Claremont Colleges [Scholarship @ Claremont](http://scholarship.claremont.edu)

[All HMC Faculty Publications and Research](http://scholarship.claremont.edu/hmc_fac_pub) [HMC Faculty Scholarship](http://scholarship.claremont.edu/hmc_faculty)

1-1-1977

Some Sufficient Conditions for the Jacobson Radical of a Commutative Ring with Identity to Contain a Prime Ideal

Melvin Henriksen *Harvey Mudd College*

Recommended Citation

Henriksen, Melvin. "Some sufficient conditions for the Jacobson radical of a commutative ring with identity to contain a prime ideal." Portugaliae Mathematica 36.3-4 (1977): 257-269.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [scholarship@cuc.claremont.edu.](mailto:scholarship@cuc.claremont.edu)

PORTUGALIAE MATHEMATICA

VOLUME 36

Edição da SOCIEDADE PORTUGUESA DE MATEMATICA

1 9 7 7

PORTUGALIAE MATHEMATICA **Av.** da Republica, 37-4.° 1000 LIS BOA PO R TUG A L I'ORTUGALIAE MATHEMATICA Vol. 36 Fasc. $3-4 - 1977$

SOME SUFFICIENT CONDITIONS FOR THE JACOBSON RADICAL OF A COMMUTATIVE **RING WITH IDENTITY TO CONTAIN A PRIME IDEAL**

BY

MELVIN HENRIKSEN Harving Mudd College
Claremont, California 91711 U.S.A.

1. **Introduction**

Throughout, the word «ring» will abbreviate the phrase «commutative ring with identity element 1ⁿ unless the contrary is stated explicitly. An ideal I of a ring R is called *pseudoprime* if $ab = 0$ implies a or *b* is in I. This term was introduced by C. Kohls and L. Gillman who observed that if I contains a prime ideal, then I is pseudoprime, but, in general, the converse need not hold. In [9 p. 233], M. Larsen, W. Lewis, and R. Shores ask if whenever the Jacobson radical $J(R)$ of an arthmetical ring is pseudoprime, it follows that J(R) contains a prime ideal?

In Section 2, I answer this question affirmatively. Indeed, if R is arithmetical and $J(R)$ is pseudoprime, then the set $N(R)$ of nilpotent elements of R is a prime ideal (Corollary 9). Along the way, necessary and sufficient conditions for $J(R)$ to contain a prime ideal are obtained.

In Section 3, I show that a class of rings introduced by A. Bouvier [1] are characterized by the property that every minimal prime ideal of R is contained in $J(R)$. The remainder of the section is devoted to rings with pseudoprime Jacobson radical that satisfy

Received June 8, 1976.

a variety of chain conditions. In particular, it is shown that if R is a Noetherian multiplication ring with pseudoprime Jacobson radical $J(R)$, then $J(R)$ contains a unique minimal prime ideal (Theorem 20), but there is a Noetherian semiprime ring R such that J(R) is pseudoprime and fails to contain a prime ideal (Example 21).

2. The ideal mI and pseudoprime ideals

As in [5], if I is an ideal of a ring R, let

 $mI = \bigcup \{A(1 - i): i \in I\}$

where $A(a) = {x \in \mathbb{R} : ax = 0}$. In [5], the following assertions are proved.

1. LEMMA *(Jenkins-McKnight) If* I *and* K *are ideals of a ring* R and $I \subset K$, *then*

(a) mI *is an ideal of R contained in I*

(b)
$$
mI = \{a \in \mathbb{R} : I + A(a) = \mathbb{R}\}\
$$

- (c) $mI \subset mK$
- (d) $m(I + J(R)) = mI$.

Recall that the Jacobson radical J(R) of a commutative ring R with identity is the intersection of all the maximal ideals of R, and that $a \in J(R)$ if and only if $(1 - ax)$ is a unit for every $x \in R$ [11, Section 30].

Let $\mathcal{U}(R)$ denote the set of units of a ring R, let $\mathcal{M}(R)$ denote the set of maximal ideals of R, and let $S(R) = \sum \{mM: M \in \mathcal{M}(R)\}.$ By Lemma 1, $S(R) = \sum \{m! : I \text{ a proper ideal of } R\} = \sum \{A(1-i):$ $i \in R \setminus \mathcal{U}(R)$ is the smallest ideal containing $\mathcal{A}(1 - i)$ for every non unit *ieR.*

The next lemma indicates the importance of the ideals mI in the study of rings with pseudoprime Jacobson radical.

