Claremont Colleges Scholarship @ Claremont

All HMC Faculty Publications and Research

HMC Faculty Scholarship

5-1-1975

A Simple Characterization of Commutative Rings Without Maximal Ideals

Melvin Henriksen Harvey Mudd College

Recommended Citation

Henriksen, Melvin. "A simple characterization of commutative rings without maximal ideals." American Mathematical Monthly 82.5 (1975): 502-505.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact scholarship@cuc.claremont.edu.

CLASSROOM NOTES

EDITED BY RICHARD A. BRUALDI

Material for this Department should be sent to R. A. Brualdi, Department of Mathematics, University of Wisconsin, Madison, WI 53706.

A SIMPLE CHARACTERIZATION OF COMMUTATIVE RINGS WITHOUT MAXIMAL IDEALS

MELVIN HENRIKSEN

In a course in abstract algebra in which the instructor presents a proof that each ideal in a ring with identity is contained in a maximal ideal, it is customary to give an example of a ring without maximal ideals. The usual example is a zero-ring whose additive group has no maximal subgroups (e.g., the additive group of (dyadic) rational numbers; actually any divisible group will do; see [1, p. 67]). This may leave the impression that all such rings are artificial or at least that they abound with divisors of 0.

Below, I give a simple characterization of commutative rings without maximal ideals and a class of examples of such rings, including some without proper divisors of 0. To back up the contention that this can be presented in such a course in abstract algebra, I outline proofs of some known theorems including a few properties of radical rings in the sense of Jacobson.

The Hausdorff maximal principle states that every partially ordered set contains a maximal chain (i.e., a maximal linearly ordered subset). It is equivalent to the axiom of choice [4, Chapter XI].

Since the union of a maximal chain of proper ideals in a ring with identity is a maximal ideal, and since the union of a maximal chain of linearly independent subsets of a vector space is a maximal linearly independent set, we have:

(1) Every ideal in a ring with identity is contained in a maximal ideal.

(2) Every non-zero vector space has a basis.

As usual we denote the ring of integers by Z, and for any prime $p \in Z$, we denote by Z_p the ring of integers modulo p, and by Z'_p the zero-ring whose additive group is the same as that of Z_p .

It is not difficult to prove that a commutative ring R has no nonzero proper ideals if and only if either R is a field or R is isomorphic to Z'_p for some prime p. See [5, p. 133]. Hence:

(3) An ideal M of a commutative ring R is maximal if and only if R/M is either a field or is isomorphic to Z'_p for some prime p.

For any commutative ring R, let J(R) denote the intersection of all the ideals M

AMOR MATH MONTHLY V& 82(5) 1975

of R, such that R/M is a field. If R has no such ideals, let J(R) = R. In the latter case we call R a *radical ring*. The knowledgeable reader will recognize J(R) as the Jacobson radical of R. See [2, Chapter 1].

Of the many known properties of radical rings, we need only the following two, the first of which follows immediately.

(4) A homomorphic image of a (commutative) radical ring is a radical ring. (5) J(R) is a radical ring.

Proof. If J(R) is not a radical ring, then there is a homomorphism ϕ of J(R) onto a field F with identity element 1. Choose $e \in J(R)$ such that $\phi(e) = 1$, and define $\phi': R \to F$ by letting $\phi'(a) = \phi(ae)$ for each $a \in R$. If $a, b \in R$, then

$$\phi'(a+b) = \phi((a+b)e) = \phi(ae+be) = \phi(ae) + \phi(be) = \phi'(a) + \phi'(b),$$

and
$$\phi'(ab) = \phi(abe) = \phi(abe)\phi(e) = \phi(aebe) = \phi(ae)\phi(be) = \phi'(a)\phi'(b)$$
.

Therefore ϕ' is a homomorphism of R onto F, and hence its kernel contains J(R). But $e \in J(R)$ and $\phi'(e) = 1$. This contradiction shows that J(R) is a radical ring.

It follows easily from (1), (3), and (4) that no ring with identity is a radical ring and that every zero-ring is a radical ring.

THEOREM. A commutative ring R has no maximal ideals if and only if

- (a) R is a radical ring.
- (b) $R^2 + pR = R$ for every prime $p \in Z$.

Proof. Suppose first that (a) and (b) hold. Since R is a radical ring, no homomorphic image of R can be a field, so, by (3) it suffices to show that for any prime $p \in Z$, the zero-ring Z'_p is not a homomorphic image of R. Suppose, on the contrary, that there is a homomorphism ϕ of R onto Z'_p with kernel M. If

$$c = \sum_{i=1}^{n} a_i b_i \in \mathbb{R}^2$$
, then $\phi(c) = \sum_{i=1}^{n} \phi(a_i) \phi(b_i) = 0$,

so $R^2 \subset M$. Moreover, $\phi(pa) = p\phi(a) = 0$, so $pR \subset M$. Hence $R^2 + pR \subset M \neq R$, so (b) fails. The contradiction shows that R has no maximal ideals.

