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SOl"1E SUFFICIENT CONDITIONS FOR 
THE JACOBSON RADICAl, OF A co~nIUTATIVE 

RING WITH IDENTITY TO CONTAIN A PRIME IDEAL 

1. Introduction 

BY 

MELVIN HENRIKSEN 
Harving Mudd College 

Claremont, Calitornia 9 t 711 U. S. A. 

Throughout, the word «ring» will abbreviate the phrase «commu
tative ring with identity element b unless the contrary is stated 
explicitly. An ideal I of a ring R is called pseudoprime if ab 0 
implies a or b is in I. This term was introduced by C. Kohls and 
L. Gillman who observed that if I contains a prime ideal, then I is 
pseudoprime, but, in general, the converse need not hold. In 
[9 p. 233], M. Larsen, W. Lewis, and R. Shores ask if whenever 
the Jacobson r3.dical J(R) of an arthmetical ring is pseudoprime, 
it follows that J(R) contains a prime ideal? 

In Section 2, I answer this question affirmatively. Indeed, if R 
is arithmetical and J(R) is pseudoprime, then the set N(R) of 
nilpotent elements of R is a prime ideal (Corollary 9). Along the 
way, necessary and sufficient conditions for J(R) to contain a prime 
ideal are obtained. 

In Section 3, I show that a class of rings introduced by 
A. Bouvier [1] are characterized by the property that every minimal 
prime ideal of R is contained in J(R). The remainder of the section is 
devoted to rings with pseudoprime Jacobson radical that satisfy 

Received June 8, 1976. 



258 M. HENRIKSEN 

a variety of chain conditions. In particular, it is shown that if R 
is a Noetherian multiplication ring with pseudoptime Jacobson 
radical J(R), then J(R) contains a unique minima] prime ideal 
(Theorem 20), but there is a NoetheIian semiprime ring R such 
that J(R) is pseudoprime and fails to contain a prime ideal 
(Example 21). 

2. The ideal ml and pseudoprime ideals 

As in [5], if I is an ideal of a ring R, let 

ml U {A(1 i): id} 

where A(a} = {xeR: ax = O}. In [5], the following assertions are 
proved. 

1. LEMMA (Jenkins-McKnight) If I and K are ideals of a ring R 
and I c K, then 

(a) mI is an ideal of R contained UL I 

(b) mI = {aeR: 1+ A(a) R} 

(c) mI c mK 

(d) m(I J(R)} = mI . 

Recall that the Jacobson radical J(R) of a commutative ring R 
with identity is the intersection of all the maximal ideals of R, 
and that ad(R) if and only if (1 ~ ax) is a unit for every XER 
[11, Section 30]. 

Let U(R) denote the set of units of a fing R, let 1n(R) 
denote the set of maximal ideals of R, ancllt~t S(R) 1: {mM: Me1n(R)}. 
By Lemma 1, S(R) 1:{ml: I a proper ideal of R}= I:{A(1-i}: 
ieR\ U(R)} is the smallest ideal containing A(1 i) for every non 
unit ieR. 

The next lemma indicates the importance of the ideals mI in 
the study of rings with pseudoprime Jacobson radical. 

2. LEMMA. The Jacobson radical J(R) of a ring R is pseudoprime 
if and only if S(R) c J(R). 

PROOF. To prove the lemma, it suffices to show that J(R) is 
pseudoprime if and only if ml c J(R) for every proper ideal I of R. 
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If J(R) is pseudoprime, I is a proper ideal of J(R), and aemI, 
there is an id such that a( 1 - i) O. But (1 i) ¢J (R), EO 

aeJ(R). 

Suppose, conversely, that mI c: J(R) for every proper ideal I 
of R, ab = 0, and b¢J(R). Then there is a 1 xeR such that 1 - bx 
is not a unit. Thus a(1-- b;x:) = a, so a~m«1 - bx)R) c: J(R) 

SUPl'ose I is a proper ideal of a ring R (which need not have 
an identity element). A proper prime ideal of R that fails to contain 
properly any other prime ideal of R is said to be a minimal prime 
ideal of R. Let J)(R) denote the set of minimal prime ideals of R. 
It is well known that n{p: PeJ)(R)} is the set N(R) of nilpotent 
elements of R [11, p. 100], and that a prime ideal P is minimal if 
for every a:::P, there is a b ¢P such that abeN(R) [5, lemma 3.1]. 