2. LEMMA. *The Jacobson radical* J(R) *of a ring* R *is pseudoprime* if and only if $S(R) \subset J(R)$.

PROOF. To prove the lemma, it suffices to show that $J(R)$ is pseudoprime if and only if $mI \subset J(R)$ for every proper ideal I of R.

If J(R) is pseudoprime, I is a proper ideal of J(R), and *aemI,* there is an izl such that $a(1 - i) = 0$. But $(1 - i) \notin J(R)$, so $a \in J(R)$.

Suppose, conversely, that $mI \subset J(R)$ for every proper ideal I of R, $ab = 0$, and $b \notin J(R)$. Then there is a 1 $x \in R$ such that $1 - bx$ is not a unit. Thus $a(1-bx) = a$, so $a\in m((1-bx)R) \subset J(R)$.

Suppose I is a proper ideal of a ring R (which need not have an identity element). A proper prime ideal of R that fails to contain properly any other prime ideal of R is said to be a *minimal prime ideal* of R. Let $\mathcal{D}(R)$ denote the set of minimal prime ideals of R. It is well known that \bigcap $\{P: P \in \mathcal{D}(R)\}\$ is the set N(R) of nilpotent elements of R [11, p. 100], and that a prime ideal P is minimal if for every $a \in P$, there is a $b \notin P$ such that $ab \in N(R)$ [5, lemma 3.1].

If $N(R) = \{0\}$, then R is called a *semiprime* ring.

For any ideal I of R, the *radical* \sqrt{I} of I is the intersection of all the prime ideals of R containing I. Equivalently, $\vec{v} = \{a : a^n \in \mathbb{I}\}\$ for some positive integer *n*. The next proposition describes \sqrt{m} **I** as an intersection of minimal prime ideals of R.

- 3. PROPOSITION. *Suppose* I *is a proper ideal of Rand* P *is a minimal prime ideal of* R
	- (a) $mI \subset P$ *if and only if* $I + P \neq R$
	- (b) $\sqrt{mI} = \bigcap \{P \in \mathcal{D}(R): I + P \neq R\}$
	- (c) *If* M *is a maximal ideal of* R, *then* $\sqrt{mM} = \bigcap {\rm \{PzD(R): P \subset M\}}$
	- (d) If R is semiprime, then \sqrt{m} = mI.

PROOF OF (a). If $I + P = R$, there is an ield and a peP such that $i + p = 1$. Since P $\epsilon \mathcal{D}(R)$, there is a $q \notin P$ such that $q(1 - i) =$ $=qp\epsilon N(R)$. Hence there is a positive integer *n* such that $q^{n}(1-i)^{n} = 0$. By the binomial theorem $(1-i)^{n} = (1-i')$ for some $i'\in I$, so $q^n \in I\backslash P$. We have shown that $I + P = R$ implies $mI \notin P$.

If, conversely, there is an a $\epsilon mI\ P$, then $a(1 - i) = 0$ for some isI. Since $a \notin P$, $1 - i\epsilon P$ and $I + P = R$. This completes the proof of (a).

To get (b) from (a), it suffices to show that $\sqrt{m\Gamma}$ is the intersection of all the minimal prime ideals containing it. It follows from [7, Theorem 10], that mI is the intersection of all the prime ideals of R such that P_{lmI} is a minimal prime ideal of R_{lmI} . Suppose *a* is an element of such a prime ideal P. Then there is a $b \notin P$ and a positive integer *n* such that $(ab)^n \in mI$. Hence $a^n b^n (1-i) = 0$ for some i $\in I$. Suppose $b^n(1-i)\epsilon P$. Now $b \notin P$, so $(1-i)\epsilon P$ since P is a prime ideal. Thus $I + P = R$, and by (a), $mI \notin P$. This contradiction shows that $a^n[b^n(1-i)] = 0$ and $b^n(1-i) \notin P$. Hence $P \in \mathcal{D}(R)$ and (b) holds.

