Claremont Colleges Scholarship @ Claremont

All HMC Faculty Publications and Research

HMC Faculty Scholarship

1-1-1977

Some Sufficient Conditions for the Jacobson Radical of a Commutative Ring with Identity to Contain a Prime Ideal

Melvin Henriksen Harvey Mudd College

Recommended Citation

Henriksen, Melvin. "Some sufficient conditions for the Jacobson radical of a commutative ring with identity to contain a prime ideal." Portugaliae Mathematica 36.3-4 (1977): 257-269.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

PORTUGALIAE MATHEMATICA

VOLUME 36

Edição da SOCIEDADE PORTUGUESA DE MATEMÁTICA

1

9

7

7

PORTUGALIAE MATHEMATICA Av. da República, 37-4.º 1000 LISBOA — PORTUGAL PORTUGALIAE MATHEMATICA Vol. 36 Fasc. 3-4 - 1977

SOME SUFFICIENT CONDITIONS FOR THE JACOBSON RADICAL OF A COMMUTATIVE RING WITH IDENTITY TO CONTAIN A PRIME IDEAL

ВY

MELVIN HENRIKSEN Harving Mudd College Claremont, California 91711 U.S.A.

1. Introduction

Throughout, the word «ring» will abbreviate the phrase «commutative ring with identity element 1» unless the contrary is stated explicitly. An ideal I of a ring R is called *pseudoprime* if ab = 0implies a or b is in I. This term was introduced by C. Kohls and L. Gillman who observed that if I contains a prime ideal, then I is pseudoprime, but, in general, the converse need not hold. In [9 p. 233], M. Larsen, W. Lewis, and R. Shores ask if whenever the Jacobson radical J(R) of an arthmetical ring is pseudoprime, it follows that J(R) contains a prime ideal?

In Section 2, I answer this question affirmatively. Indeed, if R is arithmetical and J(R) is pseudoprime, then the set N(R) of nilpotent elements of R is a prime ideal (Corollary 9). Along the way, necessary and sufficient conditions for J(R) to contain a prime ideal are obtained.

In Section 3, I show that a class of rings introduced by A. Bouvier [1] are characterized by the property that every minimal prime ideal of R is contained in J(R). The remainder of the section is devoted to rings with pseudoprime Jacobson radical that satisfy

Received June 8, 1976.

a variety of chain conditions. In particular, it is shown that if R is a Noetherian multiplication ring with pseudoprime Jacobson radical J(R), then J(R) contains a unique minimal prime ideal (Theorem 20), but there is a Noetherian semiprime ring R such that J(R) is pseudoprime and fails to contain a prime ideal (Example 21).

2. The ideal mI and pseudoprime ideals

As in [5], if I is an ideal of a ring R, let

$$m\mathbf{I} = \bigcup \left\{ \mathcal{A}(1 - i): i \in \mathbf{I} \right\}$$

where $\mathcal{A}(a) = \{x \in \mathbb{R}: ax = 0\}$. In [5], the following assertions are proved.

1. LEMMA (Jenkins-McKnight) If I and K are ideals of a ring R and I \subset K, then

(a) mI is an ideal of R contained in I

(b)
$$mI = \{a \in \mathbb{R} : I + \mathcal{A}(a) = \mathbb{R}\}$$

- (c) $mI \subset mK$
- (d) m(I + J(R)) = mI.

Recall that the Jacobson radical J(R) of a commutative ring R with identity is the intersection of all the maximal ideals of R, and that $a \varepsilon J(R)$ if and only if (1 - ax) is a unit for every $x \varepsilon R$ [11, Section 30].

Let $\mathcal{U}(\mathbf{R})$ denote the set of units of a ring R, let $\mathcal{M}(\mathbf{R})$ denote the set of maximal ideals of R, and let $S(\mathbf{R}) = \Sigma \{ m\mathbf{M} : \mathbf{M} \in \mathcal{M}(\mathbf{R}) \}$. By Lemma 1, $S(\mathbf{R}) = \Sigma \{ m\mathbf{I} : \mathbf{I} \text{ a proper ideal of } \mathbf{R} \} = \Sigma \{ \mathcal{A}(1-i) : i \in \mathbf{R} \setminus \mathcal{U}(\mathbf{R}) \}$ is the smallest ideal containing $\mathcal{A}(1-i)$ for every non unit $i \in \mathbf{R}$.

