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ABSTRACT 

 

 

MODEL PREDICTIVE ENERGY MANAGEMENT FOR BUILDING MICROGRIDS 

WITH IOT-BASED CONTROLLABLE LOADS 

By 

Duc Hoai Tran 

   

        This thesis develops an economic scheduling framework for a building microgrid with 

internet of things (IoT) based flexible loads to synchronize the buildings’ controllable 

components, with occupant behavior and environmental conditions. We employ model predictive 

control (MPC) methods to minimize building operating costs, while maximizing the utilization 

of the on-site resources. The main research thrusts are: 1) Developing the building microgrid 

model; 2) Defining different building operation strategies; 3) Minimizing the building’s daily 

operating costs. Simulation results show that the proposed approach provides superior energy 

cost savings and peak load reduction in comparison with other operation controls, such as All 

from Utility (AFU), AFU with installed IoT-based Building Energy Management System 

(BEMS), and MPC-Mix Integer Linear Programming (MILP) without IoT-based BEMS. An 

economic analysis is also conducted to provide a road map for the implementation of installing 

advanced energy efficiency technologies across loads in building microgrid and integrating them 

with the building microgrid’s control strategy. 
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CHAPTER 1 

INTRODUCTION 

A building microgrid, which can represent a commercial, residential, or an industrial 

building, is a small prosumer (producer-consumer) with local controllers, local consumers, 

flexible loads, renewable energy resources (RESs), distributed generators (DGs) and/or energy 

storage devices. The advent of building microgrid technology has opened quality possibilities for 

electricity market users. For instance, building microgrids increase reliability in power supplied 

to end users [1]. Moreover, the self-reliance brought on from the utilization of distributed energy 

resources (DERs) makes this technology attractive for environments where satisfying power 

demand is critical, such as hospitals, police stations, and emergency operating centers.  

Applying advanced energy efficiency technologies across loads in building microgrids is 

important for energy reduction and increasing demand response capability. For instance, energy 

efficiency technologies, such as grid-friendly appliances [2]-[4], can be applied across lighting 

fixtures, plug-in loads, and HVAC systems. Energy efficiency technologies can also use smart 

sensors, actuators, and microchips [5], [6] to collect and manage data according to buildings 

functions and services. These advanced sensors and actuators can be connected through an 

Internet of Things (IoT) platform that enables data collection and data transmission to the 

Building Energy Management System (BEMS) [7]. The IoT-based BEMS system processes the 

data and extracts useful information for optimal energy scheduling and facility management, as 

well as synchronizing the building’s energy consumption with environmental conditions, 

occupant behavior, and power grid operation. 

Another aspect of building microgrid management is the optimal scheduling and 

utilization of on-site resources for cost minimization and energy efficiency improvement [8]-
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[12]. Researchers have been studying microgrid configurations, planning, control, and operation 

strategies because of their benefits to the grid such as increased efficiency, reliability, and 

resilience. Many algorithms have been proposed for the optimal scheduling of microgrids [13]-

[22]. Authors in [13] proposed conventional economic scheduling for the energy management 

optimization problem by finding a certain set of units (voltages, currents) to satisfy the load. 

Langrangian relaxation [14] along with genetic algorithm approach [15], or agent-based 

modeling and robust optimization [16] have been used for optimal schedule of microgrid. 

However, the uncertainties of RESs and demand profile have been treated as deterministic data 

in these studies, which is not always accurate and realistic.  

Authors in [19] and [20] presented a mixed integer linear programming (MILP) control 

strategy, which consider uncertainties of RESs and demand profile as stochastic data, to 

minimize the operating cost of residential microgrids. The MILP performance, however, could 

lead to sub-optimal results since decision variables are chosen based on solely the day-ahead 

forecasts, and they are not updated by the near real-time predictions of the building microgrid 

states. Authors in [21] and [22] have proposed Model Predictive Control (MPC) in conjunction 

with MILP optimization (MPC-MILP) to reduce the effects that uncertainty has on operational 

performance. They proposed updating the forecasts of RESs and demand profile with new data 

from the microgrid, recalculating the optimal schedule to correct for errors, implementing the 

control decisions, and repeating the process at fixed time intervals throughout the day. 

The main contribution of this research is the employment of MPC-MILP with near real-

time prediction horizon (15 minutes time interval) to a real-world building microgrid with a 

diverse set of on-site resources, such as IoT-based flexible loads, including an IoT network of the 

lighting system and plug-in loads, distributed solar generation, micro-gas turbine, and energy 
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storage. The proposed building microgrid is the Engineering and Computer Science (ECS) 

building at California State University, Long Beach (CSULB). The building has more than 

100,000 square feet of conditioned space and through an on-going California Energy 

Commission (EPC-16- 033) project, it has been equipped with a network of IoT sensors and 

actuators across the lighting, plug-in loads, and HVAC system. 

Specifically, this research develops an MPC-based energy management system with load 

controllability for the CSULB-ECS building microgrid to minimize daily operating costs. The 

building operating costs under the proposed MPC-MILP control approach is compared with three 

scenarios: 1) Purchasing all electricity from the utility grid; 2) The MPC-MILP algorithm 

(updating forecasts every 15 minutes, but considering all loads as critical loads, and there is no 

IoT network of sensors and actuator); and, 3) Purchasing all electricity from the utility grid, but 

with IoT network of sensors and actuators installed. The simulation results show that the 

proposed MPC-MILP approach with load controllability provides extra saving on the building’s 

operating costs and peak load costs. 

This thesis is organized as follows: chapter 2 will provide a framework for transforming 

building into smart infrastructure and introduce the IoT network of lighting system and plug-in 

loads. This chapter also addresses one aspect of the smart building design, namely optimal 

placement of smart sensors and actuators. Chapter 3 will explain the modeling process of the 

microgrid’s components, as well as demand and PV profile. The chapter also introduces the new 

IoT BEMS of the ECS building. Chapter 4 formulate the MPC-MILP control strategy, and 

presents the implementation of load controllability, curtailment level constraints and curtailment 

penalty in the modeling and optimization of the building microgrid. In chapter 5, the MPC-MILP 

control approach is demonstrated and compared to different operation strategies. The economic 
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analysis also is conducted in this chapter. Chapter 6 concludes the thesis and provides future 

research outlook. 
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CHAPTER 2 

FRAMEWORK FOR TRANSFORMING BUILDINGS INTO SMART 

INFRASTRUCTURES 

The combination of residential and commercial buildings account for approximately 40% 

of the annual energy consumption in the United States [23], and similar statistics apply 

worldwide [24]. Thus, improving energy efficiency and reducing peak load in buildings opens a 

door for significant energy savings and cost reduction. There are several opportunities in this 

area. For instance, up to 40% of energy used by heating, ventilation, and air conditioning 

(HVAC) systems in commercial buildings is wasted due to faulty operation [25]. Increasing 

utilization of distributed energy resources (DERs) such as wind turbine and photovoltaics to 

reduce the dissipated energy by long-distance transmission lines is another opportunity. 

Both consumers and utilities can benefit from implementing buildings energy efficient 

measures. For instance, consumers benefit from reducing energy bills as well as having a more 

reliable electricity supply. Meanwhile, the deployment of energy efficiency technologies can 

directly reduce overall and peak hour energy consumption (kWh) and energy demand (kW) from 

the grid [26]. 

Typical existing building communication and control flow lack integration of system 

components and require segregated systems. This results in the challenge of integrating existing 

products from various vendors. Furthermore, many existing building owners are reluctant to take 

on brand-new technologies or upgrades due to the need for additional in-house technical 

personnel and expertise. 

Overcoming this reluctance is sought by developing a design process for turning CSULB-

ECS building into a smart infrastructure. The building will be smart in the way its electrical 
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equipment is controlled and eventually will be automated. The tangible objective of work is to 

examine the opportunities of energy reduction in the CSULB-ECS building in hoping for finding 

a smart role model for entire campus and beyond. 

The analysis in this section is based on the results in the first phase of a three-year smart 

building design and demonstration project at CSULB, with support from the California Energy 

Commission (CEC). The goal of this analysis is to remove the barriers to achieve widespread 

deployment of state-of-the-art energy management technologies in academic buildings by 

addressing the specific energy needs of such buildings. Particularly, this work will provide 

California IOUs, academic institutions (i.e. universities including the other 22 CSU campuses), 

energy management technology developers, and other stakeholders with a detailed customized 

course of action, an innovative and ubiquitous energy management platform, and comprehensive 

assessments and documentations of the feasibility of large-scale deployment, technical 

considerations, performance, savings, and other benefits. 

In this regard, the main contribution of this section is developing a framework for 

transforming buildings into smart infrastructure with high energy efficiency objectives and 

demand response capability. To such aim, we define and perform the three steps below: 

• Specifying load characteristics and operation requirements. 

• Identifying loads and devices that can participate in demand response events. 

• Developing model-based optimization protocol for smart plug placement. 

2.1 3-D Model of The Building 

In this sub-section, the 3-D model of the CSULB-ECS building, Figure 1, is developed 

using Autodesk Revit software [27]. The primary purpose of creating the 3-D model is to 

identify the optimal location of smart lighting fixtures and plug load controllers. Expected energy 
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use of the ECS building can be simulated by Revit built-in energy analysis tools. Energy analysis 

results such as building performance factors, monthly and annual energy use/cost, renewable 

energy potential will be a useful way to track the effectiveness of building design strategies and 

energy efficiency measures. 

 

FIGURE 1. 3D model of ECS building 

This model was created based on the as-built architectural, structural, and mechanical 

plans obtained from the Physical Planning and Facilities Management (PPFM) at CSULB. Based 

on the ECSs architecture plan, the buildings structure was developed with the exact number of 

measurements such as: walls/ceilings’ height and thickness, floors’ thickness, columns’ 

dimension, beams dimension. Electrical and mechanical plans were used for creating the 3-D 

model of the electrical and HVAC systems of the building. This 3-D model is essential for 

designing the smart building and identifying the optimal location and optimal number of 

advanced sensors and actuators. Figure 2 shows the electrical fixtures, including lights and plugs, 

of the 5th floor. 
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FIGURE 2. Electrical fixtures (lights and plugs) of 5th floor 

The HVAC system is simulated and shown in Figure 3. The exterior of the ECS building 

has been blurred so that the HVAC system, placed inside ceilings, can be seen. The blue pipes in 

Figure 3 are the duct system with air handlings and air terminals. The size and dimension of the 

equipment are based on the original mechanical plan. 

 

FIGURE 3. HVAC system of ECS building 

We conducted two surveys to determine the number of lighting fixtures and outlets in the 

building. First, we used an exhaustive search by visiting every room in the building to determine 

the total number of different lighting fixtures and plug loads. Another survey was conducted to 
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determine the electrical equipment inventory. Accordingly, we obtained a comprehensive load 

inventory for the building through both 3-D modeling and data collection, as we explain next. 

2.2 Data Collection 

The comprehensive inventory data in this sub-section helped in estimating the total 

number of lighting fixtures and plugs, which will be replaced by smart lights and plugs 

controllers.  

The lighting fixtures are classified in four categories: 1) T8 4 Fluorescent (2 or 3 lamps 

per light fixture); 2) LED; 3) High Intensity Diffusion (HID); and, 4) Halogen lights. The 

building has a total of 1288 fixtures, and 86% (1119) of all fixtures are fluorescent. There are 2 

types of fluorescent fixtures: one type with 2 lamps at 59 watts per fixture, and the second type 

uses 3 lamps at 89 watts per fixture. 

There are also four types of outlets: Single, Duplex, Triplex, and Power Strips. The 

building has a total of 2522 outlets, and 68% (1702) of them are power strip plugs that mainly 

power stationary computers and laptops. 

Table 1 and 2 illustrate the total number and rated power of lighting fixtures and plugs in 

the ECS building, respectively. Based on the electrical plan from PPFM, the wattage of outlets is 

not classified by their types since they are connected to different electrical panels providing 

different wattages. Hence, table 2 only reports the maximum wattage of each type. 
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TABLE I. Total Number of Lights by Types 

 

Types of 

Lights 

Florescent 

Light (2/3 

lamps per 

fixture) 

 

LED 

High 

Intensity 

Diffusion 

(HID) 

 

Halogen 

 

Total 

Wattage  

(W) 

59/89 12 190 60  

Count 1119 139 18 12 1288 

 

A comprehensive plug load equipment inventory was also conducted to determine 

different types of plug loads in the ECS building. The plug loads fall into 6 categories as shown 

in Table 3. 

 

TABLE II. Total Number of Outlets by Types 

 

 

Types of 

Outlets 

 

Single 

 

Duplex 

Power Strip 

Plugs 

 

Triplex 

 

Total 

Wattage  

(W) 

3220 5000 1280 5000  

Count 4 761 1702 55 2522 

 

There is also specialized equipment, such as fume hood, milling machine, welder, radial 

saw, planer, and airplane simulator in the dry and wet laboratories. 
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TABLE III. Plug Loads Inventory 

Category Equipment Type Total Count Wattage (W) 

Audio/Video Overhead Projector 31 365 

 TV/LCD Screen 28 150 

Computers, Monitors Personal Computer 559 165 

 Network Switch 1 66 

Gym, Training 

Equipment 

Treadmill 1 700 

 Refrigerator 11 140 

Kitchen/ Break Coffee Maker 5 936 

Room Microwave 8 1200 

 Water Cooler/ Heater 4 602 

 Toaster 3 1500 

 3D printer 9 50 

Lab Equipment Oscilloscope/Function 

Generator/DC Supply 

33 50 

 Projector Control Unit 1 47 

 Personal Printer 112 190 

 Small Networked 

Printer 

6 567 

Printer/Scanner Larger Networked 

Copier/Printer 

5 1500 

 Fax Machine 2 420 

 Paper Shredder 3 146 

 

2.3 IoT Network of The Lighting System and Plug-in Loads 

This section will briefly introduce the types and specifications of Enlighted light and 

Enlighted smart sensor, and Enlighted smart plug controller which have been installed in the 

ECS building. 

2.3.1 IoT network of lighting system and smart sensors 

The old lighting system of ECS building does not interface with a controller of network 

manager. It is not automated even though it has motion sensors that will turn on or off the lights 

of a room by detecting people’s movement. 
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As mentioned previously, most of the lighting fixtures in ECS building will be replaced 

by LED lights equipped with smart sensors. The change to LED lights will help reduce the 

energy consumption of ECS building’s lighting system. The sensor attached in each light will 

allow control and monitoring using IoT technology and will enable near real time demand 

response. 

2.3.1.1 Lighting system 

The implementation of the new lighting system has been done by retrofitting lighting 

fixtures, replacing fluorescent lamps and ballast with LED tubes and control drivers, installing 

smart sensor at each lighting fixture, and replacing existing wall switches with Enlighted room 

control switch. 

Enlighted IoT architecture consists of a network of LED lights and the smart sensors 

connected to form the sensor and analytics platform. Data is collected 65 times/second to detect 

environmental and occupancy changes and act on lighting. Using the IoT based system, it is 

expected to have the following savings methods: 

- Improves overall light quality with LED and sensor light fixtures 

- Increases energy savings up to 90% 

- Lowers lighting maintenance costs up to 25% 

- Collects large volume of data for lighting and other applications 

- Task tuning, occupancy data and daylight harvesting increase savings 

- Initial installation and services paid for out of energy cost savings 

- Unlimited scalability for the enterprise 
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Different types of LED lights have been installed in the ECS building, including: ILP 

LANCE 2’ X 4’ & LANCE 1’ X 4’, ILP SQ4, ILP RZ4A-30W and RZ8C-60W, ILP UFO low 

bay. Figure 4 and Figure 5 show these types of lights installed in the ECS building. 

 

FIGURE 4: LANCE14 (left) and LANCE24 (right) 

 

 

FIGURE 5: ILP-SQ4 (left), ILP RZ (right), and ILP UFO (bottom) 
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2.3.1.2 Smart sensor system 

Each Enlighted smart sensor is a complete sensing and lighting control node powered 

from its attached light fixture. It captures data that is processed locally and transmitted over the 

Enlighted network, enabling a full suite of applications. With integrated wireless 

communications for data transmission and remote configuration as well as autonomous fixture-

level control, this sensor brings advanced lighting automation to a whole new level. 

