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Abstract

We provide elementary combinatorial proofs of several Fibonacci and Lucas num-

ber identities left open in the book Proofs That Really Count [1], and generalize

these to Gibonacci sequences Gn that satisfy the Fibonacci recurrence, but with

arbitrary real initial conditions. We offer several new identities as well. Among

these, we prove
∑

k≥0

(

n
k

)

G2k = 5nG2n and
∑

k≥0

(

n
k

)

Gqk(Fq−2)
n−k = (Fq)

nG2n.

In the book Proofs that Really Count [1], the authors use combinatorial arguments to

prove many identities involving Fibonacci numbers, Lucas numbers, and their generaliza-

tions. Among these, they derive 91 of the 118 identities mentioned in Vajda’s book [2],

leaving 27 identities unaccounted. Eight of these identities, presented later in this paper,

have such a similar appearance, the authors remark (on page 144) that “one good idea

might solve them all.” In this paper, we provide elegant combinatorial proofs of these

Fibonacci and Lucas identities along with generalizations to arbitrary initial conditions.

Before examining these new identities, we warm up with the following well known

identity, which will allow us to define terminology and illustrate our approach.

Identity 1. For n ≥ 0,
∑

k≥0

(

n

k

)

Fk = F2n,

Here, the Fibonacci numbers Fn have initial conditions F0 = 0, F1 = 1, and this iden-

tity has an elementary algebraic proof (using Binet’s formula and the binomial theorem),

but it also has a completely transparent proof using the combinatorially defined Fibonacci

number fn = Fn+1.

It is easy to show (as in [1]) that fn counts the ways to tile a one-dimensional board of

length n using squares of length one and dominoes of length two. We refer to such tilings
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as n-tilings and express these tilings using the notation d for domino and s for square.

For example, the 9-tiling in Figure 1 can be represented as dsddss or dsd2s2.

Figure 1: The 9-tiling dsd2s2

With this in mind, we can now prove Identity 1 rewritten as

Identity 1. For n ≥ 0,
∑

k≥0

(

n

k

)

fk−1 = f2n−1.

Proof: Let S denote the set of (2n − 1)-tilings. The size of S is f2n−1, which is counted

by the right side of Identity 1. The left side of the identity counts the same set S by

considering the number of square tiles among the first n tiles. (Note that any tiling of

length 2n−1 must have at least n tiles.) To create a (2n−1)-tiling with k squares among

the first n tiles, we first choose which of the first n tiles are squares, which can be done
(

n

k

)

ways. These n tiles have a length of k + 2(n − k) = 2n − k. We extend this to

a (2n − 1)-tiling by appending a (k − 1)-tiling which can be created fk−1 ways. Hence,

there are
(

n

k

)

fk−1 tilings with k squares among the first n tiles. Altogether, the number

of (2n − 1)-tilings is
∑

k≥0

(

n

k

)

fk−1 as desired.

With this logic in mind, we can combinatorially prove similar, more complicated Fi-

bonacci identities. For combinatorial convenience, we state these using fn notation. The

next two identities were suggested to us by Benoit Cloitre.

Identity 2. For n ≥ 0,
∑

k≥0

(

n

k

)

f3k−1 = 2nf2n−1.

Proof: Like before, we let S be the set of (2n − 1)-tilings, but here we assign a color

to each of the first n tiles, white or black. Clearly, S has size 2nf2n−1, the right side of

Identity 2.

On the left side of the identity, we generate elements of S by first choosing n − k of

the first n tiles to be white dominoes, which can be done
(

n

k

)

ways, and then somehow

using a (3k − 1)-tiling to determine the rest of the (2n − 1)-tiling.

