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SOME SUFFICIENT CONDITIONS FOR
THE JACOBSON RADICAL OF A COMMUTATIVE
RING WITH IDENTITY TO CONTAIN A PRIME IDEAL

BY

MELVIN HENRIKSEN

Harving Mudd College
Claremont, California 91711 U. S. A.

1. Introduetion

Throughout, the word «ing» will abbreviate the phrase «commu-
tative ring with identity element 1» unless the contrary is stated
explicitly. An ideal I of a ring R is called pseudoprime if ab =0
implies a or b is in I. This term was introduced by C. Kohls and
L. Gillman who observed that if I contains a prime ideal, then I is
pseudoprime, but, in general, the converse need not hold. In
[9 p. 233], M. Larsen, W. Lewis, and R. Shores ask if whenever
the Jacobson radical J(R) of an arthmetical ring is pseudoprime,
it follows that J(R) contains a prime ideal?

In Section 2, I answer this question affirmatively. Indeed, if R
is arithmetical and J(R) is pseudoprime, then the set N(R) of
nilpotent elements of R is a prime ideal (Corollary 9). Along the
way, necessary and sufficient conditions for J(R) to contain a prime
ideal are obtained.

In Section 3, I show that a class of rings introduced by
A. Bouvier [1] are characterized by the property that every minimal
prime ideal of R is contained in J(R). The remainder of the section is
devoted to rings with pseudoprime Jacobson radical that satisfy
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258 M. HENRIKSEN

a variety of chain conditions. In particular, it is shown that if R
is a Noetherian multiplication ring with pseudoprime Jacobson
radical J(R), then J(R) contains a unique miunimal prime ideal
(Theorem 20), but there is a Noetheiian semiprime ring R such
that J(R) is pseudoprime and fails to contain a prime ideal
(Example 21).

2. The ideal ml and pseudoprime ideals

As in [5], if T is an ideal of a ring R, let
ml = y {A(1 —i): icl}

where A(a) = {zeR: az = 0}. In [5], the following assertions are
proved.

1. LemMa (Jenkins-McKnight) If 1 and K are ideals of a ring R
and 1 < K, then
) ml is an ideal of R contained tn 1
b) ml = {acR: I+ Aa) = R}
(c)
(d) m(I+ JR)=ml.

(
(
ml « mK

Recall that the Jacobson radical J(R) of a commutative ring R
with identity is the intersection of all the maximal ideals of R,
and that a<J(R) if and only if (1 —ax) is a unit for every zzR
[11, Section 30].

Let U(R) denote the set of wnits of a ring R, let TM(R)
denote the set of maximalideals of R, and lat S(R) = X {mM: McM(R)}.
By Lemma 1, S(R) = Z{ml: I a proper ideal of R}= X{A4(1 —i):
ieR\U(R)} is the smallest ideal containing A4(1 —i) for every non
unit icR.

The next lemma indicates the importance of the ideals ml in
the study of rings with pseudoprime Jacobson radical.

2. LemmA. The Jacobson radical J(R) of a ring R ts pseudoprime
if and only if S(R) < J(R).

Proor. To prove the lemma, it suffices to show that J(R) is
pseudoprime if and only if ml < J(R) for every proper ideal I of R.
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If J(R) is pseudoprime, I is a proper ideal of J(R), and aeml,
there is an izl such that a(1 —i) =0. But (1 —1i)¢J(R), =o
azJ(R).

Suppose, conversely, that ml < J(R) for every proper ideal I
of R, ab =0, and b¢J(R). Then there is a1 zeR such that 1 — bz
is not a unit. Thus a{l -—bx) = @, so asm((1 — bz)R) < J(R).

Suppose I is a proper ideal of a ring R (which nced not have
an identity element). A proper prime ideal of R that fails to contain
properly any other prime ideal of R is said to be a minimal prime
ideal of R. Let P(R) denote the set of minimal prime ideals of R.
It is well known that N {P: P<P(R)} is the set N(R) of nilpoteut
elements of R [11, p. 100], and that a prime ideal P is minimal if
for every acP, there is a b ¢P such that abeN(R) [5, lemma 3.1].