Features and benefits: 

- Enlighted sensor interface: provides access to device information, energy consumption, 

and digital lighting control. 

- Localized control: communicating wirelessly the light-level schedules, preferences, and 

behavior profiles for each fixture. 

- Field replaceable: allows toolless replacement of the sensors without disturbing the 

lighting fixture or ceiling tile. 

- Smart sensing: supports advanced sensing and detection algorithms, enables optimization 

of existing features and new future applications. 

- Bluetooth low energy: allows the sensor to receive and transmit beacons. 

- Occupancy and thermal sensing: A PIR sensor combined with seperated ambient and 

temperature sensing support precise motion identification. 

- Tunable white: support configurable lighting transitions based on time of day or user 

control. 

- Daylight harvesting: captured ambient light information is locally processed to raise and 

lower light levels based on available daylight. 
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- Room and zone control: pairs with room control switches for code-compliant manual-

on/auto-off capability. 

- Data reporting: records information regarding occupancy, power consumption, ambient 

light level, and temperature. 

The types of Enlighted sensor that have been used is shown in Figure 6 [26], and sensor 

coverage pattern is shown in Figure 7.  

 

FIGURE 6: Different types of Enlighted smart sensor (from left to right): a) Micro 

sensor, b) Surface mount sensor, c) Fixtureless compact sensor 

 

 

FIGURE 7: Enlighted smart sensor coverage pattern [28] 
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The smart sensor is designed to be easily mounted into lighting fixtures or ceiling tiles 

such that only the discrete white faceplate is visible. The sensor slides into a carrier sleeves 

compatible with lighting fixtures. Each sensor is connected to an Enlighted Control Unit (CU-

3E-1R) via 30’’ or 12” CAT3 cable. The control unit rating is 540W @120VAC and 1.246KW 

@277VAC. Both the compact sensor and the control unit are integrated into each fixture by the 

fixture manufacturer. The connection layout between the Control Unit and the sensor is shown in 

Figure 8. 

 

FIGURE 8: Line diagram between Enlighted smart sensor and the Control Unit 

Control unit interfaces with the smart sensor and connects to a ballast or LED driver to 

control light behavior, or receptacle relays to provide on/off controls. The control unit also 

contains a power metering chip that enables the control network to measure power in real time as 

well as energy consumption over time. 

One or more Gateways may be deployed on each floor to relay information between the 

sensors and the Enlighted Energy Manager. The Gateway device mounts to the ceiling at the 

same height as an individual sensor device. The antenna is then pointed down. CAT5e cable is 

run from the Enlighted Gateway to the Enlighted PoE switch. The PoE switch, sourced from 

Netgear and certified by Enlighted, powers Enlighted gateway and provides data switching 

power for Enlighted control network. The control network layout is shown in Figure 9. The 

number of installed equipment such as smart sensor, POE switch, gateway, etc, is recorded in 

Table 4. 
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FIGURE 9: Enlighted Energy Manager, Gateway and Control Unit [28] 

 

TABLE 4: Inventory of installed smart sensors, gateway, PoE switch, and Energy 

Manager 

Product Code Part Number Description Quantity 

SU-5E-01 01-01961-XX Enlighted – Kona 

Embedded Sensor 

1023 

CU-3E-1R 01-00405-XX Enlighted - Control Unit - 

1% extra included 

19 

WS-2-00 01-01034-XX Enlighted - Wireless Room 

Control (ERC) 

155 

SU-4S-H 01-01616-XX Enlighted - Sensor Unit 

(High Bay) - w/BlueTooth - 1% 

extra included 

19 

CBL-2-7F 12-00028-02 Plenum Rated Cable - 7 ft. - 

for SU2 - 1% extra included 

19 

BRKT-SU-2-

00 

11-00057-01 Gen 2 - Sensor Bracket 

Mount - 8.875" Flat Metal 

58 

CU-4E-FM 01-02296-03 Enlighted - Fixture Mount 

Control Unit - for SU5 - 1% extra 

included 

1023 
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CBL-5E-CU4-

30N 

12-02290-01 Enlighted - Sensor Cable - 

30 In - for SU5 - 1% extra included 

1023 

WING-CS-D2 05-01315-01 Enlighted - Wing Nut for 

tile mount sensor - Plastic - (Bag of 

100) 

1 

CS-D2-FL 01-02210-01 Enlighted - 2-Wire Tile 

Mount Sensor (Sensor Grid Only) - 

1% extra included 

7 

GW-2-01 01-00671-XX Enlighted - Gateway V2 15 

SW-POE-8-8 18-01918-01 8 Port, Managed, PoE 

Network Gigabit Switch 

2 

AT-4G-00 06-00540-01 Modem, Wireless, Rugged 

AL. Casing, 1Eth, 1 USB, 1 RS-

232 ports 

1 

ENCL-

EM/FAN 

40-00420-02 NEMA 1 Enclosure - w/Fan 

- for Energy Manager and POE 

switches 

1 

EM-2-02 01-01453-XX Enlighted - Energy 

Manager - Base sensors = 1,000 

1 

EM-SW-1 90-01906-01 Per Sensor License 36 

PWR-NF 01-02511-01 Enlighted - Power Supply 

for Sensor Grid Sensors, Max (20) 

CS-D2-FL sensors, daisy chained 

1 

FSC-85-RFK-

48-132-NB-W-RS 

05-00776-01 1x4 1L Strip retrofit Kit 

(Kit Only & Un-shunted 

sockets/No Ballast-No pre-wire) 

2 

 

Information such as light level, fixture name, fixture MAC, fixture ID, fixture area, 

fixture profile, fixture type can be accessed through the Enlighted Energy Manager GUI website, 

Figure 10. The green box in Figure 10 displays the status of the middle lighting fixture in the 

first line. This lighting fixture is in the auto mode, which varies the light level of the luminaire 

using sensor input, time of day, day of the week, and values from its operational configuration. 

The fixture was operating at 55% light level, consuming 22W at the time it has been checked. 

There is also information regarding occupancy and ambient temperature in the room. The status 

shown in the fixture icon is updated periodically every 5 minutes. 
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FIGURE 10: Floor plan display of lighting fixtures in ECS-411 [32] 

Information collected from each sensor will provide high granularity occupancy 

information, such as occupancy profiles, space utilization, average occupied hours for different 

zones, different floors, and the entire building. Figure 11 shows the occupancy profile of the ECS 

building for one week in March 2019 (March 4 to March 10, 2019), with building business hours 

being from 7AM to 7PM. As shown in the figure, at 2PM on March 6, on average only 42.79% 

of the building’s zones are occupied and the peak is 46.54%. This important information from 

the IoT network of sensors provides accurate insight into the building’s usage, such as detailed 

non-intrusive occupancy views, and/or energy usage patterns, which are essential for the energy 

efficiency and DR algorithms. 
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FIGURE 11: ECS building occupancy pattern from March 4 to March 10, 2019 [32]. 

The Enlighted Energy Manager GUI website also provides the total electricity 

consumption of the lighting system in different time frames such as day, week, month or year 

(either for the whole building or desired zone). Figure 12 shows the total energy consumption of 

ECS building for March 2019, which is 7.13 MWh. The occupancy saving during this period is 

10.72 MWh, the daylight harvesting is 181.68 kWh, the task tuning saving is 40.15 MWh. The 

yielded total saving for this period is 51.05 MWh. 

 

FIGURE 12: Energy consumption of ECS building’s new lighting system for March 2019 

[32]. 
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The ECS building’s smart lighting system is divided into 161 lighting zones (𝑁𝑙𝑖𝑔ℎ𝑡𝑠), 

and each zone is considered a controllable load. Dimming the controllable lighting system during 

the time that the zone is occupied could lead to the user’s discomfort, hence a penalty cost 𝜌𝑐 =

0.067 is associated to the lighting load curtailment during the occupied mode. The continuous 

variable for lighting, 0 ≤ 𝛽𝑙(𝑘) ≤ 0.15, represents the percentage of dimming associated to each 

lighting fixture at each sampling time. The maximum percentage of lighting load curtailment is 

chosen based on Section 130.1(e) of Title 24 [29], which requires that buildings with larger than 

ten thousand square feet of conditioned space have the capability to respond to a standard DR 

signal to reduce load up to 15%. 

2.3.2 IoT Network of Plug-in Loads 

The Plug Load Controller works with sensors in the Enlighted System to transform 

common power outlets into smart receptacles, see Figure 13. It can be managed from the 

Enlighted Energy Manager, which turns off power to selected outlets (like task lights, fans, and 

heaters) at scheduled times, or when a room becomes unoccupied. This reduces passive energy 

use from idle devices. The Enlighted Plug Load Controller also: 

- Collects and aggregates data on plug load electricity usage via the Enlighted Energy Manager 

for better analysis and decision-making 

- Reduces waste heat from idle plug loads (which decreases HVAC costs) 

- Helps meet Title 24 obligations by providing an additional reduction source when a demand 

response (DR) signal arrives from your local utility. 

- Leverages Title 24 obligations by integrating DR and BAS (building automation systems) for 

maximum cost saving 
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FIGURE 13: Plug load controller layout [26] 

The Plug Load Controller enables energy savings by controlling plug loads through 

occupancy or schedule-based on/off control of receptacles on a circuit. The device is paired with 

a sensor or a group of sensors in the network to enable occupancy-based control. When an 

occupant switches on the lights, the plug load controllers energize the power outlets as soon as 

they receive the ‘Lights ON’ signal from the energy manager indicating that the room is being 

utilized. When all the occupants leave the room and the lights are switched off, the plug load 

controllers de-energize the power outlets after a set time thereby switching off the projector and 

printer automatically. The controller features two sets of wires to separately power controlled 

and uncontrolled outlets, so that energy consumption on both uncontrolled and controlled circuits 

are separately measured. 

Below are the advanced features of the Plug Load Controller: 

- Easily configure and manage plug load behavior by adjusting software profiles for 

- individual plug load controllers via the Energy Manager 
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- Generate reports on outlet outages, carbon reduction, energy and financial savings 

- Control capability is up to 20A 

- Supports overrides for Demand Response or holiday events 

- Utility grade metering chip measures controlled and uncontrolled circuits simultaneously 

- Use of industry standard communication protocols provides robust and mature 

capabilities 

- AES 128-bit encryption for wireless data transmission 

- SSL encryption for TCP/IP data transmission 

- Password protected access control 

- Group circuits or functional loads for coordinated control of plug loads 

- Configurable with Energy Manager for scheduled or occupancy-based control 

- Gain visibility into historical usage patterns with reporting and trending capabilities in the 

- Energy Manager. 

 

FIGURE 14: Enlighted Plug Load Controller installed at ECS 411. 
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2.3.2.1 Optimal placement of smart plug controllers 

As shown in Table 2, there are 820 electrical outlets, without considering the power strip 

outlets in the ECS building. However, the CEC research grant will only assist CSULB facility 

management to replace up to 400 smart plug controllers. We need to identify the optimal 

combination of replacing smart plugs to maximize the overall energy reduction in the ECS 

building. Resource limitation and lack of energy profile of outlets leads the smart plug controller 

allocation problem to become a conundrum. In addition, the overall energy reduction is not an 

identification for demand response capability. To remedy these problems, in the next sub-section 

we introduce a model-based optimization approach. 

2.3.2.2 Model-based optimization protocol for smart plug placement 

To determine the optimal location of smart plugs, we first prepare a complete inventory 

of the building and classify the outlets based on their electric plug loads. There are five types of 

plug loads in the building: 1) Schedulable plug loads, such as projectors, printers, and LCD 

screens; 2) Noncritical plug loads, such as computers in laboratories and classrooms; 3) Open 

plugs, not connected to any fixed load; 4) Critical plug loads, such as severing must-run 

machines, specialized equipment in the laboratories, and clusters that are always operating; 5) 

Non-replacing plugs, those that are not considered to be replaced since only one smart plug is 

being replaced for each faculty room on 5th and 6th floor. Table 4 shows the type and number of 

plugs in each category. 

Based on the plug loads classification, we can develop a weight matrix, which identifies 

the priority for installing smart plug controllers. For instance, schedulable loads have the highest 

priority, since they are not frequently used and can be turned on/off during demand response 

events and/or for energy efficiency measures. Non-critical loads are considered as the second 
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priority, because they can be turned off when not in used. On the other hand, critical plug loads 

have the least priority, since they serve must-run loads. Plug loads of these 5 categories belong to 

7 different zones which are classified based on the space utilization (classroom, lecture hall, 

research/technical lab, faculty office, conference room, department office, restroom). Table 5 

shows the installation-priority weight for each category. 

A model-based optimization approach is developed based on the installation-priority 

weight matrix [28]. Equations (2.1) to (2.5) summarize the proposed model-based optimization 

method: 

max∑∑∑𝑊𝑖𝑗𝑋𝑖𝑗𝑘

|𝑁|

𝑘=1

|𝑍|

𝑗=1

|𝑀|

𝑖=1

                                                                     (2.1) 

s. t.∑∑∑𝑋𝑖𝑗

|𝑁|

𝑘=1

|𝑍|

𝑗=1

|𝑀|

𝑖=1

≤ 400                                                               (2.2) 

𝑋𝑖𝑗 = 0 𝑜𝑟 1 ∀ 𝑖 ∈ {𝑃𝑙𝑢𝑔 𝐿𝑜𝑎𝑑 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦}                                 (2.3) 

𝑊1𝑗 ≥ 𝑊2𝑗 ≥ ⋯ ≥ 𝑊𝑀𝑗                                                           (2.4) 

1 ≤∑∑𝑋𝑖𝑗𝑘 ≤
𝑁𝑗

2
     𝑗 ∈ {𝑍1}                                                                 

𝑁𝑖𝑗

𝑘=1

𝑀

𝑖=1

 

⋮                                                                                                    

1 ≤∑∑𝑋𝑖𝑗𝑘 ≤
𝑁𝑗

2
     𝑗 ∈ {𝑍𝑗}                                                

𝑁𝑖𝑗

𝑘=1

𝑀

𝑖=1

  (2.5) 

where 𝑊𝑖𝑗 is the installation-priority weight for category 𝑀𝑖 belong to zone 𝑍𝑗, and 𝑁𝑖𝑗 is 

the total number of plugs in category 𝑀𝑖 belong to zone 𝑍𝑗. Zones are affecting the installation-

priority weight since classrooms, lab rooms and lecture halls have higher priority than other 

zones, and restroom have the least priority. Equation 5 presents the constraint that zones with 
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schedulable plug loads should have at least one controllable plug and at most 50% of all plugs in 

the rooms belong to those zones. 

TABLE 5. ECS Buildings Plug Load Inventory 

Plug Load 

Category 

Schedulable 

Plug Loads 

 

Non-Critical Plug 

Loads 

 

Open 

Plugs 

Non-

replacing 

Plugs 

(on 

5th/6th 

floor) 

Critical 

Plug 

Loads 

Energy 

Efficient 

Demand 

Responsive 

Energy 

Efficient 

Demand 

Responsive 

   

Numbers of 

Plug Loads 

154 17 57 0 228 306 58 

Installation-

Priority 

Weight 

4 4 3 3 2 1 0 

 

The model-based optimization method allows us to narrow down our search and limit it 

to three plug load categories: Schedulable plug loads; Non-critical plug loads; and, open plugs. 

