
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1953

On the Prime Ideals of the Ring of Entire Functions
Melvin Henriksen
Harvey Mudd College

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Henriksen, Melvin. "On the prime ideals of the ring of entire functions." Pacific Journal of Mathematics 3.4 (1953): 711-720.

http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


ON THE PRIME IDEALS OF THE RING OF ENTIRE FUNCTIONS 

MELVIN HENRIKSEN 

1. Introduction. Let R be the ring of entire functions, and let K be the com

plex field. In an earlier paper [6], the author investigated the ideal structure of 
R, particular attention being paid to the maximal ideals. In 1946, Schilling [ 9, 

Lemma 5] stated that every prime ideal of R is maximal. Recently, I. Kaplansky 

pointed out to the author (in conversation) that this statement is false, and con

structed-a non maximal prime ideal of R (see Theorem l(a), below}. The purpose 

of the present paper is to investigate these nonmaximal prime ideals and their 

residue class fields. The author is indebted to Prof. Kaplansky for making this 

investigation possible. 

The nonmaximal prime ideals are characterized within the class of prime 

ideals, and it is shown that each prime ideal is contained in a unique maximal 

ideal. The intersection p* ,0£ all powers of a maximal free ideal M is the largest 

nonmaxirnal prime ideal contained in M. The set PM of all prime ideals contained 

in M is linearly ordered under set inclusion, and distinct elements P of PM cor-

respond in a natural way to distinct rates of growth of the multiplicities of the 

zeros of functions fin P. 

It is shown that the residue class ring RIP of a nonmaximal prime ideal P of 

R is a valuation ring whose unique maximal ideal is principal; RIP is Noetherian 

if and only if P = pO. The residue class ring RIP* is isomorphic to the ring 

K I z I of all formal power series over K. The structure theory of Cohen [2] of 

complete local rings is used. 

2. Notation and preliminaries. A familiarity with the contents of [6] is as

sumed, but some of it will be reproduced below for the sake of completeness. 

DEFINITION 1. If fER, and I is any nonvoid subset of R, let: 

(a) A (f) = [z E K I f( z} = 0] (Note that multiple zeros are repeated. Unions 

and intersections are taken in the same sense.); 

(b) AU} = [A(f}lfE I]; 
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712 MELVIN HENRIKSEN 

( c) A * (fl be the sequence of distinct zeros of f, arranged In order of in
creasing modulus. , 

In 1940. Helmer showed [5, Theorem 9] that if A (fl n A (g) is empty. there 

exist s, tin R such that 

(2.1) sf+tg=l. 

More generally, if d is any element of R such that 

A (d) = A (fl n A (g). 

then d is a greatest common divisor of f and g, unique to within a unit factor, and 

the ideal (f. g) generated by f and g is the principal ideal (d). It easily follows 

that every finitely generated ideal of R is principal. 

He proved this by showing that if ! an I is any sequence of complex numbers 

such that 

00. 

and wn,k is any set of complex numbers, then there is an s in R such that 

(2.2 ) s(k) (a }=w k' (n=I.2.··.;k=0 •..• ,ln )· 
n n. 

The latter was shown independently by Germay [3]. 

REMARK. In [4]. Germay extended (2.2) to the ring of functions analytic in 

I z I < r. where limn_~ an lies on I z I = r. Hence (2.1) follows for this ring. as 
will most of the results in [6] and the present paper, with minor modification. 

It follows that if I is an ideal of R. then A (l) has the finite intersection prop

erty. So we make the following definition. 

DEFINITION 2. If nf<l A (f) is nonempty. then I is called a fixed ideal. 

Otherwise. I is called a free ideal. 

DEFINITION 3. (a) If A* (f) = ! an I. let On (f) be the multiplicity of an as a 

zero of f. 

( b) If A is a non void subset of A * (fl. let On (f: A) be the function On (f) 
with domain restricted to A. 

(c) Letm(fl= sUPn~l 0n(f}. iff,t,O. Letm(O)=oo. 