The next lemma indicates the importance of the ideals mI in the study of rings with pseudoprime Jacobson radical.

2. LEMMA. The Jacobson radical J(R) of a ring R is pseudoprime if and only if $S(R) \subset J(R)$.

PROOF. To prove the lemma, it suffices to show that J(R) is pseudoprime if and only if $mI \subset J(R)$ for every proper ideal I of R.

258

If J(R) is pseudoprime, I is a proper ideal of J(R), and $a \varepsilon m I$, there is an $i \varepsilon I$ such that a(1 - i) = 0. But $(1 - i) \notin J(R)$, so $a \varepsilon J(R)$.

Suppose, conversely, that $mI \subset J(R)$ for every proper ideal I of R, ab = 0, and $b \notin J(R)$. Then there is a 1 $x \in R$ such that 1 - bx is not a unit. Thus a(1 - bx) = a, so $a \in m((1 - bx)R) \subset J(R)$.

Suppose I is a proper ideal of a ring R (which need not have an identity element). A proper prime ideal of R that fails to contain properly any other prime ideal of R is said to be a *minimal prime ideal* of R. Let $\mathcal{P}(R)$ denote the set of minimal prime ideals of R. It is well known that $\bigcap \{P: P \in \mathcal{P}(R)\}$ is the set N(R) of nilpotent elements of R [11, p. 100], and that a prime ideal P is minimal if for every $a \in P$, there is a $b \notin P$ such that $ab \in N(R)$ [5, lemma 3.1].

If $N(R) = \{0\}$, then R is called a *semiprime* ring.

For any ideal I of R, the *radical* $\sqrt{1}$ of I is the intersection of all the prime ideals of R containing I. Equivalently, $\sqrt{1} = \{a:a^n \in I\}$ for some positive integer *n*. The next proposition describes \sqrt{mI} as an intersection of minimal prime ideals of R.

- 3. PROPOSITION. Suppose I is a proper ideal of R and P is a minimal prime ideal of R
 - (a) $mI \subset P$ if and only if $I + P \neq R$
 - (b) $\sqrt{mI} = \bigcap \{ P \in \mathcal{D}(R) \colon I + P \neq R \}$
 - (c) If M is a maximal ideal of R, then $\sqrt{mM} = \bigcap \{ P \varepsilon \mathcal{D}(R) \colon P \subset M \}$
 - (d) If R is semiprime, then $\sqrt{mI} = mI$.

PROOF OF (a). If I + P = R, there is an $i \in I$ and a $p \in P$ such that i + p = 1. Since $P \in \mathcal{P}(R)$, there is a $q \notin P$ such that $q(1 - i) = qp \in N(R)$. Hence there is a positive integer n such that $q^n(1 - i)^n = 0$. By the binomial theorem $(1 - i)^n = (1 - i')$ for some $i' \in I$, so $q^n \in mI \setminus P$. We have shown that I + P = R implies $mI \notin P$.

If, conversely, there is an a $\varepsilon mI \setminus P$, then a(1-i) = 0 for some $i\varepsilon I$. Since $a \notin P$, $1 - i\varepsilon P$ and I + P = R. This completes the proof of (a).

To get (b) from (a), it suffices to show that \sqrt{mI} is the intersection of all the minimal prime ideals containing it. It follows from [7, Theorem 10], that mI is the intersection of all the prime ideals of R such that $P/_{mI}$ is a minimal prime ideal of $R/_{mI}$. Suppose a is an element of such a prime ideal P. Then there is a $b \notin P$ and a positive integer n such that $(ab)^n \varepsilon mI$. Hence $a^n b^n (1-i) = 0$ for some $i \varepsilon I$. Suppose $b^n (1-i)\varepsilon P$. Now $b \notin P$, so $(1-i)\varepsilon P$ since P is a prime ideal. Thus I + P = R, and by (a), $mI \notin P$. This contradiction shows that $a^n [b^n (1-i)] = 0$ and $b^n (1-i) \notin P$. Hence $P \varepsilon \mathcal{D}(R)$ and (b) holds.