We prioritize open plugs based on their location in the building. For instance, classrooms, lecture 

halls, and lab rooms have high priority, because these plugs are used frequently for charging 

students’ laptops, phones, and other portable electronic devices. Using our plug loads inventory 

as the input, half of the schedulable and non-critical plug loads will be replaced by smart plug 

load controllers because these categories are available in all rooms (except restrooms and 

exhibition room), which count for 114 smart plugs. Excluding 42 open plugs in the exhibition 

room, and 12 open plugs in restroom since they are hardly used, the number of open plugs can be 

replaced is 87. Therefore, the total number of smart plugs should be installed to provide highest 

opportunity of energy efficiency, demand response capability and cost saving is 201, which is jus 

about 24% of the total number of outlets in the building. 
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2.4 The IoT-based Building Energy Management System (BEMS) 

The ECS building’s new Energy Management System will comprise of the existing BMS 

and the new EMS implemented by Siemen’s TNM 8000 which will be supported by Enlighted’s 

BACnet network and sensors. The sensors provided by Enlighted are positioned with the lighting 

fixtures throughout the building, dividing it into 96 zones that can be individually controlled. 

These sensors measure various parameters of a room such as the temperature, lighting level and 

occupancy and transmit the collected data to the Energy Manager via the Gateway. The Gateway 

further sends the data to the TNM 8000 controller. 

The Enlighted Lighting BACnet/IP interface enables BACnet/IP based integration 

between the Enlighted lighting control network and any BACnet® compatible Building Energy 

Management System (BEMS). Figure 15 shows that interactions between existing BEMS, new 

BEMS, and the Enlighted system. With the communication protocol between the two EMS being 

Niagara, and the new system using BACnet. 

The IoT-based BEMS network architecture for the Building’s lighting, outlet and HVAC 

will be composed of 3 main controllers: Tridium TNM8000, Tridium Java Application Control 

Engine 6 (JACE 6) and Enlighted Network Controller. The Tridium TNM 8000 controller will 

receive data from Enlighted Network Controller (occupancy data) and from Control Works’ 

Tridium JACE 6 (HVAC sensors and actuators). The TNM8000 controller will then process the 

data and send commands to the JACE 6 and Variable Frequency Drivers (VFD). The occupancy 

data is collected from the smart sensors installed at fixtures and is already processed by 

Enlighted system for controlling smart lighting system. This data transferring process 

emphasizes how data from Enlighted system be integrated, support, and enhance new smart 

HVAC system. 
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FIGURE 15: Diagram of Interaction of the Existing EMS, New EMS, and The Enlighted 

System. 

The main trunk of the architecture depicted in Figure 15 will be mainly based on BACnet 

protocol. However, several routers will be used to interface Master Slave Token Passing 

(MS/TP), Internet Protocol (IP) and Ethernet. The Atkinson Converter will be used to convert 

Transistor/Transistor Logic into RS485 or EIA 485 from the JACE 6 to Direct Digital Control 

(DDC) zone controller. The Tridium TNM 8000 runs on Niagara 4 Operating System (OS). 

In the current BMS, the system utilizes a static schedule i.e. once any part of the building 

is occupied, the current BMS will operate the HVAC in all the zones to maintain the desired 

level of cooling and heating irrespective of the occupancy level, leading to excessive energy 

consumption and incurring costs.  Also, the restroom exhaust currently runs at full speed, any 

time the building is occupied. 

The IoT-based BEMS will still utilize a static schedule, which allows occupancy of the 

building zones based on time of day. Data from the Enlighted system will be integrated to the 

existing EMS through the TNM 8000 controller, recognizing un-occupied zones among 96 zones 
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in the building, via the 31 media converters. In this way, areas can be closed to save HVAC 

energy in areas that aren't physically occupied. A VFD will be added to the restroom exhaust fan, 

further reducing energy use by allowing the fan to run at a lower, more efficient speed when the 

restrooms are unoccupied. 

Another major advantage of integrating lighting and HVAC with a single BMS is a faster 

and better responsive Demand Response strategy. The lighting system can deliver a faster load 

reduction as compared to the HVAC system which by itself tends to be sluggish with an 

extensive time lag between changes made to the HVAC setting and the desired result. 

Attempting to aggressively respond to a load shedding or demand event using only HVAC may 

result in uncomfortable building environment and may possibly incur peak charges. Thus, in the 

new BMS, integrated with the Enlighted’s BACnet network, sensor devices and existing BEMS 

allows the HVAC system to achieve any major load adjustment and the lighting network to 

deliver fine tuning to accomplish optimal demand response. 

The IoT-based BEMS system co-optimizes the IoT-based controllable loads with on-site 

DERs, while considering environmental conditions, occupant comfort, and the utility grid status. 

Figure 16 presents the principles of the operation of the IoT-based BEMS system. The smart 

sensors measure occupancy, active motion, ambient light, temperature, and energy consumption 

of lighting fixtures and plug-in loads. Then, it processes the information locally and creates a 

rich set of information. This energy, environmental and occupancy information is transferred 

wirelessly through the Gateway to the Energy Manager for analysis and reporting. The Gateway 

also communicates configuration changes from the Energy Manager to smart sensors. The 

Energy Manager provides a secure web-based interface to monitor, manage, and analyze energy 

savings and other data collected by the smart sensor network, as mentioned previously.  
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FIGURE 16: Principles of IoT-based BEMS for ECS building 

 

The IoT-based BEMS provides important information about the building utilization, 

Figure 17. It also provides the hot spot tracking and lighting consumption map of the building. 

Figure 18 illustrates the average occupancy heat map of the 4𝑡ℎ Floor in the ECS building for 

one academic month, which tells us which zone in that floor has been occupied the most during a 

specific period.  
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FIGURE 17: Average space utilization of the ECS building from Jan. 15 to Feb. 15, 2019 

[31]. 

 

 

FIGURE 18: Occupancy heat map of the 4𝑡ℎ floor in the ECS building from Jan. 15 to 

Feb. 15, 2019 [32] 
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CHAPTER 3 

BUILDING MICROGRID MODELING AND ANALYSIS 

 

3.1 Distributed Generator Modeling 

When a DG unit is operating (or ‘ON’), it would generally have a range of power from 

which it can output, with a maximum power output 𝑃𝑚𝑎𝑥
𝐷𝐺  and a minimum power output 𝑃𝑚𝑖𝑛

𝐷𝐺 . 

Otherwise, the DG unit is not operating (or ‘OFF’) and would have a power output of zero watts. 

Therefore, the power output of the DG unit is defined as follows: 

                                𝑃𝐷𝐺  ∈  {ℝ|𝑃𝑚𝑖𝑛
𝐷𝐺 ≤ 𝑃𝐷𝐺 ≤ 𝑃𝑚𝑎𝑥

𝐷𝐺  𝑂𝑅 𝑃𝐷𝐺 = 0 }                               (3.1) 

The unit commitment variable 𝑥𝐷𝐺 is assigned to indicate when the DG unit is ‘ON’ 

(𝑥𝐷𝐺=1) or when it is ‘OFF’ (𝑥𝐷𝐺=0). Thus, the unit commitment variable is a binary variable; 

that is, 𝑥𝐷𝐺∈{0,1}. This relationship can be described by the following set of linear inequalities 

for a time step 𝑘, where each of them represents the lower and upper power generating unit: 

                                       𝑃𝑚𝑖𝑛
𝐷𝐺  ∙ 𝑥𝐷𝐺(𝑘) ≤  𝑃𝐷𝐺(𝑘), ∀𝑘                                               (3.2) 

                                       𝑃𝐷𝐺(𝑘) ≤ 𝑥𝐷𝐺(𝑘) ∙ 𝑃𝑚𝑎𝑥
𝐷𝐺 , ∀𝑘                                                 (3.3) 

To directly connect DG power output to fuel cost, let 𝐶𝑃 be defined as the cost of the fuel 

consumed by the DG unit at a steady-state power output 𝑃𝐷𝐺 for a fixed time period. This fuel 

cost per time period is typically described with the following quadratic form, known as the 

quadratic cost curve (QCC) [33]: 

            𝐶𝑃(𝑃𝐷𝐺) = 𝑎1(𝑃
𝐷𝐺)2 + 𝑎2(𝑃

𝐷𝐺) + 𝑎3,      𝑃𝑚𝑖𝑛
𝐷𝐺 ≤ 𝑃𝐷𝐺 ≤ 𝑃𝑚𝑎𝑥

𝐷𝐺                       (3.4) 

where 𝑎1, 𝑎2, and 𝑎3 are the fuel cost coefficients. This QCC equation is illustrated in 

Figure 19. A more suitable approach to implement equation (3.4) is provided in [33] and [34] 
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where the QCC curve is linearized into N piecewise linear segments in equipartition to achieve a 

linear approximation of the curve, Figure 20. 

 

FIGURE 19: The quadratic cost curve (QCC) 

The unit’s QCC is determined based on the partial load performance in fuel consumption 

units of BTU/hr [35]. With the price per BTU is $2.56/million BTU [36], the fuel consumption 

cost per hour [$/hr] can be calculated. This data is correlated with the corresponding DG unit 

power output. Using polyfit function in Matlab, the fuel coefficient 𝑎1[(
$

𝑘𝑊ℎ
)
2

], 𝑎2[(
$

𝑘𝑊ℎ
) , and 

𝑎3[
$

ℎ𝑟
] can be determined as: 

𝐶𝑃(𝑃𝐷𝐺) = −0.0001(𝑃𝐷𝐺)2 + 0.0294(𝑃𝐷𝐺) + 0.2410      0 𝑘𝑊 ≤ 𝑃𝐷𝐺 ≤ 65 𝑘𝑊         (3.5) 

Figure 21 shows the plot of the QCC and the superimposed linearize segments. 

The DG startup variable 𝑥𝑆𝑈 and shutdown variable 𝑥𝑆𝐷 are now introduced for 

indicating when the DG unit has been turned off or on; and they are defined as binary since these 

are indicator variables, so 𝑥𝑆𝑈 , 𝑥𝑆𝐷 ∈ {0,1}. 𝑥𝑆𝑈(𝑘) is set to 1 at time step k if the DG unit was 

turned on at time step k when it was previously off at time step k-1, and 𝑥𝑆𝑈(𝑘) is set to 0 

otherwisse. The shutdown variable 𝑥𝑆𝐷 is defined similarly. 

                              𝑥𝐷𝐺(𝑘) − 𝑥𝐷𝐺(𝑘 − 1) ≤ 𝑥𝑆𝑈(𝑘) ≤ 1, ∀𝑘                                        (3.6) 

                              𝑥𝐷𝐺(𝑘 − 1) − 𝑥𝐷𝐺(𝑘) ≤ 𝑥𝑆𝐷(𝑘) ≤ 1, ∀𝑘                                        (3.7) 
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The costs associated with starting up and shutting down the DG are defined as: 

                                             𝑆𝑈(𝑘) = 𝑐𝑆𝑈(𝑘)𝑥𝑆𝑈(𝑘),   ∀𝑘                                              (3.8) 

                                             𝑆𝐷(𝑘) = 𝑐𝑆𝐷(𝑘)𝑥𝑆𝐷(𝑘),   ∀𝑘                                              (3.9) 

                                                 𝑆𝐷(𝑘), 𝑆𝑈(𝑘) ≥ 0,   ∀𝑘                                                 (3.10) 

 

FIGURE 20: Piecewise linear approximation for the quadratic cost curve. 

There is also an operation and maintenance cost due to technical services and part 

replacement, and is defined by the following equation: 

                                              𝑂𝑀(𝑃𝐷𝐺(𝑘)) = 𝑐𝑂𝑀𝑃𝐷𝐺(𝑘)                                         (3.11) 

 

FIGURE 21: The QCC and the superimposed linearize segments. 
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A detail discussion regarding the DG unit commitment, the nonlinear relationship 

between the fuel consumption cost, minimum uptime/downtime, power ramping can be find in 

[37]. 

A Capstone C65 Micro-Turbine (MT), Figure 22, is chosen for the proposed ECS 

building microgrid. This natural gas MT provides 2 minutes start-up and 10 minutes cool-down 

process, and it has power ramping limit at 65 kW/15-minutes, or 260 kW/hr. This MT also has a 

very low maintenance cost which is about $0.003 per kWh. This MT also has following 

advancements: 

• Ultra-low emissions 

• One moving part – minimal maintenance and downtime 

• Patented air bearings – no lubricating oil or coolant 

• Integrated utility synchronization – no external switchgear 

• Compact modular easily combined – act as single generating source 

• Remote monitoring and diagnostic capabilities 

• Proven technology with tens of millions of operating hours 

The general specifications of the chosen MT are: 

• Rating: 65 kW 

• Electrical Efficiency LHV: 29% 

• Voltage: 400-480 VAC 

• Frequency: 50/60 Hz 

• Electrical Service: 3-phase, 4-wire Wye 

• Dimension: width (30 inch), depth (77 inch), height (75 inch) 

• Weight: grid connect – 1,671 lb 
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• Net heat rate LHV: 12.4 MJ/kWh (11,800 BTU/kWh) 

• Exhaust Temperature: 3090C (5880F) 

• Exhaust gas flow: 0.49 kg/s (1.08 lbm/s) 

• Compatible fuels: natural gas, liquid fuel, biogas, propane gas 

 

FIGURE 22: Capstone Micro-Turbine C65 

More detail of this MT such as engine components, engine and exhaust characteristics 

can be found at [38].  

3.2 Energy Storage Modeling 

Let 𝑥𝑏(𝑘) be denoted as the energy in the storage device at time step k in units of kWh, 

and is bounded to the upper 𝑥𝑚𝑎𝑥
𝑏  and lower 𝑥𝑚𝑖𝑛

𝑏  limit capacity of the storage. 𝑃𝑏(𝑘) is denoted 

as the storage power exchange at time step k, 𝜂 is the power exchange efficiency, and 𝑥𝑠𝑏 is the 

storage energy degradation. The energy storage model is described as follows: 

                                𝑥𝑏(𝑘 + 1) = 𝑥𝑏(𝑘) + 𝜂𝑃𝑏(𝑘)Δ𝑡 − 𝑥𝑠𝑏Δ𝑡                                  (3.12) 

with 

                                           𝑥𝑏𝜖 {ℝ|𝑥𝑚𝑖𝑛
𝑏 ≤ 𝑥𝑏 ≤ 𝑥𝑚𝑎𝑥

𝑏 }                                             (3.13) 
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A binary decision variable 𝛿𝑏(𝑘) is utilized to determine if the storage device is 

charging (𝑃𝑏(𝑘) ≥ 0) or discharging (𝑃𝑏(𝑘) ≤ 0)  at time step k. The relationship between 𝛿𝑏 

and  𝑃𝑏 can be described as an if and only if statement: 𝑃𝑏(𝑘) ≥ 0 ⟺ 𝛿𝑏 = 1. The storage 

charging efficiency 𝜂𝑐ℎ and discharging efficiency 𝜂𝑑𝑖𝑠 are within the boundary of 0 to 1. The 

new description of equation can be described as follows: 

𝑥𝑏(𝑘 + 1) = {
𝑥𝑏(𝑘) + 𝜂𝑐ℎ(𝑃𝑏(𝑘)Δ𝑡 − 𝑥𝑠𝑏Δ𝑡, 𝛿𝑏 = 1 (𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒) 

𝑥𝑏(𝑘) +
1

𝜂𝑑𝑖𝑠
(𝑃𝑏(𝑘)Δ𝑡 − 𝑥𝑠𝑏Δ𝑡, 𝛿𝑏 = 0 (𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑚𝑜𝑑𝑒)

       (3.14) 

This nonlinear conditional statement is needed to be transferred to a linear equation in 

order to describe in a MILP optimization problem. A supplementary decision variable 𝑧𝑏(𝑘) =

𝛿𝑏(𝑘)𝑃𝑏(𝑘) is utilized to do this work. Following [22] and [39], the energy storage can be 

described linearly with following equation: 

    𝑥𝑏(𝑘 + 1) = 𝑥𝑏(𝑘) + (𝜂𝑐ℎ −
1

𝜂𝑑𝑖𝑠
) 𝑧𝑏(𝑘)Δ𝑡 +

1

𝜂𝑑𝑖𝑠
𝑃𝑏(𝑘)Δ𝑡 − 𝑥𝑠𝑏Δ𝑡                   (3.15) 

Note that 𝑧𝑏(𝑘) hides the nonlinearity 𝛿𝑏(𝑘)𝑃𝑏(𝑘) in this equation. 