3. Prime ideals of R. Kaplansky's construction of nonmaximal, prime ideals 
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of R is given in Theorem l( a), helow. The only fallacy in Schilling's demon

stration (refeITed to in the Introduction) is the false assumption that a prime 

ideal necessarily contains an f such that m (f) = 1. Hence a characterization of 

these nonrnaximal prime ideals may be given. 

THEO REM 1. (a) There exist nonmaximal prime ideals of R. 

(h) A necessary and sufficient condition that a prime ideal P of R be non

maximal is that m ( f) = ro, for all f E P. 

Proof. (a) Let 

S = [fE Rlm(fl < rol. 

Clearly, S is closed under multiplication and does not contain O. If g ,;, 0 is in 

R - S, g is contained in a prime ideal P not intersecting S (see [8, p.loSl). 

Since, as noted in [6, p.183], any maximal ideal contains an f such that m (f) = 

1, P cannot he maximal. 

(h) The sufficiency is clear from the ahove. If f E P with m (f) < 00, the 

primality of P ensures that there is agE P with m( g) = 1. Suppose the maximal 

ideal M contains P, and let hEM. By (2.1), there is ad E M such that 

A(d) = A(g) n A(h). 

Now g= g.d, where A(g.) n A(d) is empty, since mIg) = 1. Since P is prime, 

it follows that either g. E P or d E P. But M ,;, R, so g. is nol in P. It follows 

that d, and hence h, is in P, whence P = M. 

COROLLARY. Any prime, fixed ideal of R is maximal. 

THEOREM 2. Every prime ideal P of R is contained in a unique maximal 

(free) ideal M. 

Proof. By Theorem 1 (b) and [6, Theorem 4], the ideal (P, f) is maximal if 

m (f) = 1 and A (f) intersects every element of A (P). Let f., f2 be any two such 

functions, so that M. = (P. f.) and M 2 = (P, f
2

) are maximal ideals containing 

P.If 

A(d) = A(f.) n A(f
2

), 

then M = (P, d) is a maximal ideal containing P, and M, eM, M2 c M, so that 
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More concrele constructions of nonmaximal prime ideals are given below in 

terms of maximal free ideals. 

THE OREM 3. If M is a maximal free ideal of R, then 

~ 

p* n Mk 

k = 1 

is a prime ideal, and is the larges t nonmaximal prime ideal contained in M. 

Proof. Since every finitely generated ideal of R is principal, p* is easily 

seen to he the set of all fER expressible in the fonn hkriJ., with dk E AI, k = 1, 

2, •.•• Thus, if f E AI, f E p* if and only if m ( fie) = co whenever e divides i 
and e E R - M, (whence fleE M). Suppose iI' f2 are not in pO. Clearly, fJ2 

is not in p* except possibly when both fl and f2 are in M. In this case, there 

exist ei dividing fi' with ei E R - M such that m(f/ei ) < 00, (i = 1, 2). Since 

M is prime, e, e 2 E R - M and m(fJ/e, e 2 ) :; m(f/e,) + m(f/e 2 ) < 00. So 

f1/2 is not in P*, whence p* is a prime ideal. 

The second part of the Theorem is a direct consequence of Theorem 1 (b). 

We proceed now to identify the remainder of the class PM of prime ideals Con

tained in M. This is done by considering the fates of growth of the functions 

0. (f) on the filter A (M). Results of Bourbaki [1J are used without further ac

knowledgement. 

DEFINITION 4. If f, gEM, and there is an e E M such that 

A*(e) c A*(f) nA*(g) 

with 

O.{f:A*(e)) ~ On(g:A*(e)), 

then f2: g (g:; n. 
It is easily seen that the relation "~" is reflexive and transitive. Moreover: 

LEMMA L If t, gEM, either f~ g or g ~ f. 

Proof. Let 

A(d) = A(f) n A(g), 

and let 
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A, = [z E A* (d) I On ([:I z!) "= On ( g:l zl )] • 
A, = [z E A*(d}lon(f:lz)) < On(g:lz))]. 

Since A, n A, is empty. A, u A, = A * (d); and since M is prime. one and only 

one of A" A, E M. Hence [ "= g or g ? [. 