Clearly (c) follows from (b).

If $a\varepsilon \sqrt{mI}$, then $a^n \varepsilon mI$ for some positive integer *n*. So there is an $i\varepsilon I$ such that $a^n(1-i) = 0 = [a(1-i)]^n$. Since R is semiprime, a(1-i) = 0 and $a\varepsilon mI$. Thus (d) holds.

For any ring R, let G(R) denote the multiplicative semigroup generated by $\{(1 - i): i \in \mathbb{R} \setminus \mathcal{U}(\mathbb{R})\}$ and let $T(\mathbb{R}) = \{a \in \mathbb{R}: ax = 0 \text{ for} some x \in G(\mathbb{R})\}$. Note that $T(\mathbb{R})$ is an ideal of R which is proper if and only if $0 \notin G(\mathbb{R})$. Also, $S(\mathbb{R}) \subset T(\mathbb{R})$. For, if $a \in S(\mathbb{R})$, then there is a finite set $\{M_1, \dots, M_n\}$ of maximal ideals, and elements $m_i \in M_i$ for $i = 1, \dots, n$ such that $a \in \sum_{i=1}^n \mathcal{A}(1 - m_i)$. Then $a \prod_{i=1}^n (1 - m_i) = 0$, so $a \in T(\mathbb{R})$.

- 4. **Proposition.** The following properties of a minimal prime P of a ring R are equivalent
 - (a) $P \subset J(R)$.
 - (b) $P \supset S(R)$.
 - (c) $P \supset T(R)$.

PROOF. If $P \subset J(R)$ and M is a maximal ideal of R, then $P \subset M$. Hence by Proposition 3, $mM \subset P$, so $S(R) = \Sigma\{mM:M \in \mathcal{M}(R)\} \subset P$. Thus (a) implies (b).

Suppose next that there is an $a \in T(\mathbb{R}) \setminus \mathbb{P}$. Then there is an $x \in G(\mathbb{R})$ such that $ax = 0 \in \mathbb{P}$. Since $a \notin \mathbb{P}$, we have $x \in \mathbb{P}$. Since $x \in G(\mathbb{R})$, there is finite set $\{M_1, \ldots, M_n\}$ of maximal ideals of \mathbb{R} and elements $m_i \in M_i$ for $i = 1, \ldots, n$ such that $x = (1 - m_1) \dots (1 - m_n) \in \mathbb{P}$. Hence $(1 - m_i) \in \mathbb{P}$ for some i, so $\mathbb{P} + M_i = \mathbb{R}$. By Proposition 3, $mM_i \notin \mathbb{P}$ and therefore $\mathbb{P} \neq S(\mathbb{R})$. Thus we have shown that (b) implies (c).

If $P \supset T(R)$, then $P \supset S(R) \supset mM$ for every maximal ideal M of R. So, by Proposition 3, $P \subset J(R)$. Thus (c) implies (a) and the proof of Proposition 4 is complete.

Since every proper ideal of R is contained in a prime ideal, the following corollary follows immediately from Proposition 4 and the remarks preceding it. It may also be derived easily from [2, Proposition 3.3].

5. COROLLARY. The Jacobson radical of a ring R contains a prime ideal if for every positive integer n, whenever m_1, \ldots, m_n is a finite set of non units of R, it follows that $\prod_{i=1}^{n} (1 - m_i) \neq 0$.

Another easy consequence of Proposition 4 follows.

6. COROLLLARY. If R is a ring with pseudoprime Jacobson radical J(R), and P is a minimal prime ideal of R such that $P \supset J(R)$, then P = J(R).

PROOF. Since J(R) is pseudoprime and $P \supset J(R)$, then $P \supset J(R) \supset S(R)$. Hence by Proposition 4, $P \subset J(R)$, so P = J(R).

The next theorem and its corollaries solves the problem posed by M. Larsen, W. Lewis, and R. Shores in [9, p. 233]. Recall that if I_1 and I_2 are proper ideals of a ring R and $I_1 + I_2 = R$, then I_1 and I_2 are said to be *co-maximal*.