If N(R) = {0}, then R is called a semiprime ring.

For any ideal I of R, the radical )T of 1 is the intersection
of all the prime ideals of R containing I. Equivalently, T = {a:a"<l}
for some positive integer n. The next proposition describes VmI
as an intersection of minimal prime ideals of R.

3. Prorosition. Suppose 1 is a proper ideal of R and P is a minimal
prime ideal of R

(8 ml <P if and only if T+ P #£R

(b) ¥ml=N{PeDPR): I + P R}

(¢) If M is a maximal ideal of R, then

YmM = N{P<D(R): P = M}

(d) If R is semiprime, then Yml = ml.

Proor or (a). If I 4+ P = R, there is an icl and a peP such
that i + p = 1. Since PcD(R), there is a ¢¢P such that g(1 — i) =
= gpeN(R). Hence there is a positive integer n such that
g1 —i)» = 0. By the binomial theorem (1 —i)» = (1 —i’) for

some i'cl, so gnemI\P. We have shown that I + P = R implies
ml &P, '

If, conversely, there is an a emI\P, then a(1 — i) = 0 for some
tel. Since a¢P, 1 —icP and I+ P = R. This completes the
proof of (a).
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To get (b) from (a), it suffices to show that }ymI is the
intersection of all the minimal prime ideals containing it. It follows
from [7, Theorem 10], that ml is the intersection of all the prime
ideals of R such that P/, ; is a minimal prime ideal of R/,,;. Suppose a
is an element of such a prime ideal P. Then there is a #¢P and a posi-
tive integer n such that (ab)?eml. Hence ambm(1—1i) = 0 for some icl.
Suppose b7(1 — i)eP. Now b¢P, so (1 — i)eP since P is a prime ideal.
Thus I + P = R, and by (a), mI¢ P. This contradiction shows that
abr(l — )] =0 and b1 — i) ¢P. Hence PeP(R) and (b) holds.

Clearly (c) follows from (b).

If acyYml, then a®eml for some positive integer n. So there is
an tel such that a?(1 — i) = 0 = [a(1 — i)]*. Since R is semiprime,
a(l — 1) =0 and asml. Thus (d) holds.

For any ring R, let G(R) denote the multiplicative semigroup
generated by {(1 —i): ieR\U(R)} and let T(R) = {gcR: az = 0 for
some zeG(R)}. Note that T(R) is an ideal of R which is proper if
and only if 0¢G(R). Also, S(R) < T(R). For, if aeS(R), then there
is a finite set {M,,...,M,} of maximal ideals, and elements m;cM;
for i = 1,...,n such that aeX} | A(1 — m;). Then all}_ (1 —my) = 0,
so asT(R).

4. Proposition. The following properties of a minimal prime P of
a ring R are equivalent

(a) P < I(R).
(b) P >S(R).
(¢) P >T(R).

Proor. If P < J(R) and M is a maximal ideal of R, then P <« M.
Hence by Proposition 3, mM < P, so S(R) = X {mM: Msm (R)} < P.
Thus (a) implies (b).

Suppose next that there is an aeT(R)\P. Then there is an
xeG(R) such that ar = 0¢P. Since a¢P, we have zeP. Since
2eG(R), there is finite set {Ml, .My} of maximal ideals of R and
elements m;eM; for i = 1,...,n such that £ = (1 — m,)...(1 — my)eP.
Hence (1 — m;)eP for some L, so P+ M; = R. By Proposition 3,
mM; ¢ P and therefore P  S(R). Thus we have shown that (b)
imples (c).
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If P> T(R), then P> S(R)> mM for every maximal ideal
M of R. So, by Proposition 3, P < J(R). Thus (c) implies (a) and
the proof of Proposition 4 is complete.

Since every proper ideal of R is contained in a prime ideal, the
following corollary follows immediately from Proposition 4 and the
remarks preceding it. It may also be derived easily from [2, Proposi-
tion 3.3].