Clearly (c) follows from (b).

If $a \in \sqrt{m!}$, then $a^n \in \mathbb{Z}$ for some positive integer *n*. So there is an *i*sI such that $a^n(1-i) = 0 = [a(1-i)]^n$. Since R is semiprime, $a(1 - i) = 0$ and $a \in mI$. Thus (d) holds.

For any ring R, let G(R) denote the multiplicative semigroup generated by $\{(1 - i): i \in \mathbb{R} \setminus \mathcal{U}(\mathbb{R})\}$ and let $T(R) = {a \in \mathbb{R}: ax = 0 \text{ for }}$ some $x \in G(R)$. Note that $T(R)$ is an ideal of R which is proper if and only if $0 \notin G(R)$. Also, $S(R) \subset T(R)$. For, if $a \in S(R)$, then there is a finite set $\{M_1, \ldots, M_n\}$ of maximal ideals, and elements $m_i \in M_i$ for $i = 1,...,n$ such that $a \in \sum_{i=1}^{n} A(1-m_i)$. Then $a \prod_{i=1}^{n} (1-m_i) = 0$, so *aeT(R).*

- 4. **Proposition.** *The followinq properties of a minimal prime* P *of a ring* R *are equivalent*
	- (a) $P \subset J(R)$.
	- (b) $P \supset S(R)$.
	- (c) $P \supset T(R)$.

PROOF. If $P \subset J(R)$ and M is a maximal ideal of R, then $P \subset M$. Hence by Proposition 3, $mM \subset P$, so $S(R) = \sum \{mM : Me\mathcal{M}(R)\}\subset P$. Thus (a) implies (b).

Suppose next that there is an $a \in T(R) \backslash P$. Then there is an $x \in G(R)$ such that $ax = 0 \in P$. Since $a \notin P$, we have $x \in P$. Since $x \in G(R)$, there is finite set $\{M_1, \ldots, M_n\}$ of maximal ideals of R and elements $m_i \in M_i$ for $i = 1,...,n$ such that $x = (1 - m_1)...(1 - m_n) \in P$. Hence $(1 - m_i)\epsilon P$ for some *i*, so $P + M_i = R$. By Proposition 3, $mM_i \neq P$ and therefore $P \neq S(R)$. Thus we have shown that (b) implies (c).

If $P \supset T(R)$, then $P \supset S(R) \supset mM$ for every maximal ideal M of R. So, by Proposition 3, P $\subset J(R)$. Thus (c) implies (a) and the proof of Proposition 4 is complete.

Since every proper ideal of R is contained in a prime ideal, the following corollary follows immediately from Proposition 4 and the remarks preceding it. It may also be derived easily from [2, Proposition 3.3].

5. COROLLARY. *The Jacobson radical of a ring* R *contains a prime ideal if for every positive integer n, whenever* m_1, \ldots, m_n *is a finite set of non units of R, it follows that* $\prod_{i=1}^{n} (1 - m_i) \neq 0$.

Another easy consequence of Proposition 4 follows.

6. COROLLLARY. *If* R *is a ring with pseudoprime Jacobson radical* $J(R)$, and P *is a minimal prime ideal of* R *such that* $P \supset J(R)$, *then* $P = J(R)$.

PROOF. Since $J(R)$ is pseudoprime and $P \supset J(R)$, then $P \supset J(R) \supset S(R)$. Hence by Proposition 4, $P \subset J(R)$, so $P = J(R)$.

The next theorem and its corollaries solves the problem posed by M. Larsen, W. Lewis, and R. Shores in [9, p. 233]. Recall that if I_1 and I_2 are proper ideals of a ring R and $I_1 + I_2 = R$, then I_1 and I_2 are said to be *co-maximal*.

7. THEOREM. *Suppose* R *is a ring with pselldoprime Jacobson radical.*

- (a) *If* $S(R)$ *contains a prime ideal* P, *then* $P = S(R)$ *is the unique minimal prime ideal of* R *contained in* J(R).
- (b) If \sqrt{mP} is a prime ideal, then $P = N(R)$.

