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On Commensurability and Symmetry

David Pierce

Mathematics Department, Mimar Sinan Fine Arts University, Istanbul, TURKEY
david.pierce@msgsu.edu.tr

Abstract

Commensurability and symmetry have diverged from a common Greek origin.
We review the history of this divergence. In mathematics, symmetry is now a
kind of measure that is different from size, though analogous to it. Size being
given by numbers, the concept of numbers and their equality comes into play. For
Euclid, two magnitudes were symmetric when they had a common measure; also,
numbers were magnitudes, commonly represented as bounded straight lines, for
which equality was congruence. When Billingsley translated Euclid into English in
the sixteenth century, he used the word “commensurable” for Euclid’s symmetric
magnitudes; but the word had been used differently before. Symmetry has always
had also a vaguer sense, as a certain quality that contributes to the beauty of an
object. Today we can precisely define the symmetry of a mathematical structure
as the automorphism group of the structure, or as the isomorphism class of that
group. However, when we consider symmetry philosophically as a component of
beauty, we can have no foolproof algorithm for it.

1. Introduction

As a possible feature of two or more magnitudes, commensurability is the
sharing of a common measure. Two feet and three feet are commensurable,
each being a multiple of a foot; but the diagonal and side of a square are
incommensurable.
As a possible feature of a shape, symmetry can be understood as the exis-
tence of a nontrivial measurement of the shape by itself. An isosceles triangle,
flipped over, will still occupy its original position: the triangle is to that ex-
tent symmetric. An equilateral triangle is symmetric in five different ways.
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In more technical language, a symmetry is an isometric permutation, triv-
ial or not. A scalene triangle has only the trivial symmetry; an isosceles
triangle, two symmetries; an equilateral triangle, six. More generally, every
structure in the sense of model theory has automorphisms; even more gen-
erally, so does every object in a category. These automorphisms could be
called symmetries.

Commensurability and symmetry are thus two distinct mathematical no-
tions, though they can both be understood to spring from the notion of
measurement. They also share a common linguistic origin. The adjective
“commensurable” is the Anglicized form of the Latin commensurabilis,
which is itself a loan-translation of the Greek σύμμετρος. The corresponding
Greek abstract noun συμμετρία comes to us as “symmetry” via the Latin
transliteration symmetria.

Thus “commensurability” and “symmetry” are cognate words, even doublets,
in the sense of deriving from the same Greek source. “Analogy” and “pro-
portion” are doublets in the same way, the latter word deriving from a Latin
loan-translation of the Greek origin of the former. Indeed, the word “anal-
ogy” thus becomes one term in an analogy: as commensurability is to symme-
try, so is proportion to analogy. However, this is an analogy of etymologies,
not of concepts. The words “analogy” and “proportion” are nearly syn-
onyms, though the former is perhaps looser or more abstract. The looseness
of analogy is a theme of William M. Priestley in “Wandering About: Analogy,
Ambiguity, and Humanistic Mathematics” [52] and will be taken up later in
this Introduction.

In Poetry and Mathematics (which is one of Priestley’s references), Scott
Buchanan has a chapter called “Proportions”; but this is generally about
analogy, which Buchanan defines as,

the statement of the identity or similarity of at least two relations
. . . Of course these relations may be of any degree of complexity,
provided the identity or similarity is not violated. The complexity
may be increased or diminished, apparently without limit. I shall
call this property of analogies their expansiveness. [14]

Buchanan does not define proportions as such, though when he uses the term,
it is with a mathematical meaning, as when he observes,
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Archimedes laid the foundation of a very permanent, at least a
recurring, form of intellectual equilibrium by studying equilib-
rium in its physical forms. The problem is epitomized in the
lever, and the principle of the lever is a proportion. [14]

For the Greeks, magnitudes A, B, C, and D are proportional when A has
the same ratio to B that C has to D. Buchanan remarks on the ratio and
its etymology:

The symbolic key to many mathematical treasures is the ratio . . .
At this point there is a fortunate linguistic bridge between poetry
and mathematics . . . What we call reason was referred to by the
Greeks as λόγος and by the Romans as ratio. We refresh our clas-
sical memory by associating “logical” and “rational” in English.
Lying back of these words are distinct but related Weltanshau-
ungen . . . Logos is still commemorated in the names of most of
our sciences; ratio goes with our popular and practical argumen-
tation. We rationalize. [14]

Thus we can add a third pair to our analogy or proportion:

commensurability : symmetry :: proportion : analogy :: rationality : logic.

Only in the first pair can the two terms be given precise mathematical defi-
nitions that are distinct from one another. How has this come to be?

The original intention of this essay was just to record my research into the
various senses in which “commensurability” and “symmetry” have been used
in the last two thousand years or so. One conclusion of this research is that
measurement is the common aspect of the two concepts. An isosceles triangle
is symmetric because it is congruent to its mirror image. The triangle thus
measures its image, and so the triangle is, so to speak, “commensurable”
with its image. In Greek then, one would say that the triangle and its image
were “symmetric.” However, I have not found that anybody actually did this
in ancient times.

Researching symmetry leads to a few suggestions or recommendations for
mathematical practice. One suggestion is that textbooks mentioning sym-
metry ought to define it. I have been inspired by a slogan from the textbook
Groups and Symmetry by M. A. Armstrong [10]:
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Numbers measure size, groups measure symmetry.

This is how Armstrong begins his Preface. The slogan makes a good case for
why the theory of groups is worthy of study. However, as far as I can tell,
Armstrong never defines symmetry explicitly. The word does not appear in
the index of his book. The adjective form “symmetric” does appear, as the
first element of the phrase “symmetric group,” and this has one reference.
Perhaps Armstrong’s slogan is to be taken as an implicit definition of sym-
metry. Groups get an explicit axiomatic definition in Armstrong’s Chapter
2, “Axioms.” Symmetry then might be understood as whatever a group can
be used to measure.
Intelligence has been defined as whatever an IQ test measures. However, this
definition was made derisively, in 1923, by Edwin Boring [12], who said,

Thus we see that there is no such thing as a test for pure in-
telligence. Intelligence is not demonstrable except in connection
with some special ability. It would never have been thought of
as a separate entity had it not seemed that very different mental
abilities had something in common, a “common factor.”

If we have no independent sense of this “common factor,” then we have no way
to judge the accuracy of intelligence tests: accuracy becomes a meaningless
notion.
I encountered a reference to Boring in “Fifty psychological and psychiatric
terms to avoid: A list of inaccurate, misleading, misused, ambiguous, and
logically confused words and phrases” by Lilienfeld et al. [37]. One term that
the authors recommend avoiding is “Operational definition”:

Operational definitions are strict definitions of concepts in terms
of their measurement operations. As a consequence, they are
presumed to be exact and exhaustive definitions of these con-
cepts. Perhaps the best known example in psychology is Bor-
ing’s (1923) definition of intelligence as whatever intelligence
tests measure . . . an “operational definition” of aggression as the
amount of hot sauce a participant places in an experimental con-
federate’s drink is not an operational definition at all, because no
researcher seriously believes that the amount of hot sauce placed
in a drink is a perfect or precise definition of aggression that
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exhausts all of its potential manifestations . . . an operational
definition of length would imply that length as measured by a
wooden ruler cannot be compared with length as measured by a
metal ruler . . .

What is not good enough for psychology may be good enough for mathemat-
ics. There would seem to be a decent operational definition of same length:
two objects have the same length when they can be applied to one another
with no overlap in the direction of interest. We may well wish to give an
operational definition of having the same symmetry, or of symmetry itself.
How would we do it though? Whether there is any value in it or not, at
least it is clear how to administer an IQ test. How would we administer
a “symmetry test”? For example, if the symmetry of an object lies in its
automorphism group, should we worry about how this group might actually
be extracted?

From early childhood, we know how to administer a “size test.” We can
measure the size of a set by counting. To measure the size of a set is to
count it, as to measure the heaviness of a body is to weigh it. However, as
Georg Cantor observes, we can explain size without counting. Two sets have
the same size, or are equipollent, if there is a one-to-one correspondence
between them. By one definition then, the size of a set is its equipollence
class, namely the class of all sets that have the same size as the original set.
A number would then be the size of some set. This definition does not
require counting.

Cantor still seems to want a number to be a particular element of an equipol-
lence class. He tries to achieve this goal by letting the number of a set be the
set itself, after all qualities have been abstracted whereby the elements of the
set can be distinguished from one another. After this abstraction though,
what keeps the set from collapsing to a set with a single element?

John von Neumann solves this problem, and perhaps his solution should be
better known than it is, if only as an example of fundamental progress that is
fairly recent in history. Ancient mathematicians such as Euclid are sometimes
criticized for not doing mathematics according to current standards of rigor.
Neither did Cantor meet such standards; but, like Euclid, he was helping
to create the mathematics to which our standards could be applied. Von
Neumann’s example shows this.
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There is a precise way to select from each equipollence class a standard
element, and we can call this the number of each element of the class. For
example, the sets having five elements are precisely those sets that can be put
in one-to-one correspondence with the words “one,” “two,” “three,” “four,”
and “five,” by the process called counting. We can now think of the number
five itself in two ways:

(1) as what all five-element sets have in common, or
(2) as the set of the five words listed above, or as some other standard set

of five elements.

Von Neumann’s 5 is the set {0, 1, 2, 3, 4}. If one wants a five-element set, it
is handy to have von Neumann’s 5 ready to serve. One may prefer to use
{1, 2, 3, 4, 5} as one’s five-element set; but then one needs a new symbol for
this set, instead of 5 itself. Still, in ordinary language, a collection of objects
is a number of them. Thus we may think of a number five

(3) as any five-element set.

In this sense, the set {1, 2, 3, 4, 5} is a five.

Our way of thinking of numbers depends on whether we consider equal num-
bers to be the same number. Equality of numbers might be considered to
correspond to isomorphism of groups; and isomorphism is usually not same-
ness, though in practice we may blur the distinction between isomorphic
groups.

In von Neumann’s definition, equal numbers are the same number; but this
has not always been the understanding of equality. As invented by Robert
Recorde in 1557, the sign of equality that we use today is an icon of two
distinct, but equal (and parallel), straight lines. Here Recorde follows the
understanding of Euclid, from eighteen centuries earlier: equality of bounded
straight lines is congruence, not sameness. When a bounded straight line is
measured, whether twice or thrice or many times, by some specified unit
length, then the original line is a number: it is the number of those lengths
within itself that are counted out by means of the given unit length.

Organization of this paper. We shall start Section 2 by looking at Can-
tor’s theory of sets. This will immediately raise the question of equality, and
so we shall go back a few centuries to Recorde’s treatment of the notion.
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Returning to Cantor will raise more questions, of a kind that seem to persist
in a geometry textbook that I happened to use in high school. Again we
shall go back, all the way to the first textbook of all, the Elements of Euclid.
Euclid’s distinction between equality and identity has traces in another mod-
ern textbook (which I happened to encounter as a reference in a Wikipedia
article). Finally, we move on to von Neumann’s clarification of Cantor’s
ideas of number.

In Section 3, we shall take up Armstrong’s slogan in earnest, making an in-
vestigation of the modern mathematical treatment of symmetry. I suggested
that an analogy was more loosely defined than a proportion. In this sense,
Armstrong’s slogan is an analogy, rather than a proportion. In the strict
sense of Euclid, when four magnitudes are in proportion, any three of them
determine the fourth, at least up to equality; but if one knows how to count,
and if one knows the axiomatic definition of a group, this does not mean that
one can figure out what symmetry is, even if one is told that groups measure
symmetry as numbers measure size.