The “if..then” statement, or logical statement, can be described linearly using a 

mathematical technique [37], since it would be appropriate for implementation onto the MILP 

inequality constraints. The following gives an equivalent for the logical statement and inequality 

constraint; with 𝛿 as a binary indicator, tolerance 𝜀, function f, real value m and M such that 𝑓 ∈

{ℝ|𝑚 ≤ 𝑓 ≤ 𝑀}, equation x and x are equivalent: 

                                                   𝑓(𝑘) ≥ 0 ⟺ 𝛿𝑏 = 1                                                 (3.16) 

and 

                                                {
−𝑚𝛿 ≤ 𝑓(𝑘) − 𝑚

−(𝑀 + 𝜀)𝛿 ≤ −𝑓(𝑘) − 𝜀
                                           (3.17) 

Moreover, with real function y, equation x and x are equivalent: 



38 

 

                                                          𝑦 = 𝛿𝑓(𝑘)                                                          (3.18) 

and 

                                                

{
 

 
𝑦 ≤ 𝑀𝛿
𝑦 ≥ 𝑚𝛿

𝑦 ≤ 𝑓(𝑘) − 𝑚(1 − 𝛿)

𝑦 ≥ 𝑓(𝑘) − 𝑀(1 − 𝛿)

                                               (3.19) 

Therefore, the following set of linear inequality constraints are utilized to describe both 

the if and only if dynamic between 𝑃𝑏 , 𝑧𝑏, and 𝛿𝑏 and the product relationship of the three 

terms: 

                             

{
  
 

  
 

𝐶𝑏𝛿𝑏(𝑘) ≤ 𝑃𝑏(𝑘) + 𝐶𝑏 , ∀𝑘

−(𝐶𝑏 + 𝜀)𝛿𝑏(𝑘) ≤ −𝑃𝑏(𝑘) − 𝜀, ∀𝑘

𝐶𝑏𝛿𝑏(𝑘) + 𝑧𝑏(𝑘) ≤ 𝑃𝑏(𝑘) + 𝐶𝑏 , ∀𝑘

𝐶𝑏𝛿𝑏(𝑘) − 𝑧𝑏(𝑘) ≤ −𝑃𝑏(𝑘) + 𝐶𝑏 , ∀𝑘

−𝐶𝑏𝛿𝑏(𝑘) + 𝑧𝑏(𝑘) ≤ 0, ∀𝑘

−𝐶𝑏𝛿𝑏(𝑘) − 𝑧𝑏(𝑘) ≤ 0, ∀𝑘

                                      (3.20) 

With 𝜀 as the machine precision, and 𝐶𝑏 as the maximum power flow to or from the 

energy storage unit. 

A set of three Aspen 48M-25.9 batteries [40] are placed in parallel to create the energy 

storage system for the proposed ECS building microgrid. We have analyzed that placing three 

batteries in parallel would provide the most benefit, since adding more batteries will result in 

underutilization and minimal increase in operational cost savings, Figure 24. The batteries have 

almost no operation and maintenance costs during their 3000-cycle lifespan (to 70% retained 

capacity). 
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FIGURE 23: Aspen 48M-25.9 saltwater battery bank 

The advancements of this battery bank include: 

• Reliable: 

- Avoid costly downtime and battery replacement 

- Tolerant to high ambient temperatures 

- 100% DoD cycling with minimal degradation 

- Self-balancing, minimal self-discharge, and no trickle charge required 

- High tolerance to long stands at partial state of charge 

• Safe and non-toxic 

- Safe to handle, ship, and operate 

- Non-flammable, non-toxic, and non-explosive 

- No dangerous or catastrophic failure modes 

- Eliminates high concentrations of toxic or flammable materials 

• Cost effective 

- Excellent calendar and cycle life 

- No thermal management or active battery management system required 
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- Simple system operation 

- Minimal system maintenance 

• Sustainable 

- Environment friendly 

- No hazardous or toxic materials 

- Recyclable and land-fill safe 

 

 

FIGURE 24: 𝑥𝑏 plot with: 1 battery, 3batteries, 12 batteries. 

The general specifications of this battery bank are: 

• Nominal battery voltage: 48 V 

• Nominal capacity: 25.9 kWHr 
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• Cycle life: 3000 cycles (up to 70% retained capacity) 

• Voltage range: 40 – 59.5 V 

• Peak power: 11.7 kW 

• Dimension: height (45.6 inch), width (52 inch), depth (40 inch) 

• Weight: 3,315 lbs 

Based on the storage energy degeneration is obtain in Figure 25 [40] with the monthly 

capacity loss as a function of the ambient temperature, a self-discharge of 10% of the storage 

capacity occurs each month if placing the batteries in room temperature (200𝐶). Since we have 

three Aspen 48M-25.9 placed in parallel which creating a combined capacity of 77.7 kWh, we 

will have a self-discharge of 7.77 kWh/month. This translates to 0.0027 kWh/15-min for a 31 

days month. 

 

FIGURE 25: Self-discharge of Aspen 48M-25.9 battery over a month. 

For 𝑥𝑏, to avoid having battery discharge at 0%, the lower bound and end target are 

chosen to be 5 kWh. Since the round-trip efficiency is 90%, the in-and-out efficiency is: 

𝜂𝑐ℎ𝜂𝑑𝑖𝑠𝑃 = 𝜂2𝑃 = 𝜂𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑖𝑝𝑃 = 0.9𝑃 
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Therefore, 

𝜂 = √0.9 = 0.95 = 𝜂𝑐ℎ = 𝜂𝑑𝑖𝑠 

3.3 Utility Grid Modeling 

The proposed building microgrid can purchase electricity from the utility grid and sell 

back electricity to the grid. To model the utility grid power purchase, a binary state variable 

𝛿𝑔(𝑘) is introduced that determines if the user is purchasing energy (𝑃𝑔(𝑘) ≥ 0) or selling 

energy (𝑃𝑔(𝑘) ≤ 0) to the grid. Therefore, the relationship between 𝛿𝑔 and 𝑃𝑔 can be described 

as an if and only if statement: 𝑃𝑔(𝑘) ≥ 0 ⟺ 𝛿𝑔 = 1. The price of electricity at time step k is 

𝐶𝑃(𝑘), and the selling price is 𝐶𝑆(𝑘), both converted to $/kW. The resulting model is a logical 

conditional statement as follows: 

                                     𝐶𝑔(𝑘) = {
𝐶𝑃(𝑘)𝑃𝑔(𝑘), 𝛿𝑔(𝑘) = 1

𝐶𝑆(𝑘)𝑃𝑆(𝑘), 𝛿𝑔(𝑘) = 0
                                     (3.21) 

Similar to energy storage dynamics, the linearized equivalent of equation x is as follow: 

                                    𝑇𝑔𝛿𝑔(𝑘) + 𝑧𝑔(𝑘) ≤ 𝑃𝑔(𝑘) + 𝑇𝑔, ∀𝑘                                   (3.22) 

                                    −(𝑇𝑔 + 𝜀)𝛿𝑔(𝑘) ≤ −𝑃𝑔(𝑘) − 𝜀, ∀𝑘                                      (3.23) 

                                 𝑀𝑔𝛿𝑔(𝑘) + 𝐶𝑔(𝑘) ≤ 𝐶𝑃(𝑘)𝑃𝑔(𝑘) +𝑀𝑔, ∀𝑘                          (3.24) 

                              𝑀𝑔𝛿𝑔(𝑘) − 𝐶𝑔(𝑘) ≤ −𝐶𝑃(𝑘)𝑃𝑔(𝑘) + 𝑀𝑔, ∀𝑘                          (3.25) 

                               −𝑀𝑔𝛿𝑔(𝑘) + 𝐶𝑔(𝑘) ≤ 𝐶𝑆(𝑘)𝑃𝑔(𝑘), ∀𝑘                                    (3.26) 

                              −𝑀𝑔𝛿𝑔(𝑘) − 𝐶𝑔(𝑘) ≤ −𝐶𝑆(𝑘)𝑃𝑔(𝑘), ∀𝑘                                  (3.27) 

with 𝑇𝑔 is the maximum power flow to and from the utility grid and 𝑀𝑔 =

max {𝐶𝑃(𝑘), 𝐶𝑆(𝑘)} ∙ 𝑇𝑔. 

The forecast profiles of 𝐶𝑃(𝑘) and 𝐶𝑆(𝑘) can be obtained from the TOU rates supplied 

by the energy service provider, which is SCE in this case. 
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3.3.1 Peak demand cost modeling 

A peak demand cost model is needed to be implemented to the MILP optimization 

because utility companies bill their large customers for peak demand use to offset the cost of 

supplying high amount of power and encourage customers to reduce consumption during peak 

hours. The peak demand cost can be described as follows: 

                                                  𝐽𝑝𝑒𝑎𝑘 ≔ max {𝑃𝑔} ∙ 𝑐𝑝𝑒𝑎𝑘                                        (3.28) 

Where 𝑃𝑔 is the set of all power grid instances chosen by the optimization approach and 

𝑐𝑝𝑒𝑎𝑘 is the cost coefficient in $/kW. To linearize the maximum function, a supplementary 

variable 𝑍𝑔, which represents the maximum power instance of 𝑃𝑔, is used. The variable 𝑍𝑔 

replaces the nonlinear term max {𝑃𝑔} in the objective function. The linear peak demand cost 

model can be described by the following set of linear inequalities: 

                                                  𝐽𝑝𝑒𝑎𝑘 ≔ 𝑍𝑔 ∙ 𝑐𝑝𝑒𝑎𝑘                                                     (3.29) 

                                          𝑃𝑔(𝑘) ≤ 𝑍𝑔, ∀𝑘 = 1,… , 𝑇                                                (3.30) 

3.3.2 Energy balancing modeling 

To ensure that all power supplying components of the building satisfy the user’s power 

demands, the following energy balancing equivalence is established: 

     𝑃𝐷𝐺(𝑘) + 𝑃𝑃𝑉(𝑘) + 𝑃𝑔(𝑘)−𝑃𝑏(𝑘) = 𝐷(𝑘) + ∑ [1 − 𝛽ℎ
𝑙 ]𝐷𝑙(𝑘), ∀𝑘 = 1,… , 𝑇

𝑁𝑙𝑖𝑔ℎ𝑡𝑠
ℎ=1      (3.31) 

Note that 𝑃𝐷𝐺 , 𝑃𝑏, and 𝑃𝑔 are decision variables while 𝑃𝑃𝑉, D, and 𝐷𝑙 are determined 

through forecasting. Since the forecast solar power and forecast demand profiles are 

implemented to the optimization problem, it would be more precise to use the predicted PV 

output 𝑃̂𝑃𝑉 and demand 𝐷̂, and 𝐷̂𝑙 to the energy balancing model. 

     𝑃𝐷𝐺(𝑘) + 𝑃̂𝑃𝑉(𝑘) + 𝑃𝑔(𝑘)−𝑃𝑏(𝑘) = 𝐷̂(𝑘) + ∑ [1 − 𝛽ℎ
𝑙 ]𝐷̂𝑙(𝑘), ∀𝑘 = 1,… , 𝑇

𝑁𝑙𝑖𝑔ℎ𝑡𝑠
ℎ=1      (3.32) 
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This discrete equation describes a real-world continuous-time dynamic, and continuous-

time data like PV power must be discretized before implemented to the equation. 

3.4 PV Power Profile and TOU Rate 

3.4.1 PV profile 

The PV power profile is given as a continuous-time model and it need to be converted to 

discrete-time model profile in order to apply to MILP optimization. This process can be done 

using a Zero-Order Hold (ZOH) approach on the PV power profile. With 𝑇𝑠 is the sampling 

period for the PV profile, the following sample-and-hold equation is utilized: 

                        𝑃𝑃𝑉(𝑡) = 𝑃𝑃𝑉(𝑘), 𝑘𝑇𝑠 ≤ 𝑡 ≤ (𝑘 + 1)𝑇𝑠,∀𝑘 = 1, … , 𝑇                         (3.33) 

where 𝑃𝑃𝑉(𝑘) is the historical data of the PV power profile. The implementation of the 

ZOH approach on the continuous-time profile is illustrated in Figure 26. 

 

FIGURE 26: PV power profile discretized using ZOH. 

Since the desired sampling period for MILP optimization problem is 15-minutes, the PV 

power profile after being discretized should also have 15-minutes sampling period. 
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The active power profile of May 11st, 2017 is used because it has clear weather on that 

day thus provided an ideal PV power profile. The roof area of ECS building is 14,362 sqft, 

therefore a 105 kWh PV system is designed for the proposed ECS building microgrid. 

 

FIGURE 27: Proposed PV system on the roof of the ECS building. 

3.4.2 TOU rate 

Typically, the utilities company will inform their customers of the energy price rates and 

both parties will agree upon them through bilateral contracts before services. These rates vary by 

season, day of week, and time of day. There are usually two rates, known as On-Peak hours rate 

(during evening period when there is high customer demand), and Off-Peak hours rate (out-side 

of On-Peak hours). This schedule is known as TOU rate, and it may change depending on the 

season. 

There is no uncertainty in the energy purchasing/selling rate forecast since both parties 

have agreed on the rates through the contract. The purchasing rate 𝐶𝑃(𝑘) and selling rate 𝐶𝑆(𝑘) 

can be determined through the TOU schedule. 
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Retail tariff, to which the CSULB campus is subject to, is SCE TOU-8-B with the 

average price of electricity of $0.067/kWh [41], [42]. The purchasing and selling rate are shown 

in Figure 28, and the rates are given in $/kW15-min to coincide with the sampling rate. 

 

FIGURE 28: SCE TOU-8-B purchasing and selling rate. 

3.5 Forecast Uncertainty Modeling 

To demonstrate the advantage of the MPC-MILP controller, we must include 

uncertainties in the PV power and demand forecast. This paper adopts the uncertainty modeling 

with correlation approach from [43] and extend this work with our formulation to update 

forecasts at each time step. A zero-mean, normally distributed signal is passed through a causal 

filter with a finite impulse response to create a deviation. Then this deviation is additively 

implemented to provided historical data, resulting in our generalized forecast data with 

uncertainty. The forecast modeling is shown in Figure 29. 

