Claremont Colleges [Scholarship @ Claremont](http://scholarship.claremont.edu)

[All HMC Faculty Publications and Research](http://scholarship.claremont.edu/hmc_fac_pub) [HMC Faculty Scholarship](http://scholarship.claremont.edu/hmc_faculty)

1-1-1953

On the Prime Ideals of the Ring of Entire Functions

Melvin Henriksen *Harvey Mudd College*

Recommended Citation

Henriksen, Melvin. "On the prime ideals of the ring of entire functions." Pacific Journal of Mathematics 3.4 (1953): 711-720.

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact [scholarship@cuc.claremont.edu.](mailto:scholarship@cuc.claremont.edu)

ON THE PRIME IDEALS OF THE RING OF ENTIRE FUNCTIONS

MELVIN HENRIKSEN

1. Introduction. Let R be the ring of entire functions, and let K be the complex field. In an earlier paper [6], the author investigated the ideal structure of *R,* particular attention being paid to the maximal ideals. In 1946, Schilling [9, Lemma 5] stated that every prime ideal of *R* is maximal. Recently, I. Kaplansky **pointed out to the author (in conversation) that this statement is false, and con**structed a nonmaximal prime ideal of R (see Theorem $1(a)$, below). The purpose **of the present paper is to investigate these nonmaximal prime ideals and their** residue class fields. The author is indebted to Prof. Kaplansky for making this **investigation possible.**

The nonmaximal prime ideals are characterized within the class of prime ideals, and it is shown that each prime ideal is contained in a unique maximal ideal. The intersection P^* of all powers of a maximal free ideal M is the largest nonmaximal prime ideal contained in M . The set P_M of all prime ideals contained in M is linearly ordered under set inclusion, and distinct elements P of P_M cor**respond in a natural way to distinct rates of growth of the multiplicities of the zeros of functions fin** *P.*

It is shown that the residue class ring R/P of a nonmaximal prime ideal P of R is a valuation ring whose unique maximal ideal is principal; R/P is Noetherian if and only if $P = P^*$. The residue class ring R/P^* is isomorphic to the ring $K\{z\}$ of all formal power series over K. The structure theory of Cohen [2] of **complete local rings is used.**

2. Notation and preliminaries. A familiarity with the contents of [6] is assumed, but some of it will be reproduced below for the sake of completeness.

DEFINITION 1. If $f \in R$, and *I* is any nonvoid subset of *R*, let:

(a) $A(f) = [z \in K] f(z) = 0$ (Note that multiple zeros are repeated. Unions **and intersections are taken in the same sense.);**

(b) $A(I) = [A(f) | f \in I];$

Received December 5~ **1952.**

Pacific J. Math. **3 (1953),711-720**

(c) $A^*(f)$ be the sequence of distinct zeros of f, arranged in order of in**creasing modulus.** ,

In 1940, Helmer showed [5, Theorem 9] that if $A(f) \cap A(g)$ is empty, there **exist s, tin R such that**

$$
(2.1) \t\t sf + tg = 1.
$$

More generally, if d is any element of R such that

$$
A(d) = A(f) \cdot A(g),
$$

then *d* **is a greatest common divisor of f and g, unique to within a unit factor, and** the ideal (f, g) generated by f and g is the principal ideal (d) . It easily follows **that every finitely generated ideal of R is principal.**

He proved this by showing that if $\{a_n\}$ is any sequence of complex numbers **such that**

$$
\lim_{n\to\infty} a_n = \infty,
$$

and *wn,k* **is any set of complex numbers, then there is an s in R such that**

(2.2)
$$
s^{(k)}(a_n) = w_{n,k}, (n = 1, 2, \cdots; k = 0, \cdots, 1_n).
$$

The latter was shown independently by Germay [3].

REMARK. In [4]. Germay extended (2.2) to the ring of functions analytic in $|z| < r$, where $\lim_{n \to \infty} a_n$ lies on $|z| = r$. Hence (2.1) follows for this ring, as **will most of the results in [6] and the present paper, with minor modification.**

It follows that if *I* is an ideal of R , then $A(I)$ has the finite intersection property. So we make the following definition.