7. THEOREM. Suppose R is a ring with pseudoprime Jacobson radical.

- (a) If S(R) contains a prime ideal P, then P = S(R) is the unique minimal prime ideal of R contained in J(R).
- (b) If \sqrt{mP} is a prime ideal, then P = N(R).

PROOF. The prime ideal P contains a minimal prime ideal P_0 , and by Lemma 2, $P_0 \subset P \subset S(R) \subset J(R)$. By Proposition 4, $S(R) \subset P_0$, so $P_0 = P = S(R)$. Using Proposition 4 again yields that S(R) is the unique minimal prime ideal contained in J(R), and (a) holds.

If $\sqrt{mP} = Q$ is a prime ideal, then by Proposition 4, $Q \in \mathcal{D}(R)$. But $\sqrt{mP} \subset P$, so $\sqrt{mP} = P \subset J(R)$. By Lemma 1, $mP = m\sqrt{mP} = \{0\}$. Hence $P = \sqrt{\{0\}} = N(R)$, and (b) holds.

M. HENRIKSEN

8. COROLLARY. The following properties of a ring R are equivalent.

- (a) J(R) is pseudoprime and there is a minimal prime ideal P of R co-maximal with every other minimal prime ideal of R
- (b) N(R) is a prime ideal.

PROOF. If (a) holds, then $\sqrt{mP} = P \subset J(R)$ by Proposition 3 and Lemma 2. Hence S(R) contains a prime ideal, so (b) holds by Theorem 7.

If (a) holds, then $N(R) \subset J(R)$ and N(R) is the unique element of $\mathcal{P}(R)$. So (a) holds and Corollary 8 follows.

A ring is called *arithmetical* if its lattice of ideals is distributive.

In [6, Corollary 2] C. Jensen has shown that incomparable prime ideals of an arithmetical ring are co-maximal. Hence we have:

9. COROLLARY. If the Jacobson radical J(R) of an arithmetical ring R is pseudoprime, then N(R) is a prime ideal contained in J(R).

3. Other classes of rings whose Jacobson radicals are pseudoprime

In [1], A. Bouvier calls a ring R presimplifiable if whenever $x,y \in \mathbb{R}$ and xy = x, then x = 0 or y is a unit, and the studies factorization properties of such rings. By Lemma 1, R is presimplifiable if and only if $S(\mathbb{R}) = \{0\}$. These rings are characterized in the next theorem.

10. THEOREM. The following properties of a ring R are equivalent.

- (a) R is presimplifiable
- (b) $mM \subset N(R)$ for every maximal ideal M of R.
- (c) Every minimal prime ideal of R is contained in J(R).
- (d) Every proper divisor of 0 in R is contained in J(R).

PROOF. If R is presimplifiable and M is a maximal ideal of R, then $mM = \{0\} \subset N(R)$, so (a) implies (b).

If (b) holds, then $mM \subset N(R) \subset P$ for every $P \in \mathcal{D}(R)$ and maximal ideal M of R. So, by Proposition 3, if $P \in \mathcal{D}(R)$, then P

is contained in every maximal ideal of R. That is, $P \subset J(R)$, so (c) holds.

Every proper divisor of 0 is contained in some minimal prime ideal of R [4, Section 2], so (c) implies (d).

If (d) holds, then $\mathcal{A}(a) \subset M \subset J(R)$ for every maximal ideal M of R. Hence by Lemma 1, $mM = \{a \in R : M + \mathcal{A}(a) = R\} = \{0\}$, so R is presimplifiable. This completes the proof of Theorem 10.

In the remainder of the paper, rings satisfying various chain conditions, and which have a pseudoprime Jacobson radica' are studied.

Suppose R is a ring (which does not necessarily have an identity element). If $A \subset R$, let $h(A) = \{P \in \mathcal{D}(R) : A \subset P\}$, and if $S \subset \mathcal{D}(R)$, let $k(S) = \bigcap \{P \in \mathcal{D}(R) : P \in S\}$. If we call a subset S of \mathcal{D} closed if S = hk(S), then it is known that $\mathcal{D}(R)$ becomes a Hausdorff topological space with $B = \{h\mathcal{A}(a) : a \in R\}$ as a base for its open sets. Moreover, for any $a \in R, h\mathcal{A}(a) \bigcap h(a) = \emptyset$ and $h\mathcal{A}(a) \bigcup h(a) = \mathcal{D}(R)$, so the hull of each element of R is both closed and open. Moreover, $\mathcal{D}(R)$ and $\mathcal{D}(R^N(R))$ are homeomorphic. [4, Section 2].