If N(R) = {O}, then R is called a semiprime ring. 
For any ideal I of R, the radical VI of I is the intersection 

of all the prime ideals of R containing I. EquivalenLly, VI = {a :and} 
for some positive integer n. The next proposition describes VmI 
as an intersection of minimal prime ideals of R. 

3. PROPOSITION. Suppose I is a proper ideal of Rand P is a minimal 
prime ideal of R 

(a) mI c: P if and only if I P =1= R 

(b) VmI n{PeJ)(R):I P=I=R} 

(c) If M is a maximal ideal of R, then 

VmM = n{PeJ)(R): Pc: M} 

(d) If R is semiprime, then VmI = mI . 

PROOF OF (a). If I P R, there is an iel and a pe:P such 
that i + p = 1. Since Pe:J)(R), there is a q¢P such that q(1 i) = 
= qpe:N(R). Hence there is a positive integer n such that 
qn(1 i)n = O. By the binomial theorem (1 i)n (1 - i') for 
some i'd, 80 qnemI\P. We have shown that I P R implies 
mI¢P. 

If, conversely, there is an a emI\P, then a(1 i) = 0 for some 
id. Since a ¢P, 1 - ieP and I + P = R. This completes the 
proof of (a). 
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To get (b) from (a), it suffices to show that JlmI is the 
intersection of all the minimal prime ideals containing it. It follows 
from [7, Theorem 10], that mI is the intersection of all the prime 
ideals of R such that PlmI i8 a minimal prime ideal of RIm!' Suppose a 
is an element of such a prime ideal P. Then there is a b iP and a posi
tive integer n such that (ab)nemI. Hence anbn(l- i) = 0 for some id. 
Suppose bn(l i)eP. Now biP, so (1 - i)eP since P is a prime ideal. 
Thus I + P R, and by (a), mI ¢ P. This contradiction shows that 
an[bn(l- i)] = 0 and bn(l - i) iP. Hence Pep(R) and (b) holds. 

Clearly (c) follows from (b). 

If ae Jim!, then anemI for some positive integel' n. So there is 
an id such that an(1- i) 0 [a(l - i)]n. Since R is semiprime, 
a(l i) = 0 and aemI. Thus (d) holds. 

For any ring R, let G(R) denote the multiplicative semigroup 
generated by {(1 i): ieR\U(R)} and let T(R) {aeR: ax = ° for 
some xeG(R)}. Note that T(R) is an ideal of R which is proper if 
and only if O¢-G(R). Also, S(R) c T(R). For, if aeS(R), then there 
is a finite set {MI, . .. ,Mn} of maximal ideals, and elements mte:Mt 
for i 1, ... ,n such that ae2:i=IA(l- mil. Then aITi=t(l - mil 0, 
so aeT(R). 

4. Proposition. The followinq properties of a minimal prime P of 
a ring R are equivalent 

(a) P c J(R). 

(b) p:::> S(R). 

(c) P:::> T(R). 

PROOF. If P c J(R) and 1\1 is a maximal ideal of R, then P eM. 
Hence by Proposition 3, mM c P, so S(R) 2:{mM:Me1n(R)} c P. 
Thus (a) implies (b). 

Suppose next that there is an aeT(R)\p. Then there is an 
xeG(R) such that ax = OeP. Since a iP, we have x.::P. Since 
x.::G(R), there is finite set {MI, ... ,Mn} of maximal ideals of Rand 
elements mi.::Mi for i = 1, ... ,n such that x = (1 - mI) ... (1 -- mn)eP. 
Hence (1 - mi)eP for some i, so P + Mi R. By Proposition 3, 
mM. ¢ P and therefore P 1> S(R). Thus we have shown that (b) 
implies (c). 
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If P ~ T(R), then P S(R) ~ mM for every maximal ideal 
1\1 of R. So, by Proposition 3, P J(R). Thus (c) implies (a) and 
the proof of Proposition 4 is complete. 

Since every proper ideal of R is contained in a prime ideal, the 
following corollary follows immediately from Proposition 4 and the 
remarks preceding it. It may also be derived easily from [2, Proposi
tion 3.3]. 

