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SOME REMARKS ON A PAPER OF ARONSZAJN 
AND P ANITCHPAKDI 

MELVIN HENRIKSEN 

In the paper of the title [1], a number of problems are posed. Ne
gative solutions of two of them (Problems 2 and 3) are derived in a 
straightforward way from a paper of L. Gillman and the present author 
[2]. 

Motivation will not be supplied since it is given amply in [1], but 
enough definitions are given to keep the presentation reasonably self
contained. 

1. A Hausdorff space X is said to satisfy (Qm), where m is an in 
finite cardinal, if, whenever U and V are disjoint open subsets of X 
such that each is a union of the closures of less than m open subsets 
of X, then U and V have disjoint closures. In particular, a normal 
(Hausdorff) space X satisfies (Q*,) if and only if disjoint open F.-SUbsets 
of X have disjoint closures. (For, an open set that is the union of less 
than ~, closed sets is a fortiori an F.. Conversely if U is the union 
of countably many closed subsets Fo> then since X is normal, for each 
n there is an open set Un containing Fn whose closure is contained in 
U. Thus U is the union of the closures of the open sets Un.) In Prob
lem 3 of [1], it is asked if every compact (HaUSdorff) space satisfying 
(Qm) for some m>~o is necessarily totally disconnected, and it is re
marked that this is the case if the first axiom of countability is also as
sumed. 

If X is a completely regular space, let C(X) denote the ring of all 
continuous real-valued functions on X, and let Z(f)= {x EX: f(x)=O}, 
let P(f)={xEX:f(x»O}, and let N(f)=P(-f). As usual, let (IX 

denote the Stone-Cech compactification of X. If every finitely generated 
ideal of C(X) is a principal ideal, then X is called an F-space. The fol
lowing are equivalent. 

( i) X is an F-space. 
( ii) If f E C(X), then P(f) and NU) are completely separated [2, 

Theorem 2.3]. 
(iii) If f E C(X), then every bounded g E C(X-ZU» has an ex

tension g E C(X) [2, Theorem 2.6]. 
A good supply of compact F-spaces is provided by the fact that if 

X is locally compact and ,,-compact, then {lX-X is an F-space [2, Theo
rem 2.7]. 
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We remark first that a normal (Hausdorff) space X satisfies (Ql';) 
if and only if it is an F-space. 

For, suppose first that X is an F-space, and let U, V be disjoint 
open F.-subsets of X. Since X-(UU V) is a closed G, in a normal space, 
there is a bounded f e C(X) such that Z(f)=X-(UU V). Hence by (iii), 
there is a ge C(X) such that ii[U]=O and g[V]=1. In particular, U 
and V have disjoint closures, so X satisfies (Ql';,). Conversely let X 
satisfy (Ql';,) , and let f e C(X). Then P(f) and N(f) are disjoint open 
F.-subsets of X, which by (Ql';,) have disjoint closures. So, by Ury
sohn's lemma, P(f) and N(f) are completely separated. Thus X is an 
F-space by (ii). 

Compact connected F-spaces exist. In particular it is known that 
if R+ denotes the space of nonnegative real numbers, then fiR+ -R+ is 
such a space [2, Example 2.8]. Hence Problem 3 of [1] has a negative 
solution. 

We remark finally that if the first axiom of countability holds at a 
point of an F-space, then the point is isolated [2, Corollary 2.4]. In 
particular, every compact F-space satisfying the first axiom of countabi
Iity is finite. 

2. In Problem 2 of [1], it is asked (in different but equivalent lan
guage) if for every totally disconnected compact space X satisfying (Qm) 
for some m>*o, the Boolean algebra B(X) of open and closed snbsets 
of X has the property that every subset of less than m elements has a 
least upper bound. A lattice is said to be (conditionally) a--complete if 
every bounded countable subset has a least upper bound and a greatest 
lower bound. In view of the above (and since every subset of B(X) is 
bounded), in case m=*" the problem asks if for every compact totally 
disconnected F-space X, the Boolean algebra B(X) is a--complete. 

In [3, Theorem 18], it is shown that if X is compact and totally 
disconnected, then B(X) is a--complete if and only if C(X) is a--complete 
(as a lattice). It is noted in [2, Theorem 8.3, f.f.] that for a completely 
regular space Y, the lattice C( Y) is a--complete if and only if f e C( Y) 

implies P(f) and N(f) are disjoint open and closed subsets of Y (P(f) 
denotes the closure of P(f». It is easily seen that Y has this latter 
property if and only if fiY has [2, Lemma 1.6]. 

In [2, Example 8.10], an example is given of a completely regular 
space X such that fiX is a totally disconnected F-space, and such that 
C(X) is not a--complete. By the above, it follows that B(fiX) yields a 
negative solution to Problem 2. 

We remark also (as was pointed out by J. R. Isbell) that if N de
notes the countable discrete space, then fiN-N is also a totally dis
connected compact F-space such that B(fiN - N) is not a--complete. The 
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former assertion follows easily from the remarks in § 1, and the latter 
follows from the fact that B«(3N - N) is isomorphic to the Boolean al
gebra of all subsets of N modulo the ideal of finite subsets of N (under 
the correspondence induced by sending a subset of N to the intersection 
of its closure in (3N with (3N-N). It is easily verified that this latter 
Boolean algebra is not O"-complete. 

REFERENCES 

1. N. Aronszajn and P. Panitchpakdi, Extensiom of uniformly continuous transforma
tions and hyperconvex metric spaCeS, Pacific J. Math. 6 (1956), 405-439. 
2. L. Gillman and M. Henriksen, Rings of continuous junctions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366-391. 
3. M. H. Stone, Boundedness properties inJunction lattices, Canadian J. Math. 1 (1949), 176-186. 

THE INSTITUTE FOR ADVANCED STUDY 


	Claremont Colleges
	Scholarship @ Claremont
	1-1-1957

	Some Remarks on a Paper of Aronszajn and Panitchpakdi
	Melvin Henriksen
	Recommended Citation


	tmp.1318372926.pdf._8mmA