DEFINITION 2. If $\bigcap_{f \in I} A(f)$ is nonempty, then *I* is called a *fixed* ideal. Otherwise. *I* is called a *free* ideal.

DEFINITION 3. (a) If $A^*(f) = \{a_n\}$, let $0_n(f)$ be the multiplicity of a_n as a zero of f.

(b) If A is a nonvoid subset of $A^*(f)$, let $0_n(f:A)$ be the function $0_n(f)$ **with domain restricted to** *A.*

(c) Let $m(f) = \sup_{n \ge 1} 0_n(f)$, if $f \ne 0$. Let $m(0) = \infty$.

3. Prime ideals of *R.* **Kaplansky's construction of nonmaximal, prime ideals**

of *R* is given in Theorem l(a), helow. The only fallacy in Schilling's demonstration (referred to in the Introduction) is the false assumption that a prime ideal necessarily contains an f such that $m(f) = 1$. Hence a characterization of **these nonrnaximal prime ideals may be given.**

THEO REM 1. (a) *There exist nonmaximal prime ideals of R.*

(h) *A necessary and sufficient condition that a prime ideal P of R be nonmaximal is that* $m(f) = \infty$, *for all* $f \in P$.

Proof. (a) Let

$$
S=\left[f\in R\,\middle|\,m(f)<\infty\right].
$$

Clearly, S is closed under multiplication and does not contain 0. If $g \neq 0$ is in $R - S$, g is contained in a prime ideal P not intersecting S (see [8, p.105]). Since, as noted in [6, p. 183], any maximal ideal contains an f such that $m(f)$ = $1, P$ cannot be maximal.

(b) The sufficiency is clear from the above. If $f \in P$ with $m(f) < \infty$, the primality of *P* ensures that there is a $g \in P$ with $m(g) = 1$. Suppose the maximal ideal M contains P, and let $h \in M$. By (2.1), there is a $d \in M$ such that

$$
A(d) = A(g) \cdot A(h).
$$

Now $g = g_1 d$, where $A(g_1) \cap A(d)$ is empty, since $m(g) = 1$. Since *P* is prime, it follows that either $g_i \in P$ or $d \in P$. But $M \neq R$, so g_i is not in P . It follows that d , and hence h , is in P , whence $P = M$.

COROLLARY. *Any prime, fixed ideal of R is maximal.*

THEOREM 2. *Every prime ideal P of R is contained in a unique maximal (free) ideal M.*

Proof. By Theorem 1(b) and [6, Theorem 4], the ideal (P, f) is maximal if $m(f) = 1$ and $A(f)$ intersects every element of $A(P)$. Let f_1, f_2 be any two such functions, so that $M_1 = (P, f_1)$ and $M_2 = (P, f_2)$ are maximal ideals containing P.If

$$
A(d) = A(f_1) \cdot A(f_2),
$$

then $M = (P, d)$ is a maximal ideal containing P, and $M_1 \subset M$, $M_2 \subset M$, so that

$$
M_{1} = M_{2} = M.
$$

More concrete constructions of nonmaximal prime ideals are given below in **terms of maximal free ideals.**

THE OREM 3. *If M is a maximal free ideal of R, then*

$$
P^* = \bigcap_{k=1}^{\infty} M^k
$$

is a prime ideal, and is the larges t nonmaximal prime ideal contained in M.

Proof. Since every finitely generated ideal of *R* is principal, *p** is easily seen to be the set of all $f \in R$ expressible in the form $h_k d_k^k$, with $d_k \in M$, $k = 1$, 2, \cdots . Thus, if $f \in M$, $f \in P^*$ if and only if $m(f/e) = \alpha \text{ whenever } e$ divides f and $e \in R - M$, (whence $f/e \in M$). Suppose f_1, f_2 are not in P^* . Clearly, $f_1 f_2$ is not in P^* except possibly when both f_1 and f_2 are in *M*. In this case, there exist e_i dividing f_i , with $e_i \in R - M$ such that $m(f_i/e_i) < \infty$, $(i = 1, 2)$. Since *M* is prime, $e_1 e_2 \in R - M$ and $m(f_1 f_2 / e_1 e_2) \le m(f_1 / e_1) + m(f_2 / e_2) < \infty$. So $f_1 f_2$ is not in P^* , whence P^* is a prime ideal.