5. COROLLARY. The Jacobson radical of a ring R contains a 
prime ideal if for every positive integer n, whenever mI , .. . ,mn LS a 
finite set of non units of R, it follows that IIi f (1 mt):f= 0 . 

Another easy consequence or Proposition 4 follows. 

6. COROLLLARY. If R is a ring with pseudoprime Jacobson 
radical J(R), and P is a minimal prime ideal of R such that P ~ J(R), 
then P J(R). 

PROOF. Since J(R) is pseudoprime and P ~ J(R), then 
P ~ J(R) ~ S(R). Hence by Proposition 4, P c J(R), so P = J(R). 

The next theorem and its corollaries solves the problem posed 
by .M. Larsen, W. Lewis, and R. Shores in [9, p. 233]. Recall 
that if II and 12 are proper ideals of a ring R and II J2 R, 
then 11 and 12 are said to be co-maximal. 

7. THEOREM. Suppose R is a ring with pselldoprime Jacobson 
radical. 

(a) If S(R) contains a prime ideal P, then P S(R) is the unique 
minimal prime ideal of R contained in J(R). 

(b) If VmP is a prime ideal, then P = N(R). 

PROOF. The prime ideal P contains a minimal prime ideal Po, 
and by Lemma 2, Po c P c S(R) c J(R). By Proposition 4, 
S(R) Po, so Po P S(R). Using Proposition 4 again yields 
that S(R) is the unique minimal prime ideal contained in J(R), 
and (a) holds. 

If imP = Q is a prime ideal, then by Proposition 4, Qs:J)(R). 
But imP P, so VmP P J(R). By Lemma 1, mP = m VmP 

{O}. Hence P Vr61 N(R), and (b) holds. 
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8. COROLLARY. The following properties of a ring Rare 
equivalent. 

(a) J(R) is pseudoprime and there is a minimal prime ideal 
P of R co-maximal with every other minimal prime ideal of R 

(b) N (R) is a prime ideal. 

PROOF. If (a) holds, then VmP 
and Lemma 2. Hence S(R) contains 
by Theorem 7. 

P c: J(R) by Proposition 3 
a prime ideal, so (b) holds 

If (a) holds, then N(R) c:;: J(R) and N(R) is the unique element 
of l)(R). So (a) holds and Corollary 8 follows. 

A ring is called arithmetical if its lattice of ideals is distributive. 
In [6, Corollary 2] C. Jensen has shown that incomparable 

prime ideals of an arithmetical ring are co-maximal. Hence we 
have: 

9. COROLLARY. If the Jacobson radical J(R) of an arithmetical 
ring R is pseudoprime, then N(R) is a prime ideal contained in J(R). 

3. Other classes of rings whose Jacobson radicals are pseudo prime 

In [1], A. Bouvier calls a ring R presimpli/iable if whenever 
x,ye:R and xy x, then x 0 or y is a unit, and the studies 
factorization properties of such lings. By Lemma 1, R is 
presimplifiable if and only if S(R) {O}. These rings are characterized 
in the next theorem. 

10. THEOREM. The following properties of a ring R are equivalent. 

(a) R is presimpli/iable 

(b) mM c: N(R) for every maximal ideal M of R. 

(c) Every minimal prime ideal of R is contained in J(R). 

(d) Every proper divisor of 0 in R is contained in J(R). 

PROOF. If R is presimplifiable and M is a maximal ideal of R, 
then mM to} c: N(R), so (a) implies (b). 

If (b) holds, then mM c: N(R) c: P fo1' every Pe:l)(R) and 
maximal ideal M of R. So, by Proposition 3, if Pe:l)(R), then P 
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is contained in every maximal ideal of R. That is, P c J(R), so 
(c) holds. 

Every proper divisor of 0 is contained in some minimal prime 
ideal of R [4, Section 2], so (c) implies (d). 

If (d) holds, then A(a} eM c J(R} for every maximal ideal IVI 
of R. Hence by Lemma 1, mM = {aeR:M + A(a) = R} {O}, so R 
is presimplifiable. This completes the proof of Theorem 10. 

In the remainder of the paper, rings satisfying various chain 
conditions, and which have a pseudoprime J acobson radica' ·.lre 
studied. 