To do this mapping, we let X be an arbitrary (uncolored) (3k − 1)-tiling. Using X,

we determine the rest of the (2n − 1)-tiling (where the first k tiles will be white squares,

black squares, or black dominoes) as follows: identify the first k blocks of X, where a

block has length two if it is ss or d and has length three if it is sd. For example, when
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k = 4, the first four blocks of the 11-tiling ssdsddss are ss, d, sd, d. The rest of the tiling

is called the tail of X (which would be ss in our example). Notice that a (3k − 1)-tiling

will always have at least k blocks, and the tail could be empty.

If we label these blocks in order from 1 to k, then these k blocks will be mapped to

the k colored tiles that are not white dominoes determined by the
(

n

k

)

term. Specifically,

we map each “2-block” to a colored square and each “3-block” to a colored domino as in

Figure 2.

Figure 2: 2,3 block mappings. Blocks of size two and three are mapped to colored squares
and black dominoes respectively.

The tail of X is simply mapped “as is,” representing the uncolored portion of the

(2n − 1)-tiling. For example, when n = 6 and k = 4, our 11-tiling ssdsddss would first

be mapped to the colored tiling f(X), as in Figure 3.

Figure 3: With k = 4, these 3k − 1 tiles generate the white squares, black squares and
black dominoes, along with the uncolored tail in S.

Next, to complete the (2n−1)-tiling, we insert the white dominoes in their prescribed

positions. For example, if our white dominoes were chosen to be tiles 1, 4, and 5, then

our (2n − 1)-tiling (with k = 4, n − k = 3, n = 7) would look like the tiling in Figure 4.
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Figure 4: The (2n− 1)-tiling is completed by inserting white dominoes among the first n

tiles. Here the white dominoes are the first, fourth, and fifth tiles of S.

Notice that the length of every block shrinks by one when it is mapped to a colored

tile, so if X has length 3k − 1, then X will be mapped to a tiling f(X) of length 2k − 1.

Combined with the n − k white dominoes, whose locations we know, we achieve a tiling

of length (2k − 1) + 2(n − k) = 2n − 1, as desired. This mapping can be easily reversed

by selecting an element of S, noting the position of the white dominoes and then turning

the remaining k colored tiles into blocks to create X.

Identity 3. For n ≥ 0,
∑

k≥0

(

n

k

)

f4k−1 = 3nf2n−1.

This identity can be combinatorially proved using the method of Identity 2. The result

will then suggest a generalized identity.

Proof: Like before, we define S to be the set of (2n− 1)-tilings, but now each of the first

n tiles is colored one of three colors, white, gray, and black. The right side of Identity 2

counts S, by definition.

Again, on the left we choose which n − k of the first n tiles will be white dominoes.

Then using X, an uncolored (4k − 1)-tiling, we generate the rest of the (2n − 1)-tiling.

Reading X from left to right, we identify the first k blocks of length three or four. A

block has length three, unless its of the form ssd or dd, in which case it has length four.

These k blocks will determine the colored tiles: each 3-block becomes a colored square

and each 4-block becomes a colored (non-white) domino. See Figure 5.

The rest of X, the tail, is mapped “as is,” representing the uncolored portion of the

(2n−1)-tiling. For example, suppose k = 5, and suppose our (4k−1)-tiling is the 19-tiling

dssdddssssdsd. Our first five blocks would be ds, sd, dd, sss and sd and our tail would

be sd.

In this case, every block shrinks by two when it is mapped to a colored tile, so if X

has length 4k − 1, then X will be mapped to a tiling of f(X) of length 2k − 1. Again,

combined with the n − k white dominoes, whose locations we know, we achieve a tiling

of length (2k − 1) + 2(n − k) = 2n − 1, as desired. This mapping can be easily reversed.

Given an element of S, note the position of the white dominoes, then turn the k colored

tiles into k blocks to create X.
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Figure 5: 3,4 block mappings

Upon further investigation of the construction used to prove Identities 1 and 2, we

reach the following generalized identity.

Identity 4. For n ≥ 1, q ≥ 3

∑

k≥0

(

n

k

)

fqk−1(fq−3)
n−k = (fq−1)

nf2n−1.