5. ComoLrArY. The Jacobson radical of a ring R contains a
prime tdeal if for every positive integer n, whenever my,...,My 1S @
finite set of non units of R, it follows that 117 _ , (1 —my) £ 0.

i1=1

Another easy consequence ol Proposition 4 follows.

6. ComroLLLARY. If R is a ring with pseudoprime Jacobson
radical J(R), and P is a minimal prime ideal of R such that P > J(R),
then P = J(R).

Proor. Since J(R) is pseudoprime and P > J(R), then
P> J(R)> S(R). Hence by Proposition 4, P < J(R), so P = J(R).

The next theorem and its corollaries solves the problem posed
by M. Larsen, W. Lewis, and R. Shores in [9, p. 233]. Recall
that if 1, and I, are proper ideals of a ring R and 1, + I, = R,
then 1, and I, are said to be co-maximal.

7. TuroreM. Suppose R is a ring with pseudoprime Jacobson
radical.

(a) If S(R) contains a prime ideal P, then P = S(R) is the unique
minimal prime ideal of R contained in J(R).

(b) If YmP is a prime ideal, then P = N(R).

Proor. The prime ideal P contains a minimal prime ideal P,,
and by Lemma 2, P, « P < S(R) « J(R). By Proposition 4,
S(R) =« Py, so Py =P =S§(R). Using Proposition 4 again yields
that S(R) is the unique minimal prime ideal contained in J(R),
and (a) holds.

If YmP = Q is a prime ideal, then by Proposition 4, QeD(R).
But YmP < P, so YmP = P< J(R). By Lemma 1, mP = mymP =
= {0}. Hence P = l/m: N(R), and (b) holds. '



262 M. HENRIKSEN

8. CororLLARY. The following properties of a ring R are
equivalent.

(a) J(R) is pseudoprime and there ts a minimal prime ideal
P of R co-maximal with every other minimal prime ideal of R

(b) N(R) is a prime ideal.

Proor. If (a) holds, then ymP = P < J(R) by Proposition 3
and Lemma 2. Hence S(R) coptains a prime ideal, so (b) holds
by Theorem 7.

If (a) holds, then N(R) < J(R) and N(R) is the unique element
of P(R). So (a) holds and Corollary 8 follows.

A ring is called arithmetical if its lattice of ideals is distributive.

In [6, Corollary 2] C. Jensen has shown that incomparable
prime ideals of an arithmetical ring are co-maximal. Hence we
have:

9. CororrLary. If the Jacobson radical J(R) of an arithmetical
ring R is pseudoprime, then N(R) is a prime ideal contained in J(R).

3. Other classes of rings whose Jacobson radicals are pseudoprime

In [1], A. Bouvier calls a ring R presimplifiable if whenever
z,yeR and zy = », then x =0 or y is a unit, and the studies
factorization properties of such rings. By Lemma 1, R is
presimplifiable if and only if S(R) ={0}. These rings are characterized
in the next theorem.

10. TueoreM. The following properties of a ring R are equivalent.

() R ts presimplifiable

(b) mM < N(R) for every maximal tdeal M of R.

(c) Every minimal prime ideal of R is contained in J(R).

(d) Every proper divisor of 0 in R is contained in J(R).

Proor. If R is presimplifiable and M is a maximal ideal of R,
then mM = {0} < N(R), so (a) implies (b).

If (b) holds, then mM < N(R) « P for every PepD(R) and
maximal ideal M of R. So, by Proposition 3, if PepD(R), then P
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is contained in every maximal ideal of R. That is, P < J(R), so
(c) holds.

Every proper divisor of 0 is contained in some minimal prime
ideal of R [4, Section 2], so (c) implies (d).

If (d) holds, then A(a) =« M < J(R) for every maximal ideal M
of R. Hence by Lemma 1, mM = {aeR:M 4 A(a) = R} ={0}, so R
is presimplifiable. This completes the proof of Theorem 10.

In the remainder of the paper, rings satisfying various chain
conditions, and which have a pseudoprime Jacobson radica' are
studied.

