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MULTIPLICATIVELY PERIODIC RINGS
TeED CHINBURG AND MELVIN HENRIKSEN

1. Introduction. A ripg R is called periodic if for each element a of R there is a positive integer
n{a) such that g"®*' = q. If there is a positive integer n such that a"** = q for all @ in R, then the
smallest such # is called the period of R, and R is called a J-ring (see [7]). It is well known that every
periodic ring is commutative [6, Chapter X].

A ring R iscalled a p*-ring in [8] if there is a prime p and a positive integer & such that pa = 0 and
a** = g forall a in R. In [7], J. Luh uses Dirichlet’s Theorem on primes in an arithmetic progression
to show that R is a J-ring if and only if it is the direct sum of finitely many p*-rings. In this note we
prove the following generalization of Lul’s result without using Dirichlet’s theorem:

Tueorem 1. A ring R is periodic if and only if it is the union of a countable ascending chain {R(n)}
of J-rings such that every J-ring contained in R is contained in some R(n). Moreover, each R(n) is the
direct sum of finitely many p*-rings.

We use Theorem 1 to show that the J-subrings of a periodic ring form a lattice with respect to join
and intersection (the join of two subrings is the smallest subring containing both of them).

After noting that every J-ring has nonzero characteristic, we determine for which positive integers
n and m there exist J-rings of period r and characteristic m. This generalizes a problem posed by G.
Wene in [9].

2. A basiclemma. If R is a ring and » is 2 positive integer, let #(R, n)={a € R: na = 0}, and for
any a € R, let $(a) denote the subring of R generated by a. Some parts of the following lemma are
well known but appear in the literature only in the middle of proofs.

LeMMA 1. Suppose a is a non-zero element of a periodic ring R, p is a prime, n, r and s are positive
integers, a"*' = a, and (2a)y"' = 2a.

(a) a” is the identity element of S(a).

(b) There is a non-zero square-free integer m, dependent only on n and s, such that a € (R, m).

(¢) If pa =0, there is a positive integer k, dependent only on n and p, such that a** = a.

(d) Ifpa =0, then S(a) is isomorphic to the direct sum of finitely many finite fields of characteristic p.

(e) If m =117, p, is the product of finitely many distinct primes p;, then #{(R, m) is the direct sum
2. B H(R, p:) of the rings A(R, pi).

{f) If R =3[, @ R, where each R; is a J-ring of period m;, then R is a J-ring whose period is the
least common multiple of {n:i=1,...,r}

Proof. The proof of (a) is left as an exercise.

If "' = g and (2a)"*' = 24, then by (a), 2a = (2a)™*' = (2a)"*' =2%"'q¢™*' = 2""'q. Hence a
has non-zero characteristic m. Since the only nilpotent element of R is 0, m is square free, so (b)
holds.

In (c), suppose n = p°d for some integers ¢ = 0 and 4 = 1 and that (d, p) = 1. By the Euler-Fermat
Theorem [5, Chapter 6] there is a positive integer k such that p* =1 (mod d). Then (p* — 1)p* =
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(modn) so a®™ = a® from part (a). Since pa = 0 we have
(@ —af = @™ —a” =0,

But R has no nonzero nilpotents, so a” —a =0 and (c) holds.

If pa=0#a, then by (a), S(a) is an algebra over the ring Z, of integers mod p. Since
a"*'— g =0, there is 4 monic polynomial ¢(x)€ Z,[x] such that ${a) and Z, Ix{ ¢ (x)Z,[x] are
isomorphic. Since S(z) has no nonzero nilpotents, $(x)=TL_ d(x) is a product of distinct
irreducible elements ¢;(x) € Z, [x] and

2562 x] = 3@ Z I [x)

But each of these latter direct summands is a finite field, so (d) follows.
Part {¢) follows from the well-known fact that every torsion abelian group G may be represented
as a direct sum of p-groups [4, p. 21]. Part (f} follows from {a), so the lemma is proved.

3. The proof of Theorem 1 and some consequences. Clearly the union of a chain of periodic rings is
periodic, so it suffices to show that every periodic ring has the structure described in Theorem 1.

Let {p(i)} denote the sequence of primes in numerical order, and for any positive integers k and r,
let m(k) =TI, p(i) and P(r, k) ={a € (R, p(r)): a?™' = g}. Since every pericdic ring is commuta-
tive, each P(r, k) is a p(r)*"ting. Let R(k) denote the subring of R generated by U, P(i, k). Now,
R(k)CH(R,m(k)), and by Lemma 1{e), #(R, m{k)}=2t-1® A (R, p(})). Therefore R(k) is
isomorphic to Z[_, @ P(j, k), and hence is the direct sum of finitely many pi+rings. Thus, R(k) is a
J-ting by Lemma 1(f), and R(k)CR(k +1) since PG, k)CPGlk+1)if1Si<k

If n and s are positive integers, let T(m s)={a€R:a""'=2a and (2a)y*' = 2a}. Clearly
U=..: T(n §)= R, and if T is a J-subring of R with period n, then T C T(n, n). Hence to complete
the proof of Theorem 1, it suffices to show that given n and s, there is a positive integer k for which
T(n, s) CR(k). .