Section 4 is a broader historical investigation of what has happened to the
Greek notion of συμμετρία, which has given us both symmetry and commen-
surability. In particular we explore the notion through a detailed investi-
gation of three senses of the word. First comes the geometrical sense, from
Euclid and others to Billingsley. Then there is the numerical sense of the
term which leads us to Boethius and Recorde. Finally we approach some-
what more philosophical questions involving aesthetic values as we explore
the philosophical sense of the term, reaching all the way back to Plato and
Aristotle. While symmetry can be understood as an aspect or component of
beauty, this is not exactly the symmetry defined in terms of automorphism
groups. However, one can sometimes, if not always, understand a negative
conclusion in positive terms. We shall be able to do so in the present case.

2. Numbers and Size

2.1. Cantor’s aggregates

Again, a number can be understood in either of two ways: as an equipollence
class of sets, or else as a particular member of such a class, chosen once for all.
In his Contributions to the Founding of the Theory of Transfinite Numbers,
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Cantor initially takes something like the first approach. First he has to define
sets, or what in translation from his German are called aggregates [15, §1,
page 85]:

By an aggregate (Menge) we are to understand any collec-
tion into a whole (Zusammenfassung zu einem Ganzen) M of
definite and separate objects m of our intuition or our thought.
These objects are called the elements of M . In signs we express
this thus:

M = {m}.

Here I transcribe Philip E.B. Jourdain’s translation verbatim, down to his
parenthetical inclusion of Cantor’s German, although I do not know German
myself. However, where Jourdain puts words between quotation marks, I
put the words in boldface (if they are being defined) or in italics (if they are
otherwise being emphasized). For the aggregate M , Jourdain uses an upright
M, although its arbitrary element m is italic, as here.
After considering what we call unions of sets, and subsets of particular sets,
Cantor continues [15, §1, page 86]:

Every aggregate M has a definite power, which we will also
call its cardinal number.

We will call by the name power or cardinal number of
M the general concept which, by means of our active faculty of
thought, arises from the aggregate M when we make abstraction
of the nature of its various elements m and of the order in which
they are given.

We denote the result of this double act of abstraction, the
cardinal number or power of M , by

M.

In writing the equation M = {m}, presumably Cantor asserts the identity of
the whole M with the collection {m} of objects. However, as we mentioned
before, equality has not always meant sameness. Euclid distinguishes between
equality and sameness. An isosceles triangle has two equal sides, but of
course they are not the same side. By contrast, when four magnitudes are in
proportion, this does not mean that, taken in pairs, they have equal ratios;
they have the same ratio.



98 On Commensurability and Symmetry

2.2. Recorde’s equality

We may say that the two equal sides of an isosceles triangle have the same
length. The sign “=” of equality is an icon of just this situation, in the precise
sense of Charles Sanders Peirce [45, page 104]:

A sign is either an icon, an index, or a symbol. An icon is a sign
which would possess the character which renders it significant,
even though its object had no existence; such as a lead-pencil
streak as representing a geometrical line.

Robert Recorde had just this idea, when he introduced the equals sign in
1557. I want to pause here to consider Recorde’s idea, in both its mathemat-
ical and its typographical context. Our ultimate concern is with the notions
of symmetry and commensurability, as they have developed over time. Our
notions are bound up with our ability to express them, and this ability itself
has developed over time. Recorde’s work is a reminder of this.

Recorde introduced the equals sign on the verso of folioFf.i. (in roman font,
Ff.i.) of The Whetstone of Witte [53]:

How´it, for easie alteratĩo of equationŊ. I wifl pro–unˇ a few
ex̃aple‘, bicause t˙ extra˝ion of t˙ir roote‘, maie t˙ more aptly ´e
wroughte. And to auoiˇ t˙ tediouse re»tition of t˙se woorˇ‘ : i‘
equafle to : I wifl sette a‘ I ˘e often in woorke use, a «ire of
«raflele‘, or Gemowe line‘ of one lengt˙, thu‘: , bicause nff.
2. thynge‘, can ´ moare equafle. And now marke t˙se nom´r‘.

Howbeit, for easie alteration of equations. I will propounde a
few examples, bicause the extraction of their rootes, maie the
more aptly bee wroughte. And to auoide the tediouse repetition
of these woordes : is equalle to : I will sette as I doe often in
woorke use, a paire of paralleles, or Gemowe lines of one lengthe,
thus: =, bicause noe. 2. thynges, can be moare equalle. And now
marke these nombers.

The sign of equality consists of “gemowe lines.” English has gathered many
words to itself in the last thousand years, but not all of them have stuck.
Recorde’s “gemowe” is an obsolete word, found in the Oxford English Dic-
tionary [42] under “gemew, gemow”: it derives from the Old French plural
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gemeaux, whose singular is gemel. The modern French singular for the same
word is jumeau, meaning “twin,” although the form gémeau was created in
1546, on the basis of the Latin gemellus, the diminutive of geminus, to
indicate the sign of the Zodiac called in English “Gemini” [20, 54]. The older
singular gemel also came into English, where, in the plural form “gemels,”
it is a heraldic term meaning “bars, or rather barrulets, placed together as
a couple” [42]. Thus two gemels would seem to be like Recorde’s sign of
equality.

Recorde’s passage above is reproduced in facsimile in the Wikipedia article
“Equals sign.” I have tried to reproduce the blackletter of Recorde’s book
by means of the Gothic font of the LATEX package called yfont. The package
provides also SĚwabaĚer and Fraktur fonts. The Gothic font uses as many
of Gutenberg’s ligatures as possible [40, page 395]. Recorde’s printer uses no
obvious ligatures, except maybe between cee (c) and tee (t), albeit not with
the loop of ˝. I have tried to maintain Recorde’s spellings, including the
tilde in place of a following en (as in õ for on). The yfont package does not
provide the italic letters that Recorde’s printer uses. In place of these, I have
used Schwabacher, as for example to set the word equationŊ (as opposed to
equation‘), which is italic in the original. Despite the evidence of Recorde’s
book, the use of Schwabacher (rather than italic) for emphasis within Gothic
text is said to be “historical practice” [40, page 394].

Recorde’s printer’s numerals are not so heavy and stylized as in yfont Gothic.
I try to follow the printer’s use of periods, which come before and after most
numerals, though not all.

Recorde’s book is evidently a quarto. The sheets used in printing are num-
bered, and the four leaves that result from folding each sheet twice are num-
bered. On the recto of each of first three leaves is printed a letter for the
number of the original sheet, followed by a Roman numeral for the number
of the leaf. Thus what we should call pages 1, 3, 5, and 9 are designated
respectively A.i, A.ii, A.iii, and B.i; the intervening pages are unmarked.
The 23-letter Latin alphabet is used: A, B, C, D, E, F, G, H, I, K,
L, M, N, O, P, Q, R, S, T, U, X, Y, and Z. After this come the
double-lettered sheets, Aa, Bb, Cc, and so on to Rr. The front matter con-
sists of sheet a for the title and T˙ Epi<le Dedicatorie, and sheet b for T˙
Preface to t˙ gentle Reaˇr. Thus the book is made of 2+23+17 or 42 sheets,
making 336 pages, except that there are oddities: the leaves R.i. and Dd.iii.

yfont
yfont
yfont
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are larger, with tables. Having the book only as a pdf image, I do not know
how these larger leaves were made.

After defining his sign of equality, Recorde goes on to give several examples
of equations, numbered in the left margin; with AMS-LATEX, I reproduce
them as follows:

14.x.+ .15.u = 71.u. (1)
20.x.− .18.u = .102.u. (2)

26.z + 10x = 9.z − 10x+ 213.u. (3)
19.x+ 192.u = 10x+ 108u− 19x (4)

18.x+ 24.u. = 8.z.+ 2.x. (5)
34z − 12x = 40x+ 480u− 9.z (6)

Periods are thus used freely, but inconsistently. I have approximated Recorde’s
peculiar indeterminates or “cossic signs” with Latin letters; see Figure 1 for
a fascimile of the originals.

0. 1. 2. 3. 4. 5. 6.
u x z y zz sz zy

7. 8. 9. 10. 11. 12. 13.
bsz zzz yy zsz csz zzy dsz

Figure 1: Recorde’s cossic signs [53], with my transliteration.

One should understand as unity, or x0, the symbol appearing as u above.
Standing for another single symbol in Recorde, the z above has the meaning
of our x2. On the verso of folio S.i., Recorde tells how to express each of
what we should call the powers of x, from the zeroth to the twenty-fourth:

pdf
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u Betokeneth nom´r absolute as if it ¯d no signe.
x Signi˛eth t˙ roote of any nom´r.
z Representeth a square nom´r.
y Expre&eth a Cubike nom´r.
zz I‘ t˙ signe of a square of square‘, or Zenzizenzike.
sz Stanˇth for a Sursoliˇ.
zy Dffth signi˛e a Zenzicubike, or a square of Cu´‘.
bsz Dffth ´token a seconˇ Sursoliˇ.

. . . . . . . . . . . . . . . . . . . . .
zzzy Signi˛eth a square of square‘, of squared Cu´‘.

Recorde thus varies the word (“betokeneth, signifieth,” &c.) used to say that
the meaning of a sign is being given. Along with the zeroth and first, each
prime power of what we call x is for Recorde a different new symbol. The
fifth power, the sursolid, is obtained from the second power by prefixing
an elongated ess, like our integral sign

∫
. The higher prime powers, from

seventh to 23rd, are the second to sixth sursolids respectively; their symbols
are obtained from that of the first sursolid by prefixing the letters from b
to f . The symbols for composite powers are the appropriate composites of
the symbols for prime powers. Six pages later (on the verso of the folio that
would be numbered S.iiii., if it were given a number), The table of Coȷike
signeŊ, and their peculier nomberŊ (Figure 1) gives what we should call the
exponents for the first 14 signs, and it is explained that multiplying the signs
corresponds to adding the exponents.

Recorde’s peculiar indeterminates did not catch on. His sign of equality
did, though not right away. Eighty years later, in 1637, as an example of a
solution of a four line locus problem, Descartes wrote out an equation as

yy ∞ 2y − xy + 5x− xx

[18, page 333], and this has the meaning that we have learned from him
(though we have usually forgotten that x and y, while measured in different
directions, need not be orthogonal). Descartes wrote yyy as y3, and so forth,
as we do, though instead of y2 he still wrote yy (“ Cependent Descartes répète
presque toujours les facteurs égaux lorsqu’ils ne sont qu’au nombre de deux”
[19, page 2, note 1]). I have written Descartes’s sign of equality as ∞, and this
is how it is written in the Hermann edition of La Géométrie, in the note that
explains that the sign has been replaced with = in the text [19, page 3, note 1].
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The Dover facsimile edition shows that the left loop of ∞ is usually broken,
though it is intact in one case that I could find [18, page 333], where the
equation quoted above is being developed.

Without pursuing the matter further, I can only speculate that the equals
sign of Recorde was ultimately found superior, precisely for its mnemonic
value as an icon of two equal, but distinct, straight lines. Equality in origin
is not sameness, though today we use the sign of equality to indicate that
two different expressions denote the same thing. This is what Cantor will do
explicitly.

2.3. Cantor’s cardinal numbers

Cantor’s cardinal number or power M of the aggregate M is, as he says, a
“general concept.” This is as vague as “what all sets having the size of M
have in common.” However, Cantor has not yet defined having the same size.
He immediately starts groping towards a second approach to number, where
a number is a standard element of an equipollence class:

Since every single element m, if we abstract from its nature,
becomes a unit, M is a definite aggregate composed of units, and
this number has existence in our mind as an intellectual image
or projection of the given aggregate M .