Proof: We still define S like before: S is the set of (2n− 1)-tilings where each of the first

n tiles is colored one of fq−1 colors, which we call colors 1 through fq−1. Clearly S is

counted by the right side of the identity.

To interpret the left side, imagine that colors 1 through fq−3 are light colors, and the

remaining fq−1 − fq−3 = fq−2 colors are dark. First, choose which n − k of the first n

tiles will be light dominoes, and then assign them a color. This can be done
(

n

k

)

(fq−3)
n−k

ways. Next using an uncolored (qk − 1)-tiling X, we determine the rest of the tiling by

identifying the first k blocks of size q − 1 or q, along with its tail.

We create our blocks as follows. Try to form blocks of size q − 1, but if our string is

a block of size q − 2 followed by a domino, we instead create a block of size q (there are

fq−2 such blocks). Each block of size q − 1 (there are fq−1 blocks of this size) is mapped

in 1-1 fashion to create one of the fq−1 colored squares. Each block of size q is mapped

in 1-1 fashion to one of the fq−2 dark dominoes. Since each of the k blocks is mapped to

an object of size q − 2 smaller, then X is converted (along with its tail) to an object of

size (qk − 1) − (q − 2)k = 2k − 1. Thus, along with the n − k light dominoes chosen at

the beginning, the total length is 2(n − k) + (2k − 1) = 2n − 1, as desired.

Notice that setting q = 3 and 4 results in Identities 2 and 3, respectively. In fact,
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Identity 3 is true for q ≥ 0, but when q = 0 or 2, the identity is trivial, since f−1 = 0.

When q = 1, since f−2 = 1, Identity 3 and its proof reduces to Identity 0.

This identity can be easily “extended” to shifted Fibonacci sequences. If we let S

count colored tilings of length 2n−1+p, where p ≥ 0, but still only color the first n tiles,

then the same argument works exactly as before, but now we simply extend the length of

X by p cells, all of which will appear in the tail. Thus, without any extra work, we get

Identity 5. For n ≥ 1, q ≥ 0, p ≥ 0

∑

k≥0

(

n

k

)

fqk−1+p(fq−3)
n−k = (fq−1)

nf2n−1+p.

Finally, we can generalize this identity to the so called Gibonacci numbers Gn, defined

by the recurrence

Gn = Gn−1 + Gn−2, for n ≥ 2

where G0 and G1 are arbitrary real numbers. In [1], it is shown that Gn counts the total

weight of all n-tilings, where a tiling that ends in a domino has weight G0 and a tiling

that ends in a square has weight G1. In all of our previous arguments, the last tile always

occurs in the tail, and so our bijection is “weight preserving.” Therefore, we have, after

shifting the index by p,

Identity 6. For n ≥ 1, q ≥ 0, p ≥ 1,

∑

k≥0

(

n

k

)

Gqk+p(fq−3)
n−k = (fq−1)

nG2n+p.

In fact, since a shifted Gibonacci sequence is simply another Gibonacci sequence with

different initial conditions, Identity 6 is true even when p ≤ 0. Hence, setting p = 0, the

following corollary is just as strong as Identity 6.

Corollary 7. For n ≥ 1, q ≥ 0,

∑

k≥0

(

n

k

)

Gqk(fq−3)
n−k = (fq−1)

nG2n

or, equivalently, using the classical Fibonacci numbers Fj+1 = fj,

∑

k≥0

(

n

k

)

Gqk(Fq−2)
n−k = (Fq)

nG2n.

With the tools we have used to perform the previous bijections, we can now examine

the first eight “unaccounted” Vajda identites, which we label as V69 through V76. (Ac-
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tually, V69 was recently proved by Zeilberger [3] by counting walks on a graph, but we

shall take a different approach.) The first identity looks strikingly similar to Identity 1:

V69 For n ≥ 0,
∑

k≥0

(

2n

k

)

f2k = 5nf2n.

