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CLASSROOM NOTES 

EOlTED By RICHARD A. BRUALDl 

Material for this Department should be sent to R. A. Brualdi. Department of Mathematics, 
University of Wisconsin, Madison, WI 53706. 

A SIMPLE CHARACTERIZATION OF COMMUTATIVE RINGS 
WITHOUT MAXIMAL IDEALS 

MELVIN HENRIKSEN 

In a course in abstract algebra in which the instructor presents a proof that each 
ideaUn a ring with identity is contained in a maximal ideal, it is customary to give 
an example of a ring without maximal ideals. The usual example is a zero-ring whose 
additive group has no maximal subgroups (e.g., the additive group of (dyadic) 
rational numbers; actually any divisible group will do; see [1, p. 67]). This may 
leave the impression that all such rings are artificial or at least that they abound 
with divisors of O. 

Below, I give a simple characterization of commutative rings without maximal 
ideals and a class of examples of such rings, including some without proper divisors 
of O. To back up the contention that this can be presented in such a course in abstract 
algebra, I outline proofs of some known theorems including a few properties of 
radical rings in the sense of Jacobson. 

The Hausdorff maximal principle states that every partially ordered set contains 
a maximal chain (i.e., a maximal linearly ordered subset). It is equivalent to the 
axiom of choice [4, Chapter XI]. 

Since the union of a maximal chain of proper ideals in a ring with identity is a 
maximal ideal, and since the union of a maximal chain of linearly independent 
subsets of a vector space is a maximal linearly independent set, we have: 

(1) Every ideal in" ring with identity is contained in a maximal ideal. 
(2) Every non~zero vector space has a basis. 

As usual we denote the ring of integers by Z, and for any prime p E Z, we denote 
by Zp the ring of integers modulo p, and by Z; the zero-ring whose additive group is 
the same as that of Zp. 

It is not difficult to prove that a commutative ring R has no nonzero proper 
ideals if and only if either R is a field or R is isomorphic to Z; for some prime p. 

See [5, p. 133]. Hence: 

(3) An ideal M ofa commutative ring R is maximal ifand only ({RIM is either 
a field or is isomorphic to Z~for some prime p. 

For any commutative ring R, let J(R) denote the intersection of all the ideals M 
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of R, such that RjM is a field. If R has no such ideals, let J(R) = R. In the latter 
case we call R a radical ring. The knowledgeable reader will recognize J(R) as the 
Jacobson radical of R. See [2, Chapter 1]. 

Of the many known properties of radical rings, we need only the following two, 
the first of which follows immediately. 

(4) A homomorphic image of a (commutative) radical ring is a radical ring. 
(5) J(R) is a radical ring. 

Proof If J(R) is not a radical ring, then there is a homomorphism ¢ of J(R) 
onto a field F with identity element 1. Choose e E J(R) such that ¢(e) = 1, and 
define ¢': R ... F by letting ¢' (a) = ¢(ae) for each a E R. If a, b ~ R, then 

<p'(a + b) = ¢«a + b)e) = ¢(ae + be) = ¢(ae) + ¢(be) = ¢'(a) + ¢'(b), 

and ¢'(ab) = ¢(abe) = ¢(abe)¢(e) =¢(aebe) = ¢(ae)¢(be) = ¢'(a)¢'(b). 

Therefore ¢' is a homomorphism of R onto F, and hence its kernel contains J(R). 
But eEJ(R) and ¢'(e) = 1. This contradiction shows that J(R) is a radical ring. 

It follows easily from (1), (3), and (4) that no ring with identity is a radical ring 
and that every zero-ring is a radical ring. 

THEOREM. A commutative ring R has no maximal ideals if and only if 
(a) R is a radical ring. 
(b) R2 + pR = R for every prime p E Z. 