PROOF. The prime ideal P contains a minimal prime ideal P_0 , and by Lemma 2, $P_0 \subset P \subset S(R) \subset J(R)$. By Proposition 4, $S(R) \subset P_0$, so $P_0 = P = S(R)$. Using Proposition 4 again yields that $S(R)$ is the unique minimal prime ideal contained in $J(R)$, and (a) holds.

If $\sqrt{mP} = Q$ is a prime ideal, then by Proposition 4, $Q \in \mathcal{D}(R)$. But $\sqrt{mP} \subset P$, so $\sqrt{mP} = P \subset J(R)$. By Lemma 1, $mP = m\sqrt{mP}$ $= \{0\}.$ Hence $P = \sqrt{Q} = N(R)$, and (b) holds.

8. COROLLARY. *The following properties of a ring Rare equivalent.*

- (a) J(R) *is pseudoprime and there is a minimal prime ideal* P of R *co-maximal with every other minimal prime ideal of* R
- (b) N (R) *is a prime ideal.*

PROOF. If (a) holds, then $\sqrt{mP} = P \subset J(R)$ by Proposition 3 and Lemma 2. Hence S(R) contains a prime ideal, so (b) holds by Theorem 7.

If (a) holds, then $N(R) \subset J(R)$ and $N(R)$ is the unique element of $\mathcal{D}(R)$. So (a) holds and Corollary 8 follows.

A ring is called *arithmetical* if its lattice of ideals is distributive.

In [6, Corollary 2] C. Jensen has shown that incomparable prime ideals of an arithmetical ring are co-maximal. Hence we have:

9. COROLLARY. *If the Jacobson radical* J(R) *of an arithmetical ring* R *is pseudoprime, then* N(R) *is a prime ideal contained in* J(R).

3. Other classes of rings whose Jacobson radicals are pseudoprime

In [1], A. Bouvier calls a ring R *presimplifiable* if whenever $x,y \in \mathbb{R}$ and $xy = x$, then $x = 0$ or y is a unit, and the studies factorization properties of such rings. By Lemma 1, R is presimplifiable if and only if $S(R) = \{0\}$. These rings are characterized in the next theorem.

10. THEOREM. *The following properties of a ring* R *are equivalent.*

- (a) R *is presimpli/iable*
- (b) $mM \subset N(R)$ *for every maximal ideal* M *of R*.
- (c) *Every minimal prime ideal of* R *is contained in* J(R).
- (d) *Every proper divisor of* 0 *in* R *is contained in* J(R).

PROOF. If R is presimplifiable and M is a maximal ideal of R, then $mM = \{0\} \subset N(R)$, so (a) implies (b).

If (b) holds, then $mM \subset N(R) \subset P$ for every $P \in \mathcal{D}(R)$ and maximal ideal M of R. So, by Proposition 3, if $P \in \mathcal{D}(R)$, then P

is contained in every maximal ideal of R. That is, $P \subset J(R)$, so (c) holds.

Every proper divisor of 0 is contained in some minimal prime ideal of R [4, Section 2], so (c) implies (d).

If (d) holds, then $A(a) \subset M \subset J(R)$ for every maximal ideal M of R. Hence by Lemma 1, $mM = {aeR:M + A(a) = R} = {0}$, so R is presimplifiable. This completes the proof of Theorem 10.

In the remainder of the paper, rings satisfying various chain conditions, and which have a pseudoprime Jacobson radica' are studied.

Suppose R is a ring (which does not necessarily have an identity element). If $A \subset R$, let $h(A) = {P \in \mathcal{D}(R): A \subset P}$, and if $S \subset \mathcal{D}(R)$, let $k(S) = \bigcap {\rm P\varepsilon} \mathcal{D}(R) : P \varepsilon S$. If we call a subset *S* of *D closed* if $S = hk(S)$, then it is known that $\mathcal{D}(R)$ becomes a Hausdorff topological space with $B = \{hA(a) : a \in R\}$ as a base for its open sets. Moreover, for any $a \in R$, $h \mathcal{A}(a) \cap h(a) = \emptyset$ and $h \mathcal{A}(a) \cup h(a) = \mathcal{D}(R)$, so the hull of each element of R is both closed and open. Moreover, $\mathcal{D}(R)$ and $\mathcal{D}(R^N)(R)$ are homeomorphic. [4, Section 2].