Proof: We will approach this problem in a familiar fashion. We define S to be the set of

2n-tilings where the first n tiles are each assigned one of five colors. The number of such

tilings is clearly 5nf2n, which is the right side of our identity.

We now define T to be the set of 4n-tilings with the feature that the first 2n tiles have

2 different colors for dominoes, white and black. (We shall denote white dominoes with

w, black dominoes with b, and squares with s.) The natural way to construct objects in

T is to first choose, for some 0 ≤ k ≤ 2n, 2n−k of the first 2n tiles to be black dominoes,

which can be done
(

2n

k

)

ways, and to fill the remainder with an uncolored (i.e., all white

squares and dominoes) 2k-tiling. (Note that 2(2n − k) + 2k = 4n.) Summing over all

possible values of k, gives us the size of T , as given by the left side of our identity. It

remains to find a bijection between T and S.

Let X be a 4n-tiling from T . We denote the first 2n tiles as the colored portion of X,

and the rest of the tiling is called the tail of X. Notice that the length of the tail is equal

to the number of squares among the first 2n tiles of X. We will use the first n pairs (and

some of the first few tiles in the tail) to determine the n colored tiles of the 2n-tiling of

S. The rest of the tail will be mapped “as is.” More precisely, pairs of length 3 will map

to colored squares and pairs of length 4 will map to colored dominoes. In particular, we

generate all colored tiles with colors 1 through 4 as in Figure 6.

Figure 6: Blocks of length three and four are respectively mapped to squares and dominoes
using colors 1 through 4.

What about the s2 pair (consecutive squares)? These will be used to generate a tile of

color 5, but should it be a square or a domino? Before we answer that, let’s first illustrate

our mapping when we have no s2 pairs. For n = 3, in the 12-tiling in Figure 7, we have

2n − k = 3 black dominoes among the first six tiles.
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Figure 7: A mapping from T to S with no ss blocks. The output will have no tiles of
color 5.

We deal with the s2 pairs as follows. Recall that the length of the tail is equal to

the number of squares among the first 2n tiles. Hence if our first 2n tiles contain m s2

blocks, then the length of the tail must be at least 2m, so the tail has at least m tiles.

Hence for the first s2 pair we encounter, we look at the first tile of the tail. If that tile

is a square, then we extend our s2 block to an s3 block (of length three) and map it to a

square of color 5. If that tile is a domino (necessarily white, since it belongs in the tail),

then we extend s2 to s2w (which has length 4) and map it to a domino of color 5. This

is illustrated in Figure 8.

Figure 8: For the i-th s2 block, we let the i-th tile of the tail, tile 2n+ i, determine which
type of color 5 tile to generate.

In general, if our tiling has j blocks of type s2, then for each 1 ≤ i ≤ j, the i-th s2

block is extended to s3 or s2w, depending on the i-th tile of the tail (tile 2n + i). The

remainder of our tail, beginning with tile 2n + j + 1, will be mapped as is. Note that

every block has length three or four and is mapped to a colored tile of length one or two,

respectively. Hence the colored tiling will have length 4n − 2n = 2n.

For example, suppose n = 3 and we have the 12-tiling ssbwsssws. (See Figure 9.)

The 3 tiling pairs would be ss, bw, and ss. For the first ss, we take the first tile in the

tail, s, and append it. Likewise, for the second ss, we take the second tile in the tail,

w, and append it. As a result, we would have the tiling blocks sss, bw, and ssw with a

remainder of s. This would map, as in Figure 9, as follows:
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Figure 9: A mapping from T to S that uses ss blocks will generate tiles of color 5.

This process can be easily reversed. Simply map each colored tile in the 2n board to

its corresponding tiling pair, noting that the tiles of color 5 map to sss and ssw, where

the third tile is part of the tail. Finally, the uncolored portion becomes the remainder of

the tail to complete the 4n board.

