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MATHEMATICAL NOTES 

EOITED BY RICHARD A. BRUALDI 

Material for this Department should be sent to Richard A. Brualdi, Laboratoire Calcul des ProbabiUtes, 
Universiti de Paris, T.56, 4 Place Jussieu, 75-230 Paris, France. 

MULTIPLICATIVELY PERIODIC RINGS 

TED CHINBURG AND MELVIN HENRIKSEN 

1. Introduction. A rlJ1g R is called periodic if for each element a of R there is a positive integer 
n(a) such that a "'"'+, ='a. If there is a positive integer n such that a"+' = a for all a in R, then the 
smallest such n is called the period of R, and R is called a I-ring (see [7]). It is well known that every 
periodic ring is commutative [6, Chapter X]. 

A ring R is called a p'-ring in [8] if there is a prime p and a positive integer k such that pa = 0 and 
a p' = a for all a in R. In [7], J. Luh uses Dirichlet's Theorem on primes in an arithmetic progression 
to show that R is a I-ring if and only if it is the direct sum of finitely many p'.rings. In this note we 
prove the following generalization of Luh's result without using Dirichlet's theorem: 

THEOREM 1. A ring R is periodicif and only if it is the union of a countable ascending chain {R (n)} 
of I-rings such that every I-ring contained in R is contained in some R (n). Moreover, each R (n) is the 
direct sum of finitely many p' -rings. 

We use Theorem 1 to show that the l-subrings 01 a periodic ring lorm a lattice with respect to join 
and intersection (the join 01 two subrings is the smallest subring containing both 01 them). 

Alter noting that every I-ring has nonzero characteristic, we determine lor which positive integers 
nand m there exist I-rings 01 period n and characteristic m. This generalizes a problem posed by G. 
Wene in [9]. 

2. A basic lemma. If R is a ring and n is a positive integer, let d(R, n) = {a E R: na = OJ, and for 
any a E R, let S(a) denote the subring 01 R generated by a. Some parts 01 the following lemma are 
well known but appear in the literature only in the middle 01 prools. 

LEMMA 1. Suppose a is a non-zero element of a periodic ring R, p is a prime, n, rand s are positive 
integers, a n+l = a, and (2a y+l = 2a. 

(a) a" is the identity element of S(a). 
(b) There is a non-zero square-free integer m, dependent only on nand s, such that a E d(R, m). 
(c) If pa = 0, there is a positive integer k, dependent only on nand p, such that aP

' = a. 
(d) Ifpa = 0, then S(a) is isomorphic to the direct sum offinitely many finite fields of characteristic p. 
(e) If m = rr;~, p, is the product of finitely many distinct primes p" then d(R, m) is the direct sum 

:l:,_dfld(R,p,) of the rings d(R,p,). 
(I) If R = :l:'_1 EB R" where each R, is a I-ring of period n" then R is a I-ring whose period is the 

least common multiple of in,: i = 1, ... , r}. 

Proof. The prool of (a) is lelt as an exercise. 

II a"H = a and (2a)'H = 2a, then by (a), 2a = (2a )'+1 = (2a )m+1 = 2MH a ",+1 = 2M +1 a. Hence a 
has non·zero characteristic m. Since the only nilpotent element 01 R is 0, m is square Iree, so (b) 
holds. 

In (c), suppose n = p'd lor some integers e ~ 0 and d ~ 1 and that (d, p) = 1. By the Euler-Fermat 
Theorem [5, Chapter 6] there is a positive integer k such that p' '" 1 (mod d). Then (p' -1)p' '" 0 
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(mod n) so a"·' = a" from part (a). Since pa = 0 we have 

(a pk - a)P~ == apk+~ - aP~ :::: o. 

But R has no nonzero nilpotents, so a" - a = 0 and (c) holds. 

[Aug.-Sept. 

If pa = 0,< a, then by (a), S(a) is an algebra over the ring Z, of integers mod p. Since 
a"+I-a =0, there is a monic polynomial cP(x)EZ,[x) such that S(a) and Z,[x)/<I>(x)Z,[x) are 
isomorphic. Since S(a) has no nonzero nilpotents, q,(x) = IIi~, q,,(x) is a product of distinct 
irreducible elements q,i (x) E Z, [x) and 

Z,[x )/q,(x)Z,[x) = i EB Z,[x )/<I>,(X)Z,[x). 
1=1 

But each of these latter direct summands is a finite field, so (d) follows. 
Part (e) follows from the well-known fact that every torsion abelian grou.p G may be represented 

as a direct sum of p-groups [4, p. 21). Part (f) follows from (a), so the lemma is proved. 

3. The proof of Theorem 1 and some consequences. Clearly the union of a chain of periodic rings is 
periodic, so it suffices to show that every periodic ring has the structure described in Theorem 1. 

Let {P(i)} denote the sequence of primes in numerical order, and for any positive integers k and r, 
let m(k) = nt_I p(i) and P(r, k) = {a E d(R,p(r»: a""" = a}. Since every periodic ring is commuta
tive, each P(r, k) is a p(r)"-ring. Let R(k) denote the subring of R generated by Ut'l P(~ k). Now, 
R(k)Cd(R,m(k», and by Lemma l(e), d(R,m(k»=kt"EBd(R,p(i)). Therefore R(k) is 
isomorphic to kr~1 EB P(i, k), and hence is the direct sum of finitely many pfcrings. Thus, R(k) is a 
I-ring by Lemma 1(f), and R (k) CR(k + 1) since P(i, k) CP(i, k +1) if 1 ~ i ~ k. 