Suppose next that R has no maximal ideals. By (3) and the definition of J(R), R is a radical ring. Suppose (b) fails for some prime p, let $I = R^2 + pR$, and let ϕ be the natural homomorphism of R onto R/I. If $a, b \in R$, then $0 = \phi(ab) = \phi(a)\phi(b)$, so R/I is a zero-ring, and since $0 = \phi(pa) = p\phi(a) = 0$, R/I has characteristic p and hence is a vector space over Z_p . By (2), since $I \neq R$, R/I has a basis $\{x_a\}_{\alpha \in \Gamma}$ and each $x \in R/I$ may be written uniquely as $x = \sum_{\alpha \in \Gamma} a_{\alpha} x_{\alpha}$ with $a_{\alpha} \in Z_p$ and $a_{\alpha} = 0$ for all but finitely many $\alpha \in \Gamma$. For any fixed $\alpha_0 \in \Gamma$, the mapping ψ_0 such that $x\psi_0 = a_{\alpha_0}$ is a homomorphism of R/I onto Z'_p . Then $\phi \circ \psi_0$ is a homomorphism of R onto Z'_p . By (3), the kernel of $\phi \circ \psi_0$ is a maximal ideal, contrary to assumption. Hence (a) and (b) hold.

MELVIN HENRIKSEN

Recall that an abelian group G is *divisible* if nG = G for every $n \in Z$ and note that G is divisible if and only if pG = G for every prime $p \in Z$. It follows from the theorem that a zero-ring whose additive group is divisible has no maximal ideals.

COROLLARY. Let S be a commutative ring with identity that has a unique maximal ideal R. If $R^2 + pR = R$ for every prime $p \in Z$, then R has no maximal ideals. In particular, if the additive group of S is divisible, then R has no maximal ideals.

I conclude with some explicit examples:

Examples. (i) For a field F, let F[x] denote the ring of polynomials in an indeterminate x with coefficients in F, and let F(x) denote the field of quotients of F[x]. Let

$$S(F) = \left\{ h(x) = \frac{f(x)}{g(x)} \in F(x) : f(x), g(x) \in F[x] \text{ and } g(0) \neq 0 \right\}.$$

It is easy to verify that S(F) is an integral domain whose unique maximal ideal is R(F) = xS(F). If F has characteristic zero, then, by the corollary, R(F) has no maximal ideals. If F has prime characteristic, then, since $[R(F)]^2 = x^2R(F)$, the ring R(F) does have maximal ideals.

(ii) Let G denote the additive semigroup of non-negative dyadic rational numbers, and let U(F) denote the semigroup algebra over G with coefficients in a field F. We may regard each element of U(F) as a polynomial in $x^{(\frac{1}{2})^n}$ for some positive integer n. Let T(F) denote those elements of the quotient field of U(F) whose denominators fail to vanish at 0. It is not difficult to verify that $R^*(F)$ $= \{h \in T(F): h(0) = 0\}$ is the unique maximal ideal of T(F) and that $[R^*(F)]^2$ $= R^*(F)$. By the corollary, $R^*(F)$ has no maximal ideals (and no proper divisors of 0).

(iii) Let F_1 be a field of characteristic 0, let F_2 be a field of prime characteristic p, and let R be the direct sum of the ring $R(F_1)$ described in (i) and the ring $R^*(F_2)$ described in (ii). Since each of these latter two rings is a radical ring, so is R. For, otherwise, there would be a homomorphism ϕ of R onto a field F. Then $\phi[R(F_1)]$ and $\phi[R^*(F_2)]$ are ideals of F whose (direct) sum is F, and hence one of them is all of F, contrary to the fact that $R(F_1)$ and $R^*(F_2)$ are radical rings. Also, while $R^2 \neq R$ and $pR \neq R$, it is true that $R^2 + pR = R$, so R has no maximal ideals.

One can create more rings satisfying the hypothesis of the corollary by starting with any commutative ring S with identity and divisible additive group, taking its localization S_M at a maximal ideal M, and letting $R = MS_M$. See [1, Chapter 2].

I am grateful to Professor Barbara Beechler for valuable criticisms of earlier drafts of this note.

References

1. L. Fuchs, Abelian Groups, Hungarian Academy of Sciences, Budapest, 1958.

504

2. I. N. Herstein, Noncommutative rings, MAA — The Carus Mathematical Monograph No. 15, 1971.

3. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965.

4. S. Warner, Modern Algebra, Vol. II, Prentice-Hall, Englewood Cliffs, N. J., 1965.

5. O. Zariski and P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, Princeton, N. J., 1958.

DEPARTMENT OF MATHEMATICS, HARVEY MUDD COLLEGE, CLAREMONT, CA 91711.