We say that two aggregates M and N are equivalent, in
signs

M ∼ N or N ∼ M,

if it is possible to put them, by some law, in such a relation to one
another that to every element of each one of them corresponds
one and only one element of the other.

(Cantor’s symbol for equipollence, at least in Jourdain’s translation, is curvier
than the ∼ of TEX.) Cantor goes on to observe that “equivalence” (what we
have called equipollence, or having the same size) is indeed what we now call
an equivalence relation: it is symmetric (as above), reflexive, and transitive.
Moreover,
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Of fundamental importance is the theorem that two aggre-
gates M and N have the same cardinal number if, and only if,
they are equivalent: thus,

from M ∼ N we get M = N,

and
from M = N we get M ∼ N.

Thus the equivalence of aggregates forms the necessary and suf-
ficient condition for the equality of their cardinal numbers.

Here is where sameness and equality are explicitly confused. In any case,
Cantor derives his latter implication from the general equivalence

M ∼ M

and the transitivity of equivalence. The former implication might be said to
follow similarly from the implication

M ∼ N =⇒ M = N ;

but Cantor himself does not seem to suggest such an intermediate step. He
argues:

In fact, according to the above definition of power, the cardi-
nal number M remains unaltered if in the place of each of one or
many or even all elements m of M other things are substituted.
If, now, M ∼ N , there is a law of co-ordination by means of
which M and N are uniquely and reciprocally referred to one an-
other; and by it to the element m of M corresponds the element
n of N . Then we can imagine, in the place of every element m
of M , the corresponding element n of N substituted, and, in this
way, M transforms into N without alteration of cardinal number.
Consequently

M = N.

One may question the validity of this argument, just as one may question
some of Euclid’s arguments. We engage in such questioning in the next
subsection.
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2.4. Ambiguity of equality

In the fourth proposition of Book i of the Elements [22], Euclid proves what
today we call the “Side-Angle-Side” or SAS condition for congruence of tri-
angles. We may say that the proposition is not a theorem, but a postulate,
as it is for example in the Weeks–Adkins textbook that I used in high school
[60, page 61]. Nonetheless, Euclid gives a proof; but here he “applies” one
triangle to another, and this is not accounted for among his postulates. As
Fitzpatrick says in a note to his own translation, “The application of one
figure to another should be counted as an additional postulate” [26, page
11]. In that case though, Cantor would seem to need such a postulate; for in
proving

M ∼ N =⇒ M = N,

he seems to use the assumption M ∼ N in order to apply N to M , element
by element, so as to obtain M = N .
I believe I can understand Fitzpatrick’s inclination to give Euclid more pos-
tulates than he himself makes explicit. On the originally blank last page of
my copy of the Weeks–Adkins geometry text [60], I find a list, in my own
hand, of “Statements unmentioned but neccessary [sic]”:

• If A = B at one place and time, then A = B at any place and
time, provided A and B always represent the same things.

• Line AB is the same as line BA, provided each A and each
B represent the same points.

• If two people are to discuss geometry, they must have a
common language.

Such were my concerns in high school. Though our proofs in geometry class
were supposed to make every assumption explicit, I had evidently been trou-
bled to realize that we were not achieving this goal.
I do not think my list of tacit conventions in our text was the direct result of
a lecture by the teacher, though above the list I find something that I could
have copied from the blackboard: a table showing the converse, inverse, and
contrapositive of the statement “If A, then B.”
Although I have not been able to confirm this memory with textual evidence,
I seem to recall an exercise from geometry class that involved the “trisector”
of a line segment or angle. I refused to perform the exercise, since the concept
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of trisection had not been formally defined. I was not the only student
troubled by this exercise. The teacher ridiculed us, observing that it was
obvious what trisection meant. She was right, though I was incensed at the
time. Had not the whole purpose of the geometry course been to establish
that “obviousness” was not a sufficient criterion for mathematical truth?
It had; but I think our text itself had gone overboard with this idea. The
book lists “Algebraic Properties of Equality and Inequality” [60, page 41]. I
see that I crossed out “Properties” and wrote “Theorems” above. The first
of the properties or theorems is

If a = b and c = d, then a+ c = b+ d.

This is the “Addition Property of Equality.” If equality were identity, then
this property would be logically immediate. Not so the “Addition Property
of Inequality,” which is of different logical status, though this is not said:

If a > b and c > d, then a+ c > b+ d.

Subtraction, multiplication, and division properties of equality and inequality
are also given. As has been explained in the text, “The letters a, b, c, and d
are symbols for positive numbers”; and before that,

Statements of the form “a is equal to b” occur throughout algebra
and geometry. The symbols a, b refer to elements of some set and
the basic meaning of a = b is that a and b are names for the same
element . . . In our geometry, AB = CD means that line segment
AB and line segment CD have the same length, and ∠X = ∠Y
means that angle X and angle Y have the same measure. In each
case the equality is a statement that the same number gives the
measure of both geometric quantities involved.

If the “basic meaning” of equality is sameness, then the word “basic” is being
used in its slang sense of “approximate,” as in, “The proof is basically correct,
but has some small errors.” For as we have just seen, Weeks and Adkins go on
to tell us that in geometry, equality is not actually sameness, but sameness of
some property. Thus, with geometric objects, it does need to be made explicit
somehow that equality is preserved under addition. Recognizing this, Euclid
gives what is counted now as his second “common notion”:

If equals be added to equals, the wholes are equal.
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But in the Weeks–Adkins “Addition Property of Equality,” the letters stand
for numbers, and equality of these numbers is sameness. In this case, the
“Addition Property” and the other properties of equality should go without
saying. Indeed, my classmates and I were told this by a different teacher
in the following year, in a precalculus class, when we started proving things
from the axioms of R as an ordered field, and we asked the teacher why we
were not proving the “Addition Property” as a theorem.
Since Euclid introduces no symbolism for the length of a line segment, as
opposed to the segment itself, his notion of equality is unambiguous. It
is congruence. This is made explicit in the common notion that is now
numbered fifth, following J. L. Heiberg’s bracketing of two earlier common
notions in manuscripts:

Things congruent to one another are equal to one another.

Thomas L. Heath uses “coincide” for “congruent” [25]; but Heiberg’s Latin
is,

quae inter se congruunt, aequalia sunt.

The Greek verb is ἐϕαρμόζω, or ἐπί + ἁρμόζω, the root verb being the origin
of our “harmony.” To say that two line segments are equal is to say that one
can be picked up and placed on the other so that they “harmonize,” that
is, coincide. In Euclid’s Proposition i.4, it is assumed about given triangles
ΑΒΓ and ∆ΕΖ that sides ΑΒ and ΑΓ and their included angle are respectively
equal to ∆Ε and ∆Ζ and their included angle. By definition of equality, this
means ΑΒ can be placed on ∆Ε so that they coincide, and then the angles will
coincide, and then ΑΓ and ∆Ζ will coincide, so that the remaining features
of the triangle are respectively equal.
That is a proof. Or we can call it an “intuitive justification” for what is
“really” a postulate. But Cantor’s quoted argument for the implication

M ∼ N =⇒ M = N

does not even rise to this level. I think the argument fails at the start for
not observing more precisely that M is unchanged if distinct elements of M
are replaced with other distinct things. Despite the earlier description, M
cannot consist of “units” simply, without any way to distinguish between
different units. Cantor does not provide a way to distinguish.
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2.5. Euclid’s numbers

Euclid does not have Cantor’s problem in the Elements, even though the
definitions at the head of Book vii [23] may be vague:

Μονάς ἐστιν, καθ᾿ ἣν
ἕκαστον τῶν ὄντων ἓν λέγεται.

Ἀριθμὸς δὲ τὸ ἐκ μονάδων συγκείμενον πλῆθος.

Unity is that according to which
each entity is said to be one thing.

And a number is a multitude of unities.

I translate Euclid’s μονάς as “unity” here, although Heath uses “unit” [25].
In his “Mathematicall Preface” [17] to Billingsley’s 1570 translation of the
Elements, John Dee notes explicitly in the margin that he has created the
word “unit” precisely to translate Euclid’s μονάς. However, Billingsley uses
“unity” in his own translation [21]. The editors of the Oxford English Dic-
tionary [42] found the relevant passages of both Dee and Billingsley worth
quoting, in the articles “Unit” and “Unity” respectively.
An abstract noun does seem called for, in translating at least in the first in-
stance above of μονάς. I always thought it was strange for Heath to translate
Euclid as,

An unit is that by virtue of which each of the things that exist
is called one.

An alternative for “unit” or “unity” might be “oneness.” Euclid’s ἕν “one”
has neuter gender, but the feminine form of the adjective is μία, and both
forms (along with the masculine εἷς) have the root SEM. However, it is not
clear whether the M here relates these words to μονάς in the way that “one”
is related to “oneness.” How thoroughgoing is the analogy

{εἷς, μία, ἕν} : μονάς :: one : oneness?

Pierre Chantraine gives no indication of a connection between μία and μονάς
in the Dictionaire étymologique de la langue grecque [16]. On the other hand,
neither does he suggest a connection between εἷς, μία, ἕν and the prefix
συν-, which was originally ξυν-, and which appears as συμ- in συμμετρία.
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The American Heritage Dictionary [41] alludes to a presumed connection.
Here the entry syn- in the dictionary proper refers to sem-1 in the Appendix
of Indo-European Roots. This may be an error, since in the Appendix itself,
the modern “syn-” is found not under sem-1, but under ksun. However, both
sem-1 and ksun are referred to the same entry sem- in Pokorny’s Indoger-
manisches Etymologisches Wörterbuch. Perhaps an editor of the American
Heritage Dictionary came to think Pokorny too bold in tracing συν- and ἕν
unequivocally to a common root; but the editor failed to make all changes
needed to reflect this change of heart.
So there could be an etymological connection between μία and μονάς that
Chantraine failed to note. However, English does have the option of coining
the word “monad” as a translation of μονάς, and English has in fact done
this, as for example to render the philosophy of Leibniz. The American Her-
itage Dictionary traces “monad” to the Indo-European root men-4, meaning
“small, isolated.” This suggests that “oneness” is really not an etymologically
justifiable translation of μονάς. Benjamin Jowett uses “monad” in translat-
ing μονάς among the words of Socrates in Plato’s Phaedo [48, 105b–c, page
245]:

I mean that if any one asks you “what that is, of which the
inherence makes the body hot,” you will reply not heat (this is
what I call the safe and stupid answer), but fire, a far superior
answer . . . and instead of saying that oddness is the cause of odd
numbers, you will say that the monad is the cause of them . . .

Thus
hot : fire :: odd : monad.

The example of Jowett is quoted in the Oxford English Dictionary, precisely
to illustrate the English use of “monad.” The Loeb translation by Fowler of
the same passage [49, page 363] has “the number one” for Socrates’s μονάς,
but this is misleading, inasmuch as a monad is not a number of things, but
one thing. One is not a number.
It is possible that the definitions found in the Elements were not put there
by Euclid. As the diagrams of Euclid’s propositions indicate, the unities or
units or monads that make up Euclid’s numbers are not so abstract as to
be devoid of distinctions. Each of Euclid’s numbers can be conceived of as
a bounded straight line, each of its units being a different part of the whole.
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The number itself is then the set of these parts. Two different numbers can
be equal: Euclid makes this clear in Proposition vii.8, where he lays down
one number that is equal to another, though different from it. He does this
for the convenience of diagramming the argument, since the equal numbers
are going to be divided differently into parts.
At least one modern textbook may allow different numbers to be equal,
although this is not clear. Near the beginning of his Fundamental Concepts
of Algebra [39, pages 2–3], Bruce Meserve writes:

The numbers that primitive man first used in counting the
elements of a set of objects are called natural numbers or positive
integers. Technically, the positive integers are symbols. They
may be written as /, //, ///, . . . ; i, ii, iii, . . . ; 1, 2, 3, . . . ; or
in many other ways . . .