Suppose R is a ring (which does not necessarily have an identity 
element). If A c R, let h(A) {Pep(R}:A c P}, and if S peR}, 
let k(S) = n{Pep(R}:PeS}. If we call a subset S of P closed if 
S = M( S), then it is known that P(R) becomes a Hausdorff 
topological space with B {hA(a) :a<.:R} as a base for its open sets. 
Moreover, for any aeR,hA(a)nh(a) =0 and hA(a)Uh(a) P(R), so 
the hull of each element of R is both closed and open. Moreover, 
P(R) and P(R/N(R)) arc homeomorphic. [4, Section 2]. 

If R is semiprime and for every x,yeR, there is a z<.:R such 
that A(x) n A(y) = A(z), R is said to satisfy the annhilator condition, 
or to be an a.c.-ring. The following assertions me proved in 
[4, Theorem 3,4]. Recall that if aeR is not a proper divisor of 0, 
then a is called a reg/1.lar element of R, and an ideal containing a 
regular element is called a reg/1.lar ideal of R. 

11. LEMMA. (Henriksen and Jerison). The following properties 
of a semiprime ring (not necessarily with an identity element) are 
eq/1.i(Jalent. 

(a) 1J(R) is compact and satisfies the annhilator condition. 

(b) [h(a): aeR} is a base for the open s/1.bsets of P(R). 

If (a) holds, then 

(c) R has a reg/1.lar element, and 

(d) a proper ideal of R is contained in a minimal prime ideal 

of R if (and only if) it is not regular. 

The next lemma is prohably known, but does not seem to appear 
in the literature. 
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12. LEMMA. If R is a semiprime ring (not necessarily with an 
identity element) and J)(R) is finite, then R satisfies the annhilator 
condition. 

PROOF. By Lemma 11 (a,b,c), if S c J)(R), there is an a<:R 
such that h(a) = S. Hence if x,y<:R, there is a z<:R such that 
h(z) h(x) n h(y). By [4, Lemma 3.1], since R is semiprime, 
A(z) A(x) n A(y) and R an a.c.-ring. 

13. PROPOSITION. The following properties of an a. c.-ring R 
such that J)(R) is compact are equi()alent 

(a) J (R) contains a prime ideal of R. 

(b) S(R) is not a regular ideal. 

PROOF. If (a) holds, then J(R) contains a Pe:J)(R), by 
Proposition 4, S(R) c P. But no element of a minimal prime ideal 
is regular, so (b) holds. 

If (b) holds, then by Lemma 11 (c), S(R) is contained in some 
P<:J)(R). So by Proposition 4, (b) holds. 

The following corollary is an immediate consequence of Lemma 12 
and Proposition 13. 

14. COROLLARY. If R is a semiprime ring such that J)(R) is 
finite, then J(R) contains a prime ideal if and only if S(R) is not 
a regular ideal. 

15. R]£~IARKS. (a) The hypothesis of Corollary 14 is satisfied 
if R is a semiprime ring that satisfies the ascending chain condition 
on annhilator ideals [7, Theorem 88], or if R has few zero divisors 
in the sense of [10. p. 152]. 

(b) Since N(R) c J(R) and N(R) c P for every Pe:J)(R), it 
follows easily that J(R) is pseudoprime (resp. J(R) contains a prime 
ideal of R) if and only if J(R/N(R)) is pseudoprime (resp. J(R/N(R)) 
contains a prime ideal of N(R)). 

Next, I examine consequences of the assumption that ml is 
finitely generated. For any ideal I of R let 1(1) denote the set of 
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finitely generated ideals F of I such that FI F. It is shown in 
[7, Theorem 76] that: 

(1) If Fe 3(1), there is an id such that a(1 i) = 0 for all 
aeF. That is, F em!. 

Suppose I is an ideal of a ring R. If abel and a¢I imply 
be VI, the I is called a primary ideal The radical of a primary ideal 
is a prime ideal [13, p. 152]. If whenever A and B ale ideals of R, 
AB c I, and A ¢ I imply Bn c I for some positive integer n, then I 
is called a strongly primary ideal. It is known that a pirmary ideal 
with finitely generated radical is strongly primary [13, p. 200, 
proof of 2)]. 

Let I'" = n~ 
such that a = ai 
Thus ml c I"'. 

I In, and note that if aunl, there is an ieI 
ai2 = ... = ain for every positive integer n. 

16. PROPOSITION. Suppose I is an ideal of a ring R. 

(a) If ml is finitely generated, then mI is the largest element of 
3(1) and mI = A(1 - i) for some ieI. 