If R is semiprime and for every $x,y \in \mathbb{R}$, there is a $z \in \mathbb{R}$ such that $\mathcal{A}(x) \cap \mathcal{A}(y) = \mathcal{A}(z)$, R is said to satisfy the annhilator condition, or to be an *a.c.-ring*. The following assertions are proved in [4, Theorem 3,4]. Recall that if $a \in \mathbb{R}$ is not a proper divisor of 0, then a is called a *regular element* of R, and an ideal containing a regular element is called a *regular ideal* of R.

11. LEMMA. (Henriksen and Jerison). The following properties of a semiprime ring (not necessarily with an identity element) are equivalent.

- (a) $\mathcal{D}(\mathbf{R})$ is compact and satisfies the annhibitor condition.
- (b) $[h(a): a \in \mathbb{R}]$ is a base for the open subsets of $\mathcal{D}(\mathbb{R})$. If (a) holds, then
- (c) R has a regular element, and
- (d) a proper ideal of R is contained in a minimal prime ideal of R if (and only if) it is not regular.

The next lemma is probably known, but does not seem to appear in the literature.

M. HENRIKSEN

12. LEMMA. If R is a semiprime ring (not necessarily with an identity element) and $\mathcal{P}(R)$ is finite, then R satisfies the annhilator condition.

PROOF. By Lemma 11 (a,b,c), if $S \subset \mathcal{D}(\mathbb{R})$, there is an $a \in \mathbb{R}$ such that h(a) = S. Hence if $x, y \in \mathbb{R}$, there is a $z \in \mathbb{R}$ such that $h(z) = h(x) \cap h(y)$. By [4, Lemma 3.1], since \mathbb{R} is semiprime, $\mathcal{A}(z) = \mathcal{A}(x) \cap \mathcal{A}(y)$ and \mathbb{R} an a.c.-ring.

13. PROPOSITION. The following properties of an a. c.-ring R such that $\mathcal{D}(R)$ is compact are equivalent

- (a) J(R) contains a prime ideal of R.
- (b) S(R) is not a regular ideal.

PROOF. If (a) holds, then J(R) contains a $P \varepsilon \mathcal{D}(R)$, by Proposition 4, $S(R) \subset P$. But no element of a minimal prime ideal is regular, so (b) holds.

If (b) holds, then by Lemma 11 (c), S(R) is contained in some $P \varepsilon \mathcal{D}(R)$. So by Proposition 4, (b) holds.

The following corollary is an immediate consequence of Lemma 12 and Proposition 13.

14. COROLLARY. If R is a semiprime ring such that $\mathcal{D}(R)$ is finite, then J(R) contains a prime ideal if and only if S(R) is not a regular ideal.

15. REMARKS. (a) The hypothesis of Corollary 14 is satisfied if R is a semiprime ring that satisfies the ascending chain condition on annhilator ideals [7, Theorem 88], or if R has few zero divisors in the sense of [10. p. 152].

(b) Since $N(R) \subset J(R)$ and $N(R) \subset P$ for every $P \in \mathcal{D}(R)$, it follows easily that J(R) is pseudoprime (resp. J(R) contains a prime ideal of R) if and only if $J(^{R}/N(R))$ is pseudoprime (resp. $J(^{R}/N(R))$ contains a prime ideal of N(R)).

Next, I examine consequences of the assumption that mI is finitely generated. For any ideal I of R let $\mathcal{F}(I)$ denote the set of

finitely generated ideals F of I such that FI = F. It is shown in [7, Theorem 76] that:

(1) If $F \in \mathcal{F}(I)$, there is an i $\in I$ such that a(1 - i) = 0 for all $a \in F$. That is, $F \subset mI$.