Comparisons between cardinal numbers must agree with the
corresponding comparisons between the sets of elements repre-
sented by the cardinal numbers. Accordingly, the cardinal num-
bers a, b associated with the sets A, B are equal (written a = b)
and the sets are said to be equivalent if there exists a one-to-one
correspondence between the elements of the two sets . . .

On page 1 of Meserve’s book, a footnote has explained that “new terms will
be italicized when they are defined or first identified.” However, the word
“equal” is not italicized in the passage above. It is not clear whether Meserve
would write such equations as

/// = 3, 3 = iii.

Still, ///, 3, and iii would seem to be different as symbols, and Meserve has
said that numbers are symbols. On the other hand, he does not say that ///
and 3 are themselves numbers, but only that a certain number or numbers
are written this way. Presently he does seem to treat equality as sameness
[39, page 4]:

Given any two finite sets A, B with cardinal numbers a, b, we
may compare the cardinal numbers using the subsets 1, 2, . . . ,
a and 1, 2, . . . , b of the set of positive integers. Let C be the set
1, 2, . . . , c of positive integers that are in both these subsets.
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If c = a and c ̸= b, then a < b. If c = a and c = b, then a = b.
If c = b and c ̸= a, then b < a. Thus we have proved that for
any two finite sets A, B with cardinal numbers a, b exactly one
of the relations a < b, a = b, a > b must hold.

It is not clear why a third letter c is needed here after a and b; but its
introduction is reminiscent of Euclid’s introduction of a new number that is
different from but equal to an earlier number. That which is denoted by c
is said to be common to the two indicated sets, and so it must not only be
equal to a or b; it must be a or b.
Meserve goes on to treat equality as a typical or generic equivalence relation
[39, pages 7, 8]:

Any relation having the three properties:
reflexive, a = a,
symmetric, a = b implies b = a,
transitive, a = b and b = c imply a = c,

is called an equivalence relation. The equivalence of sets and
therefore the equality of cardinal numbers as defined [above] can
be proved to be an equivalence relation as follows . . .

One can also prove under the usual definitions that “iden-
tity” (≡), “congruence” (∼=) of geometric figures, and “similar-
ity” (∼) of geometric figures are equivalence relations. Thus each
of the symbols =, ≡, ∼=, ∼ represents “equals” in a well-defined
mathematical sense. We now use the equivalence relation = in
a characterization of the positive integers by means of Peano’s
postulates . . .

It is not clear what Meserve means by identity symbolized by ≡. His book’s
word index features identity only in the phrases “identity element under an
operation,” “identity relation,” and “identity transformation.” Under “iden-
tity relation,” the corresponding pages are only 102 and 134, where it is
established that an equation of polynomials is an identity if it holds for all
values of the indeterminates; otherwise the equation is conditional. Meserve’s
index of symbols and notation features ≡ only for congruence of integers
with respect to a modulus. Gauss establishes this use of the symbol at the
beginning of the Disquisitiones Arithmeticae [27, page 1] and remarks in a
footnote,
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We have adopted this symbol because of the analogy between
equality and congruence. For the same reason Legendre . . . used
the same sign for equality and congruence. To avoid ambiguity
we have made a distinction.

Presumably the analogy between equality and congruence lies in their being
what we now call equivalence relations.
Meserve is sensitive to one foundational issue. Unlike what many people,
including Peano himself [44], seem to think, while induction establishes that
only one operation of addition can be defined recursively by the rules

a+ 1 = a+, a+ b+ = (a+ b)+,

induction does not obviously establish that such an operation exists at all.
Meserve knows this, at least through Landau [33], whom he cites after noting,

Peano’s postulates are not sufficient to define addition and mul-
tiplication explicitly, but they may be used to prove that each
of these operations may be defined in exactly one way to satisfy
certain conditions [39, page 10].

To prove that addition and multiplication can be defined, one does not need
the postulates that the operation x 7→ x+ of succession is injective and 1 is
not a successor. This is why modular arithmetic is possible. However, there
is no “modular exponentiation,” defined by

a1 = 1, ab+1 = ab · a,

where equality is congruence with respect to, say, 3. This shows that def-
inition by recursion requires more than proof by induction. See my article
“Induction and Recursion” [46].
We have seen that Euclid’s geometry provides a way to understand numbers
as sets of distinct units, which is something that Cantor and some of his
successors have failed to do.

2.6. Von Neumann’s ordinal numbers

Today, unlike Euclid (and for that matter Descartes), we may prefer not to
rely on geometry as a foundation of our mathematics. For example, geometry
may not well accommodate a straight line consisting of uncountably many
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units. In this case, for an alternative foundation, we can understand numbers
as von Neumann does.
Before reviewing the definition, we should note that, in addition to cardinal
numbers, Cantor defines ordinal numbers [15, §7, pages 111–2, & §12, page
137]:

Every ordered aggregate M has a definite ordinal type, or
more shortly a type, which we will denote by

M.

By this we understand the general concept which results from
M if we only abstract from the nature of the elements m, and
retain the order of precedence among them. Thus the ordinal
type M is itself an ordered aggregate whose elements are units
which have the same order of precedence amongst one another as
the corresponding elements of M , from which they are derived
by abstraction.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Among simply ordered aggregates well-ordered aggregates de-
serve a special place; their ordinal types, which we call ordinal
numbers, form the natural material for an exact definition of
the higher transfinite cardinal numbers or powers,—a definition
which is throughout conformable to that which was given us for
the least transfinite cardinal number Aleph-zero by the system
of all finite numbers ν (§6).

On the contrary, Cantor’s definitions are not exact. Von Neumann points
this out as follows [59].

The aim of the present paper is to give unequivocal and con-
crete form to Cantor’s notion of ordinal number.

Ordinarily, following Cantor’s procedure, we obtain this no-
tion by “abstracting” a common property from certain classes of
sets [15]. We wish to replace this somewhat vague procedure by
one that rests upon unequivocal set operations. The procedure
will be presented below in the language of naive set theory, but,
unlike Cantor’s procedure, it remains valid even in a “formalistic”
axiomatized set theory . . .
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What we really wish to do is to take as the basis of our con-
siderations the proposition: “Every ordinal is the type of the set
of all ordinals that precede it.” But, in order to avoid the vague
notion “type,” we express it in the form: “Every ordinal is the
set of ordinals that precede it.” This is not a proposition proved
about ordinals; rather, it would be a definition of them if transfi-
nite induction had already been established. According to it, we
have

0 = ∅,

1 = {0},
2 = {0, 1},
3 = {0, 1, 2},
. . . . . . . . . . . . ,
ω = {0, 1, 2, . . . },
ω+ 1 = {0, 1, 2, . . . ,ω},
. . . . . . . . . . . . . . . . . . . . .

I have simplified von Neumann’s equations by allowing numbers already de-
fined to be used in later definitions. Von Neumann writes out all of the
definitions here in terms of the empty set, which he denotes by O; and he de-
notes sets by (. . . ) rather than by {. . . }. The number five becomes a certain
set of five elements, written out in full as

(O, (O), (O, (O)), (O, (O), (O, (O))), (O, (O), (O, (O)), (O, (O), (O, (O)))),

or more simply as (0, 1, 2, 3, 4), or in our terms {0, 1, 2, 3, 4}.
Many mathematicians seem not to think of numbers as sets. When we need
a set with five elements, we use {1, 2, 3, 4, 5}. When we need a set with n
elements, we use {1, . . . , n}. We may however prefer a simpler notation for
this set. During the development of groups in his Algebra, Serge Lang writes
in two different places [34, pages 13, 30]:

Let Jn = {1, . . . , n}. Let Sn be the group of permutations of
Jn. We define a transposition to be a permutation τ such that
there exist two elements r ̸= s in Jn for which τ(r) = s, τ(s) = r,
and τ(k) = k for all k ̸= r, s . . .



114 On Commensurability and Symmetry

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let Sn be the group of permutations of a set with n elements.

This set may be taken to be the set of integers Jn = {1, . . . , n}.
Given any σ ∈ Sn, and any integer i, 1 ≦ i ≦ n, we may form the
orbit of i under the cyclic group generated by σ. Such an orbit
is called a cycle for σ . . .

This seems like a needless profusion of symbols. In another sense, Lang dis-
plays parsimony with symbols, or at least with words, allowing the expression

Jn = {1, . . . , n}

to serve both for the clause “Jn be equal to {1, . . . , n}” and for the noun
phrase “Jn, which is equal to {1, . . . , n}.” The inequation

r ̸= s

stands for the noun phrase “r and s, which are unequal”; strictly, one need
not say that they are unequal, since they have already been described as
“two”; one might say “two distinct elements” for emphasis. The equation

τ(r) = s

stands not for a noun, but for the declarative sentence “τ(r) is equal to s.”
I have known students to be confused by the ambiguous use of equations,
and Paul Halmos somewhere inveighs against it. Nonetheless, the prevalence
of ambiguity does show that there is a difference between expressing math-
ematics well and just doing good mathematics. We shall return to Lang’s
mathematics in the next section.
If one uses von Neumann’s definition, then n itself is an n-element set, and one
has no need for notation like Jn. One may well blanch at the thought of saying
“Let Sn be the group of permutations of n.” One may then introduce notation
like Lang’s Jn; but in that case, why not define Jn to mean {0, . . . , n − 1},
namely von Neumann’s n? Our theme is that numbers measure size; and the
beginning of size in general is not 1 but 0. When we measure a line with a
ruler, at one end of the line we place the point of the ruler that is marked 0.
See Figure 2.
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A B C D E

0 1 2 3 4 5 6

Acme Rulers
“We Start From Zero”

Figure 2: The measure of the set {A,B,C,D,E} is 5.

3. Groups and Symmetries

3.1. Symmetry as a concept

We suggested in the Introduction (Section 1) that groups measure symmetry
as numbers measure size. We can write out this slogan as a proportion:

numbers : size :: groups : symmetry.

However, for Euclid, the proportion of magnitudes that we may express as

A : B :: C : D

means A has the same ratio to B that C has to D. There are certain things
that we can do with a pair of magnitudes having a ratio: we can multiply each
magnitude individually and then compare the multiples, and we can subtract
the less magnitude from the greater. When by means of such activities, we
cannot find any difference between two pairs of magnitudes, this is what it
means for the four magnitudes to be in proportion. We generalize this idea
to allow proportions like

hand : mitten :: foot : sock.

Mittens and socks are knitted from yarn, and a hand fits into a mitten the
way a foot fits into a sock, without separation of the digits. But extracting
the group of symmetries of an object is somewhat different from counting
a set. If you want to know how many candies are in a jar, you can just
pull them out, one by one, saying the next number in the standard sequence
as you go. However, in order to compute Z × (Z ⋊ Z/2Z) as the symme-
try group of a certain pattern of tiles in Istanbul’s Rüstem Pasha Mosque
(see Figure 3), you should both know some theory and have some practice.
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Figure 3: Rüstem Pasha Mosque interior detail. Photos taken in 2013 by the author.

The upper semi-lattice of Turing degrees was studied for decades before the
late Barry Cooper found a nontrivial automorphism in the 1990s.
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As in the examples just given, the object whose symmetry is being measured
is usually not simply a set. It may best be considered, if only implicitly, as
an object in a so-called category. From one object to another in a category,
there may be homomorphisms, also called simply morphisms. These can be
composed, as if they were functions—which they usually are, although cate-
gory theory does not require them to be. Some morphisms may be invertible,
in which case they are isomorphisms. An invertible homomorphism from an
object to itself is an automorphism. The automorphisms of an object compose
a group, the group operation being composition. Then by the most general
definition, two objects, possibly in two different categories, have the same
symmetry if their automorphism groups are isomorphic to one another as
objects in the category of groups.