By Lemma 1(b,¢), there is a positive integer r such that

T(n, ) CA(R, ()= 3, DAR p(i)

If 1 = i = r, then by Lemma 1(c), there is a positive integer k*(i) dependent only on p(i) and n such
that it a€T(ns)NA(R,p(i), then @@ “=a Hence if k(i)=max (i k*(i)), then
T(n, s) N (R, p(i)) CR(k(i)). We conclude that if k = max (k(1), ..., k(r)) then T(n, s) CR(k), s0
by our previous remarks Theorem 1 follows.

Clearly the intersection of any two J-subrings of a periodic ring is a J-ring. By Theorem 1, the
union of any two J-subrings of R is contained in a J-subring of R, and so their join is a J-subring of R.
Hence we have proved

CoroLLARY 1. The J-subrings of a periodic ring R form a lattice with respect to the operations of
intersection and join.

By Theorem 1, every J-ring has finite characteristic. The next theorem describes the relation
between the period and the characteristic of a J-ring.

TuroreM 2. If n and m are positive integers, then there is a J-ring of period n and characteristic m if
and only ifm = n =1 orm =Tl;., p(i) is a product of distinct primes and n is the least common multiple
of {p()F*P—1: i=1,...,rand j=1,...,1(i)} for some set of positive integers {k(i,j) and {I(D}.

Proof. Clearly R has characteristic 1 if and only if R = {0}, so we suppose m >1.

If k is a positive integer and p is a prime, let GF[p*] denote the finite field with p* elements. It is
well known (see [1, Chapter 5]) that GF[p*] has characteristic p and 2 cyclic multiplicative group.
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Hence GF(p*] is a J-ring of period (p* — 1). Thus if n, m, {k (i, /)} and {I(i)} ate as above and m > 1,
then R = S@Q{GF[p()*“":i=1,...,randj=1,...,1(i)} is a J-ring of period n and characteristic
m by Lemma 1(f).

Conversely suppose R# {0} is a J-ring of characteristic m and period r. By Theorem 1,
R=Z]_,@R() for some set of p(i)*“-rings R(i)#{0} having periods n(i). Then n=
LCMAn(i):i=1,...,r} by Lemma 1{(f) and m =TI;., p(i). If 0 # a € R{i) let n, denote the period
of S(a). Clearly n(i)=L.CMJ{n.:a€R(i)}. By Lemma 1{d,f), n, = LCM.Ip@(i)**’-1: j=

., l:} for some set of positive integers {k(i,j):j =1, ..., L}, so Theorem 2 follows.

Suppose n is the period of a J-ring R. In [9], G. Wene calls n + 1 the p-value of R, and asks for
which positive integers k there exist J-rings having p-value k. An answer to this question follows
readily from Theorem 2. He also asks the reader to show that there are infinitely many k that are not
the g -value of any J-ring. The following corollary determines when an integer of the form p” +1 is
the w-value of some J-ring.

CoroLLARY 2. Suppose p is a prime and n is a positive integer. Then p" is the period of some J-ring if
and only if either:
(a) pisodd, n=1, and p=2"—1 for some positive integer s, or
®p=2and 2"+1 isaprimeorn=73,

Proof of (a). It follows immediately from Theorem 2 that p” is a period of some J-ring if and only
if p*=2° -1 for some positive integer n. In [3, Corollary 2], J. W. Cassells has shown that this
equation has a selution if and only if r = 1, so (a) follows.

Proof of (b). By Theorem 2, 2* is a period of some J-ring if and only if 2" = p* — 1 for some odd
prime p and positive integer s. By [3, Theorem IV], this equation has a solution if and enly if s =1 or
n =13, so (b) holds.

Let K denote the set of all positive integers k for which there exist J-rings having p-value k. It
follows from Corollary 2 that p"+1€ K if and only if n =1 and p =2" -1 is a Mersenne prime,
p"+1=9, 0r p"+1=2"+1is a Fermat prime. Consequently there are infinitely many integers of
the form p" +1 that are not in K.

A more satisfactory solution of [9] would provide an efficient algorithm for deciding when a given
positive integer is in K. It would also be interesting to determine the asymptotic density of K if this
density exists.

Theorem 1 reduces the problem of determining the structure of an arbitrary periodic ring to the
study of p*-rings. The structure of such rings is described by R. Arens and I. Kaplansky in [2, pp.
470-477).
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