5.1 shows that we 
O;bnnot replace (iv) above by the requirement that A be ,,·complete. 

By 118ing Theorem 3.9, we may replace condition (iii) above by 
requirement j,hat every element, of A be either a divisor of zero or have 
an inverse. For, in this case, wo may conclude that"~ D(cm:(.£1») , 
and that tI(""(.£1») CJ1[(A). This change dOBS not" however, either weaken 
or streIl{lthen the hypothesis of this theorem. 

By (1.8), we could a,lso delete the requirement that A bo al'chi
medean. 

An infinite cardinal numbeT m is said to be nonmea.~ilrab16 if there 
is no countably additive measure on a set of power m giving points 
measure 0, the whole set measure 1, and assuming only the va~lues 0 and 1. 
In 1930, Ulam showed that m is nonmeasurable unless m is strongly 
inaccessible from "0' Jl.loreover, it is consistent with the axioms of set 
themy to l'ejeet the existence of such oardinal numbers. For a thorough 
discussion of Ilonmeasurable C3,rdinals, see [16J, Chapter 12,whoTe 
it is shown that if m is noumeasurable, so is 2'". From this, we may 
dm1ve 

5:7. THEOREM. Let A be a <t>-algebra of >wwmeasurable powa)". Then 
A is isomorphic to 0 (cy) for some di.serete space ,if and only if 

(i) A is an algebra of real-I,al"ed /lmc1ions, 
(ii) .A is 'lmiformly closed, 

(iii) A is cO'fnplete, ani!, 
(iv) A is ,'egu.lar. 

ProoL By Corollal), 3.10, (ii) and (iv) imply that A ~ D (CJ71(.£1)j. 
By (iii), '171(..4) is extl'emally disconnected. Honce, as remarked above, 
(i) implies that tI""(.£1) = '1"'(.£1). Thus A and O('IZ(A)) are isomorpillc. 
Since A is regnlal', Cj2(.£1) is a P-spaoe (I.e. ('very 0, is open; see [13J). 
But Isbell hail shown that every el.'tremally disconnected P-space of 
nonmeasumble power is discrete (see [20J; [16], Chapter 12). Also, 
card 92(A) ~ 2"', where m ~ card .£1. This completes the proof of the 
t,heorem. 
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Example 5.1 shows that (iil) above cannot be repiaced by the re
quirement that A be a-complete. A characterization of acy) among 
the class of reguiar a-complete IP-algebras was obtained by Brainerd [6J. 

Our last theorem is a simple application of Theorem 3.5. 
5.3. THEOREM. Let A be a <P -algebra that is 11,nif(fJ'mlll closed aciu't 

closed 'unaer l-invlYfsi(lt;. If h. A, let Bh {f cd: Cf.'.(f) C/'2(h)}. Then 
Bn acna a (Cf.'.(h)) are isorrwrphic. 

PrOof. It is clear that Bh is a <2l-algebra that is uniformly closed 
and closed under I-inversion, indeed, BX ~ A*, Hence '11l(B,,) = 91l(A), 
and cr2(Bj;) = '12(11). Since 10 € B,., the theorem follows from Theorem 5.5. 

We have been nnable to obtain an interlml characterization of 
o (ey) in the general case. By now, it is evident that the heart of the 
difficulty lies in our lack of ability to find an internal equlvalent of 
condition (iv) of Lemma 5.2. 
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Added in proof. J. E. Kist has pointed out that, in the presence of comple
t,eness, the hypothesis that ",1 be uniformly closed in TheQTems. 5.6 and 5,7 is Tedun
dant. (See, •. g. [31], p. 30.) 
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