(b) If I'" is finitely generated, then mI = I'" if and only if 
1"'1 I"'. 

(c) If I'" is finitely genfrated and IWI is an intersection of 
strongly primary ideals, then ml I"'. 

(d) If R is Noetherian, then mI = It». 

PROOF, Since (mI)I = ml, (a) follows from (1), and (b) follows 
from (a) and the fact that mI c I'", 

Suppose 1"'1 is contained in a strongly primary ideal Q. If 
I ¢ VQ, then I'" c Q since Q is primary. If I c VQ, then there is 
a positive integer n such that I'" c In c Q since Q is strongly 
primary. Hence 1"'1 1<' and (c) follows from (b). 

Finally (d) follows from (c) since every ideal of a Noetherian 
ring is an intersection of (strongly) primary ideals [11, p. 199]. 

Proposition 16 (d) is also proved in [12, p. 49]. 

The next two examples show that some of the assumptions made 
in Proposition 16 (c) are necessary. 
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17. EXAMPLE. An integral domain Dl such that ifM is a ma;1Jimal 
ideal ofD l then M"'M = J(D]) is a prime ideal, but mM -=1= M"'. 

Let Dl denote the ring of formal power series a(x) = ~~ = oan1:n 

with rational coefficients such that a(O) = ao is an integer. As is 
noted in [3, p. 162], M is a maximal ideal of Dl if and only if there 
is a prime integer p such that Ml = pDl' Moreover (pDl)'" = 

{a(x)e:Dl:a(O) O} = J(Dl), and, clearly (pDl)'''(pDl) = (pPl)"'. 
Since Dl is an integral domain m(pDl) {O} -=1= (pDl)O). Note that 

(pDl)'" is not finitely generated since for n = 0,1,2, ... , (In x) Dl is a 

strictly ascending chain of ideals contained in (pDl)'''. 

18. EXA~IPLE. An integral domain with a prime ideal P such 
that P'" is both prime and principal, but mP -=1= pw. 

If Dl is the ring of Example 17, let D2 = Dl [[y]] denote the 
the ring of formal power series with coefficients in Dl. Let 

p {a(y) ~~ o an (x)yn:an (x)e:Dl forn ~Oandao(x)e:J(Dl)}' 
Thus a(y):::P if and only if when we write ao(x) ~~ 0 aonxn, we 
have aon O. It is easily verified that P is a prime ideal, and 
PO) {a(y)e:D2:a(0) = O} = yD2 is also a prime ideal. Since D2 is 
an integral domain, mP {O} yD2 pw. Note i1nally that 

--- --
vIPP'" = VP (lP'" yP'" = pOl is a prime ideal, but, by Proposition 
16, ppw is not an intersection of strongly pt'imary ideals. 

The next proposition provides another sufficient condition for 
J(R) to contain a prime ideal. 

19. PROPOSITION. Suppose P is a minimal pnme ideal of a 
r£ng R sllch that 

(i) P is finitely generated, and 

(ii) there is a maximal ideal M ~ P and an ideal B of R for 
which P = ME. 

Then: 

(a) ymP P if P M and mM = P if P -=1= M. 

(b) If J(R) is pseudoprime, then it contains a unique minimal 
prime ideal of R. 

PROOF. If P = M = MR, then (a) holds by Proposition 3. If 
P i= M, then Be P since P is prime, and P MB c MP c P. Thus 
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P MP, so P c mM by (1) and mM c P by Proposition 3. Hence 
P = mP and (a) holds in this case as well. 

Part (b) follows from (a) and Theorem 7. 

An ideal B of a ring R is called a multiplication ideal if 
\vhenever A is an ideal of R such that A c B, there is an ideal C of R 
such that A = BC. If every ideal of R is a multiplication ideal, 
then R is called a multiplication ring. The ring R is called an 
almost multiplication ring if every ideal with a prime radical IS a 
power of its radical. The following facts are known. 

(2) Erery multiplication ring is an almost multiplication ring 
and erery Noetherian almost mnlt~plication ring is a multl:
plicatwn ring [10, p. 216 and p. 213, Theorem 9.21]. 

(3) If P is a prune ideal and M is a maximal ideal of an 
almost multiplication ring such that P eM and P ::J: M, then 

P = MP. [10, p. 224, Ex. 9] 

With the aid of (2} and (3) the following con seq tlences of 
Proposition 19 follow. 