Suppose R is a ring (which does not necessarily have an identity
element). If A < R, let 2(A) = {PeP(R):A c P}, and if § = D(R),
let £(S) = N{PeP(R):PcS}. If we call a subset § of P closed if
S = hk(S), then it is known that P(R) becomes a Hausdorff
topological space with B = {h4(a):acR} as a base for its open sets.
Moreover, for any acR,kA(a) h(a) =2 and hA(a)|Jh(a) =DR), so
the hull of each element of R is both closed and open. Moreover,
P(R) and D(R/N(R)) are homeomorphic. [4, Section 2].

If R is semiprime and for every a,ycR, there is a zeR such
that A(x) N Aly) = A(z), R is said to satisfy the annhilator condition,
or to be an a.c-ring. The following assertions are proved in
[4, Theorem 3,4]. Recall that if acR is not a proper divisor of 0,
then a is called a regular element of R, and an ideal containing a
regular element is called a regular ideal of R.

11. Lemma. (Henriksen and Jerison). The following properties
of a semiprime ring (not necessarily with an identity element) are
equivalent.

(a) P(R) is compact and satisfies the annhilator condition.
(b) [i(a): acR} is a base for the open subsets of P(R).
If (a) holds, then
(c) R has a regular element, and
(d) a proper ideal of R is contained in a minimal prime ideal

of R if (and only if) it is not regular.

The next lemma is probably known, but does not seem to appear
in the literature.
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12. Lemma. If R is a semiprime ring (not necessarily with an
identity element) and D(R) is finite, then R satisfies the annh:lator
condition.

Proor. By Lemma 11 (a,b,c), if § = D(R), there is an acR
such that k(a) = §. Hence if x,ycR, there is a zeR such that
h(z) = k(z) (" h(y). By [4, Lemma 3.1], since R is semiprime,
A(z) = Ax) N Aly) and R an a.c.-ring.

13. Prorposimion. The following properties of an a. c.-ring R
such that P(R) is compact are equivalent

(@) J(R) contains a prime tdeal of R.
(b) S(R) is not a regular ideal.

Proor. 1If (a) holds, then J(R) contains a PeD(R), by
Proposition 4, S(R) = P. But no element of a minimal prime ideal
is regular, so (b) holds.

If (b) holds, then by Lemma 11 (c¢), S(R) is contained in some
PeP(R). So by Proposition 4, (b) holds.

The following corollary is an immediate consequence of Lemma 12
and Proposition 13.

14. CororLLARY. If R is a semiprime ring such that P(R) is
finite, then J(R) contains a prime ideal if and only if S(R) is rot
a regular tdeal.

15. Rrmarxks. (a) The hypothesis of Corollary 14 is satisfied
if R is a semiprime ring that satisfies the ascending chain condition
on annhilator ideals [7, Theorem 88], or if R has few zero divisors
in the sense of [10. p. 152].

(b) Since N(R) < J(R) and N(R) < P for every PepP(R), it
follows easily that J(R) is pseudoprime (resp. J(R) contains a prime
ideal of R) if and only if J(}/N(R)) is pseudoprime (resp. J(¥/N(R))
contains a prime ideal of N(R)).

Next, I examine consequences of the assumption that ml is
finitely generated. For any ideal I of R let F(I) denote the set of
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finitely generated ideals F of I such that FI = F. It is shown in
(7, Theorem 76] that:

(1) If FeF1), there is an icl such that a(l —1) = 0 for all
acF. That is, F < ml.

Suppose I is an ideal of a ring R. If abel and a¢l imply
beyT, the I is called a primary tdeal The radical of a primary ideal
is a prime ideal [13, p. 152]. If whenever A and B aie ideals of R,
AB c I, and A ¢ T imply B" < I for some positive integer n, then I
is called a strongly primary ideal. It is known that a pirmary ideal
with finitely generated radical is strongly primary [13, p. 200,
proof of 2)].

Let 1® =7 _I7, and note that if aeml, there is an icl
such that a == ai = ai® = ... = ai® for every positive integer n.
Thus ml < I¢.

16. ProposiTioN. Suppose 1 is an ideal of a ring R.

(a) If ml is finitely generated, then ml is the largest element of
F1) and ml = A1 — 1) for some izl.