The mapping used in Identity V69 can also be applied to Fibonacci sequences that

have been shifted by p. This can easily be incorporated into the above bijection: by

adding p we simply have a longer tail, the portion of the tiling which is simply appended

during the mapping. That is, we instantly have

Corollary V69a For n ≥ 0,

∑

k≥0

(

2n

k

)

f2k+p = 5nf2n+p.

Additionally, by giving the last tile of the tail a weight, we can generalize Identity V69

to apply to any Gibonacci sequence since the tail is simply appended during the mapping.

The bijection is weight-preserving since the weighted tile will not be involved in any tiling

pair or colored tile. This gives us the generalized identity

V69b For n ≥ 0, p ≥ 0
∑

k≥0

(

2n

k

)

G2k+p = 5nG2n+p,

and since shifting a Gibonacci sequence by p simply produces a new Gibonacci sequence,

Identity V69b is true even when p < 0. Thus it is more elegant, and just as general, to

say

the electronic journal of combinatorics 15 (2008), #R34 9



V69c For n ≥ 0,
∑

k≥0

(

2n

k

)

G2k = 5nG2n.

Identity V71 comes as an immediate corollary to V69c when Gn = Ln.

V71 For n ≥ 0,
∑

k≥0

(

2n

k

)

L2k = 5nL2n.

The next two Vajda identities

V70 For n ≥ 0,
∑

k≥0

(

2n + 1

k

)

F2k = 5nL2n+1

and

V72 For n ≥ 0,
∑

k≥0

(

2n + 1

k

)

L2k = 5n+1F2n+1

are corollaries of the following Gibonacci identity:

V70a For n ≥ 0,
∑

k≥0

(

2n + 1

k

)

G2k = 5n(G2n + G2n+2).

Proof:

∑

k≥0

(

2n + 1

k

)

G2k =
∑

k≥0

(

2n

k

)

G2k +
∑

k≥0

(

2n

k − 1

)

G2k

=
∑

k≥0

(

2n

k

)

G2k +
∑

j≥0

(

2n

j

)

G2j+2

= 5n(G2n + G2n+2),

where the last equality follows by applying V69c and V69b (with p = 2).

The algebraic argument above can be “combinatorialized” by mapping a board of

length 4n + 2 (where the first 2n + 1 tiles may use black or white dominoes) to a colored

tiling of length 2n or 2n + 2, by considering tile 2n + 1. If that tile is a black domino, we

delete it, and create the colored tiling of length 2n as before. If that tile is white, we just

make it the first tile of the tail and generate a (2n + 2)-tiling with n colored tiles.

Identities V70 and V72 now follow by setting G = F and G = L, respectively, along

with the identities F2n + F2n+2 = L2n+1 and L2n + L2n+2 = 5F2n+1 (which also have
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elementary combinatorial proofs, given in [1]).

The remaining four Vajda identities are given below.

V73 For n ≥ 1,
∑

k≥0

(

2n

k

)

F 2
k = 5n−1L2n.

V74 For n ≥ 0,
∑

k≥0

(

2n + 1

k

)

F 2
k = 5nF2n+1.

V75 For n ≥ 0,
∑

k≥0

(

2n

k

)

L2
k = 5nL2n.

V76 For n ≥ 0,
∑

k≥0

(

2n + 1

k

)

L2
k = 5n+1F2n+1.

Each of these identities can be proved (and generalized) using the mapping developed

for V69.

We begin by proving a variation of Identity V74, using the combinatorially convenient

quantity fk = Fk+1.

V74a For n ≥ 0,
∑

k≥0

(

2n + 1

k

)

f 2
k = 5nf2n+2.

Proof: Our strategy is to combinatorially prove

∑

k≥0

(

2n + 1

k

)

f 2
k =

∑

k≥0

(

2n

k

)

f2k+2,

then from the mapping of Identity V69a, we immediately obtain 5nf2n+2.