Proof. Suppose first that (a) and (b) hold. Since R is a radical ring, no homo
morphic image of R can be a field, so, by (3) it suffices to show that for any prime 
p E Z, the zero-ring Z; is not a homomorphic image of R. Suppose, on the contrary, 
that there is a homomorphism ¢ of R onto Z~ with kernel M. If 

n n 

C = E a,b, E R', then ¢(c) = ~ ¢(a,)¢(b,) = 0, 

so R2 c: M. Moreover, ¢(pa) = p¢(a) ",; 0, so pR c M. Hence R2 + pR c: M #R, 
so (b) fails. The contradiction shows that R has no maximal ideals. 

Suppose next that R has no maximal ideals. By (3) and the definition of J(R), 
R is a radical ring. Suppose (b) fails for SOme prime p, let J = R2 + pR, and let ¢ 
bethenaturalhomomorphismofRontoRjI.lfa,bER,thenO = ¢(ab) = ¢(a)¢(b), 
so RjJ is a zero-ring, and since 0 = ¢(pa) = p¢(a) = 0, RjJ has characteristic p 
and hence is a vector space over Zp. By (2), since J '" R, Rjl has a basis {xa}a er and 
each xERjI may be written uniquely ,as x = Euraaxa with aaEZp and aa = 0 
for all but finitely many '" E r. For any fixed "'0 E r, the mapping % such that 
x% = aa, is a homomorphism of Rjl onto Z~. Then ¢ , % is a homomorphism 
of R onto Z;. By (3), the kernel of ¢ 0 % is a maximal ideal, contrary to assumption. 
Hence (a) and (b) hold. 
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Recall that an abelian group G is divisible if nG = G for every n E Z and note 
that G is divisible if and only if pG = G for every prime p E Z. It follows from the 
theorem that a zero-ring whose additive group is divisible has no maximal ideals. 

COROLLARY. Let S be a commutative ring with identity that has a unique maximal 

ideal R. If R' + pR "" R for every prime p E Z, then R has no maximal ideals. 
In particular, if the additive group of S is divisible, then R has no maximal ideals. 

I conclude with some explicit examples: 

Examples. (i) For a field F, let F[x] denote the ring of polynomials in an 
indeterminate x with coefficients in F, and let F(x) denote the field of quotients 
of F[x]. Let 

S(F) = (h(X) = ;~iEF(x):f(x),g(X)EF[X] and g(O) # 0). 
It is easy to verify that S(F) is an integral domain whose unique maximal ideal is 
R(F) = xS(F). If F has characteristic zero, then, by the corollary, R(F) has no 
maximal ideals. If F has prime characteristic, then, since [R(F)]2 = x2R(F), the 
ring R(F) does have maximal ideals. 

(ii) Let G denote the additive semigroup of non-negative dyadic rational numbers, 
and let U(F) denote the semigroup algebra over G with coefficients in a field F. 
We may regard each element of U(F) as a polynomial in xct)" for some positive 
integer n. Let T(F) denote those elements of the quotient field of U(F) whose 
denominators fail to vanish at O. It is not difficult to verify that R*(F) 
= {h E T(F): h(O) = OJ is the unique maximal ideal of T(F) and that [R*(F)]2 
= R*(F). By the corollary, R *(F) has no maximal ideals (and no proper divisors 
ofO). 

(iii) Let F, be a field of characteristic 0, let F 2 be a field of prime characteristic p, 
and let R be the direct sum of the ring R(F ,) described in (i) and the ring R*(F 2) 
described in (ii). Since each of these latter two rings is a radical ring, so is R. For, 
otherwise, there would be a homomorphism r/> of R onto a field F. Then r/>[R(F,)] 
and r/>[R*(F 2)] are ideals of F whose (direct) sum is F, and hence one of them is all 
of F, contrary to the fact that R(F,) and R*(F 2) are radical rings. Also, while R2 # R 
and pR # R, it is true that R' + pR = R, so R has no maximal ideals. 

One can create more rings satisfying the hypothesis of the corollary by starting 
with any commutative ring S with identity and divisible additive group, taking its 
localization SM at a maximal ideal M, and letting R = MSM' See [1, Chapter 2]. 

I am grateful to Professor Barbara Beechler for valuable criticisms of earlier drafts of this 
note. 
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