DEFINITION 5. Suppose [. gEM. 

(a) If there exist positive integers N" N, such that [N, N ? g and g , "= [. 
then [- g. 

( b) If [? gN for all positive integers N or if [ = O. then [ » g (g < < fl. 

LEMMA 2. (a) The relation' "",' is an equivalence relation. 

(b) The relation' »' is transitive. 

(c) 1[[. gEM. one and only one o[ [- g. [» g. [ « g holds. 

Proof. The relations (a) and (b) follow easily from the observations that 

It is clear that at most one of the relations ( c) can hold. By Lemma 1. [? g 

or g ~ {. Suppose [~ g and not f - g; then [? gN for all N. whence [» g. 

Similarly, if g ? f. 

LEMMA 3. Let [be an element of a prime ideal P of PM' If g ~ f. or g - [, 

then g E P. 

Proof. Suppose first that g ? [. Then. as is evident from the construction in 

Lemma 1, we can write 

where 

and [ • g are not in M. Hence d, E P; and. since d, is a multiple of d" d, and 
liN N 

g E P. If g - f, then g ? [, for some N. By the ahove, g E P. But P is a prime 

ideal. so g E P. 

THEOREM 4. (a) Let 0 be any subset of M, and let 

Po. = [fE MI[» g. [or all g EO]. 
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Then P Q is a prime ideal. 

(b) IfP is a prime ideal, thenP =P
Q

, where n = M - P. 

Proof. (a) Note first that if g ,g E M and g g ,.; ° 
1 2 1 2 

then 

If gl E M,g2ER,glg2 ";O,then 

It now follows from the lemmas above that P is an ideal. The primality of P fol

lows from the observation that 

Pg=(fEMlf»gl 

is a prime ideal, and that PrJ. is an intersection of a descending chain (under set 

inclusion) of ideals of this form. 

(b) If P is a prime ideal, the relations f E P, gEM - P, imply that f» g, 

by Lemma 3. 

COROLLARY. The ideals of PM are linearly ordered under set inclusion. 

By the Theorem above, every element of PM is the upper class of a Dedekind 
cut (under « ). If P contains a least element f, then 

P = Pj = [g E Mig» f or g ~ fl. 

If M - P has a greatest element g, then P = P g as defined in the proof of the 

theorem. It is clear that PM contains the greatest lower bound and least upper 

bound of any set of elements. 

Note, moreover that P [1 = P f2 (Pf~ = PI,) if and only if fl ~ f2 · 

LEMMA 4. The set p* - 101 has no countable cofinal or coinitial subset. 

Moreover, if {f I, I f I are two sequences of nonzero elements of P*, such l,n 2,n 
that 

f »f »f »f 
l,n+l l,n 2,m 2.m+l' 

for all n, m, 

then there is an f E p* such that 
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fl,n » f» f2,m: for all n, m. 

Proof. See [1, p.123, exercise 8]. 

The author is indebted to Dr. P.- Erdos and Dr. L. Gillman for the following 

Theorem. 

THEOREM 5. The set PM has power at least 2kl. 

Proof. It is implicit in arguments of Hausdorff and Sierpinski [10, p. 62] that 

every set satisfying Lemma 4 contains a subset similar to the lexicographically 

ordered set S of w1wsequences of D's and l's, each having at most countahly 

many l's By [11], S is dense in the set of all dyadic ",,-sequences, which has 

power 2kl. Since the set PM is complete, card (PM) ~ 2k '. 

Since card (P M) :S 2c , where c is the cardinal number of the continuum, we 

have: 

COROLLARY. If 2kl = 2c, inparticularif~, = c, then c:"d(P M) = 2c• 

4. Residue class rings of prime ideals. We adopt the following definition of 

Krull [7, p.llO]: 

DEFINITION 6. An integral domain D such that if f, g E D, then f divides g 

or g divides /, is called a valuation ring. 

It is easily seen that a valuation ring possesses a unique maximal ideal, con .. 

sisting of all its nonunits. 