As in the proof of V69, the set of objects on the right, which we denote by S, are

(4n + 2)-tilings that allow black dominoes among the first 2n tiles. The set of objects on

the left, denoted by T , count (4n + 2)-tilings that allow black dominoes (say 2n + 1 − k

of them) among the first 2n + 1 tiles, but the remaining white tiles (2k of them) must

form a tiling that is breakable in the middle (since a 2k-tiling that is breakable at cell k

can be created f 2
k ways). Let A be a tiling from T . If tile 2n + 1 is white, then A also

belongs to S, and we map A to itself. If tile 2n + 1 is a black domino, then we map it to

an element of S by moving the black domino to the middle of the breakable white tiling,

then changing its color to white. (If the white tiling had length 2k, then it was breakable

at k. But after the move, it has length 2k + 2, but is not breakable at k + 1.) This is a

bijection from T to S, as desired.
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This argument can be “extended” (by considering tilings of length 4n + 2 + 2p that

end with a weighted tile that allow black dominoes among the first 2n or 2n + 1 tiles) to

show that for p ≥ −1,

∑

k≥0

(

2n + 1

k

)

fk+pGk+p =
∑

k≥0

(

2n

k

)

G2k+2p+2,

and therefore by Identity V69b,

∑

k≥0

(

2n + 1

k

)

fk+pGk+p = 5nG2n+2p+2.

Identity V74 now follows immediately by letting p = −1 and G = f .

Another way to write this identity, after replacing n with n − 1 is

∑

k≥0

(

2n − 1

k

)

fk+pGk+p = 5n−1G2n+2p

or more elegantly as

V74b For n ≥ 0,
∑

k≥0

(

2n − 1

k

)

fk+pGk = 5n−1G2n+p.

We may now derive V73 by first showing the more general identity

V73a For n ≥ 0,
∑

k≥0

(

2n

k

)

fk+pGk = 5n−1(G2n+p + G2n+p+2).

Proof: Our proof is a simple algebraic manipulation of Identity V74b, but the argument

could easily be made combinatorial by considering tile 2n.

∑

k≥0

(

2n

k

)

fk+pGk =
∑

k≥0

(

2n − 1

k

)

fk+pGk +
∑

k≥0

(

2n − 1

k − 1

)

fk+pGk

=
∑

k≥0

(

2n − 1

k

)

fk+pGk +
∑

j≥0

(

2n − 1

j

)

fj+(p+1)Hj, where Hj = Gj+1

= 5n−1G2n+p + 5n−1H2n+p+1

= 5n−1(G2n+p + G2n+p+2).

Identity V73 now follows by setting p = −1, G = F , and using F2n−1 + F2n+1 = L2n.

Also, by setting p = −1, G = L and using L2n−1 + L2n+1 = 5F2n, we get the identity
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V73b For n ≥ 0,
∑

k≥0

(

2n

k

)

FkLk = 5nF2n.

We now generalize Identities V75 and V76 using the identity

LkGk = G2k + (−1)kG0,

which has a simple combinatorial proof (given as Identity 45 in [1], page 28). Combining

this with Identity V69c immediately produces

V75a
∑

k≥0

(

2n

k

)

LkGk = 5nG2n.

Setting G = L gives us Identity V75, and setting G = F gives us Identity V73b again.

Likewise, by applying Identity V70a, we have

V76a
∑

k≥0

(

2n + 1

k

)

LkGk = 5n(G2n + G2n+2),

which reduces to Identity V76 when G = L.

As this paper was being prepared, Alex Eustis combinatorially proved and generalized

the 100th uncounted Vajda Identity (V106), the continued fraction identity:

F(t+1)m

Ftm

= Lm −
(−1)m

Lm −
(−1)m

Lm −
(−1)m

. . . − (−1)m

Lm

,

where the number Lm appears t times. But the details of that will have to be continued

at another time.
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