If R is semiprime and for every $x,y \in \mathbb{R}$, there is a z $\in \mathbb{R}$ such that $A(x) \cap A(y) = A(z)$, R is said to satisfy the *annhilator condition*, or to be an *a.c.-ring*. The following assertions are proved in [4, Theorem 3,4]. Recall that if *aeR* is not a proper divisor of 0, then a is called a *regular element* of R, and an ideal containing a regular element is called a *regular ideal* of R.

11. LEMMA. *(Henriksen and Jerison). The following properties of a semiprime ring (not necessarily with an identity element) are* $equivalent.$

- (a) $\mathcal{D}(R)$ *is compact and satisfies the annhilator condition.*
- (b) $[h(a): a \in \mathbb{R}]$ is a base for the open subsets of $\mathcal{D}(\mathbb{R})$. *If* (a) *holds, then*
- (c) R *has a regular element, and*
- (d) *a proper ideal of* R *is contained in a minimal prime ideal of* R *if (and only* if) *it is not regular.*

The next lemma is prohably known, but does not seem to appear in the literature.

12. LEMMA. *If* R *is a semiprime ring (not necessarily with an identity element*) and $\mathcal{D}(R)$ *is finite, then* R *satisfies the annhilator condition.*

PROOF. By Lemma 11 (a,b,c) , if $S \subset \mathcal{D}(R)$, there is an $a \in R$ such that $h(a) = S$. Hence if x,yzR, there is a zzR such that $h(z) = h(x) \bigcap h(y)$. By [4, Lemma 3.1], since R is semiprime, $A(z) = A(x) \cap A(y)$ and R an a.c.-ring.

13. PROPOSITION. *The following properties of an a. c.-ring* R such that $\mathcal{D}(R)$ *is compact are equivalent*

- (a) J (R) *contains a prime ideal of* R.
- (b) S(R) *is not a regular ideal.*

PROOF. If (a) holds, then $J(R)$ contains a $P \in \mathcal{D}(R)$, by Proposition 4, $S(R) \subset P$. But no element of a minimal prime ideal is regular, so (b) holds.

If (b) holds, then by Lemma 11 (c), $S(R)$ is contained in some $P \in \mathcal{D}(R)$. So by Proposition 4, (b) holds.

The following corollary is an immediate consequence of Lemma 12 and Proposition 13.

14. COROLLARY. If R is a semiprime ring such that $\mathcal{D}(R)$ is *finite, then* J(R) *contains a prime ideal if and only if* S(R) *is not a regular ideal.*

15. REMARKS. (a) The hypothesis of Corollary 14 is satisfied if R is a semiprime ring that satisfies the ascending chain condition on annhilator ideals [7, Theorem 88], or if R has few zero divisors in the sense of [10. p. 152].

(b) Since $N(R) \subset J(R)$ and $N(R) \subset P$ for every $P \in \mathcal{D}(R)$, it follows easily that $J(R)$ is pseudoprime (resp. $J(R)$ contains a prime ideal of R) if and only if $J(^R/N(R))$ is pseudoprime (resp. $J(^R/N(R))$) contains a prime ideal of $N(R)$).

Next, I examine consequences of the assumption that mI is finitely generated. For any ideal I of R let $\mathfrak{I}(I)$ denote the set of finitely generated ideals F of I such that $FI = F$. It is shown in [7, Theorem 76] that:

(1) If $\mathbb{F} \in \mathcal{F}(1)$, *there is an i*ll *such that* $a(1 - i) = 0$ *for all* $a \in F$ *. That is,* $F \subset mI$ *.*

Suppose I is an ideal of a ring R. If $ab \in I$ and $a \notin I$ imply $b \in \sqrt{I}$, the I is called a *primary ideal* The radical of a primary ideal is a prime ideal $[13, p. 152]$. If whenever A and B are ideals of R, AB \subset I, and A \notin I imply $B^n \subset I$ for some positive integer *n*, then I is called a *strongly primary* ideal. It is known that a pirmary ideal with finitely generated radical is strongly primary [13, p. 200, proof of 2)].

Let $I^{\omega} = \bigcap_{n=1}^{\infty} I^n$, and note that if asml, there is an isl such that $a = ai = ai^2 = ... = ai^n$ for every positive integer *n*. Thus $mI \subset I^{\omega}$.