Suppose I is an ideal of a ring R. If $ab \epsilon I$ and $a \notin I$ imply $b \epsilon \sqrt{I}$, the I is called a *primary ideal* The radical of a primary ideal is a prime ideal [13, p. 152]. If whenever A and B are ideals of R, AB \subset I, and A \notin I imply Bⁿ \subset I for some positive integer *n*, then I is called a *strongly primary* ideal. It is known that a pirmary ideal with finitely generated radical is strongly primary [13, p. 200, proof of 2)].

Let $I^{\omega} = \bigcap_{n=1}^{\infty} I^n$, and note that if $a \varepsilon m I$, there is an i εI such that $a = ai = ai^2 = \ldots = ai^n$ for every positive integer *n*. Thus $m I \subset I^{\omega}$.

- 16. PROPOSITION. Suppose I is an ideal of a ring R.
- (a) If mI is finitely generated, then mI is the largest element of $\mathcal{F}(I)$ and mI = $\mathcal{A}(1 i)$ for some izI.
- (b) If I^{ω} is finitely generated, then $mI = I^{\omega}$ if and only if $I^{\omega}I = I^{\omega}$.
- (c) If I^{ω} is finitely generated and $I^{\omega}I$ is an intersection of strongly primary ideals, then $mI = I^{\omega}$.
- (d) If R is Noetherian, then $mI = I^{\omega}$.

PROOF. Since (mI)I = mI, (a) follows from (1), and (b) follows from (a) and the fact that $mI \subset I^{\omega}$.

Suppose $I^{\omega}I$ is contained in a strongly primary ideal Q. If $I \notin \sqrt{Q}$, then $I^{\omega} \subset Q$ since Q is primary. If $I \subset \sqrt{Q}$, then there is a positive integer *n* such that $I^{\omega} \subset I^n \subset Q$ since Q is strongly primary. Hence $I^{\omega}I = I^{\omega}$ and (c) follows from (b).

Finally (d) follows from (c) since every ideal of a Noetherian ring is an intersection of (strongly) primary ideals [11, p. 199].

Proposition 16 (d) is also proved in [12, p. 49].

The next two examples show that some of the assumptions made in Proposition 16 (c) are necessary. 17. EXAMPLE. An integral domain D_1 such that if M is a maximal ideal of D_1 then $M^{\omega}M = J(D_1)$ is a prime ideal, but $mM \neq M^{\omega}$.

Let D_1 denote the ring of formal power series $a(x) = \sum_{n=0}^{\infty} a_n x^n$ with rational coefficients such that $a(0) = a_0$ is an integer. As is noted in [3, p. 162], M is a maximal ideal of D_1 if and only if there is a prime integer p such that $M_1 = pD_1$. Moreover $(pD_1)^{\omega} =$ $= \{a(x) \in D_1: a(0) = 0\} = J(D_1)$, and, clearly $(pD_1)^{\omega}(pD_1) = (pP_1)^{\omega}$. Since D_1 is an integral domain $m(pD_1) = \{0\} \neq (pD_1)^{\omega}$. Note that $(pD_1)^{\omega}$ is not finitely generated since for $n = 0, 1, 2, ..., \left(\frac{1}{2^n}x\right)D_1$ is a strictly ascending chain of ideals contained in $(pD_1)^{\omega}$.

18. EXAMPLE. An integral domain with a prime ideal P such that P^{ω} is both prime and principal, but $mP \neq P^{\omega}$.

If D_1 is the ring of Example 17, let $D_2 = D_1$ [[y]] denote the the ring of formal power series with coefficients in D_1 . Let

 $P = \{a(y) = \sum_{n=0}^{\infty} a_n(x)y^n : a_n(x) \ge D_1 \text{ for } n \ge 0 \text{ and } a_0(x) \ge J(D_1)\}.$ Thus $a(y) \ge P$ if and only if when we write $a_0(x) = \sum_{n=0}^{\infty} a_{0n}x^n$, we have $a_{0n} = 0$. It is easily verified that P is a prime ideal, and $P^{\omega} = \{a(y) \ge D_2: a(0) = 0\} = yD_2$ is also a prime ideal. Since D_2 is an integral domain, $mP = \{0\} \ne yD_2 = P^{\omega}$. Note finally that $\sqrt{PP^{\omega}} = \sqrt{P \cap P^{\omega}} = \sqrt{P^{\omega}} = P^{\omega}$ is a prime ideal, but, by Proposition 16, PP^{ω} is not an intersection of strongly primary ideals.