(by If 1° is finitely generated, then ml = 1° if and only if
I°1 = I°.

(¢) If 1° is finitely generated and 1°1 1s an intersection of
strongly primary ideals, then ml = 1°.

(d) If R is Noetherian, then ml = 1.

Proor. Since (ml)I = ml, (a) follows from (1), and (b) follows
from (a) and the fact that ml < I°.

Suppose [°l is contained in a strongly primary ideal Q. If
I ¢ yQ, then I® < Q since Q is primary. If I < yQ, then there is
a positive integer n such that I°c I* < Q since Q is strongly
primary. Hence I°l = 1 and (c¢) follows from (b).

Finally (d) follows from (c) since every ideal of a Noetherian
ring is an intersection of (strongly) primary ideals [11, p. 199].

Proposition 16 (d) is also proved in [12, p. 49].

The next two examples show that some of the assumptions made
in Proposition 16 (¢) are necessary.
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17. ExaMPLE. An integral domain D, suck that if M is a maximal
ideal of D, then M®M = J(D,) is a prime ideal, but mM # M*®.

Let D, denote the ring of formal power series a(x) = X7 _ ;a1
with rational coefficients such that a(0) = a, is an integer. As is
noted in [3, p. 162), M is a maximal ideal of D, if and only if there
is a prime integer p such that M; = pD,. Moreover (pD,)® =
= {a(x)eD;:a(0) = 0} = J(D,), aund, clearly (pD,)® (pD ) = (pPy)°.
Since D, is an mteglal domaln mpD = {0} # (pD,)®. Note that

: . . 1 .
{pD1)® is not finitely generated since for n = 0,1,2,..., ('j'n x> D,isa
strictly ascending chain of ideals contained in (pD,)®.

18. ExamPLE. An integral domain with a prime ideal P such
that P® is both prime and principal, but mP £ P°.

If D, is the ring of Example 17, let D, = D, [[y]] denote the
the ring of formel power series with coefficients in D;. Let

= {a(y) = ZZ _ ; an(®)y": an(2)eD, for n > 0 and a,(x)ed(D,)}.
Thus a(y)eP if and only if when we write a (@) = X, @ona®, We
have agn = 0. It is easily verified that P is a prime ideal, and

= {a(y)eD,:a(0) = 0} = yD, is also a prime ideal. Since D, is
an integral domain, mP:{O} # yD, = P®. Note finally that
VPP“’ = VP ﬂP“’ = JP® = P® is a prime ideal, but, by Proposition
16, PP® is not an intersection of strongly primary ideals.

The next proposition provides another sufficient condition for
J(R) to contain a prime ideal.

19. ProprositioN. Suppose P is a minimal prime ideal of a
ring R such that
(1) P is finitely generated, and

(i1) there is a maximal ideal M > P and an ideal B of R for
which P = MB.

Then:
(a) YmP=Pif P=M and mM =P if P =M.

(b) If J(R) is pseudoprime, then it contains a unique minimal
prime ideal of R.

Proor. If P =M = MR, then (a) holds by Proposition 3. If
P+£M, then B < P since Pis prime, and P = MB<c MP < P. Thus
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P =MP, so P « mM by (1) and mM < P by Proposition 3. Hence
P — mP and (a) holds in this case as well.

Part (b) follows fromn (a) and Theorem 7.

An ideal B of a ring R is called a multiplication ideal if
whenever A is an ideal of R such that A < B, there is an ideal C of R
such that A == BC. If every ideal of R is a multiplication ideal,
then R is called a multiplication ring. The ring R is called an
almost multiplication ring if every ideal with a prime radical is a
power of its radical. The following facts are known.

(2) Every multiplication ring is an almost multiplication ring
and every Noetherian almost multiplication ring is a multi-
plication ring [10, p. 216 and p. 213, Theorem 9.21].

(3) If P is a prime ideal and M is a maxrimal ideal of an
almost multiplication ring such that P < M and P # M, then

P = MP. [10, p. 224, Ex. 9]

With the aid of (2) and (3) the following conseqaences of
Proposition 19 follow.