- 16. PROPOSITION. *Suppose* I *is an ideal of a ring* R.
- (a) *If* ml *is finitely generated, then* mI *is the largest element of* $\mathfrak{I}(I)$ and $mI = \mathcal{A}(1 - i)$ for some iel.
- (b) If I^{ω} is finitely generated, then $mI = I^{\omega}$ if and only if $I^{\omega}I = I^{\omega}$.
- (c) If I^{ω} is finitely generated and $I^{\omega}I$ is an intersection of *strongly primary ideals, then* $mI = I^{\omega}$.
- (d) If R is Noetherian, then $mI = I^{\omega}$.

PROOF. Since $(mI)I = mI$, (a) follows from (1), and (b) follows from (a) and the fact that $mI \subset I^{\omega}$.

Suppose I^oI is contained in a strongly primary ideal Q. If $I \notin \sqrt{Q}$, then $I^{\omega} \subset Q$ since Q is primary. If $I \subset \sqrt{Q}$, then there is a positive integer *n* such that $I^{\omega} \subset I^n \subset Q$ since Q is strongly primary. Hence $I^{\omega}I = I^{\omega}$ and (c) follows from (b).

Finally (d) follows from (c) since every ideal of a Noetherian ring is an intersection of (strongly) primary ideals [11, p. 199].

Proposition 16 (d) is also proved in [12, p. 49].

The next two examples show that some of the assumptions made in Proposition 16 (c) are necessary.

17. EXAMPLE. An integral domain D₁ such that if M is a maximal *ideal of* D_1 *then* $M^{\omega}M = J(D_1)$ *is a prime ideal, but* $mM \neq M^{\omega}$.

Let D_1 denote the ring of formal power series $a(x) = \sum_{n=0}^{\infty} a_n x^n$ with rational coefficients such that $a(0) = a_0$ is an integer. As is noted in $[3, p. 162]$, M is a maximal ideal of D_1 if and only if there is a prime integer *p* such that $M_1 = pD_1$. Moreover $(pD_1)^{\omega} =$ $=\{a(x)\in D_1:a(0)=0\}=\mathcal{J}(D_1), \text{ and, clearly } (pD_1)^{\omega}(pD_1)=(pP_1)^{\omega}.$ Since D_1 is an integral domain $m(pD_1) = \{0\} \neq (pD_1)^{\omega}$. Note that (pD_1) ^o is not finitely generated since for $n = 0,1,2,...,$ $\left(-\frac{1}{2^n}x\right)D_1$ is a strictly ascending chain of ideals contained in $(pD_1)^\omega$.

18. EXA~IPLE. *An integral domain with a prime ideal* P *such that* P^{ω} *is both prime and principal, but mP* $\neq P^{\omega}$ *.*

If D_1 is the ring of Example 17, let $D_2 = D_1$ [[y]] denote the the ring of formal power series with coefficients in D_1 . Let

 $P = \{a(y) = \sum_{n=0}^{\infty} a_n(x)y^n : a_n(x)\in D_1 \text{ for } n \geq 0 \text{ and } a_0(x)\in J(D_1)\}\.$ Thus $a(y) \in P$ if and only if when we write $a_0(x) = \sum_{n=0}^{\infty} a_{0n} x^n$, we have $a_{0n} = 0$. It is easily verified that P is a prime ideal, and $P^{\omega} = \{a(y) \in D_2 : a(0) = 0\} = yD_2$ is also a prime ideal. Since D_2 is an integral domain, $mP = \{0\} \neq yD_2 = P^{\omega}$. Note finally that $\sqrt{PP^{\omega}} = \sqrt{P} \cap P^{\omega} = \sqrt{P^{\omega}} = P^{\omega}$ is a prime ideal, but, by Proposition 16, PP^{ω} is not an intersection of strongly primary ideals.

The next proposition provides another sufficient condition for J(R) to contain a prime ideal.

19. PROPOSITION. Suppose P is a minimal prime ideal of a *ring* **R** *such that*

- (i) P *is finitely generated, and*
- (ii) *there is a maximal ideal* $M \supset P$ *and an ideal* B *of* R *for* $which P = MB.$

Then:

- (a) $V_m \overline{P} = P$ *if* $P = M$ *and* $mM = P$ *if* $P \neq M$.
- (b) *If* J(R) *is pseudoprime, then it contains a unique minimal prime ideal of* R.