The objects of a concrete category have “underlying sets,” and the objects
themselves are “sets with structure”; a morphism from one object to another
is then indeed a function from the one underlying set to the other that
“preserves” this structure. Then two objects of (possibly different) concrete
categories have the same size if their underlying sets are isomorphic to one
another in the category of sets.

Is there now perhaps some lack of parallelism, some asymmetry, in the slogan,
“Numbers measure size, groups measure symmetry”? In the “categorical”
definition of sameness of symmetry, groups are mentioned; in the “categori-
cal” definition of sameness of size, not numbers but sets are mentioned. One
might say that it is sets that measure size; more precisely, the underlying set
of an object of a concrete category is the measure of the size of the object
itself.

In this case, one might ask whether extracting this underlying set is parallel
to extracting the automorphism group of an arbitrary category. Symbolically,
let an object A of a category have the automorphism group Aut(A); if the
category is concrete, let A have the underlying set Dom(A), the “domain” of
A.

Objects A and B have the same size if

Dom(A) ∼= Dom(B);

A and B have the same symmetry, if

Aut(A) ∼= Aut(B).
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The operation X 7→ Dom(X) somewhat corresponds to Cantor’s operation
X 7→ X defined above in §2.1 on page 97; but the new operation has the
advantage of a clear meaning.

If the slogan “Numbers measure size, groups measure symmetry” is to express
a thorough-going analogy, we should understand a number to be nothing
other than a pure set, that is, an object in the category of sets. The number
of an object in a concrete category would then be the underlying set of the
object. This usage of “number” would be compatible with Euclid’s usage,
though not with ours, since equipollent sets are not necessarily equal for us.

Today, under the Axiom of Choice, every equipollence class of sets contains
an ordinal number and therefore a least ordinal number, which can be defined
to be the cardinal number of every set in the class. This may temporarily
give us hope. However, there is no useful way to designate, within every
isomorphism class of automorphism groups, a particular element that shall
serve as the group of every object whose automorphism group belongs to
the class. Gödel’s universe of constructible sets is well-ordered, and so, if
one works there, then one has a way to select a representative from each
isomorphism class of groups; but this would seem not to be a useful way, for
present purposes, to select a representative.

It is however worth noting that every group G is isomorphic to the automor-
phism group of at least one object. This object can be the labelled directed
graph in which the vertices are the elements of G, and every ordered pair
(a, b) of these elements determines a directed edge from a to b, the arrow
being labelled by the element a−1b. If σ is an automorphism of the labelled
directed graph, then σ permutes the vertices in a way that respects the labels
on the edges. Thus the edge (aσ, bσ) must also be labelled with a−1b. Since
it was already labelled with (aσ)−1bσ, we conclude

aσa−1b = bσ.

In particular 1σb = bσ, and so σ is x 7→ gx, where g = 1σ. Conversely, for
any choice of g, the permutation x 7→ gx is an automorphism of the labelled
directed graph.

Concerning the slogan that numbers and groups measure size and symmetry
respectively, it would seem to be more accurate to say,

numbers measure size, isomorphism classes of groups measure symmetry;
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or
sets measure size, groups measure symmetry;

or even
sets have size, groups have symmetry.

3.2. Groups of symmetries

We looked at Lang’s Algebra in §2.6 for its ad hoc approach to selecting a
standard set of each finite size. We look again for what Lang may suggest
about groups as measures of symmetry.

Lang hints at the understanding of groups as automorphism groups. Right
after the abstract definition of a group as a monoid with inverses, he gives
several examples, although they are abstract as well:

• If a group and a set are given, then the set of maps from the set into
the group is itself a group.

• The set of permutations of a set is a group.
• The set of invertible linear maps of a vector space into itself is a group,

as is the set of invertible n× n matrices over a field.

This is at [34, I, §2, page 8]. The next “example” is:

The group of automorphisms. We recommend that the reader
now refer to §11, where the notion of a category is defined, and
where several examples are given. For any object A in a category,
its automorphisms form a group denoted by Aut(A). Permuta-
tions of a set and the linear automorphisms of a vector space are
merely examples of this more general structure.

We may understand Aut(A), or rather its isomorphism class, as the measure
of the symmetry of A. Lang however does not speak of symmetry as such.
Between the two instances quoted in our §2.6 where the notation Jn is used,
Lang observes [34, I, §5, p. 28]:

The symmetric group Sn operates transitively on {1, 2, . . . , n}.
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The term “symmetric group” here is not given any special typographical
treatment, although it represents the first use of the term “symmetric” in
the index (and the term “symmetry” is not in the index). Other terms are
made bold when Lang defines them.

According to the index in his own Algebra, Hungerford uses the term “sym-
metry” once, to refer to any of the eight symmetries of the square, defined as
an example [30, I.1, page 26]. In his philosophical book Mathematics: Form
and Function, Mac Lane defines a symmetry this way, as a rigid motion of a
figure (“a collection of points”) onto itself [38, I.6, pages 17 & 19].

Armstrong uses the term “symmetry” in this way too, but also more ab-
stractly. Again, he does not actually define the term: perhaps this would
not be in keeping with his informal treatment. After his opening slogan,
Armstrong says what he expects of his audience, which is basically that they
have some experience of undergraduate mathematics:

The first statement [“numbers measure size”] comes as no sur-
prise; after all, that is what numbers “are for”. The second
[“groups measure symmetry”] will be exploited here in an at-
tempt to introduce the vocabulary and some of the highlights of
elementary group theory.

A word about content and style seems appropriate. In this
volume, the emphasis is on examples throughout, with a weight-
ing towards the symmetry groups of solids and patterns. Almost
all the topics have been chosen so as to show groups in their
most natural role, acting on (or permuting) the members of a
set, whether it be the diagonals of a cube, the edges of a tree, or
even some collection of subgroups of the given group . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As prerequisites I assume a first course in linear algebra (in-
cluding matrix multiplication and the representation of linear
maps between Euclidean spaces by matrices, though not the ab-
stract theory of vector spaces) plus familiarity with the basic
properties of the real and complex numbers. It would seem a
pity to teach group theory without matrix groups available as a
rich source of examples, especially since matrices are so heavily
used in applications.
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Armstrong goes on to use the word “symmetry” as if it were a word like
“language”: it denotes a concept, but also an instance of the concept. When
we observe that we use language to express ourselves, we are referring to the
general concept of language; but we may also observe that English is one
language among many, such as Turkish or Russian or Greek.

The definitions in the Elements discussed in §2.5 use μονάς in this twofold
way: it is the concept of unity, and it is anything that has unity. Thanks to
John Dee, we now have two words for the two uses of μονάς: something with
unity is a unit.

Armstrong’s twofold use of “symmetry” is seen, even at the beginning of his
Chapter 1, “Symmetries of the Tetrahedron”:

How much symmetry has a tetrahedron? Consider a regular
tetrahedron T and, for simplicity, think only of rotational sym-
metry. Figure 1.1 [Figure 4] shows two axes. One, labelled L,
passes through a vertex of the tetrahedron and through the cen-
troid of the opposite face; the other, labelled M , is determined by
the midpoints of a pair of opposite edges. There are four axes like
L and two rotations about each of these, through 2π/3 and 4π/3,
which send the tetrahedron to itself. The sense of the rotations
is as shown [not in Figure 4]: looking along the axis from the

L

M

b

b
b

b

Figure 4: A recasting of Armstrong’s Figure 1.1.
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vertex in question the opposite face is rotated anticlockwise. Of
course, rotating through 2π/3 (or 4π/3) in the opposite sense has
the same effect on T as our rotation through 4π/3 (respectively
2π/3). As for axis M , all we can do is rotate through π, and
there are three axes of this kind. So far we have (4× 2)+ 3 = 11
symmetries. Throwing in the identity symmetry, which leaves T
fixed and is equivalent to a full rotation through 2π about any
of our axes, gives a total of twelve rotations.

Each of these twelve rotations is a symmetry of the tetrahedron. Presum-
ably twelve of them together constitute a measure of the symmetry of the
tetrahedron. However, Armstrong goes on to observe that this measure is
not simply the number twelve:

We seem to have answered our original question. There are
precisely twelve rotations, counting the identity, which move the
tetrahedron onto itself. But this is not the end of the story. A
flat hexagonal plate with equal sides also has twelve rotational
symmetries (Fig. 1.2), as does a right regular pyramid on a twelve
sided base (Fig. 1.3) [both figures omitted].

The respective groups of rotational symmetries of the three objects have
order twelve, but no two are isomorphic to one another, and therefore none
embeds in another.
The collection of isomorphism-classes of symmetry groups is thus only par-
tially ordered. It is not even a semi-lattice in either sense: finite subsets
need not have suprema or infima. Armstrong’s examples can show this; so
can simpler ones, as in Figure 5.

C6 S3

C2

OO >>~~~~~~~~~~~~~~~~~
C3

``@@@@@@@@@@@@@@@@@

OO

Figure 5: Isomorphism classes of groups are not a lattice.



David Pierce 123

The finite cyclic groups C2 and C3 embed both in C6 and the symmetric
group S3, but neither embedding can be nontrivially factorized, and neither
of the latter two groups embeds in the other: so {C2,C3} has no supremum;
{C6, S3}, no infimum. This lack of a lattice structure on the collection of
isomorphism classes of groups can be contrasted with the existence of a lattice
structure on the set of subgroups of a specific group. If we consider S6 as the
group of permutations of {0, 1, 2, 3, 4, 5}, we can define C6 as the subgroup
⟨(0 1 2 3 4 5)⟩. If we now make the definitions

C2 = ⟨(0 1)⟩, C3 = ⟨(0 1 2)⟩, S3 = ⟨(0 1), (0 1 2)⟩,

then

sup{C2,C3} = S3, inf{C6, S3} = ⟨ ⟩.

However, alternative definitions are possible:

C2 = ⟨(0 3)(1 4)(2 5)⟩,
C3 = ⟨(0 2 4)(1 3 5)⟩,
S3 = ⟨(0 2)(1 3), (0 2 4)(1 3 5)⟩,

and in this case

sup{C2,C3} = C6, inf{C6, S3} = C3.

3.3. Arithmetic as leading to set theory

In the form, “Every set can be well ordered,” the Axiom of Choice evidently
implies the comparability of any two sizes of sets. Hartogs showed the con-
verse in 1915 [35, page 161]. Indeed, for any set A, the set of ordinals that
do embed in A is itself an ordinal α, and this must not embed in A; if A
must therefore embed in α, then a well-ordering of A is induced.
Gödel proved the consistency of the Axiom of Choice with the Zermelo–
Fraenkel axioms of set theory. There is apparently no such consistency result
for the Axiom of Determinacy: that for all choices of subsets A of the interval
[0, 1], there is a winning strategy for one of the two players of the game in
which the players alternately select digits ek from the set {0, 1}, and the first
player wins if the sum

∑∞
k=1 ek/2

k is in A. One may find this axiom plausible;
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and yet it contradicts the Axiom of Choice. This is one reason not to accept
the Axiom of Choice as blithely as the (other) Zermelo–Fraenkel axioms.
Without Choice, but with the Axiom of Foundation, one can assign to each
set an ordinal rank. The class of all sets of a given rank is a set. One may
then define the size of a set A to be the set of sets of minimal rank that are
equipollent with A. I do not know anything about the partial ordering of
sizes in this sense: whether for example it can be required to be a lattice
without imposing the full Axiom of Choice.
When I have the opportunity to teach undergraduate set theory, I try to
emphasize several points about ordinal arithmetic:

1) that it is the natural generalization of the arithmetic of the finite ordi-
nals;

2) that Cantor normal forms are ordinals written in base ω, just as our
ordinary numbers are finite ordinals written in base ten;

3) that normal operations on the class of ordinals, such as

ξ 7→ α + ξ, ξ 7→ β · ξ, ξ 7→ γξ

(where β > 0 and γ > 1) are analogous to the continuous functions
studied in calculus.