 

FIGURE 29: Forecast modeling method. 
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This process begins by defining the historical data sequence 𝑏̅ = {𝑏̅(𝜏)}𝜏=1
𝑇 . Uncertainty 

to 𝑏̅ is implemented by using a causal filter with finite impulse response 𝑓 = {𝑓(𝜏)}𝜏=1
𝑇 . Thus, 

with Δ > 0, 𝑓 is defined as follows: 

𝑓(𝑡) = {
1,   0 ≤ 𝑡 ≤ Δ

 
  0,   otherwise;

                                                          (3.34) 

A zero-mean, normally distributed signal 𝑒 = {𝑒(𝜏)}𝜏=1
𝑇  is passed through the casual 

filter resulting in deviation 𝛿𝑏: 

𝛿𝑏(𝜏) =  ∑𝑒(𝑠)𝑓(𝜏 − 𝑠),

𝑇

𝑠=1

   𝜏 = 1, … , 𝑇                                              (3.35) 

Finally, this deviation is additively implemented to 𝑏̅, resulting in the generalized forecast 

with uncertainty 𝑏̂(𝜏): 

𝑏̂(𝜏) =  𝑏̅(𝜏) +∑𝑒(𝑠)𝑓(𝜏 − 𝑠),

𝑇

𝑠=1

   𝜏 = 1,… , 𝑇                                        (3.36) 

Along with forecasting PV power and critical demand, we will also include our 

formulation to update forecasts at each time step of the controllable loads, with equations (3.37)-

(3.39). We want the forecasts to improve in accuracy when it is calculated closer to the predicted 

event. Therefore, for the critical demand, PV demand, and controllable lighting demand, we 

define the calculated forecast for time 𝜏 predicted at time k as 𝐷̂(𝜏|𝑘),  𝑃̂𝑃𝑉(𝜏|𝑘), and 𝐷̂𝑙(𝜏|𝑘), 

respectively. To implement adjustment to these forecasts, we apply a correction convergence 

filter ℎ(𝜏|𝑘) to the forecast with uncertainty as follows: 

𝐷̂(𝜏 | 𝑘) = 𝐷(𝜏) − ℎ(𝜏, 𝑘) ∙ 𝛿𝐷(𝜏)                                           (3.37) 

𝑃̂𝑃𝑉(𝜏 |𝑘) = 𝑃𝑃𝑉(𝜏) − ℎ(𝜏, 𝑘) ∙ 𝛿𝑃𝑃𝑉(𝜏)                                       (3.38) 

𝐷̂𝑙(𝜏 | 𝑘) = 𝐷𝑙(𝜏) − ℎ(𝜏, 𝑘) ∙ 𝛿𝐷𝑙(𝜏)                                           (3.39) 
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where, for a finite correction time horizon 𝐻𝑐 > 0, 

ℎ(𝜏, 𝑘) = {
1 −

(𝜏 − 𝑘)

𝐻𝑐
,   𝜏 = 𝑘,… , 𝑘 + 𝐻𝑐

0,             𝜏 > 𝑘 + 𝐻𝑐

                                           (3.40) 

Note that if the forecast at time step 𝜏 is within 𝐻𝑐 when the prediction is made, ℎ(𝜏, 𝑘) 

causes the error in the demand forecast 𝛿𝐷(𝜏) to converge to 0 at each time step. 
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CHAPTER 4 

CONTROL STRATEGY DEVELOPMENT 

The proposed microgrid optimal scheduling should optimally schedule power production 

from PV solar panels, micro-turbine, storage, as well as controllable loads, in order to supply the 

microgrid demand and minimize the microgrid’s operational cost and the cost of buying 

electricity from utility grid. This chapter introduces the needed mathematical background to 

construct the proposed MPC-MILP control approach. 

At every time step (each 15 minutes), the MPC-MILP should have solution for the 

following questions: 

• Unit commitment: when should micro-turbine start and stop; when should storage 

device be charged or discharged. 

• Economic dispatch: how much power should each generator generate to cover loads at 

lowest cost. 

• When and how much energy to be purchased from or sold to the grid. 

• Which controllable loads should be curtailed and when. 

For the simplicity, only two types of loads in the building microgrid are considered for the 

MPC-MILP control approach: 

• Critical loads: loads that must be on for essential processes whenever the occupants 

want them to be on. 

• Controllable loads: load that can be curtailed during demand response or emergency 

situations (the smart lighting system). 
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4.1 MILP Principles 

Assuming there is a linear function f(x) that is needed to be minimized subject to the 

argument x. The problem can have constraints that bound x between values in an inequality and 

equate x as an equality. Suppose a decision vector x is chosen to represent the set of decision 

variables that contain both continuous and integer variables: 

                              𝒙 ≔ [𝑥1, 𝑥2, … , 𝑥𝑘, … , 𝑥𝑛]
′, 𝑥𝑘 ∈ ℝ × {0,1}, ∀𝑘                              (4.1) 

And the coefficient vector f is comprised of continuous values: 

                               𝒇 ≔ [𝑓1, 𝑓2, … , 𝑓𝑘, … , 𝑓𝑛]
′, 𝑓𝑘 ∈ ℝ, ∀𝑘                                             (4.2) 

The objective function of the MILP problem can then be described as: 

                                 𝒇𝑻𝒙 = 𝑓1𝑥1 + 𝑓2𝑥2 +⋯+ 𝑓𝑛𝑥𝑛                                                   (4.3) 

The variables in the decision vector will have constrains attached to them in the MILP 

problem, both equalities and inequalities. For instance, with real coefficients 𝑎 = {𝑎𝑖𝑘 ∈ ℝ, ∀𝑖 =

1, … ,𝑚 𝑘 = 1,… , 𝑛} and 𝑏 = {𝑏𝑘 ∈ ℝ, ∀𝑘 = 1,… ,𝑚}, a set of linear inequality constraints can 

be described as follows: 

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 ≤ 𝑏2 

⋮ 

                                   𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚                                         (4.4) 

Compacting the set into matrix-vector form, with 𝑚 × 𝑛 matrix 𝐴 = [𝐴𝑖𝑘 = 𝑎𝑖𝑘] and 

𝑚 × 1 vector 𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑚]′, the inequality constraint 𝐴 ∙ 𝒙 ≤ 𝐵 is obtained. 

Similarly, the equality constraint and bounding constraint in matrix vector form are as 

follows: 

                                                       𝐴𝑒𝑞 ∙ 𝒙 = 𝐵𝑒𝑞                                                         (4.5) 
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                                                         𝑙𝑏 ≤ 𝒙 ≤ 𝑢𝑏                                                          (4.6) 

Where lb and ub is the lower and upper bound vector. The MILP optimization problem 

can be described as follows: 

                              min
𝑥
𝒇𝑇𝒙 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝒙𝑖𝑛𝑡 ⊆ 𝒙, 𝒙𝑖𝑛𝑡 ∈ 𝕀
𝐴 ∙ 𝒙 ≤ 𝐵

𝐴𝑒𝑞 ∙ 𝒙 = 𝐵𝑒𝑞
𝑙𝑏 ≤ 𝒙 ≤ 𝑢𝑏

                                        (4.7) 

4.2 Connecting MILP Optimization to Optimal Scheduling 

This MILP optimization problem can be translated to an optimal scheduling whose the 

ultimated goal is to minimize the daily operational cost of the microgrid while satisfying the 

user’s power demand and the microgrid’s operation constraints. The optimal scheduling problem 

can be expressed in words as: 

min
𝒄𝒐𝒏𝒕𝒓𝒐𝒍 𝒊𝒏𝒑𝒖𝒕𝒔

(𝐶𝑜𝑠𝑡𝑠) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {𝑀𝑖𝑐𝑟𝑜𝑔𝑟𝑖𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

The MILP optimization gives a finite number of control decision solution in x, so the 

outputs need to be realized as a digital controller with discrete control outputs, where one 

instance of the command input is implemented to the microgrid’s local controllers for a certain 

time period, then in the next instance a new command is set. Therefore, the decision vector of the 

MILP problem as a set of all the command inputs to the microgrid local controllers, as well as 

auxiliary variables from time step k=1 to k=T, where T is the last time step of the MILP 

problem’s optimization window.  

The decision vector for the microgrid optimal scheduling problem can be defined as 

follows: 

𝑥(𝑘) =

[𝑃𝐷𝐺(𝑘)  𝑙𝑚(𝑘)  𝑥
𝐷𝐺(𝑘)  𝑥𝑆𝑈(𝑘)  𝑥𝑆𝐷(𝑘)  𝑥𝑏(𝑘)  𝑃𝑏(𝑘)  𝛿𝑏(𝑘)  𝑍𝑏(𝑘)  𝑃𝐺(𝑘)  𝑍𝑔 𝛽𝑙𝑖𝑔ℎ𝑡𝑠 ]′   ∈

 ℝ × {0,1}, ∀ 𝑘 = 1,… , 𝑇                                                                                                                     (4.8)           
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Where 𝑃𝐷𝐺(𝑘)  𝑙𝑚(𝑘)  𝑥
𝐷𝐺(𝑘)  𝑥𝑆𝑈(𝑘)  𝑥𝑆𝐷(𝑘) represent the control solutions for DG 

unit, 𝑥𝑏(𝑘)  𝑃𝑏(𝑘)  𝛿𝑏(𝑘)  𝑍𝑏(𝑘) represent the control solutions for energy storage, 𝑃𝐺(𝑘)  𝑍𝑔 

represent the control solution for utility grid, and 𝛽𝑙𝑖𝑔ℎ𝑡𝑠 represents the control solutions for the 

curtailment level of lighting controllable zones. 

Each of the elements of the control solution variables is a vector, and the decision vector 

can be understood as a vector of vectors. For example, 𝑥𝑏(𝑘) and 𝑃𝑏(𝑘) are defined as follows: 

𝑥𝑏 =

[
 
 
 
𝑥𝑏(1)

𝑥𝑏(2)
⋮

𝑥𝑏(𝑇)]
 
 
 

, 𝑃𝑏 =

[
 
 
 
𝑃𝑏(1)

𝑃𝑏(2)
⋮

𝑃𝑏(𝑇)]
 
 
 

 

                                                        𝑥 =

[
 
 
 
 
 
 
 
 
 
 

⋮
𝑥𝑏(1)

𝑥𝑏(2)
⋮

𝑥𝑏(𝑇)

𝑃𝑏(1)

𝑃𝑏(2)
⋮

𝑃𝑏(𝑇)
⋮ ]

 
 
 
 
 
 
 
 
 
 

                                                          (4.9) 

Based on the mathematical modeling of microgrid’s components, the lower bounds and 

upper bounds of the decision variables in x can be summarized as follows: 

                        𝑃𝐷𝐺  ∈  {ℝ|𝑃𝑚𝑖𝑛
𝐷𝐺 ≤ 𝑃𝐷𝐺 ≤ 𝑃𝑚𝑎𝑥

𝐷𝐺  𝑂𝑅 𝑃𝐷𝐺 = 0 }                                         (4.10) 

                              0 ≤ 𝑙𝑚 ≤ (𝑃𝑚
𝑚𝑎𝑥 − 𝑃𝑚−1

𝑚𝑎𝑥) ∙ 𝑥𝐷𝐺 , ∀𝑚                                            (4.11) 

                          𝑥𝐷𝐺 , 𝑥𝑆𝑈 , 𝑥𝑆𝐷 ∈ {ℤ|0 ≤ 𝑥𝐷𝐺 , 𝑥𝑆𝑈 , 𝑥𝑆𝐷 ≤ 1}                                      (4.12) 

                                  𝑥𝑏 ∈ {ℝ|𝑥𝑚𝑖𝑛
𝑏 ≤ 𝑥𝑏 ≤ 𝑥𝑚𝑎𝑥

𝑏 }                                                      (4.13) 

                       𝑃𝑏 ∈ {ℝ| − |𝑃𝑐ℎ−𝑚𝑎𝑥
𝑏 | ≤ 𝑃𝑏 ≤ |𝑃𝑑𝑖𝑠𝑠−𝑚𝑎𝑥

𝑏 |}                                         (4.14) 

                                          𝛿𝑏 ∈ {ℝ|0 ≤ 𝛿𝑏 ≤ 1}                                                          (4.15) 

                               𝑧𝑏(𝑘) ∈ {ℝ|0 ≤ 𝑧𝑏 ≤ |𝑃𝑑𝑖𝑠𝑠−𝑚𝑎𝑥
𝑏 |}                                               (4.16) 
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                                            𝑃𝑔 ∈ {ℝ| − |𝑇𝑔| ≤ 𝑃𝑔 ≤ |𝑇𝑔|}                                        (4.17) 

                                              𝛿𝑔 ∈ {ℤ|0 ≤ 𝛿𝑔 ≤ 1}                                                      (4.18) 

                                              𝑍𝑔 ∈ {ℝ|0 ≤ 𝛿𝑏 ≤ ∞}                                                    (4.19) 

                                             𝛽𝑙 ∈ {ℝ|0 ≤ 𝛽𝑙 ≤ 0.15}                                                  (4.20) 

 

4.2.1 Cost objective function 

The cost objective function is used to determine the daily operating cost of the microgrid, 

which includes DG fuel costs, peak load, maintenance, purchased grid energy, and costs 

associated with start-up and shut-down of the DG unit. The cost function J is defined as follows: 

𝐽: = ∑ {𝐶𝑂𝑀𝑃𝐷𝐺(𝑘) + ∑ 𝑠𝑚𝑙𝑚(𝑘) + 𝐶
𝑚𝑖𝑛𝑥𝐷𝐺(𝑘) + 𝐶𝑆𝑈𝑥𝑆𝑈(𝑘) + 𝐶𝑆𝐷𝑥𝑆𝐷(𝑘) +𝑁

𝑚=1
𝑇
𝑘=1

𝐶𝑔(𝑘) + 𝜌𝑐 ∑ 𝛽ℎ
𝑙𝑖𝑔ℎ𝑡𝑠

(𝑘)𝐷ℎ
𝑐(𝑘)

𝑁𝑙𝑖𝑔ℎ𝑡𝑠=161

ℎ=1
} + 𝐶𝑝𝑒𝑎𝑘𝑍𝑔                                                          (4.21)  

Where k is the time step instance, N is the number of quadratic cost curve (QCC) segment 

partition, and T is the time horizon, which is 24 hours at 15-minutes sampling intervals, thus 

T=96. 

4.2.2 MILP control system 

The optimal scheduling as a MILP optimization problem can now be formalized as 

follows: 

min
𝑥
∑ {𝐶𝑂𝑀𝑃𝐷𝐺(𝑘) + ∑ 𝑠𝑚𝑙𝑚(𝑘) + 𝐶

𝑚𝑖𝑛𝑥𝐷𝐺(𝑘) + 𝐶𝑆𝑈𝑥𝑆𝑈(𝑘) + 𝐶𝑆𝐷𝑥𝑆𝐷(𝑘) +𝑁
𝑚=1

𝑇
𝑘=1

𝐶𝑔(𝑘) + 𝜌𝑐 ∑ 𝛽ℎ
𝑙𝑖𝑔ℎ𝑡𝑠

(𝑘)𝐷ℎ
𝑐(𝑘)

𝑁𝑙𝑖𝑔ℎ𝑡𝑠=161

ℎ=1
} + 𝐶𝑝𝑒𝑎𝑘𝑍𝑔                                                           (4.22) 

subject to: 

              Fuel cost constraints 

              DG operation model constraints 
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              Energy storage model constraints 

              Storage Dynamics constraints 

              Utility grid interaction constraints 

              Energy balancing model constraints 

              Bounding constraints 

At each time step k, the MILP control system will implement the following command 

inputs for the microgrid’s local controllers: 

〈
𝑃𝐷𝐺(𝑘), 𝑥𝐷𝐺(𝑘),𝑃𝑏(𝑘)

𝛿𝑏(𝑘), 𝑃𝑔(𝑘)
〉 

Figure 30 shows the diagram of the open loop MILP control system. 

 

FIGURE 30: MILP control system. 

As shown in the Figure 30, even though MILP control system give new command inputs 

at each time step, they are all calculated with one calculation at the beginning of the day at the 

latest since there is no form of feedback compensation in this system. Its performance therefore 

relies heavily on the uncertainty in the critical demand, controllable demand, and PV forecast, 

which are not always accurate. Therefore, in order to compensate the forecast uncertainties, the 

implementation of MPC approach in conjunction with MILP is proposed. 
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4.3 The Proposed MPC-MILP control approach 

4.3.1 MPC principles 

MPC is an optimal control approach that control dynamic systems subject to its modeling 

constraints by measuring states from a system plant, calculating a control sequence for a finite 

horizon, and implementing the first step in the control sequence. The prediction horizon is shift 

forward at each time step, and the process of the control system is repeated. This online method 

is proved to have better performance in compare with other offline approach with modeling 

uncertainties. 

MPC optimization has three main properties: 

• Dynamic models: x(k+1)=f(x(k),u(k)) 

• Constraints: x(k) ∈ X, u(k) ∈ U 

• Cost: 𝐽(𝑘) = 𝑚𝑖𝑛∑ 𝑔(𝑥(𝑘), 𝑢(𝑘))𝑁
𝑘+1  

where x(k) is the state variable with a prediction horizon of W, u(k) is the control sequence 

with a control horizon of R. 

4.3.2 MPC-MILP control strategy 

This sub-section introduces in detail the proposed MPC-MILP control approach. 