THE OREM 6. The residue class ring RIP of a prime ideal P of R is a valua
Ting whose unique maximal ideal is principal. 

First, we prove a lemma. 

LEMMA 5. If PEP M' then f is singular modulo P if and only if f E M. 

Proof. Consider the equation 

f X = 1 (mod P) • 

If f E M, the equation clearly has no solution since A (f) n A (p) is nonempty for 

all pEP (see [6, Theorem 4]). 

On the other hand, if f is not in M, there is apE P such that A (f) n A (p) 

is empty. Let A* (p) ~ I an I, with On (p) = In' in which case f( an) ;i O. The 
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equation in question has a solution if and only if there exists agE R such that 

and 

(ii) (fg)(k) (an) = 0, k = 1, ... , In. 

Since 

k 
(fg)(k) = fi k ) + L (~) f(i) g(k-i) , 

i = 1 

(ij) is satisfied if 

k 

L 
i = 1 

Such a g can be constructed by (2.2), whence 

fg" 1 (mod P). 

k! 
where (7) = i! (k _ i)! • 

Proof of Theorem 6. By Lemma 5, every element of R - M is a unit, so we 

may assume that i, gEM. Let 

A(d) = A(f) n A(g), 

so that A (f/d) n A (g/ d) is empty. Clearly, at least one of f/d, g/d E R - M, 

and hence is a unit modulo P. So RIP is a valuation ring. 

If, in particular, f is chosen to he in M - M2, rid cannot be in M, so g is a 

multiple (modulo P) of f. Therefore the unique maximal ideal M/P of R/P is gen

erated by f, and hence is principal. 

If P f, P*, R/P possesses the nonmaximal prime ideals P 1/ P, where P 1 is a 

nonmaximal prime ideal of R proper! y containing P. Moreover: 

THEOREM 7. The residue class ring RIP of a nonmaximal prime ideal P is 

Noetherian if and only if P = P*. 

Proof. Every nonzero element of M - p* is in Mk - Mk- 1, for some unique 

positive integer k. Hence every nonzero ideal of RjP* is of the form (fk), where 

f E M - M2. 

If f E P - P*, construct fk such that 
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and 

Then Ikt, is a proper divisor (modulo P) of Ik. Hence the ideal generated by all 

the Ik does not have finite basis. 

The residue class ring RIP' is concretely identified below by the use of the 

structure theory of complete local rings [2] of Cohen. First we make a definition. 

DEFINITION 7. (a) If the nonunits of a Noetherian ring D with unit form a 

maximal ideal M such that 

00 

D is called a local ring. 

(b) If f" ... , In is a minimal hasis for M such that I" '" , fi generate a 

prime ideal (i ~ 1, ... , ,,), S is called a regular local ring. 

(c) Using the powers of M as a system of neighborhoods of 0, (therehy to

pologizing D), we call D complete if every Cauchy sequence in D has a (unique) 

limit. 

THEOREM 8. The residue class ring RIP' is isomorphic with the ring KI z I 
of all formal power series over K. 

Proof. By Theorems 3, 4, 6, RIP' is a local ring and is trivially regular 

since MIP' is principal. Cohen [2, Theorem 15] has shown that every regular, 

complete, local ring, whose unique maximal ideal is principal, and such that DIM 
is isomorphic to K, is isomorphic to K I z I. By [6. Theorem 6], 

(RIP' )/( MIP') .,; RIM ~ K. 

The proof is completed hy the following Lemma. 

LEMMA 6. The residue class ring RIP' is complete. 

Proof. Let! Ik I he any Cauchy sequence in RIP'. We may assume without 

loss of generality that Ik+' - Ik E Mk, since a Cauchy sequence has at most 

one limit. Let 
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!ak' ak +
1

, ••• } E A(M), 

with all ak distinct. Let 

Clearly, B k E A (M), and nk= 1 B k is empty. Hence, we may construct by (2.2) 
an I E R such that 

I( z) I, (z) forzEB
1

, 

and 

I(k) (z) for Z E Bk+,. 
Then 

whence 
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