The second part of the Theorem is a direct consequence of Theorem 1 (b).

We proceed now to identify the remainder of the class P_M of prime ideals con**tained in M. This is done by considering the fates of growth of the functions** $0_n(f)$ on the filter $A(M)$. Results of Bourbaki [1] are used without further acknowledgement.

DEFINITION 4. If $f, g \in M$, and there is an $e \in M$ such that

$$
A^*(e) \subset A^*(f) \cap A^*(g)
$$

with

$$
0_n(f: A^*(e)) \geq 0_n(g: A^*(e)),
$$

then $f \geq g$ ($g \leq f$).

It is easily seen that the relation ">" is reflexive and transitive. Moreover:

LEMMA 1. If $f, g \in M$, either $f \geq g$ or $g \geq f$.

Proof. Let

$$
A(d) = A(f) \cdot A(g),
$$

and let

$$
A_{1} = [z \in A^{*}(d) | 0_{n}(f:\{z\}) \ge 0_{n}(g:\{z\})],
$$

$$
A_{2} = [z \in A^{*}(d) | 0_{n}(f:\{z\}) < 0_{n}(g:\{z\})].
$$

Since $A_1 \n A_2$ is empty, $A_1 \n A_2 = A^*(d)$; and since *M* is prime, one and only one of A_1 , $A_2 \in M$. Hence $f \geq g$ or $g \geq f$.

DEFINITION 5. Suppose $f, g \in M$.

(a) If there exist positive integers N_1 , N_2 such that $f^{N_1} \ge g$ and $g^{N_2} \ge f$, then $f \sim g$.

(b) If $f \ge g^N$ for all positive integers *N* or if $f = 0$, then $f \gg g$ ($g \ll f$).

LEMMA 2. (a) The relation $\cdot \sim \cdot$ is an equivalence relation.

(b) The relation \rightarrow \rightarrow *is transitive.*

 $\ddot{}$

(c) If $f, g \in M$, one and only one of $f \sim g$, $f \gg g$, $f \ll g$ holds.

Proof. The relations (a) and (b) follow easily from the observations that

$$
0_n(f^N) = N \cdot 0_n(f)
$$
, and if $f \ge g$ then $f^N \ge g^N$.

It is clear that at most one of the relations (c) can hold. By Lemma 1, $f \geq g$ or $g \ge f$. Suppose $f \ge g$ and not $f \sim g$; then $f \ge g^N$ for all N, whence $f \gg g$. Similarly, if $g \ge f$.

LEMMA 3. Let f be an element of a prime ideal P of P_M . If $g \ge f$, or $g \sim f$, *then* $g \in P$.

Proof. Suppose first that $g \ge f$. Then, as is evident from the construction in **Lemma 1, we can write**

$$
f = f_1 d_1, g = g_1 d_2,
$$

where

$$
A^*(d_1) = A^*(d_2), \quad 0_n(d_2) \ge 0_n(d_1),
$$

and f_1 , g_1 are not in *M*. Hence $d_1 \in P$; and, since d_2 is a multiple of d_1 , d_2 and $A^*(d_1) = A^*(d_2)$, $0_n(d_2) \ge 0_n(d_1)$,
and f_1 , g_1 are not in *M*. Hence $d_1 \in P$; and, since d_2 is a multiple of d_1 , d_2 and
 $g \in P$. If $g \sim f$, then $g^N \ge f$, for some *N*. By the above, $g^N \in P$. But *P* is ideal, so $g \in P$.

THEOREM 4. (a) Let Ω be any subset of M, and let

$$
P_{\Omega} = [f \in M | f \gg g, \text{ for all } g \in \Omega].
$$

Then P_{Ω} *is a prime ideal.*

(b) If P is a prime ideal, then $P = P_{\Omega}$, where $\Omega = M - P$.