The following inputs need to be given to the MPC-MILP controller before the 

optimization process begin, including: utility rates 𝐶𝑃(𝑘), 𝐶𝑆(𝑘), 𝑘 = 1,… , 𝑇, storage energy 

state 𝑥𝑏(𝑘), critical demand D(k), controllable load demand 𝐷𝑙(𝑘), PV power 𝑃𝑃𝑉(𝑘), their day-

ahead forecasts 𝐷̂(𝑘), 𝑃̂𝑃𝑉(𝑘), 𝐷̂𝑙(𝑘), and previous DG states 𝑃𝐷𝐺(𝑘 − 1), 𝑥𝐷𝐺(𝑘 − 1). 

At each time step k, the MPC-MILP controller compute the QCC linear piecewise 

approximation. It then calculates and updates the forecast of critical demand, controllable load 

demand, and PV power, as well as determine the economic schedule. The controller implements 
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the first element of the control solution, and a subset of the decision vector is sent to the 

microgrid’s local controllers: 

〈
𝑃𝐷𝐺(𝑘|𝑘), 𝑥𝐷𝐺(𝑘|𝑘),𝑃𝑏(𝑘|𝑘)

𝛿𝑏(𝑘|𝑘), 𝑃𝑔(𝑘|𝑘), 𝛽𝑙(𝑘|𝑘)
〉 

The process is repeated in the next time step k+1 to ensure that the forecast is updated 

with the latest data and energy storage stays within the specified bounds. 

 

FIGURE 31: MPC-MILP control strategy 

The MPC-MILP algorithm is described in Figure 31, and the flowchart of ECS 

microgrid’s operation is shown in Figure 32. 

 

FIGURE 32: Flowchart of microgrid’s operation 



57 

 

The optimal sequence for time step k through T calculated by the MPC-MILP control 

system is defined as: 

                            𝑥→𝑘
𝑇 = [𝑥(𝑘|𝑘), 𝑥(𝑘 + 1|𝑘), … , 𝑥(𝑇|𝑘)                                         (4.23) 

MPC-MILP controller also implements the state feedback control policy 𝑥𝑏(𝑘|𝑘) =

𝑥𝑏(𝑘). In summary, for each time step k, MPC-MILP determine the control solution variables 

subject to the following MILP problem: 

𝐽(𝑘) = min
𝑥→𝑘
𝑇
∑ {𝐶𝑂𝑀𝑃𝐷𝐺(𝑘 + 𝑗|𝑘) + 𝐶𝑚𝑖𝑛𝑥𝐷𝐺(𝑘 + 𝑗|𝑘) + ∑ 𝑠𝑚𝑙𝑚(𝑘 + 𝑗|𝑘) +

𝑁
𝑚=1

𝑇−𝑘
𝑗=0

𝐶𝑆𝑈𝑥𝑆𝑈(𝑘 + 𝑗|𝑘) + 𝐶𝑆𝐷𝑥𝑆𝐷(𝑘 + 𝑗|𝑘) + 𝐶𝑃(𝑘 + 𝑗)𝑃𝑔(𝑘 + 𝑗|𝑘) + 𝜌𝑐 ∑ 𝛽ℎ
𝑙𝑖𝑔ℎ𝑡𝑠

(𝑘 +
𝑁𝑙𝑖𝑔ℎ𝑡𝑠=161

ℎ=1

𝑗|𝑘)𝐷ℎ
𝑐(𝑘 + 𝑗|𝑘)} + 𝐶𝑝𝑒𝑎𝑘𝑍𝑔(. |𝑘)                                                                                       (4.24) 

subject to: 

              QCC model, DG model 

              Energy storage model constraints 

              Storage Dynamics constraints 

              𝑃𝑔(𝑘) ≤ 𝑍𝑔 ∀𝑘 = 1,… , 𝑇 

              Utility grid interaction constraints 

              Energy balancing model constraints 

  Bounding constraints 

  𝑥𝑏(𝑘|𝑘) = 𝑥𝑏(𝑘) 

Note that at each new time step k, the prediction horizon recedes, but its length stays the 

same. This is known as receding horizon. 
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CHAPTER 5 

CASE STUDY: SIMULATION AND RESULTS 

5.1 Proposed ECS Building Microgrid 

In this thesis, we propose implementing a PV generation unit with the capacity of 105 

kW (designed based on the space availability on the ECS building roof), a MT with the rated 

power of 65 kW, and a set of three 25.9 kWh microgrid batteries to transform the ECS building 

into an advanced microgrid. The building will also have a point of connection to the utility grid 

for backup power. The proposed ECS building microgrid is shown in Figure 33. 

 

FIGURE 33: Proposed ECS building microgrid 

CSULB campus is currently served by a 66kV transmission service originating from an 

outdoor switchyard located in the Corporation yard on the North East side of the campus. 
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Southern California Edison is the company who are selling power to CSULB, whereas the 

optimum performance of new and existing building (not only electrical, but also mechanical and 

plumbing) will be ensured by P2S Engineering Inc. 

That 66kV service is stepped down to a 12.47kV service by using two 10/12 5mVA 66-

12.47kV transformers. These transformers are served by the same high voltage breaker on the 

primary side. The secondary side of these transformers serves the main campus’s buildings, and 

devided to North substation and South substation. 

The North substation includes a metering section and 15kV main switchgear comprising 

of a 2000A main breaker and 1200A feeder breakers. There are 8 12kV feeders (numbered 1 to 

8) originating from this switchgear, and they form multiple loops and serve power to various 

building and facilities on campus. Feeders 1 to 6 belong to the North substation, and the ECS 

building is supplied by Feeder 5 with installed capacity of 4.15 MVA. 

As shown in Figure 33, there are two types of loads in ECS building: critical loads and 

controllable loads. The critical loads are loads that must be on for essential processes whenever 

the occupants want them to be on. The building microgrid’s controllable loads such as lighting 

system, plug load system, and HVAC system are controlled autonomously and optimally under 

the IoT-based BEMS system. The BEMS system co-optimizes the IoT-based flexible lighting 

system with on-site resources using the proposed MPC-MILP algorithm. The PV power, building 

critical demand, and controllable lighting demand for the day of May 1st, 2019 along with its 

day-ahead forecasting are shown in Figure 34 and Figure 35. 
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FIGURE 34: PV power forecasting 

 

 

FIGURE 35: Demands forecasting 
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5.2 Control Strategy Setup 

Four control strategies are evaluated in this study: 

• All from Utility (AFU): All needed power will be supplied by the utility grid. There is 

neither IoT-based BEMS system nor proposed MPC-MILP control approach. The 

building microgrid’s demand data for this control strategy is May 2015, when IoT-based 

BEMS has not been installed. 

• AFU with IoT-based BEMS: All needed power is still supplied by the grid, but the IoT-

based BEMS optimally controls the lighting, plug load, and HVAC system based on the 

energy, environmental and occupancy data collected by the smart sensor network. The 

building microgrid’s demand for this control strategy is May 2019, when IoT-based 

BEMS has already been installed in the building. 

• MPC-MILP: This is a MILP problem that is calculated at each time step k with the 

updated forecasts and the sampled state of the storage energy. However, this control 

strategy is applied to the ECS building microgrid where IoT-based BEMS does not exist. 

Meaning that it does not include managing and controlling the IoT-based flexible loads. 

This control strategy is applied to May 2015 demand data. 

• MPC-MILP with IoT-based BEMS: This is the proposed control strategy of this paper. 

The MPC-MILP control strategy will be implemented in the IoT-based BEMS system to 

increase energy efficiency as well as the DR capability of the building. This control 

strategy is applied to May 2019 demand data. 

5.3 Simulation and Results 

The ECS building microgrid is simulated based on one-month operational data of May 

2019. Figure 36 presents the optimal operation of the DERs and utility grid for May 1st 2019, 

determined by the proposed MPC approach (MPC-MILP with IoT-based BEMS), and figure 37 

shows the result of MPC-MILP for May 1st, 2015. 
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FIGURE 36: The operation of building microgrid’s components controlled by proposed 

MPC-MILP approach during May 1st, 2019. 

 

FIGURE 37: The operation of building microgrid’s components controlled by MPC-

MILP approach during May 1st, 2015. 

The daily operational cost of four control strategies is compared in Figure 38, and the 

monthly total operational cost (operational cost and peak demand cost) are provided in Table 6. 
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As shown in the table, the MPC-MILP with IoT-based BEMS helps the building microgrid 

achieve 77% savings in term of total monthly operating costs, while AFU with IoT-based BEMS 

and MPC-MILP provides 47% and 37% savings, respectively. 

 

FIGURE 38: Daily operational cost comparison between four control strategies for May 

2019. 

We also compared the peak load reduction for four control strategies. The results show 

that the MPC-MILP with IoT-based BEMS provides the highest peak load reduction, 83% 

reduction, while the MPC-MILP strategy without load controllability only provides 34% 

reduction, and the AFU with IoT-based BEMS is 63%. 



64 

 

 

Table 6: Total monthly operational cost, and monthly peak demand comparison. 

5.4 Unit Commitment and Economic Dispatch Discussion 

The DG’s unit commitment and economic dispatch relationship is described in equation 

X and X, where DG state and DG power need to be determined through the optimization. This 

process is necessary since there is cost associated with turning on or shutting down the DG. 

However, during our simulation, we recognized that unit commitment and economic dispatch 

can be considered as the same problem to solve for small scale building microgrid since DG 

seems not to be turned off during its operation. To examine this claim, we tested our current DG 

model with three cases: 

1) Current model with no change. 

2) Current model with 𝑃𝑚𝑖𝑛
𝐷𝐺 = 𝑃𝑚𝑎𝑥

𝐷𝐺 = 65 𝑘𝑊 

3) Current model with 𝑥𝐷𝐺 = 1 for all time steps. 

All of three cases have been simulated with 1-day prediction horizon and 3-day 

prediction horizon, and cost of turning on and shutting down the DG are set to 0. Figure 39 

shows the operation of DG unit for 3 mentioned cases. Results show that the DG unit kept 
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running constantly through the optimization process and did not turn off at any time step. 

Therefore, for small scale building microgrid, unit commitment problem can be merged with 

economic dispatch problem. 

 

FIGURE 39: DG operation of three examining cases for May 1st, 2019. 

5.5 Economic Analysis 

This section aims to discuss the benefits and energy savings opportunities of 

implementing the IoT-based BEMS which has sensors and control across plug-in loads, lighting, 

and HVAC system in the ECS building, and integrating this advanced system with optimal 

scheduling. 

5.5.1 Benefits from implementing IoT-based BEMS 

As discussed previously, the IoT-based BEMS optimally controls the lighting, plug load, 

and HVAC system based on the energy, environmental and occupancy data collected by the 

smart sensor network. The proposed MPC approach receives predicted energy consumption from 
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the IoT-based BEMS, and performs optimal scheduling for the operation of on-site DERs and 

controllable lighting system. 

The IoT-based EMS system also provides an opportunity for building to grid services 

such as DR. DR can be provided through advanced load control such as automated lighting 

control, automated dimming control, high granularity zonal occupancy-based lighting control, 

zonal occupancy-based ventilation control, automated VAV control, automated fan speed 

control, temporary non-essential plug load curtailment, and idle load curtailment. 

The DR techniques implemented across lighting, plug-in loads and HVAC can make 

building load profile smoother, therefore improving grid stability and quality of service. These 

advanced technologies also enhance flexibility in grid management such as creating reserve 

capacity, increasing grid capacity through more finely tuned operations, as well as improving the 

grid reliability and efficiency through the energy data information exchange between assets in 

building and between building and the grid. 

In long-term vision, it will provide cost-effective resiliency and robustness to the grid, 

reduce expensive investment on new generation and transmission, and enable several ancillary 

services, such as reducing and mitigating future costs for capacity to manage the increasing 

penetration of variable renewable energy sources and supporting the deployment of EVs. 

Another merit of this advanced technology is the ease of deployment and integration at 

wide variety of existing buildings, interoperability and ability to include or work in parallel with 

existing and conventional energy management systems. Sensors, actuators, and other hardware 

are plug-and play devices, deployed without any need of hardwiring or modifications to existing 

circuits, thus, the fully automated IoT sensor network is deployed with minimum labor. 
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5.5.2 Savings and payback period 

Next, we calculate the energy cost reduction of implementing and integrating the IoT-

based BEMS with the proposed MPC optimal scheduling. Retail tariff, to which the CSULB 

campus is subject to, is SCE TOU-8-B with the average price of electricity of $0.067/kWh, and 

the average energy charges and demand charges are $7.23/kW/month, $0.75 kVAr/kW, and 

$0.34/kVAr/month. 

Due to the result presented in Table 6, MPC-MILP with IoT-based BEMS can reduce 

77% of the total monthly operational cost, in compared with all from utility control strategy. 

Considering this as the monthly average reduction, the energy cost reduction for an academic 

year will be $9,246_12=$110,952. 

The cost of this project mainly belongs to the project equipment, installation, and 

maintenance. The rest of the cost is dedicated to enhancing the microgrid real-time control 

methodology, and energy management strategy. The microgrid equipment includes: microgrid 

switches, solar PV panels, battery energy storage, distributed generator, inverters, IoT 

communication devices, smart plug load controllers, smart sensors, smart lighting fixtures. The 

total project equipment and material cost (shown in Table 7), including the cost of equipment 

installation and maintenance, and enhanced services is estimated at $493,157. Total estimated 

project cost saving per year is $110,952. The benefit to cost ratio of the proposed project 

guarantees the return of investment in 4.5 years. 
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TABLE 7: Economic analysis of the proposed project 

IoT devices, smart lights, plug load controllers ($) 300,000 

PV system ($) 109,760 

Energy storage ($) 44,397 

DG unit ($) 39,000 

Total initial invests ($) 493,157 

Total cost saving/year ($) 110,952 

Payback period (year) 4.5 
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CHAPTER 6 

CONCLUSION 

This thesis presents an economic scheduling framework for building microgrids with 

IoT-based controllable loads. The load controllability, curtailment level constraints, and 

curtailment penalty have been implemented in the modeling and optimization of the building 

microgrid. The proposed approach has been investigated on the Engineering and Computer 

Science (ECS) building microgrid at the CSULB campus. The simulation results show that the 

proposed MPC-MILP method with IoT-based load controllability leads to superior energy costs 

saving and peak load reduction. They also show that in small scale building microgrid, unit 

commitment and economic dispatch can be considered as the same problem to solve since DG 

seems not to be turned off during its operation. 

In addition, during the smart building microgrid design process, we have discovered that 

only 24% of total number of building’s outlet should be replaced by smart plug controllers to 

achieve maximum energy efficiency and demand response capabilities on plug-in loads. The 

benefits and economic analysis of implementing the advanced energy efficiency controllable 

loads and integrating them with proposed control platform of building micro-grid also have been 

conducted and presented. 

Many existing building owners are reluctant to take on brand-new technologies or 

upgrades due to the need for additional in-house technical personnel and expertise. One of the 

goals of this project is to remove those barriers to achieve widespread deployment of state-of-

the-art energy management technologies in academic buildings by addressing the specific energy 

needs of such buildings. The successful demonstration of advanced building energy efficiency 

and DR capability paves the way for future deployments in other academic buildings. This 
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deployment project can make radical improvements to the carbon footprint, electricity use, 

deployment infrastructure and demand response scaling. 