20. THEOREM. If the Jacobson radical J(R) of a nng R is a 
pseudoprime multiplication ideal and if erery radical ideal of R 
contained in J(R) is finitely generated, then R is an integral domain 
or J(R) is a minimal prime ideal of R. In particular, the Jacobson 
radical of a Noetherian (almost) multiplication ring contains a unique 
minimal prime. 

PROOF. By Proposition 19 and (3), J(R) contains a unique 
minimal prime ideal P. Since J(R) is a multiplication ideal, if 
P::J: J(R) there is an ideal B of R such that P J(R)B. Since 
P is prime, B c P, so P J(R)B c J(R)P cP, and hence P = J(R)P. 
Hence by (1) and Lemma 1, P c mJ(R) {O}. Thus R is an integral 
domain. This completes the prod of the theorem. 

The next example shows that a Noetherian ring may have a 
pseudoprime Jacobson radical which contains no prime ideal. 

21. EXA)'{PLE. A semiprime Noetherian ring R with pseudoprime 
Jacobson radical J(R) which has exactly three minimal prime ideals, 
none of which are in J(R). If F is any field, let T = F[X1,X2,Xa] denote 
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the ring of polynomials in three indeterminates X1,X2,Xa. Let 

I = XIX2T X11:aT -+- X2xaT, and let T* = {-fa i : aeT,id } denote 

the quotIent ring of R with respect to the mdtiplicative system 
{1 i:id}. Finally, let R = T*/(XIX2Xa)T*, and let b = b + X1X2X3T* 
for any beT *. 

Since T is a Noetherian unique factorization domain, R is 
Noetherian, and each of its proper divisors of 0 is a multiple of 
X1,X2, or xa' Clearly, also, Y XIX2R xlxsR + X2xaR c J(R), and 
it follows that J(R) is pseudoprime. Since every element of a minimal 
prime ideal is a proper divisor of 0, the minimal prime ideals of Rare 
Pi xlR for i = 1,2,3, none of which are contained ip J(R) since 
1: - Xi is not a unit of R. Finally, R is sempirime because 
i\ n P2 n j\ {o} . 

In view of Example 22, the following proposition may not seem 
so special. 

22. PrWPOSITION. If R is a ring with no more than two minimal 
prime ideals and J(R) is pselldoprime, then J(R) contains a prime ideal. 

PROOF. If R has exactly one minimal prime ideal, it must be 
N(R) c J(R). Suppose R two minimal pJime iedals P 1,P2• By 
Remark 15(b), we may assume that R is semiprime. By Proposition 3, 
if ~h:m(R), then mM is P 1,P2, 01 PI n P 2 {O}. Hence S(R) {O}. 
or S(R) contains a prime ideal. In the filst case, the conclusion 
follows from Theorem 10, and in the second case it follows from 
Theorem 7. 

I conclude with an example that shows that the hypothesis of 
Proposition 22 can be satisfied for a ring R without R being 
presimplifiable. 

23. EXA:\>IPLE. A semiprime Noetherian ring R with two minimal 
primp. ideals such thllt J(R)ep(R) and R is not presimphfiable. Lev S 
denote the ring of formal power series wit.h 0 constant term with 
coefficients from the ring of integers mod 2. clettrly S is Noethelian 
and J(S) = S. If Z denotes the ring of integers, let R S*Z = 

= {(a,n) :aeS,neZ} where fOI aha2s:R,nln2s:Z,(al,n2) (ae,n 2) = (al,nd+ 
+(a2,n2) and (a 1,n1)(a2,n2) = (a1(l2 + n2al n1a2,nIn2)' It is well 
known that R is a Noetherian ring with identity and the mapping 
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a -+ (a,O) is an injection of 5 opto a prime ideal S of R. It is 
easily verified that S = J(R). Also sinee (a,0)(0,2) = (0,0) for every 
aE5,J(R) = S is a minimal prime ideal of R. By the same reasoning 
P={(O,2n):nEZ}E1)(R), and anj other prime ideal of R contains 
a regular element. 50 P(R) = {.J(R),P}, and R is not presimplifiabJe 
sipce P ¢ J(R). Finallj, R is semiprime since P n J(R) c = {O}. 
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