Proof. (a) Note first that if $g_1, g_2 \in M$ and $g_1 g_2 \neq 0$

$$
A = A^*(g_1) \cdot A^*(g_2)
$$

then

$$
0_n(g_1 - g_2 : A) = \min \{0_n(g_1 : A), 0_n(g_2 : A)\}.
$$

If $g_1 \in M$, $g_2 \in R$, $g_1 g_2 \neq 0$, then

$$
0_n(g_1g_2: A^*(g_1)) = 0_n(g_1: A^*(g_1)) + 0_n(g_2: A^*(g_1)).
$$

It now follows from the lemmas above that *P* is an ideal. The primality of *P* fol**lows from the observation that**

$$
P_g = [f \in M \mid f \gg g]
$$

is a prime ideal, and that P_{Ω} is an intersection of a descending chain (under set inclusion) of ideals of this form.

(b) If *P* is a prime ideal, the relations $f \in P$, $g \in M - P$, imply that $f \gg g$, by Lemma 3.

COROLLARY. *The ideals of* P_M are linearly ordered under set inclusion.

By the Theorem above, every element of P_M is the upper class of a Dedekind cut (under \ll). If P contains a least element f, then

$$
P = P_f^+ = [g \in M \mid g \gg f \text{ or } g \sim f].
$$

If $M - P$ has a greatest element g, then $P = P_g$ as defined in the proof of the theorem. It is clear that P_M contains the greatest lower bound and least upper **bound of any set of elements.**

Note, moreover that $P_{f_1} = P_{f_2} (P_{f_1}^+ = P_{f_2}^+)$ if and only if $f_1 \sim f_2$.

LEMMA 4. The set $P^* - \{0\}$ has no countable cofinal or coinitial subset. *Moreover, if* $\{f_{1,n}\}\$, $\{f_{2,n}\}$ are two sequences of nonzero elements of P^* , such *that*

$$
f_{1,n+1} \gg f_{1,n} \gg f_{2,m} \gg f_{2,m+1}
$$
, for all n, m,

then there is an $f \in P^*$ *such that*

$$
f_{1,n} \gg f \gg f_{2,m}, \qquad \text{for all } n, m.
$$

Proof. See [1, p.123, exercise 8].

The author is indebted to Dr. P.- Erdös and Dr. L. Gillman for the following Theorem.

THEOREM 5. The set P_M has power at least 2^{k_1} .

Proof. It is implicit in arguments of Hausdorff and Sierpinski **[10,** p. 62] that **every set satisfying Lemma 4 contains a subset similar to the lexicographically** ordered set *S* of ω_1 -sequences of 0's and 1's, each having at most countably many l's By [11], S is dense in the set of all dyadic ω_1 -sequences, which has power 2^{k_1} . Since the set P_M is complete, card $(P_M) \geq 2^{k_1}$.

Since card $(P_M) \leq 2^c$, where c is the cardinal number of the continuum, we **have:**

COROLLARY. *If* $2^{k_1} = 2^c$, *in particular if* $\aleph_1 = c$, *then card* $(P_M) = 2^c$.

4. **Residue class rings of prime ideals.** We adopt the following definition of Krull [7, p.llO]:

DEFINITION 6. An integral domain D such that if $f, g \in D$, then f divides g **or g divides /, is called a** *valuation ring.*

It is easily seen that a valuation ring possesses a unique maximal ideal, con**sisting of all its nonunits.**

THE OREM 6. *The residue class ring RIP of a prime ideal P of R is a valua-Ting whose unique maximal ideal is principal.*

First, we prove a lemma.

LEMMA 5. If $P \in P_M$, then f is singular modulo P if and only if $f \in M$.

Proof. Consider the equation

$$
fX\equiv 1\pmod{P}.
$$

If $f \in M$, the equation clearly has no solution since $A(f)$ o $A(p)$ is nonempty for all $p \in P$ (see [6, Theorem 4]).

On the other hand, if f is not in M, there is a $p \in P$ such that $A(f) \cap A(p)$ is empty. Let $A^*(p) = \{a_n\}$, with $0_n(p) = l_n$, in which case $f(a_n) \neq 0$. The

equation in question has a solution if and only if there exists a $g \in R$ **such that**

(i)
$$
g(a_n) = \{f(a_n)\}^{-1}
$$
,

and

(ii)
$$
(fg)^{(k)} (a_n) = 0, k = 1, \dots, l_n
$$
.