Future research endeavors include applying machine learning algorithm for demands 

forecasting, developing a mathematical model for the penalty cost curve of controllable load 

curtailment, and extending the MPCMILP approach to the IoT network of the HVAC system to 

increase overall energy efficiency and demand response capability. The HVAC system can be 

controlled using occupancy data to optimally adjust air handlers and air volume at different 

zones. In addition, by applying machine learning methods we can predict the behavior of 

occupants. This information can be used for prior scheduling of the HVAC system for pre-

cooling or pre-heating the zones, which can result in significant energy costs savings.  
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APPENDIX A 

MATLAB CODE OF MPC-MILP CONTROLLER (1-day prediction horizon) 

 

  



72 

 

Matlab code of the proposed MPC-MILP controller 

function [xPDG1,xDG1,xSU1,xSD1,xBeta1,xPb1,xdeltb1,xPgrid1,xdeltg1,... 
          xBeta_lighting1, lighting_controllable_demand1,... 
          Lighting_penalty] = ... 
       MPC_MILP(xb_measured_state,Pres_measured_state,D_measured_state,... 
       Time_Step,Prev_PDG_State,Prev_xDG_State,controllableLoad,demand,... 
       gridPurchasing,gridSelling,RES_Power,rand_variable_demand,... 
       rand_variable_RES,light_profile)   %#codegen 

       

 
samp_per = 0.25;  % sampling period [hrs] (ex. 15 min => 0.25) 

                   
Ninitial = 24/samp_per; % Sample periods for the day  
N = Ninitial; %fixed prediction horizon (24-hour=96) 

  
% Sampling period for Simulink purposes 
delta_t = (samp_per)*60*60; % sampling period for 24 hr [sec.] 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%% Distributed Generator: Microturbine: Capstone C65 %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% DG unit power parameters 
PDG_min = 0;    % minimum power output for the DG unit [kW] 
PDG_max = 65.0; % maximum power output for the DG unit [kW] 

  
% DG Cost parameters 
cStartUp = 0.0000;      % Startup cost for DG [$]   
cShutdown = 0.0000;     % Shutdown cost for DG [$]   
MaintOppCoeff = 0.00325; % [$/kW] (see pg. 178 of notebook) 

  
RRu = 360;      % Ramp rate up limit [kW/hr]  (MUST be positive) 
RRu = RRu*samp_per; 

  
RRd = 360;      % Ramp rate down limit [kW/hr](MUST be positive) 
RRd = RRd*samp_per; 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%% Microgrid Battery: Aspen 48M-25.9 Battery %%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Note: We will be placing three (3) of these batteries in parallel. Thus, 
% we will triple the capacity and power output limit. 

  
% Energy storage global parameters  
xbinitial = 5.0;  % Initial energy state of the storage device (at t = 0)  
                  % [kWh]. Thus, xb(1) = xbinitial; 
xbfinal = 5.0;    % The starting energy state of the storage device for  
                  % tommarow [kWh]. Thus, xb(N+1) = xbfinal;   
xbStorageMin = 5.0;% Minimum energy storage for our battery/UC [kWh] 
                   % this is if you don't want SOC below a certain level 
                   % Note: this value must be non-negative 
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xbStorageMax = 3*25.9;   % Maximum energy storage for our battery/UC [kWh] 
Pb_chg_dchg_lim = 3*11.7;% Max power rate storage can CHARGE/DISCHARGE [kW]  
Cb = Pb_chg_dchg_lim;    % *NOTE*: Keep track of where the negative is  
                         % implemented, here or in the "Lower and upper 
                         % bound constraints" segment. 
eff_c = 0.95; % Charging efficiency of en. storage + pwr electronics. 
              % with 0 <= eff_c <= 1; 1 means no power loss. 
eff_d = 0.95; % Discharging efficiency of en. storage + pwr electronics. 
              % with 0 <= eff_d <= 1; 1 means no power loss.     
xsb = 0.0027; % const. stored energy degradation in sampling interval [kWh] 

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%% Utility Grid: Provider: Southern California Edison %%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% Utility Grid parameters 
Tg = 2000; % Maximum interconnected power flow limit [kW] 

  
c_peak = 6.56/31; % Peak demand cost coffienent [$/kW] 

  
%penalty for controllable lighting load 

  
rho_c_lighting = 0.067; 

  

 
%% Extrinsic Declarations and Nullcopies, etc. 
% As required by the MATLAB Function block, you must declare certain 
% functions as extrinic, and use nullcopy accordingly. 

  
coder.extrinsic('cplexmilp');  
coder.extrinsic('round');  
coder.extrinsic('abs');  

  
% preinitializing for variables dependant on extrinsic funtions 

  
xPDG   = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xlDG   = coder.nullcopy(zeros(10*N,1)); %#ok<NASGU> Ignore this warning 
xDG    = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xSU    = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xSD    = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xBeta  = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xb     = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xPb    = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xdeltb = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xzb    = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xPgrid = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xdeltg = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xCg    = coder.nullcopy(zeros(N,1)); %#ok<NASGU> Ignore this warning 
xBeta_lighting = coder.nullcopy(zeros(161,N)); %#ok<NASGU> Ignore this 

warning 
%xBeta_plug = coder.nullcopy(zeros(201,N)); %#ok<NASGU> Ignore this warning 

  
xPDG1   = coder.nullcopy(zeros(size(1))); %#ok<NASGU> Ignore this warning 
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xDG1    = coder.nullcopy(zeros(size(1))); %#ok<NASGU> Ignore this warning 
xSU1    = coder.nullcopy(zeros(size(1))); %#ok<NASGU> Ignore this warning 
xSD1    = coder.nullcopy(zeros(size(1))); %#ok<NASGU> Ignore this warning 
xBeta1  = coder.nullcopy(zeros(size(1))); %#ok<NASGU> Ignore this warning 
xPb1    = coder.nullcopy(zeros(size(1))); %#ok<NASGU> Ignore this warning 
xdeltb1 = coder.nullcopy(zeros(size(1))); %#ok<NASGU> Ignore this warning 
xPgrid1 = coder.nullcopy(zeros(size(1))); %#ok<NASGU> Ignore this warning 
xdeltg1 = coder.nullcopy(zeros(size(1))); %#ok<NASGU> Ignore this warning 
xBeta_lighting1 = coder.nullcopy(zeros(161,1)); %#ok<NASGU> Ignore this 

warning 
%xBeta_plug1 = coder.nullcopy(zeros(201,1)); %#ok<NASGU> Ignore this warning 
%fvalILP= coder.nullcopy(zeros(1,1)); 
%Plug_penalty=coder.nullcopy(zeros(1,1)); 
Lighting_penalty=coder.nullcopy(zeros(1,1)); 
%% Piecewise Linear Approx. of DG unit's Fuel Quadratic Cost Curve (QCC) 
% Extracting a linear cost function from the Capstone C65 from the user's 
% manual. 

  
% DG unit power parameters 
PDG_min = 0;    % minimum power output for the DG unit [kW] 
PDG_max = 65.0; % maximum power output for the DG unit [kW] 

  

  
% Solution: C(PDG) -0.0001*PDG^2 + 0.0294*PDG + 0.2410 
% a1,a2,a3 of Capstone C65: % See CapStone_C65_Fuel_Cost_Curve_Data.m 
a1 = -0.0001; 
a2 = 0.0294;  
a3 = 0.2410; 

  
% To plot QCC  
pp = linspace(0,PDG_max*1.20,150); 
QCC = a1*pp.^2 + a2*pp + a3; %#ok<NASGU> % Quadratic Cost Curve (QCC) 
QCC_coeffs = [a1,a2,a3]; 

  
Cmin = polyval(QCC_coeffs,PDG_min); % QCC(Pmin) 

  
% Initialize Linear Approx. Parameters 
SG = 10;    % Number to segments in your pcw linear approx. 
P_DGm0 = PDG_min; 
P_DGm = zeros(SG,1); % initializing PDGmax 

  
for ii = 1:SG 
    P_DGm(ii) = PDG_min + (PDG_max - PDG_min).*(ii/SG);% The paritions pts 
end 
P_DGm = [P_DGm0;P_DGm]; % 11 elements 

  
% Slope Implementation 
S = zeros(SG,1); % Initialize S(k) 

  
for ii = 1:SG 
    S(ii) = ... 
    (polyval(QCC_coeffs,P_DGm(ii+1)) - polyval(QCC_coeffs,P_DGm(ii)))/... 
    (P_DGm(ii+1) - P_DGm(ii)); 
end 
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% % lDG1, lDG2, ... Zero matrices 

  
lDGZeros = zeros(N,SG*N); % I used this instead of the commented out since  
                          % I was getting a loop-allocation error. 

                           

  
%% Forecast Modeling w/ correlation (Model from Gan: dlc_eenergy.pdf) 
%% This code works for the shrinking horizon MPC-MILP code only 
% This file will model a forecast for critical load, controllable loads and 

%RES power at a time step k. This is set to be implemented in both MILP and 

%MPC-MILP Control Systems. This model was primarily taken from "Real-Time 

%Deferrable Load Control: Handling the Uncertainties of Renewable Generation" 

%by Gan 

 
RES_Power_kk = RES_Power; 
demand_kk = demand; 

  
error_cap_Horizon = 20; 

  
e_RES = 10.23*rand_variable_RES; 
e_demand = 10.23*rand_variable_demand; 
%e_controllable_load=0.005*rand_variable_demand; 
e_controllable_load=0.02*rand_variable_demand; 

  

 
filter_type = 1; 

  
delta_filt = 12; % Choose a value 

  
a_filt = 0.5; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%% RES Power %%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
RES_Power_hat = zeros(1,N); 
b_RES = zeros(1,96); 

  
% This is for b(tau) 
count = 1; 
for ii = Time_Step:(96-1+Time_Step) 
   b_RES(count) = RES_Power_kk(ii) + deviation(e_RES,filter_type,... 
                                                    delta_filt,a_filt,... 
                                                    1,ii); 
   count = count + 1; 
end 

  
% This is the h-filter 
E_RES_Power = zeros(1,N); 

  
if error_cap_Horizon <= N 
    for ii = 1:(error_cap_Horizon) 
        E_RES_Power(ii) = 1 - (ii-1)/error_cap_Horizon; 
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    end 
else 
    for ii = 1:N 
        E_RES_Power(ii) = 1 - (ii-1)/error_cap_Horizon; 
    end   
end 

  

  
% This is for RES solar 
count = 1; 
for ii = 1:96 
   RES_Power_hat(count) = ... 
       b_RES(ii) - E_RES_Power(count)*deviation(e_RES,filter_type,... 
                                                    delta_filt,a_filt,... 
                                                    1,ii); 
   count = count + 1; 
end 

  
% Extra tailoring  
 for ii = 1:N 
     if RES_Power_hat(ii) < 0 
         RES_Power_hat(ii) = 0; 
     end 
 end 

  

  
RES_Power_hat(1) = Pres_measured_state;  
RES_Power_hat=RES_Power_hat'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%% Critical Demand %%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
demand_hat = zeros(1,N); 
b_demand = zeros(1,96); 

  
% This is for b(tau) 
count = 1; 
for ii = Time_Step:(96-1+Time_Step) 
   b_demand(count) = demand_kk(ii) + deviation(e_demand,filter_type,... 
                                                    delta_filt,a_filt,... 
                                                    1,ii); 
   count = count + 1; 
end 

  
% This is the h-filter 
E_demand = zeros(1,N); 

  
if error_cap_Horizon <= N 
    for ii = 1:(error_cap_Horizon) 
        E_demand(ii) = 1 - (ii-1)/error_cap_Horizon; 
    end 
else 
    for ii = 1:N 
        E_demand(ii) = 1 - (ii-1)/error_cap_Horizon; 
    end   
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end 

  
% This is for demand 
count = 1; 
for ii = 1:96 
   demand_hat(count) = ... 
     b_demand(ii) - E_demand(count)*deviation(e_demand,filter_type,... 
                                                    delta_filt,a_filt,... 
                                                    1,ii); 
   count = count + 1; 
end 

  
% Extra tailoring  
 for ii = 1:N 
     if demand_hat(ii) < 0 
         demand_hat(ii) = 0; 
     end 
 end 

  
demand_hat(1) = D_measured_state; 
demand_hat=demand_hat'; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Controllable Lighting Demand %%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
light_demand_hat = zeros(161,N); 

  
for jj=1:161 
b_demand = zeros(1,96); 
light_demand_kk=light_profile(jj,:); 
% This is for b(tau) 
count = 1; 
for ii = Time_Step:(96-1+Time_Step) 
   b_demand(count) = light_demand_kk(ii) + 

deviation(e_controllable_load,filter_type,... 
                                                    delta_filt,a_filt,... 
                                                    1,ii); 
   count = count + 1; 
end 

  
% This is the h-filter 
E_demand = zeros(1,N); 

  
if error_cap_Horizon <= N 
    for ii = 1:(error_cap_Horizon) 
        E_demand(ii) = 1 - (ii-1)/error_cap_Horizon; 
    end 
else 
    for ii = 1:N 
        E_demand(ii) = 1 - (ii-1)/error_cap_Horizon; 
    end   
end 

  
% This is for controllable lighting demand 
count = 1; 
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for ii = 1:96 
   light_demand_hat(jj,count) = ... 
     b_demand(ii) - 

E_demand(count)*deviation(e_controllable_load,filter_type,... 
                                                    delta_filt,a_filt,... 
                                                    1,ii); 
   count = count + 1; 
end 

  
% Extra tailoring  
 for ii = 1:N 
     if light_demand_hat(jj,ii) < 0 
         light_demand_hat(jj,ii) = 0; 
     end 
 end 

  
light_demand_hat(jj,1) = light_profile(jj,Time_Step); 
end 
total_light_demand_hat=zeros(N,1); 
total_light_demand_hat=(sum(light_demand_hat))'; 

 
controllableLoad_k = zeros(N,1);   
gridPurchasing_k = zeros(N,1);   
gridSelling_k = zeros(N,1);   

  
% controllableLoad 
count = 1; 
for ii = Time_Step:Ninitial 
   controllableLoad_k(count) = controllableLoad(ii); 
   count = count + 1; 
end 

  
% gridPurchasing 
gridPurchasing_kk=gridPurchasing; 
count = 1; 
for ii = Time_Step:(96-1+Time_Step) 
   gridPurchasing_k(count) = gridPurchasing_kk(ii); 
   count = count + 1; 
end 

  
% gridSelling 
gridSelling_kk=gridSelling; 
count = 1; 
for ii = Time_Step:(96-1+Time_Step) 
   gridSelling_k(count) = gridSelling_kk(ii); 
   count = count + 1; 
end 

  
% PDG costs 
PDG_Cost = MaintOppCoeff*ones(N,1); 

  
% lDG1, lDG2, ... costs 
lDG_Cost = samp_per*ones(SG*N,1); 
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for ii = 1:SG 
    if ii == 1 
        lDG_Cost = samp_per*S(ii)*ones(N,1); 
    else 
        lDG_Cost = [lDG_Cost;samp_per*S(ii)*ones(N,1)];  
    end 
end 

  
% xDG costs 
xDG_Cost = samp_per*Cmin*ones(N,1); 

  
% xSU cost vector 
SUcost = ones(N,1)*cStartUp; 
 

% xSD cost vector 
SDcost = ones(N,1)*cShutdown; 

                     
% Beta cost vector    
betaCost = zeros(N,1); 

                     
% xb cost vector 
xbCost = zeros(N,1); 

  
% Pb cost vector 
PbCost = zeros(N,1); 

  
% deltb cost vector 
deltbCost = zeros(N,1); 

  
% zb cost vector 
zbCost = zeros(N,1); 

  
% Pgrid cost vector 
PgCost = zeros(N,1); 

  
% deltg cost vector 
deltgCost = zeros(N,1); 

  
CgCost = ones(N,1); 

  
% Zg cost vector 
ZgCost = c_peak*1; 

  
% Beta_lighting cost vector 
Beta_lighting_Cost = zeros(161*N,1); 

  
for ii = 1:161 
    Beta_lighting = zeros(N,1); 
    Beta_lighting = rho_c_lighting*(CntlLoad_lighting(ii,Time_Step:(96-

1+Time_Step)))'; 
    Beta_lighting_Cost(N*(ii-1)+1:N*ii) = Beta_lighting; 
end 

  
costs = [PDG_Cost;lDG_Cost;xDG_Cost;SUcost;SDcost;betaCost;xbCost;... 
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           PbCost;deltbCost;zbCost;PgCost;deltgCost;CgCost;ZgCost;... 
           Beta_lighting_Cost]; 

 
Acomm1 = [-eye(N),lDGZeros,PDG_min*eye(N),zeros(N),zeros(N),zeros(N),... 
          zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
          zeros(N),zeros(N,1),zeros(N,161*N)]; 
Acomm2 = [eye(N),lDGZeros,-PDG_max*eye(N),zeros(N),zeros(N),zeros(N),... 
          zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
          zeros(N),zeros(N,1),zeros(N,161*N)]; 