It does seem harder to make the pedagogical case that group theory is a
natural generalization of school arithmetic. If one is going to make the case,
one may forget about symmetries and instead talk about modular arithmetic,
and Fermat’s theorem, and Euler’s phi-function. Matrix multiplication can
serve as an example of a noncommutative operation. Sooner or later though
one will have to talk about symmetries; and then one is off in a new world.
Perhaps this is what is signified by the analogy,

numbers : size :: groups : symmetry.

Groups are as different from numbers as the concept of symmetry is different
from size.

4. Symmetria

Symmetry then is a way of understanding a mathematical structure that is
more subtle than simply counting the number of its underlying individuals.
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Why is it called symmetry? Let us review the history of the relevant terms
once again.
Having been born to a Roman patrician family just after the 476 extinction
of the Western Roman Empire, Boethius coined the Latin adjective com-
mensurabilis for either of two numbers that are not relatively prime. In
the same book that gave us our sign of equality, Robert Recorde used (and
perhaps created) the English term “commensurable,” which had the meaning
given by Boethius to commensurabilis. For Recorde then, commensurable
numbers had a common measure that was a number of units, and not just
unity itself. Thirteen years later, in translating Euclid, Billingsley used the
term “commensurable” with Euclid’s meaning of σύμμετρος, namely, having
any common measure, even unity in the case of numbers.
The abstract noun “symmetry” also came into English in the sixteenth cen-
tury, but not with a technical mathematical sense. Like its Greek source,
συμμετρία, it referred to an interrelation of parts, and to their proportions,
as in architecture. The adjective “symmetric” seems to have taken two more
centuries to come into use, as does the crystallographic or more generally
geometric notion of symmetry with respect to a straight line, a point, or a
plane.
The Greek abstract noun συμμετρία is evidently the source of the English
noun. There would appear to be three historical senses of symmetry, which
I would term (1) geometric, (2) numerical, and (3) philosophical.
The geometrical sense of συμμετρία is Euclid’s, though it appears earlier in the
work called De Lineis Insecabilibus, which is attributed (with some doubt)
to Aristotle. In his translation of Euclid, Billingsley used “commensurable”
in the same geometric sense, which is the sense that the word continues to
have.
The numerical sense of συμμετρία is the negation of being relatively prime.
I do not find this sense attested in Greek; but Boethius used the loan-
translation commensurabilis with this sense. Writing before Billingsley, Recorde
used “incommensurable” with the sense of Boethius. Boethius interpreted
Nicomachus, though Nicomachus does not seem to have used συμμετρία with
a clear technical sense; at any rate, he did not give the word Euclid’s meaning.
By the philosophical sense of συμμετρία, I mean the sense of the word as
found in Plato and Aristotle. One could just as well call it the vulgar or
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popular sense. If any sense of the word gave us the modern mathematical
sense of symmetry, it is this one.

4.1. Geometrical symmetry

4.1.1. Euclid

The citations in the Greek–English Lexicon of Liddell and Scott [36] of the
adjective σύμμετρος, -ον do not strictly include the first of the definitions at
the head of Book x of Euclid’s Elements [24]:

Σύμμετρα μεγέθη λέγεται τὰ τῷ αὐτῷ μέτρῳ μετρούμενα,
ἀσύμμετρα δέ, ὧν μηδὲν ἐνδέχεται κοινὸν μέτρον γενέσθαι.

Magnitudes measured by the same measure
are called commensurable;

those that admit no common measure, incommensurable.

As John Dee coined “unit” in order to translate Euclid’s μονάς, so, using
the Latin con- for the Greek συν-, and the Latin mensura for the Greek
μέτρον, Dee or somebody else could have composed the English word “com-
mensurable,” precisely to translate Euclid’s σύμμετρος. The actual history
will turn out to be more complicated.

4.1.2. De Lineis Insecabilibus

The Lexicon gives Euclid’s meaning for the word σύμμετρος. It also quotes
the words of Euclid given above; but it does so in an earlier expression,
attributed to Aristotle, with the feminine gender of γραμμή “line,” instead
of the neuter gender of μέγεθος “magnitude.” (The masculine and feminine
of σύμμετρος are identical.) The lexicon entry reads:

commensurate with, of like measure or size with . . . : esp. of
Time, commensurate with, keeping even with . . . 2. in Mathe-
matics, having a common measure, σύμμετροι αἱ τῷ αὐτῷ μέτρῳ
μετρούμεναι (sc. γραμμαί) Arist. LI968b6; freq. denied of the re-
lation between the diagonal of a square and its side . . . μήκει οὐ
σύμμετροι τῇ ποδιαίᾳ not lineally commensurate with the one-foot
side, Pl. Tht. 147d, cf. 148b . . . II. in measure with, proportion-
able, exactly suitable . . .



David Pierce 127

Here “Arist. LI” is De Lineis Insecabilibus, an obscure work attributed to
Aristotle, but not with certainty, as Harold H. Joachim says in his Introduc-
tory Note [2]. His comments serve as a reminder of the difficulty of making
sense of ancient mathematics: it needs the knowledge, skills, and experience
of both the classicist and the mathematician:

The treatise Περὶ ἀτόμων γραμμῶν, as it is printed in Bekker’s
Text of Aristotle, is to a large extent unintelligible. But . . . Otto
Apelt, profiting by Hayduck’s labours and by a fresh collation of
the manuscripts, published a more satisfactory text . . .

In the following paraphrase, I have endeavoured to make a full
use of the work of Hayduck and Apelt, with a view to reproducing
the subtle and somewhat intricate thought of the author, whoever
he might have been . . . there are grounds for ascribing [the
treatise] to Theophrastus: whilst, for all we can tell, it may have
been . . . by Strato, or possibly some one otherwise unknown.
But the work . . . is interesting . . . Its value for the student of
the History of Mathematics is no doubt considerable: but my
own ignorance of this subject makes me hesitate to express an
opinion.

In Bekker’s edition, De Lineis Insecabilibus is five pages [1, pages 968–72].
The quotation in the LSJ Lexicon is drawn from the following account of a
specious argument:

Again, the being of ‘indivisible lines’ (it is maintained) follows
from the Mathematicians’ own statements. For if we accept their
definition of ‘commensurate’ lines as those which are measured
by the same unit of measurement, and if we suppose that all
commensurate lines actually are being measured, there will be
some actual length, by which all of them will be measured. And
this length must be indivisible. For if it is divisible, its parts—
since they are commensurate with the whole—will involve some
unit of measurement measuring both them and their whole. And
thus the original unit of measurement would turn out to be twice
one of its parts, viz. twice its half. But since this is impossible,
there must be an indivisible unit of measurement.

The argument may be the following, which is more or less what Joachim
suggests in his notes:
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1. Every line is commensurable, in the sense of having a common measure
with some other line.

2. Thus all lines are commensurable with one another.
3. In particular, all lines have a common measure.
4. A common measure of all lines must be indivisible.
5. Therefore there is an indivisible line.

The first step might then be symbolized as

∀x ∃y ∃z (z m x ∧ z m y), (7)

where a m b means a measures b. However, the first step may be even sim-
pler: every line is commensurable in the sense of being mensurable, that is,
measurable. This could then be an allusion to the “Archimedean” assump-
tion in Book v of Euclid’s Elements: of any two lines, some multiple of the
shorter exceeds the longer, so that the shorter “measures” the longer, at least
approximately. If we would make an approximate measurement of the longer
by the shorter, it might be said, this can only be out of conviction that an
exact measure is possible, in the sense that, when we apply to the two lines
the so-called Euclidean algorithm, found in Propositions vii.1 and 2 and x.2
and 3 of the Elements, the process terminates. This would give step 2 of the
proposed analysis:

∀x ∀y ∃z (z m x ∧ z m y). (8)
But then the third step is

∃z ∀x ∀y (z m x ∧ z m y), (9)

and this follows from neither (7) nor (8).
The confusion of the argument may be reflected in the superficial similarity of
sentences having different logical form, such as “These two angles are acute”
and “These two angles are equal.” The first abbreviates “These two angles
are each acute”; the second, “These two angles are equal to one another.”
Perhaps having recognized the potential ambiguity, Euclid often (though
not always) uses the qualification, “to one another,” when it fits. (See the
example of Elements v.9 in §4.3.1 below.)
Again at the head of Book x, Euclid does provide a way to to call an in-
dividual magnitude commensurable, once some line of reference has been
fixed. This reference line is to be called ῥητός, as is any other straight line
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on which the square is commensurable with the square on the reference line.
Each of these squares is also to be called ῥητός. Heath translates the adjec-
tive as “rational.” Etymologically speaking, the rational is what is capable
of speech; ῥητός refers originally to something spoken, as in our “rhetoric.”
In the present context, the irrational is ἄλογος, something without speech or
reason or, in Latin, ratio.
In De Lineis Insecabilibus, the refutation of the argument above is at 969b6;
but perhaps it is not very illuminating. Joachim renders it thus:

As to what they say about ‘commensurate lines’—that all
lines, because commensurate, are measured by one and the same
actual unit of measurement—this is sheer sophistry; nor is it
in the least in accordance with the mathematical assumption as
to commensurability. For the mathematicians do not make the
assumption in this form, nor is it of any use to them.

Moreover, it is actually inconsistent to postulate both that
every line becomes commensurate, and that there is a common
measure of all commensurate lines.

Joachim describes his work as a paraphrase, but he seems here to follow
Bekker’s Greek reasonably:

τὸ δ’ ἐπὶ τῶν συμμέτρων γραμμῶν, ὡς ὅτι αἱ πᾶσαι τῷ αὐτῷ τινὶ
καὶ ἑνὶ μετροῦνται, κομιδῇ σοϕιστικὸν καὶ ἥκιστα κατὰ τὴν ὑπόθεσιν
τὴν ἐν τοῖς μαθήμασιν· οὔτε γὰρ ὑποτίθενται οὕτως, οὔτε χρήσιμον
αὐτοῖς ἐστίν. ἅμα δὲ καὶ ἐναντίον πᾶσαν μὲν γραμμὴν σύμμετρον
γίνεσθαι, πασῶν δὲ τῶν συμμέτρων κοινὸν μέτρον εἶναι ἀξιοῦν.

In particular, the clause “that every line becomes commensurate” is indeed
singular in the Greek. However, we might try reading the whole last sentence
to mean that, even if any two lines are commensurate, it does not follow that
all lines have a common measure. At any rate, the proposed content would
seem to be true. We might understand magnitudes of a given kind (lines,
areas, solids) to compose an ordered commutative semigroup in which a less
magnitude can always be subtracted from a greater. Then two magnitudes
will be commensurate if the Euclidean algorithm can be applied effectively
to produce a common measure. What we call the positive rational numbers
compose such a structure, and any two of them are commensurate, but there
is no least positive rational number.
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4.1.3. Billingsley

The second oldest quotation in the Oxford English Dictionary [42] for “com-
mensurable” gives this word the meaning that it continues to have, which is
that of σύμμετρος in Euclid. The quotation is from Billingsley’s version of
the Elements, already mentioned above. The citation is:

1570 Billingsley Euclid x Def. i. 229 All numbers are com-
mensurable one to another.

The quotation is actually on the verso of folio 228—facing the recto of 229—of
Billingsley’s book [21], and it is part of a commentary, possibly by John Dee,
on the first definition in Book x, the definition itself having been translated,

Magnitudes commensurable are such, which one and the selfe
same measure doth measure.