20. Tueorem. If the Jacobson radical J(R) of a ring R is a
pseudoprime multiplication ideal and if every radwal ideal of R
contained in J(R) is finitely generated, then R is an integral domain
or J{R) is a minimal prime ideal of R. In particular, the Jacobson
radical of a Noetherian (almost) multLpchatLon ring contains a unique
mintmal prime.

Proor. By Proposition 19 and (3), J(R) contains a unique
minimal prime ideal P. Since J(R) is a multiplication ideal, if
P £ J(R) there is an ideal B of R such that P = J(R)B. Since
P is prime, B < P,so P = J(R)B < J(R)P <P, aud hence P = J(R)P.
Hence by (1) and Lemma 1, P < mJ(R) = {0}. Thus R is an integral
domain. This completes the procf of the theorem.

The next example shows that a Noetherian ring may have a
pseudoprime Jacobson radical which contains no prime ideal.

21. ExamprLi. A semiprime Noetherian ring R with pseudoprime
Jacobson radical J(R) which has exactly three minimal prime ideals,
none of which are in J(R). 1f F is any field, let T = F[x,,x,,%5] denote
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the ring of polynomials in three indeterminates =z;,%,,7; Let

- :usT,ieI} denote

I = 2%, T 4 2,7 + 2,2,T, and let T* = {——1 ¢
the quotient ring of R with respect to the mucltiplicative system
{1t —i:icl}. Finally, let R = T*/(#,2,25)T*, and let b==b + 22,2, T*
for any b<T *.

Since T is a Noetherian unique factorization domain, R is
Noetherian, and each of its proper divisors of 0 is a multiple of
T1,%y, OF Fy. Clearly, also, 1 = 7,Z,R + 7,ZR -+ Z,%:R < J(R), and
it follows that J(R) is pseudoprime. Since every element of a minimal
prime ideal is a proper divisor of 0, the minimal prime ideals of R are
P; = 4R for i = 1,2,3, none of which are contained ir J(R) since
1 —T; is not a unit of R. Finally, R is sempirime because
PN PN Ps= {()}

In view of Example 22, the following proposition may not seem
s0 special.

22. Prorosirion. If R is a ring with no more than two minimal
prime ideals and J(R) is pseudoprime, then J(R) contains a prime ideal.

Proor. If R has exactly one minimal prime ideal, it must be
N(R) « J(R). Suppose R two minimal piime iedals P,,P,. By
Remark 15(b), we may assume that R is semiprime. By Proposition 3,
if MeM(R), then mM is PP, o1 P, N P, ={0}. Hence S(R) ={0}.
or S(R) contains a prime ideal. In the first case, the conclusion
follows from Theorem 10, and in the second case it follows from
Theorem 7.

I conclude with an example that shows that the hypothesis of
Proposition 22 can be satisfied for a ring R without R being
presimplifiable.

23. Exampre. A semiprime Noetherian ring R with two minimal
prime ideals such that J(R)eD(R) and R is not presimplifiable. Le. S
denote the ring of formal power series with 0 constant term with
coefficients from the ring of integers mod 2. clesrly S is Noetherian
and J(S) = S. If Z denotes the ring of integers, let R = S*Z =
= {(a,n):aeS,n<Z) where for ay,a,eR,nn.eZ.(ay,n,y) + (as,ns) == (a,ny)+
+(anny) and (a;,n,)(anny) = (@105 + Na@y + Niagnun,). It s well
known that R is a Noetherian ring with identity and the mapping
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a —(a,0) is an injection of S orto a prime ideal § of R. It is
easily verified that S == J(R). Also since (,0)(0,2) = (0,0) for every
aeS,J(R) = S is a minimal primne ideal of R. By the same reasoning
P = {(0,2n):neZ} e P(R), and any other prime ideal of R countains
a regular element. So P(R) = {J(R),P}, and R is not presimplifiabie
since P ¢ J(R). Finally, R is semiprime since P M J(R) < = {0}.

4,

10.

11.
12.
13.
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