PROOF. If $P = M = MR$, then (a) holds by Proposition 3. If $P \neq M$, then $B \subset P$ since P is prime, and $P = MB \subset MP \subset P$. Thus

 $P = MP$, so $P \subset mM$ by (1) and $mM \subset P$ by Proposition 3. Hence $P = mP$ and (a) holds in this case as well.

Part (b) follows from (a) and Theorem 7.

An ideal B of a ring R is called a *multiplication ideal* if whenever A is an ideal of R such that $A \subset B$, there is an ideal C of R such that $A = BC$. If every ideal of R is a multiplication ideal, then R is called a *multiplication ring.* The ring R is called an *almost multiplication ring* if every ideal with a prime radical is a power of its radical. The following facts are known.

- *(2) Erery multiplication ring is an almost multiplication ring* and every Noetherian almost multiplication *ring* is a multi*plicatwn ring* [10, p. 216 and p. 213, Theorem 9.21].
- *(3) If* P *is a prune ideal and* M *is a maximal ideal of an almost multiplication ring such that* $P \subset M$ *and* $P \neq M$, *then*

 $P = MP.$ [10, p. 224, Ex. 9]

With the aid of (2) and (3) the following consequences of Proposition 19 follow.

20. THEOREM. *If the Jacobson radical* J(R) *of a nng* R *is a pseudoprime multiplication ideal and if erery radical ideal of* R *contained in* J(R) *is finitely generated, then* R *is an integral domain or* J(R) *is a minimal prime ideal of* R. *In particular, the Jacobson radical of a Noetherian (almost) multiplication ring contains a unique minimal prime.*

PROOF. By Proposition 19 and (3), $J(R)$ contains a unique minimal prime ideal P. Since J(R) is a multiplication ideal, if $P \neq J(R)$ there is an ideal B of R such that $P = J(R)B$. Since P is prime, $B \subset P$, so $P = J(R)B \subset J(R)P \subset P$, and hence $P = J(R)P$. Hence by (1) and Lemma 1, $P \subset mJ(R) = \{0\}$. Thus R is an integral domain. This completes the proof of the theorem.

The next example shows that a Noetherian ring may have a pseudoprime Jacobson radical which contains no prime ideal.

21. EXAMPLE. *A semiprime Noetherian ring* R with pseudoprime *Jacobson radical* J(R) *which has exactly three minimal prime ideals, none of which are in* $J(R)$. If F is any field, let $T = F[x_1, x_2, x_3]$ denote

the ring of polynomials in three indeterminates x_1, x_2, x_3 . Let $I = x_1x_2T + x_1x_3T + x_2x_3T$, and let $T^* = \left\{\frac{a}{1-i} : a \in T, i \in I \right\}$ denote the quotient ring of R with respect to the multiplicative system ${1 - i:i\epsilon I}$. Finally, let $R = T^{*}/(x_1x_2x_3)T^{*}$, and let $\bar{b} = b + x_1x_2x_3T^{*}$ for any *beT* *.

Since T is a Noetherian unique factorization domain, R is Noetherian, and each of its proper divisors of 0 is a multiple of \bar{x}_1, \bar{x}_2 , or \bar{x}_3 . Clearly, also, $\bar{I} = \bar{x}_1 \bar{x}_2 R + \bar{x}_1 \bar{x}_3 R + \bar{x}_2 \bar{x}_3 R \subset J(R)$, and it follows that J(R) is pseudoprime. Since every element of a minimal prime ideal is a proper divisor of 0 , the minimal prime ideals of R are $P_i = \bar{x}_i \bar{R}$ for $i = 1,2,3$, none of which are contained in J(R) since $\overline{1} - \overline{x}_i$ is not a unit of R. Finally, R is sempirime because $\overline{P}_1 \cap \overline{P}_2 \cap \overline{P}_3 = \{0\}$.
In view of Example 22, the following proposition may not seem

so special.