As examples of σύμμετρος, in the Index of Greek Terms for Thomas’s two
volumes, Selections Illustrating the History of Greek Mathematics, in the
Loeb series [56, 57], there are cited instances of what, following Billingsley
or Dee, we should call commensurability or its negation:

1) Plato’s Theaetetus, on Theodorus’s theorem that the square roots of
nonsquare numbers of square feet from two to seventeen are incom-
mensurable with the foot;

2) Euclid’s formal definition of commensurability, as above; and
3) Archimedes’s theorem that commensurable magnitudes (τὰ σύμμετρα

μεγέθεα) balance at distances inversely proportional to their weights.
(By the Method of Exhaustion, the same is true for incommensurable
magnitudes.)

In Heath’s History of Greek Mathematics [28, 29], the Index of Greek Words
does not show συμμετρία or σύμμετρος at all. Neither does Heath’s English
index show “symmetry” or “commensurability.” In order to look up in Heath
the topics listed from Thomas’s index, one should check under the word
“irrational.”
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4.2. Numerical symmetry

4.2.1. Nicomachus

According to the Oxford English Dictionary, “commensurable” derives from
the Latin word commensurabilis, which Boethius coined or at least used;
the English word may also be derived from Nicole Oresme’s fourteenth-
century French version of Boethius’s word. The Larousse dictionnaire
d’étymologie recognizes Oresme’s 1361 derivation of the French commensu-
rable from the sixth-century Latin of “Boèce” [20, page 168].
Boethius’s Arithmetic is considered [13, page 212] an abridgment of Nico-
machus’s Introductio, and it was “the source of all arithmetic taught in the
schools for a thousand years” [31, page 201]. D’Ooge’s edition of Nicomachus
does not provide the Greek, except implicitly through an index of Greek
terms. There is one instance of συμμετρία and one of σύμμετρος. The in-
stance of the former is translated as follows [43, I.14.3, page 208]:

if when all the factors of a number are examined and added to-
gether in one sum, it proves upon investigation that the number’s
own factors exceed the number itself, this is called a superabun-
dant number, for it oversteps the symmetry which exists between
the perfect and its own parts.

Here “symmetry” seems to be a synonym for equality. In modern nota-
tion, a number n is superabundant (ὑπερτελὴς), perfect (τέλειος), or deficient
(ἐλλιπής), according as∑

d|n

d > 2n,
∑
d|n

d = 2n,
∑
d|n

d < 2n.

The number 28 is perfect because

{d : d | 28} = {1, 2, 4, 7, 14, 28},
28 = 14 + 7 + 4 + 2 + 1;

and this situation is one of “symmetry.” By contrast, 12 is superabundant
since 6 + 4 + 3 + 2 + 1 = 16 > 12.
The one indexed instance of σύμμετρος in Nicomachus [43, II.3.2, page 232]
could likewise be replaced with “equal.” First Nicomachus sets up the general
situation:
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Every multiple will stand at the head of as many superparticular
ratios corresponding in name with itself as it itself chances to
be removed from unity, and no more nor less under any circum-
stances.

What this means is that, for any number k, if for some n we take the nth
power kn, starting from there we obtain a continued proportion

kn : kn−1ℓ : kn−2ℓ2 : · · · : kℓn−1 : ℓn,

where ℓ = k + 1. In the proportion, there are n terms after the first, and
the ratio of each of these terms to the preceding is that of ℓ to k; this ratio
is superparticular because the excess of ℓ over k (namely unity) is a part of
k (that is, it measures k). The way n appears in two senses is apparently
considered “symmetric.” Nicomachus himself explains with an example, and
here, apparently, the adjective σύμμετρος is used:

The doubles, then, will produce sesquialters, the first one, the
second two, the third three, the fourth four, the fifth five, the
sixth six, and neither more nor less, but by every necessity when
the superparticulars that are generated attain the proper number,
that is, when their number agrees with the multiples that have
generated them, at that point by a divine device, as it were,
there is found the number which terminates them all because it
naturally is not divisible by that factor whereby the progression
of the superparticular ratios went on.

An illustration is provided as in Figure 6, where each column shows a con-
tinued proportion as above.

1 2 4 8 16 32 64
3 6 12 24 48 96

9 18 36 72 144
27 54 108 216

81 162 324
243 486

729

Figure 6: Superparticular ratios in Nicomachus.

It does not appear that Nicomachus uses συμμετρία as a technical term.
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4.2.2. Boethius

Boethius, however, in De Institutione Arithmetica [11, I.18, page 39, l. 14],
does use “commensurable” as a technical term for numbers that are not
prime to one another. In his example, by applying what we know as the Eu-
clidean Algorithm, he shows that viiii and xxviiii are prime to one another
(contra se primos); but xxi and viiii have the common measure iii, and
therefore Boethius calls them commensurabiles.

4.2.3. Recorde

Robert Recorde carried the usage of Boethius into English. He provides the
oldest quotation for “commensurable” in the Oxford English Dictionary:

1557 Recorde Whetst. Bj, .20. and .36. be commensurable,
seyng .4. is a common diuisor for theim bothe.

This from Recorde’s Whetstone of Witte [53], cited earlier as the origin of
our sign of equality. The book is formally a dialogue between the Scholar
and the Master. It starts with an account of numbers that seems based on
Euclid, though Recorde first mentions Euclid only to have the Scholar say,

Yet one thyng more I mu< ˇmaunˇ of you, why Euclide, and t˙ ot˙r
learned men, refuse to accompte fra˝ion‘ emonge< nom´r‘.

The Master responds as follows, alluding to the definition of number quoted
above from the Elements:

Bicause afl nom´r‘ ˘e consi<e of a multituˇ of unitie‘ : and euery
pro»r fra˝ion i‘ le&e t˙n an unitie, and t˙refore can not fra˝ion‘
exa˝ly ´ cafled nom´r‘ : but maie ´e cafled rat˙r fra˝ion‘ of nom´r‘.

My quotations extend from the verso of A.ii. to B.i., which is the folio number
cited in the Oxford English Dictionary. Presently the Master introduces the
term commensurable to mean not relatively prime, that is, having a common
measure other than unity; this is the meaning of Boethius. Billingsley will
use the term differently, thirteen years later, to mean having any common
measure at all, as noted above; however, the OED takes no note of the
difference. Recorde writes as follows; the OED quotation is here.
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S˜olar . . . W¯t saie you now of ño´r‘ relatiue?
Ma<er. Some tyme‘ t˙ir relation ¯th regarˇ to t˙ir «rte‘,

namely, w˙t˙r t˙se. 2. t¯t ´e so com«red, ¯ue any common «rte, t¯t
wifl diuiˇ t˙im ˆt˙. For if t˙i ¯ue so, t˙n are t˙i cafled nomberŊ
commensurable. A‘. 12. and. 21. ´e nomberŊ commensurable:
for. 3. wifl diuiˇ e˜e of t˙im.
Likewaie‘. 20. and. 36. ´ commensurable, seyng 4. i‘ a commõ

diuisor for t˙m ˆt˙. But if t˙i ¯ue no su˜e common diuisor, t˙n are
t˙i cafled incommensurable. A‘ 18 and 25. For 25 can ´e diuiˇd
by no nom´r more t¯n by. 5. And. 18. can not ´ diuiˇd by it.
In like maner. 36. and. 49. are incommensurable: For 49.

¯th no diuisor but. 7. And 7. can not diuiˇ. 36.
S˜olar. Dff you meane t˙n, t¯t incommensurable nomberŊ,

¯ue no c̃o«rison nor proportion toget˙r?
Ma<er. Naie, nothyng le&e. For any. 2. nom´r‘ maie ¯ue

com«rison et proportion toget˙r, alt„ugh t˙i ´ incommensurable.
A‘. 3. and. 4. are incommensurable, and yet are t˙i in a propor-
tion toget˙r: a‘ s¯fl a#eare anon.

(In the Master’s last lines, I have used et where the original shows an obscure
symbol; this symbol does not seem to be an ampersand, though it could be
the “Tironian et.”) Thus a number prime to another still has a ratio to the
other; or in Recorde’s terms, incommensurable numbers are still in propor-
tion. One might here want to guard against the confusion that might have
been seen in De Lineis Insecabilibus above: just because any two numbers
are in proportion, it does not follow that they are in the same proportion as
any other two numbers!
It might be convenient to have, as Recorde does, a single term for a pair of
numbers that are not prime to one another; but it would seem that “com-
mensurable” has not been used as such a term, at least not since Billingsley’s
rendition of Euclid.

4.3. Philosophical symmetry

4.3.1. Plato

In the Liddell–Scott Lexicon, the word συμμετρία is given two general mean-
ings:
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commensurability, opp. ἀσυμμετρία . . . II. symmetry, due pro-
portion, one of the characteristics of beauty and goodness . . .

We have considered the first meaning. The second seems not to be specifically
mathematical. A key citation is to Plato’s Philebus, here in Fowler’s transla-
tion in the Loeb edition [50, 64d–65a], with some parenthetical elaborations
by me:

Socrates. And it is quite easy to see the cause (αἰτία) which
makes any mixture (μῖξις), whatsoever either of the highest value
or none at all.

Protarchus. What do you mean?
Soc. Why, everybody knows that.
Pro. Knows what?
Soc. That any compound (σύγκρασις), however made, which

lacks measure and proportion (μέτρου καὶ τῆς συμμέτρου ϕύσεως
μὴ τυχοῦσα, more literally, “which does not happen to have mea-
sure and a commensurate nature”) must necessarily destroy its
components, and first of all itself; for it is in truth no compound
(κρᾶσις), but an uncompounded (ἄκρατος “unmixed, pure, per-
fect”) jumble (συμπεϕορημένη), and is always a misfortune to
those who possess it.

Pro. Perfectly true.
Soc. So now the power of the good has taken refuge in the

nature of the beautiful; for measure and proportion (μετριότης
καὶ συμμετρία) are everywhere identified with beauty and virtue.

Pro. Certainly.
Soc. We said that truth also was mingled with them in the

compound.
Pro. Certainly.
Soc. Then if we cannot catch the good with the aid of one

idea, let us run it down with three—beauty, proportion, and
truth, and let us say that these, considered as one, may more
properly than all other components of the mixture be regarded
as the cause, and that through the goodness of these the mixture
itself has been made good.

Pro. Quite right.

Thus Fowler translates συμμετρία as “proportion.” Jowett uses “symmetry”
[48, pages 637–8].
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Is there any connection to mathematics here? Presumably Plato knows the
technical meaning of συμμετρία as commensurability. Thus the words that
he puts in the mouth of Socrates suggest an architectural theory whereby
the sides of rectangles used in beautiful buildings ought to be in the ratios of
small whole numbers, just as musical harmonies are played on strings whose
lengths are in such ratios (assuming uniform density and tension).
It has been argued in modern times that the Greeks in fact used a different
design principle, based on what we call the golden ratio, but Euclid calls
extreme and mean ratio (ἄκρος καὶ μέσος λόγος) in Book vi of the Elements:
two magnitudes A and B are in this ratio, A being the greater, if they satisfy
the proportion

A+B : A :: A : B, (10)
where the one extreme, A + B, is the sum of the other extreme, B, and
the mean, A. In this case, A and B are incommensurable. One proof of
this theorem is that the Euclidean algorithm, applied to A and B, does not
terminate, since by “separation” of the ratios in (10) as in Book v of the
Elements,

B : A :: A−B : B.