If nand s are positive integers, let T(n,s)={aER:a"+'=a and (2aY+'=2a). Clearly 
U;;,.I T(n, s) = R, and if T is a I-subring of R with period n, then T C T(n, n). Hence to complete 
the proof of Theorem 1, it suffices to show that given nand s, there is a positive integer k for which 
T(n,s)CR(k). 

By Lemma l(b, e), there is a positive integer r such that 

T(n, s)Cd(R, m(r)) = i EBd(R,p(i)). 
;=1 

If 1;;;; i ~ r, then by Lemma l(c), there is a positive integer k '(i) dependent only on p(i) and n such 
that if a E T(n, s) n d(R,p(i)), then a""'·") = a. Hence if k(i) = max(i, k'(i», then 
T(n, s) n d(R, p(i» C R(k(i». We conclude that if k = max (k(I), . .. , k(r» then T(n, s) C R (k), so 
by our previous remarks Theorem 1 follows. 

Clearly the intersection of any two I-subrings of a periodic ring is a I-ring. By Theorem 1, the 
union of any two I-subrings of R is contained in a I-subring of R, and so their join is a I-subring of R. 
Hence we have proved 

COROLLARY 1. The I-subrings of a periodic ring R form a lattice with respect to the operations of 
intersection and join. 

By Theorem 1, every I-ring has finite characteristic. The next theorem describes the relation 
between the period and the characteristic of a I-ring. 

THEOREM 2. If nand m are positive integers, then there is a I-ring of period n and characteristic m if 
and only ifm = n = 1 or m = nr_, p(i) is a productof distinct primes and n is the least common multiple 
of {p(ij"'·J)-I: i = 1, ... , rand j = 1, ... , l(i)} for some set of positive integers {k(i,j)} and {l(i)}. 

Proof. Clearly R has characteristic 1 if and only if R = {OJ, so we suppose m > 1. 

If k is a positive integer and p is a prime, let GF[p'] denote the finite field with p' elements. It is 
well known (see [1) Chapter 5)) that GF[p') has characteristic p and a cyclic mUltiplicative group. 
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Hence GF(p') is a I-ring of period (P' -1). Thus if n, m,{k(i,j)} and (I(i)} are as above and m > 1, 
then R = k Ell (GF[p(i)"'·J)): i = 1, ... , rand j = 1, ... , I(i)} is a I-ring of period n and characteristic 
m by Lemma 1(1). 

Conversely suppose R;& (OJ is a I-ring of characteristic m and period n. By Theorem 1, 
R =kl~,EIlR(i) for some set of p(i)""-rings R(i);&{O} having periods n(i). Then n = 
L.C.M.{n(i): i = 1, ._ .. , r} by" Lemma 1(1) and m = m.,p(i). If 0;& a E R(i) let n. denote the period 
of S(a). Clearly n(i)=L.C.M.{n.:a ER(i)}. By Lemma l(d,l), n. =L.C.M.{p(i)"'·J)-l: j= 
1, ... , I.} for some set of positive integers {k(i,j):j = 1, ... , I.}, so Theorem 2 follows. 

Suppose n is the period of a I-ring R. In [9), G. Wene calls n + 1 the !,-value of R, and asks for 
which positive integers k there exist I-rings having !'-value k. An answer to this question follows 
readily from Theorem 2. He also asks the reader to show that there are infinitely many k that are not 
the !'-value of any I-ring. The following corollary determines when an integer of the form p' + 1 is 
the !'-value of some I-ring. 

COROLLARY 2. Suppose p is a prime and n is a positive integer. Then p' is the period of some I-ring if 
and only if either: 
(a) p is odd, n = 1, and p = 2' -1 for some positive integer s, or 
(b) p = 2, and 2' + 1 is a prime or n = 3. 

Proof of (a). It follows immediately from Theorem 2 that p' is a period of some I-ring if and only 
if p' = 2' -1 for some positive integer n. In [3, Corollary 2), J. W. Cassells has shown that this 
equation has a solution if and only if n = 1, so (a) follows. 

Proof of (b). By Theorem 2, 2' is a period of some I-ring if and only if 2' = p' - 1 for some odd 
prime p and positive integer s. By [3, Theorem IV), this equation has a solution if and only if s = 1 or 
n = 3, so (b) holds. 

Let K denote the set of all positive integers k for which there exist I-rings having !,-value k. It 
follows from Corollary 2 that p' + 1 E K if and only if n = 1 and p = 2' - 1 is a Mersenne prime, 
p' + 1 = 9, or p' + 1 ",2' + 1 is a Fermat prime. Consequently there are infinitely many integers of 
the form p' + 1 that are not in K. 

A more satisfactory solution of [9) would provide an efficient algorithm for deciding when a given 
positive integer is in K. It would also be interesting to determine the asymptotic density of K if this 
density exists. 

Theorem 1 reduces the problem of determining the structure of an arbitrary periodic ring to the 
study of p'-rings. The structure of such rings is described by R. Arens and I. Kaplansky in [2, pp. 
470-477). 
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