22. PROPOSITION. If R is a ring with no more than two minimal *prime ideals and* J(R) *is pselldoprime, then* J(R) *contains a prime ideal.*

PROOF. If R has exactly one minimal prime ideal, it must be $N(R) \subset J(R)$. Suppose R two minimal pilme iedals P_1, P_2 . By Remark 15(b), we may assume that R is semiprime. By Proposition 3, if $M\in \mathcal{M}(R)$, then mM is P_1,P_2 , or $P_1 \cap P_2 = \{0\}$. Hence $S(R) = \{0\}$. or $S(R)$ contains a prime ideal. In the first case, the conclusion follows from Theorem 10, and in the second case it follows from Theorem 7.

I conclude with an example that shows that the hypothesis of Proposition 22 can be satisfied for a ring R without R being presimplifiable.

23. EXAMPLE. *A semiprime Noetherian ring* R with two minimal *prime ideals such that* $J(R) \in \mathcal{D}(R)$ *and* R *is not presimplifiable.* Lev S denote the ring of formal power series with 0 constant term with coefficients from the ring of integers mod 2. clearly S is Noetherian and $J(S) = S$. If Z denotes the ring of integers, let $R = S^*Z =$ $= \{(a,n): a \in S, n \in \mathbb{Z}\}$ where for $a_1, a_2 \in \mathbb{R}, n_1 n_2 \in \mathbb{Z}, (a_1, n_2) \in \{a_2, n_2\} = (a_1, n_1) + (a_2, n_2)$ $+(a_2,n_2)$ and $(a_1,n_1)(a_2,n_2)=(a_1a_2+n_2a_1+n_1a_2,n_1n_2).$ It is well known that R is a Noetherian ring with identity and the mapping $a \rightarrow (a,0)$ is an injection of S orto a prime ideal \overline{S} of R. It is easily verified that $\bar{S} = J(R)$. Also since $(a,0)(0,2) = (0,0)$ for every $a \in S, J(R) = \overline{S}$ is a minimal prime ideal of R. By the same reasoning $P = \{(0,2n): n \in \mathbb{Z}\}\in \mathcal{D}(R)$, and any other prime ideal of R contains a regular element. So $\mathcal{D}(R) = \{J(R), P\}$, and R is not presimplifiable since $P \neq J(R)$. Finally, R is semiprime since $P \cap J(R) \subset = \{0\}.$

REFERENCES

- 1. A. Bouvier, *Anneaux présimplifiables*, «Rev. Roumain Pures et Appliqués», 19(1974), 713-724.
- 2. L. GILLMAN AND C. KOHLS, *Convex and pseudoprime ideals in rings of continuous functions,* «Math. Zeit.», 72(1960), 399-409.
- 3. M. HENRIKSEN, *Some remarks on elementary divisor rings II*, «Mich. Math. J.», 3(1955-56), 159-163.
- 4. M. HENRIKSEN AND M. JERISON, *The space of minimal prime ideals of a commutative rings,* «Trans. Amer. Math. Soc.», 115(1965), 110-130.
- 5. T. JENKINS AND J. McKNIGHT, *Coherence classes of ideals in rings of continuous functions,* «Indag. Math.», 24(1962), 299-306.
- 6. C. JENSEN, *Arithmetical rings*, «Acta Math. Acad. Sci. Hungaricae», 17(1966), 115-123.
- 7. I. KAPLANSKY, *Commutative Rings*, Allyn and Bacon Inc., Boston, Mass 1970.
- 8. J. K1st, *Minimal prime ideals in commutative semigroups*, «Proc. London Math. Soc.», 13(1963), 31-50.
- 9. M. LARSEN, W. LEWIS, AND R. SHORES, *Elementary divisor rings and finitely presented modules,* «Trans. Amer. Math. Soc.», 187(1974), 231-248.
- 10. M. LARSEN AND P. McCARTHY, *Mulplicative Theory of Ideals*, «Academic Press», New York, N. Y., 1971.
- 11. D. McCoy, *Rings and Ideals,* (,Mathematical Association of America», 1948.
- 12. D. NORTHCOTT, *Ideal Theory,* Cambridge University Press, 1968.
- 13. O. ZARISKI AND P. SAMUEL, *Commutative Algebra*, Vol. I, D. Van Nostrand Company, New York, 1958.