Knorr argues [32, ch. II] that the first discovered instance of incommensu-
rability was that of the diagonal and side of a square; even to define the
extreme and mean ratio takes too much mathematical sophistication. How-
ever, using the theory of incommensurability alluded to in Plato’s dialogue
the Theaetetus [47, 147d–e, page 25], Theodorus could well have derived the
incommensurability of two magnitudes in extreme and mean ratio—in our
terms, the ratio of

√
5 + 1 to 2—from that of the legs of the right triangle

with sides that are, in our terms, 2,
√
5, and 3 [32, ch. VI]. In particular,

Plato would likely have known that the extreme and mean ratio is, in our
terms, “irrational.” He might then have questioned its use in architecture, if
it had been in use.
In any case, since we have seen that συμμετρία may be translated as “propor-
tion,” let us note that the word for a mathematical proportion is, for Euclid
at least (as in Book v of the Elements), ἀναλογία, while to be proportional
is to be ἀνάλογος, that is, “according to a [common] ratio.” In particular,
a proportion such as (10) is not an equation of ratios, but a “sameness” or
identification of ratios. Knorr (for example) overlooks the distinction when
he writes [32, page 15],
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(c) A ‘ratio’ (λόγος) is a comparison of homogeneous quan-
tities (i.e., numbers or magnitudes) in respect of size. A ‘pro-
portion’ (ἀναλογία) is an equality of two ratios. Four magnitudes
are ‘in proportion’ (ἀνάλογον) when the first and second have the
same ratio to each other that the third and fourth have to each
other . . .

We observed earlier that Euclid’s equality is congruence, which can be de-
tected by superposition. Equality is a possible property of two magnitudes.
The presence of a proportion among four magnitudes is more subtle to de-
tect. The magnitudes have ratios in pairs, but these ratios themselves are
not magnitudes, and they cannot be placed alongside or atop one another.
One does have such results as Proposition 9 of Book v of the Elements:

Τὰ πρὸς τὸ αὐτὸ τὸν αὐτὸν ἔχοντα λόγον ἴσα ἀλλήλοις ἐστίν· καὶ
πρὸς ἃ τὸ αὐτὸ τὸν αὐτὸν ἔχει λόγον, ἐκεῖνα ἴσα ἐστίν.

Those having to the same the same ratio are equal to one another;
also, those to which the same has the same ratio, they are equal.

Symbolically,

A : C :: B : C =⇒ A = B,

C : A :: C : B =⇒ A = B.

This can be used to establish the equality of figures, such as pyramids, that
are not congruent to one another, even part by part.
It is valuable to recognize the distinction between equality and sameness,
if only because it can help prevent an error in interpreting Euclid’s vague
definition of proportions of numbers in Book vii of the Elements. The error
has led modern mathematicians to think that the definition leads Euclid
to error. The modern error is to think that, according to Euclid, we can
establish a proportion

A : B :: C : D (11)
of numbers simply by observing that for some numbers E and F and multi-
pliers k and ℓ,

A = kE, B = ℓE, C = kF, D = ℓF.
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Here the pair (k, ℓ) is not uniquely determined by the “ratio” (whatever that
means) of A to B or of C to D. Since we are trying to establish sameness
of those two ratios, and sameness obviously has the property that we call
transitivity, while the proposed test for proportionality does not by itself
establish transitivity, the test must not be Euclid’s. We must first require
E to be the greatest common measure of A and B; and F , of C and D.
In other words, the proportion (11) means the Euclidean algorithm has the
same steps, whether applied to A and B or C and D. I spell this out in
another essay (in preparation).

4.3.2. Aristotle

In the Metaphysics [5, XIII.iii.10, 1078a35], Aristotle makes a general state-
ment about συμμετρία that is more or less in agreement with Plato’s Philebus:

τοῦ δὲ καλοῦ μέγιστα εἴδη τάξις καὶ συμμετρία καὶ τὸ ὡρισμένον,
ἃ μάλιστα δεικνύουσιν αἱ μαθηματικαὶ ἐπιστῆμαι.

The main species of beauty are orderly arrangement, propor-
tion, and definiteness; and these are especially manifested by the
mathematical sciences.

It is not clear here whether mathematics is symmetric, or only concerns sym-
metrical (and orderly, well-defined) things. Aristotle’s comment is preceeded
by:

And since goodness is distinct from beauty (for it is always in ac-
tions that goodness is present, whereas beauty is also in immov-
able things), they are in error who assert that the mathematical
sciences tell us nothing about beauty or goodness . . .

The passage does not suggest what symmetry is. Earlier in the Metaphysics
[6, IV.ii.18, 1004b11], Aristotle says:

ἐπεὶ ὥσπερ ἔστι καὶ ἀριθμοῦ ᾗ ἀριθμὸς ἴδια πάθη, οἷον περιττότης
ἀρτιότης, συμμετρία ἰσότης, ὑπεροχὴ ἔλλειψις, καὶ ταῦτα καὶ καθ’
αὑτοὺς καὶ πρὸς ἀλλήλους ὑπάρχει τοῖς ἀριθμοῖς . . . οὕτω καὶ
τῷ ὄντι ᾗ ὂν ἔστι τινὰ ἴδια, καὶ ταῦτ’ ἐστὶ περὶ ὧν τοῦ ϕιλοσόϕου
ἐπισκέψασθαι τὸ ἀληθές.
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For just as number qua number has its peculiar modifica-
tions, e.g. oddness and evenness, commensurability and equality,
excess and defect, and these things are inherent in numbers both
considered independently and in relation to other numbers . . .
so Being qua Being has certain peculiar modifications, and it is
about these that it is the philosopher’s function to discover the
truth.

Thus properties of numbers are given as examples, and they come in correl-
ative pairs:

περιττότης ἀρτιότης
συμμετρία ἰσότης

ὑπεροχὴ ἔλλειψις

oddness evenness
symmetry equality

excess defect

Every number is even or odd, but not both. Excess and defect could be a
number’s superabundance and deficiency of factors, as discussed by Nico-
machus. This leaves out perfection, unless this is implied by equality; but in
that case, what is symmetry? Possibly for Aristotle every pair of numbers is
either equal or, if not equal, then at least symmetric in the sense of having
a common measure (be this unity or a number of units).
Aristotle does recognize the possibility of “asymmetric” or incommensurable
pairs of mathematical objects [5, XI.iii.7 (1061a28)]:

And just as the mathematician makes a study of abstractions
(for in his investigations he first abstracts everything that is sen-
sible, such as weight and lightness, hardness and its contrary,
and also heat and cold and all other sensible contrarieties, leav-
ing only quantity and continuity—sometimes in one, sometimes
in two and sometimes in three dimensions—and their affections
qua quantitative and continuous, and does not study them with
respect to any other thing; and in some cases investigates the rela-
tive positions of things and the properties of these, and in others
their commensurability or incommensurability [τὰς συμμετρίας
καὶ ἀσυμμετρίας], and in others their ratios; yet nevertheless we
hold that there is one and the same science of all these things,
viz. geometry), so it is the same with regard to Being.
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Symmetry or commensurability in a more practical context arises in the
Nichomachean Ethics [8, V.5, 1133b16, pages 100–1]:

τὸ δὴ νόμισμα ὥσπερ μέτρον σύμμετρα ποιῆσαν ἰσάζει· οὔτε γὰρ
ἂν μὴ οὔσης ἀλλαγῆς κοινωνία ἦν, οὔτ’ ἀλλαγὴ ἰσότητος μὴ οὔσης,
οὔτ’ ἰσότης μὴ οὔσης συμμετρίας. τῇ μὲν οὖν ἀληθείᾳ ἀδύνατον
τὰ τοσοῦτον διαϕέροντα σύμμετρα γενέσθαι, πρὸς δὲ τὴν χρείαν
ἐνδέχεται ἱκανῶς. ἕν δή τι δεῖ εἶναι, τοῦτο δ’ ἐξ ὑποθέσεως· διὸ
νόμισμα καλεῖται· τοῦτο γὰρ πάντα ποιεῖ σύμμετρα· μετρεῖται γὰρ
πάντα νομίσματι.

Crisp translates thus [9, page 91]:

So money makes things commensurable as a measure does, and
equates them; for without exchange there would be no associa-
tion between people, without equality no exchange, and without
commensurability no equality. It is impossible that things differ-
ing to such a degree should become truly commensurable, but in
relation to demand they can become commensurable enough. So
there must be some one standard, and it must be on an agreed
basis—which is why money is called nomisma. Money makes all
things commensurable, since everything is measured by money.

The earlier Ross translation [3, page 1101–2] of the first part is,

Money, then, acting as a measure, makes goods commensurate
and equates them; for neither would there have been association if
there were not exchange, nor exchange if there were not equality,
nor equality if there were not commensurability.

The following might be more literal:

Money equalizes, as measure makes commensurable. For, there
being no exchange, there would be no association;—no exchange,
there being no equality; no equality, there being no commensu-
rability.
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In particular, it seems to me that “measure” can be understood as the subject
of “make commensurable,” while “money” is only the subject of “equalize.”
Evidently equating or equalizing is not making things the same. One might
translate the verb ἰσάζω here also as “balance.” Money makes it possible
to balance dissimilar goods, though as Aristotle says, the balance is never
perfect.
Symmetry in the sense of balance is mentioned in the Physics [4, VII.iii,
246b3]:

ἔτι δὲ καί ϕαμεν ἁπάσας εἶναι τὰς ἀρετὰς ἐν τῷ πρός τι πὼς ἔχειν.
τὰς μὲν γὰρ τοῦ σώματος, οἷον ὑγίειαν καὶ εὐεξίαν, ἐν κράσει καὶ
συμμετρίᾳ θερμῶν καὶ ψυχρῶν τίθεμεν, ἢ αὐτῶν πρὸς αὑτὰ τῶν
ἐντὸς ἢ πρὸς τὸ περιέχον.

Apostle [7, pages 139–40] renders this:
Further, we also speak of virtues as coming under things which
are such that they are somehow related to something. For we
take the virtues of the body, such as health and good physical
condition, to be mixtures and right proportions of hot and cold,
in relation either to one another or to the surroundings.

Apostol’s “right proportion”—what I would understand as balance—is just
Aristotle’s συμμετρία.
If a holy temple or a human face exhibits what we call bilateral symmetry,
it is balanced. This would seem to be the connection between the ancient
symmetria and modern mathematical symmetry. The connection is tenuous,
as we should expect, since there can be no strict rule, no practical formula,
for determining unambiguously what is beautiful or balanced or symmetrical
in life. Such a rule or formula might be proposed; but then one will be able
to follow its letter, while ignoring its spirit.
There is likewise no strict rule for what is good mathematics. This can be
understood as an implication of Gödel’s Incompleteness Theorem. Mathe-
matics cannot be the cranking out of all logical consequences of a given set of
axioms. Negative in form, this conclusion is positive in content: “mathemat-
ical thinking is, and must remain, essentially creative,” as Post said in 1944
[51, page 295], in a passage quoted by Soare in his 1987 recursion theory text
[55, page x]. There are complete axiomatizations of some interesting theories,
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such as the first-order theory of the ordered field of real numbers. A goal of
model theory is to identify axiomatizable complete theories. However, one
must still decide for oneself, and one must convince others, that this or that
theory is worth studying. This obligation is also liberation. Likewise must
one decide for oneself what is beautiful.
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