The next proposition provides another sufficient condition for J(R) to contain a prime ideal.

19. PROPOSITION. Suppose P is a minimal prime ideal of a ring R such that

- (i) P is finitely generated, and
- (ii) there is a maximal ideal $M \supset P$ and an ideal B of R for which P = MB.

Then:

- (a) $\sqrt{mP} = P$ if P = M and mM = P if $P \neq M$.
- (b) If J(R) is pseudoprime, then it contains a unique minimal prime ideal of R.

PROOF. If P = M = MR, then (a) holds by Proposition 3. If $P \neq M$, then $B \subset P$ since P is prime, and $P = MB \subset MP \subset P$. Thus

P = MP, so $P \subset mM$ by (1) and $mM \subset P$ by Proposition 3. Hence P = mP and (a) holds in this case as well.

Part (b) follows from (a) and Theorem 7.

An ideal B of a ring R is called a *multiplication ideal* if whenever A is an ideal of R such that $A \subset B$, there is an ideal C of R such that A = BC. If every ideal of R is a multiplication ideal, then R is called a *multiplication ring*. The ring R is called an *almost multiplication ring* if every ideal with a prime radical is a power of its radical. The following facts are known.

- (2) Every multiplication ring is an almost multiplication ring and every Noetherian almost multiplication ring is a multiplication ring [10, p. 216 and p. 213, Theorem 9.21].
- (3) If P is a prime ideal and M is a maximal ideal of an almost multiplication ring such that $P \subset M$ and $P \neq M$, then

P = MP. [10, p. 224, Ex. 9]

With the aid of (2) and (3) the following consequences of Proposition 19 follow.

20. THEOREM. If the Jacobson radical J(R) of a ring R is a pseudoprime multiplication ideal and if every radical ideal of R contained in J(R) is finitely generated, then R is an integral domain or J(R) is a minimal prime ideal of R. In particular, the Jacobson radical of a Noetherian (almost) multiplication ring contains a unique minimal prime.

PROOF. By Proposition 19 and (3), J(R) contains a unique minimal prime ideal P. Since J(R) is a multiplication ideal, if $P \neq J(R)$ there is an ideal B of R such that P = J(R)B. Since P is prime, $B \subset P$, so $P = J(R)B \subset J(R)P \subset P$, and hence P = J(R)P. Hence by (1) and Lemma 1, $P \subset mJ(R) = \{0\}$. Thus R is an integral domain. This completes the proof of the theorem.

The next example shows that a Noetherian ring may have a pseudoprime Jacobson radical which contains no prime ideal.

21. EXAMPLE. A semiprime Noetherian ring R with pseudoprime Jacobson radical J(R) which has exactly three minimal prime ideals, none of which are in J(R). If F is any field, let $T = F[x_1, x_2, x_3]$ denote

M. HENRIKSEN

the ring of polynomials in three indeterminates x_1, x_2, x_3 . Let $I = x_1x_2T + x_1x_3T + x_2x_3T$, and let $T^* = \left\{\frac{a}{1-i} : a \in T, i \in I\right\}$ denote the quotient ring of R with respect to the multiplicative system $\{1-i:i \in I\}$. Finally, let $R = T^*/(x_1x_2x_3)T^*$, and let $\overline{b} = b + x_1x_2x_3T^*$ for any $b \in T^*$.

Since T is a Noetherian unique factorization domain, R is Noetherian, and each of its proper divisors of 0 is a multiple of \bar{x}_1, \bar{x}_2 , or \bar{x}_3 . Clearly, also, $\bar{1} = \bar{x}_1 \bar{x}_2 R + \bar{x}_1 \bar{x}_3 R + \bar{x}_2 \bar{x}_3 R \subset J(R)$, and it follows that J(R) is pseudoprime. Since every element of a minimal prime ideal is a proper divisor of 0, the minimal prime ideals of R are $P_t = \bar{x}_t \bar{R}$ for i = 1,2,3, none of which are contained in J(R) since $\bar{1} - \bar{x}_i$ is not a unit of R. Finally, R is sempirime because $\bar{P}_1 \cap \bar{P}_2 \cap \bar{P}_3 = \{\bar{0}\}$.