  
Bcomm1 = zeros(N,1); 
Bcomm2 = zeros(N,1); 

  
A = [Acomm1;Acomm2]; 
coder.varsize('A'); %supporing variable-size data                                         
B = [Bcomm1;Bcomm2]; 

  
kk = 1; % Initialize counter 
for ii = 1:SG 
    Alk=[]; 
    Alk = zeros(N); % PDG 
    for jj = 1:SG 
        if jj == kk 
            Alk = [Alk, eye(N)]; %#ok<AGROW> Ignore warning 
        else 
            Alk = [Alk, zeros(N)]; %#ok<AGROW> Ignore warning 
        end 
    end 
    Alk = [Alk, -(P_DGm(ii+1) - P_DGm(ii)).*eye(N),zeros(N),zeros(N),... 
           zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
           zeros(N),zeros(N),zeros(N,1),zeros(N,161*N)]; %#ok<AGROW> Ignore  
    kk = kk + 1;   
    A = [A;Alk]; %#ok<AGROW> Ignore warning 
end 

  
Blk = zeros(SG*N,1); 

  
B = [B;Blk]; 

  
su = diag(-ones(1,N-1),-1) + eye(N); 

  
% zeros matrixs to null shutdown, xb, Pb, grid to not get mixed in all this 
% StUp contraints 
Astart1 = [zeros(N),lDGZeros,su,-eye(N),zeros(N),zeros(N),zeros(N),... 
           zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
           zeros(N,1),zeros(N,161*N)]; 

  
Bstart1 = zeros(N,1); 
A = [A;Astart1]; 
B = [B;Bstart1]; 

  

 
sd = diag(ones(1,N-1),-1) - eye(N); 
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Astart2 = [zeros(N),lDGZeros,sd,zeros(N),-eye(N),zeros(N),zeros(N),... 
           zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
           zeros(N,1),zeros(N,161*N)]; 

  
Bstart2 = zeros(N,1); 
A = [A;Astart2]; 
B = [B;Bstart2]; 

  

 
Aru = diag(-ones(1,N)) + diag(ones(1,N-1),1); 
Aru(N,N) = 0; 

  
Aru = [Aru,lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N,1),zeros(N,161*N)]; 

    
A = [A;Aru]; 

  
Bru = RRu.*ones(N,1); 
B = [B;Bru]; 

  
%% DG Power ramp-down rate constraints 
% Very similar to ramp-up limit , just flip the signs of the decision 
% variables 

  
% The decision vector as of 6/7/18: 
% % x = [PDG  lk  xDG  xSU  xSD  NULL  xb  Pb  deltb  zb  Pg  deltg  Cg  Zg 

Beta_lighting_(1-4) Beta_plug_(1-4)]  

  

Ard = diag(ones(1,N)) + diag(-ones(1,N-1),1); 
Ard(N,N) = 0; 

  
Ard = [Ard,lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N,1),zeros(N,161*N)]; 

  
A = [A;Ard]; 

  
Brd = RRd.*ones(N,1); 
B = [B;Brd]; 

  

 
sxb = -eye(N) + diag(ones(1,N-1),1); 

  
Astdy = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),sxb,... 
         -samp_per*(1/eff_d)*eye(N),zeros(N),-samp_per*(eff_c-(1/eff_d))... 
         *eye(N),zeros(N),zeros(N),zeros(N),zeros(N,1),zeros(N,161*N)]; 

  
Bstdy = -samp_per*xsb.*ones(N,1); 
Bstdy(N) = -xbfinal - (samp_per*xsb); % Does this need samp_per? 

  
Aeq = Astdy; 
Beq = Bstdy; 
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% Different Charging/Discharging Effiencies for Storage Unit Dynamics 

  
% (5a) Inequality (see pg. 112 of Notebook) 
Ab1 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       -eye(N),Cb*eye(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N,1),zeros(N,161*N)];   
Bb1 = Cb*ones(N,1); 

  
% (5b) Inequality 
Ab2 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       eye(N),-(Cb+eps)*eye(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N,1),zeros(N,161*N)];  
Bb2 = eps*ones(N,1); 

  

% (5c) Inequality 
Ab3 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       -eye(N),Cb*eye(N),eye(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N,1),zeros(N,161*N)];   
Bb3 = Cb*ones(N,1); 

  
% (5d) Inequality 
Ab4 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       eye(N),Cb*eye(N),-eye(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N,1),zeros(N,161*N)];    
Bb4 = Cb*ones(N,1); 

  
% (5e) Inequality 
Ab5 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),-Cb*eye(N),eye(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N,1),zeros(N,161*N)];   
Bb5 = zeros(N,1); 

  
% (5f) Inequality 
Ab6 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),-Cb*eye(N),-eye(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N,1),zeros(N,161*N)];   
Bb6 = zeros(N,1); 

  
% Inequality Concatenation 
A = [A;Ab1;Ab2;Ab3;Ab4;Ab5;Ab6]; 
B = [B;Bb1;Bb2;Bb3;Bb4;Bb5;Bb6]; 

  

 
ADGeq = eye(N); % PDG 

  
for ii = 1:SG 
    ADGeq = [ADGeq,-eye(N)]; %#ok<AGROW> Ignore warning 
end 

  
ADGeq = [ADGeq,-PDG_min*eye(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
         zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
         zeros(N,1),zeros(N,161*N)];  
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Aeq = [Aeq;ADGeq]; 

  
BDGeq = zeros(N,1); 
Beq = [Beq;BDGeq]; 

  
AeqpwrBeta_lighting = zeros(N,161*N); 

  
AeqpwrBeta_lighting_row = zeros(N,N); 

  
for jj = 1:161 
    k=Time_Step; 
    %k=1; %fixed 24-hour prediction horizon 
    for ii = 1:N 

         
     AeqpwrBeta_lighting_row(ii,ii) = CntlLoad_lighting(jj,k);     
     k=k+1; 
    end  

     
    AeqpwrBeta_lighting(1:N,N*(jj-1)+1:N*jj) = AeqpwrBeta_lighting_row; 

     
 end 
% Power balance equality for controllable plug loads 
Aeqpwr = [eye(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),... 
           zeros(N),-eye(N),zeros(N),zeros(N),eye(N),zeros(N),zeros(N),... 
           zeros(N,1),AeqpwrBeta_lighting]; 
Aeq = [Aeq;Aeqpwr];  

  

  
% beqpwr = demand + CntlLoad_lighting_1 + CntlLoad_lighting_2 + 

CntlLoad_lighting_3 + CntlLoad_lighting_4 +... 
%     CntlLoad_plug_1 + CntlLoad_plug_2 + CntlLoad_plug_3 + CntlLoad_plug_4 - 

RES_Power_k;    
% beqpwr = demand_hat + total_light_demand_hat + total_plug_demand_hat - 

RES_Power_hat; 
beqpwr = demand_hat + total_light_demand_hat - RES_Power_hat; 
Beq = [Beq;beqpwr]; 

  
%% Buying & Selling Energy Dynamics for Utility Grid 
% This segment is to implement the dynamics of having the option to 
% purchase and sell energy to/from the main grid. More info on this is 
% found in MPC by Parisio, [36] in Parisio. From (10) in MPC, Parisio: 
% Eg1*deltg + Eg2*Cg <= Eg3*Pg + Eg4 

  
% The decision vector as of 6/7/18: 
% % x = [PDG  lk  xDG  xSU  xSD  NULL  xb  Pb  deltb  zb  Pg  deltg  Cg  Zg 

Beta_lighting_(1-4) Beta_plug_(1-4)]  

  
% This is for Mg = max(cP,cS)*Tg; 
AMg = zeros(N); 
for ii = 1:N 
    AMg(ii,ii) = max([gridPurchasing_k(ii),gridSelling_k(ii)])*Tg; 
end 

  
BMg = zeros(N,1); 
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for ii = 1:N 
    BMg(ii) = max([gridPurchasing_k(ii),gridSelling_k(ii)])*Tg; 
end 

  
% (4a) Inequality (see pg. 104 of Notebook) 
Ag1 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N),zeros(N),-eye(N),Tg*eye(N),zeros(N),... 
       zeros(N,1),zeros(N,161*N)];   
Bg1 = Tg*ones(N,1); 

  
% (4b) Inequality 
Ag2 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N),zeros(N),eye(N),-(Tg+eps)*eye(N),zeros(N),... 
       zeros(N,1),zeros(N,161*N)];  
Bg2 = -eps*ones(N,1); 

  
% (4c) Inequality 
Ag3 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N),zeros(N),-diag(gridPurchasing_k),AMg,eye(N),... 
       zeros(N,1),zeros(N,161*N)];  
Bg3 = BMg; 

  
% (4d) Inequality 
Ag4 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N),zeros(N),diag(gridPurchasing_k),AMg,-eye(N),... 
       zeros(N,1),zeros(N,161*N)];   
Bg4 = BMg; 

  
% (4e) Inequality 
Ag5 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N),zeros(N),-diag(gridSelling_k),-AMg,eye(N),... 
       zeros(N,1),zeros(N,161*N)];  
Bg5 = zeros(N,1); 

  
% (4f) Inequality 
Ag6 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N),zeros(N),diag(gridSelling_k),-AMg,-eye(N),... 
       zeros(N,1),zeros(N,161*N)];   
Bg6 = zeros(N,1); 

  
% Inequality Concatenation 
A = [A;Ag1;Ag2;Ag3;Ag4;Ag5;Ag6]; 
B = [B;Bg1;Bg2;Bg3;Bg4;Bg5;Bg6]; 

  

 
Ap1 = [zeros(N),lDGZeros,zeros(N),zeros(N),zeros(N),zeros(N),zeros(N),... 
       zeros(N),zeros(N),zeros(N),eye(N),zeros(N),zeros(N),-ones(N,1),... 
       zeros(N,161*N)];    
Bp1 = zeros(N,1); 

  
% Inequality Concatenation 
A = [A;Ap1]; 
B = [B;Bp1]; 
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% Lower Bounds 
LBPDG = zeros(N,1); 
LBlk = zeros(SG*N,1); 
LBxDG = zeros(N,1); 
LBxSU = zeros(N,1); 
LBxSD = zeros(N,1); 

  
% NULL lower bounds 
LBNULL = zeros(N,1); 

  
% Storage lower bounds 
% Your choosen storage initial & final storage states: 
LBxb = xbStorageMin.*ones(N,1); 
LBxb(1) = xb_measured_state; 

  
LBPb = -Cb.*ones(N,1); 
LBdeltb = zeros(N,1); 
LBzb = zeros(N,1); 

  
LBPGrid = -Tg*ones(N,1); 
LBdeltg = zeros(N,1); 
LBCg = -Inf*ones(N,1); 
LBZg = 0; 

  

 
LBBeta_lighting = zeros(161*N,1); 

         

 
LB = [LBPDG;LBlk;LBxDG;LBxSU;LBxSD;LBNULL;LBxb;LBPb;LBdeltb;LBzb;... 
       LBPGrid;LBdeltg;LBCg;LBZg;LBBeta_lighting]; 

  
% Upper Bounds 
UBPDG = PDG_max.*ones(N,1); 
UBlk = Inf.*ones(SG*N,1); 
UBxDG = ones(N,1); 
UBxSU = ones(N,1); 
UBxSD = ones(N,1); 

  
% NULL upper bounds 
UBNULL = ones(N,1); 

  
% Storage lower bounds 
% Your choosen storage initial & final storage states: 
UBxb = xbStorageMax.*ones(N,1); 
UBxb(1) = xb_measured_state; 

  
UBPb  = Cb.*ones(N,1); 
UBdeltb = ones(N,1); 
UBzb = Cb*ones(N,1); 

  
UBPGrid = Tg*ones(N,1); 
UBdeltg = ones(N,1); 
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UBCg = Inf*ones(N,1); 

  
UBZg = Inf; 

  

 
UBBeta_lighting = ones(161*N,1)*0.15; 

  

 
UB = [UBPDG;UBlk;UBxDG;UBxSU;UBxSD;UBNULL;UBxb;UBPb;UBdeltb;UBzb;... 
       UBPGrid;UBdeltg;UBCg;UBZg;UBBeta_lighting]; 

  
                                                  %     deltg, Beta_plug 
 intVars = [11*N+1:14*N,17*N+1:18*N,20*N+1:21*N];  % For xDG,xSU,xSD,,deltb, 
                                                  %     deltg                                                 
ctype = blanks(183*N+1);    % Initializing the char array, adding 161 

lighting controllable loads 
ctype(:) = 'C';          % Set all decision variable as continious. Modify 
                         % in next line.    
ctype(intVars) = 'I';    % set all interger decision variables 

                                            

  
xOpt = zeros((183*N+1),1); 
[xOpt,fvalILP] = cplexmilp(costs, A, B, Aeq, Beq, [ ], [ ], [ ], LB, UB,... 
                           ctype, [ ], [ ]);  

                                           
%toc 

  
%xOptRound = logical(round(xOpt)); % Rounding all values, if needed 
% xOpt = logical(round(xOpt)); 
xOptRound = round(xOpt); % Removed 'logical' since Simulation error: 
                         % 'class mismatch' 

  
% The generation, start,shutoff, storage energy, storage powerflow, and  
% grid energy solution values 

  
xPDG = xOpt(1:N);                 % PDG solution 
xlDG = xOpt(N+1:11*N);            % lDG solution 
xDG = xOptRound(11*N+1:12*N);     % xDG solution 
xSU = xOptRound(12*N+1:13*N);     % start-up solution 
xSD = xOptRound(13*N+1:14*N);     % shut-down solution 
xNULL = xOpt(14*N+1:15*N);        % NULL solution 
xb = xOpt(15*N+1:16*N);           % storage energy solution 
xPb = xOpt(16*N+1:17*N);          % storage power flow solution 
xdeltb = xOptRound(17*N+1:18*N);  % delta b solution 
xzb = xOpt(18*N+1:19*N);          % zb solution 
xPgrid = xOpt(19*N+1:20*N);       % utility grid Power solution 
xdeltg = xOptRound(20*N+1:21*N);  % delta g solution 
xCg = xOpt(21*N+1:22*N);          % Cg solution 
xZg = xOpt(22*N+1);               % Zg solution 
for i=1:161 
    xBeta_lighting(i,:)=xOpt((21+i)*N+2:(22+i)*N+1); 
end 

  
%% The first element of the MILP solution to output 
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% These values will be the command values for the microgrid plant 
xPDG1 = xPDG(1); 
xDG1 = xDG(1); 
xSU1 = xSU(1); 
xSD1 = xSD(1); 
xBeta1 = xBeta(1);  
xPb1 = xPb(1); 
xdeltb1 = xdeltb(1);  
xPgrid1 = xPgrid(1); 
xdeltg1 = xdeltg(1); 
for i=1:161 
xBeta_lighting1(i)=xBeta_lighting(i,1); 
end 
% for i=1:201 
% xBeta_plug1(i)=xBeta_plug(i,1); 
% end 

  
lighting_controllable_demand1 = sum((1-

xBeta_lighting1).*light_demand_hat(:,1)); 
% plug_controllable_demand1 = sum((1-xBeta_plug1).*plug_demand_hat(:,1)); 

  
% plug_profile1=zeros(201,1); 
light_profile1=zeros(161,1); 
% plug_profile1=plug_profile(:,Time_Step); 
light_profile1=light_profile(:,Time_Step); 
% Plug_penalty =sum(rho_c_plug*(xBeta_plug1).*plug_profile1) ; 
Lighting_penalty = sum(rho_c_lighting*(xBeta_lighting1).*light_profile1); 
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APPENDIX B 

SIMULINK SIMSCAPE MODEL OF ECS BUILDING MICROGRID AND MPC-

MILP CONTROLLER 
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FIGURE: MPC-MILP Controller in Simulink 
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FIGURE: ECS Building Microgrid in Simulink 
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