In view of Example 22, the following proposition may not seem so special.

22. PROPOSITION. If R is a ring with no more than two minimal prime ideals and J(R) is pseudoprime, then J(R) contains a prime ideal.

PROOF. If R has exactly one minimal prime ideal, it must be $N(R) \subset J(R)$. Suppose R two minimal prime ideals P_1, P_2 . By Remark 15(b), we may assume that R is semiprime. By Proposition 3, if $M \in \mathcal{M}(R)$, then mM is P_1, P_2 , or $P_1 \cap P_2 = \{0\}$. Hence $S(R) = \{0\}$. or S(R) contains a prime ideal. In the first case, the conclusion follows from Theorem 10, and in the second case it follows from Theorem 7.

I conclude with an example that shows that the hypothesis of Proposition 22 can be satisfied for a ring R without R being presimplifiable.

23. EXAMPLE. A semiprime Noetherian ring R with two minimal prime ideals such that $J(R) \in \mathcal{P}(R)$ and R is not presimplifiable. Le. S denote the ring of formal power series with 0 constant term with coefficients from the ring of integers mod 2. clearly S is Noetherian and J(S) = S. If Z denotes the ring of integers, let $R = S*Z = \{(a,n):a \in S, n \in Z\}$ where for $a_1, a_2 \in R, n_1 n_2 \in Z, (a_1, n_2) + (a_2, n_2) = (a_1, n_1) + (a_2, n_2)$ and $(a_1, n_1)(a_2, n_2) = (a_1 a_2 + n_2 a_1 + n_1 a_2, n_1 n_2)$. It is well known that R is a Noetherian ring with identity and the mapping

 $a \rightarrow (a,0)$ is an injection of S onto a prime ideal \overline{S} of R. It is easily verified that $\overline{S} = J(R)$. Also since (a,0)(0,2) = (0,0) for every $a \in S, J(R) = \overline{S}$ is a minimal prime ideal of R. By the same reasoning $P = \{(0,2n):n \in Z\} \in \mathcal{D}(R)$, and any other prime ideal of R contains a regular element. So $\mathcal{D}(R) = \{J(R), P\}$, and R is not presimplifiable since $P \neq J(R)$. Finally, R is semiprime since $P \cap J(R) \subset = \{0\}$.

REFERENCES

- A. BOUVIER, Anneaux présimplifiables, «Rev. Roumain Pures et Appliqués», 19(1974), 713-724.
- 2. L. GILLMAN AND C. KOHLS, Convex and pseudoprime ideals in rings of continuous functions, «Math. Zeit.», 72(1960), 399-409.
- 3. M. HENRIKSEN, Some remarks on elementary divisor rings II, «Mich. Math. J.», 3(1955-56), 159-163.
- 4. M. HENRIKSEN AND M. JERISON, The space of minimal prime ideals of a commutative rings, «Trans. Amer. Math. Soc.», 115(1965), 110-130.
- 5. T. JENKINS AND J. MCKNIGHT, Coherence classes of ideals in rings of continuous functions, «Indag. Math.», 24(1962), 299-306.
- C. JENSEN, Arithmetical rings, «Acta Math. Acad. Sci. Hungaricae», 17(1966), 115-123.
- 7. I. KAPLANSKY, Commutative Rings, Allyn and Baeon Inc., Boston, Mass 1970.
- J. KIST, Minimal prime ideals in commutative semigroups, «Proc. London Math. Soc.», 13(1963), 31-50.
- 9. M. LARSEN, W. LEWIS, AND R. SHORES, Elementary divisor rings and finitely presented modules, «Trans. Amer. Math. Soc.», 187(1974), 231-248.
- 10. M. LARSEN AND P. McCARTHY, *Mulplicative Theory of Ideals*, «Academic Press», New York, N. Y., 1971.
- 11. D. McCov, Rings and Ideals, «Mathematical Association of America», 1948.
- 12. D. NORTHCOTT, Ideal Theory, Cambridge University Press, 1968.
- 13. O. ZARISKI AND P. SAMUEL, Commutative Algebra, Vol. I, D. Van Nostrand Company, New York, 1958.