Since

$$
(fg)^{(k)} = fg^{(k)} + \sum_{i=1}^{k} {\binom{k}{i}} f^{(i)} g^{(k-i)}, \qquad \text{where } {\binom{k}{i}} = \frac{k!}{i!(k-i)!},
$$

(ij) is satisfied if

(iii)
$$
g^{(k)}(a_n) = -\{f(a_n)\}^{-1} \sum_{i=1}^k {k \choose i} f^{(i)}(a_n) g^{(k-i)}(a_n).
$$

Such a g can be constructed by (2.2) , whence

$$
fg \equiv 1 \pmod{P}.
$$

Proof of Theorem 6. By Lemma 5, every element of $R - M$ is a unit, so we may assume that $f, g \in M$. Let

$$
A(d) = A(f) \cdot A(g),
$$

so that $A(f/d)$ \cap $A(g/d)$ is empty. Clearly, at least one of f/d , $g/d \in R - M$, **and hence is a unit modulo** *P.* **So** *RIP* **is a valuation ring.**

If, in particular, f is chosen to be in $M - M^2$, f/d cannot be in M, so g is a multiple (modulo *P)* of f. Therefore the unique maximal ideal *M/P* of *R/P* is generated by f, and hence is principal.

If $P \neq P^*$, R/P possesses the nonmaximal prime ideals P_1/P , where P_1 is a **nonmaximal prime ideal of** *R* **proper! y containing** *P.* **Moreover:**

THEOREM 7. *The residue class ring RIP of a nonmaximal prime ideal P is Noetherian if and only if* $P = P^*$.

Proof. Every nonzero element of $M - P^*$ is in $M^k - M^{k-1}$, for some unique positive integer *k*. Hence every nonzero ideal of R/P^* is of the form (f^k) , where $f \in M - M^2$.

If $f \in P - P^*$, construct f_k such that

$$
A^*(f_i) = A^*(f)
$$

and

$$
0_n(f_k) = \max \{0_n(f) - k, 1\}.
$$

Then f_{k+1} is a proper divisor (modulo *P*) of f_k . Hence the ideal generated by all the *Ik* does not have finite basis.

The residue class ring R/P^* is concretely identified below by the use of the **structure theory of complete local rings [2] of Cohen. First we make a definition.**

DEFINITION 7. (a) If the nonunits of a Noetherian ring *D* with unit form a maximal ideal M such that

$$
\bigcap_{k=1}^{\infty} M^k = (0),
$$

D is called a *local ring.*

(b) If f_1 , ..., f_n is a minimal basis for *M* such that f_1 , ..., f_i generate a prime ideal $(i = 1, \dots, n)$, *S* is called a *regular* local ring.

(c) Using the powers of M as a system of neighborhoods of 0, (therehy topologizing *D),* we call *D complete* if every Cauchy sequence in *D* has a (unique) **limit.**

THEOREM 8. The residue class ring R/P^* is isomorphic with the ring $K{z}$ *of all formal power series over K.*

Proof. By Theorems 3, 4, 6, R/P^* is a local ring and is trivially regular since M/P^* is principal. Cohen [2, Theorem 15] has shown that every regular, complete, local ring, whose unique maximal ideal is principal, and such that D/M is isomorphic to K, is isomorphic to $K\{z\}$. By [6, Theorem 6],

$$
(R/P^*)/(M/P^*)\cong R/M\cong K.
$$

The proof is completed by the following Lemma.

LEMMA 6. The residue class ring R/P^* is complete.

Proof. Let ${f_k}$ be any Cauchy sequence in R/P^* . We may assume without loss of generality that $f_{k+1} - f_k \in M^k$, since a Cauchy sequence has at most **one limit. Let**

$$
A_k = \{a_k, a_{k+1}, \ldots \} \in A(M),
$$

with all a_k distinct. Let

$$
B_k = A_k \cdot A(f_{k+1} - f_k).
$$

Clearly, $B_k \in A(M)$, and $\bigcap_{k=1}^{\infty} B_k$ is empty. Hence, we may construct by (2.2) an $f \in R$ such that

$$
f(z) = f_1(z) \qquad \text{for } z \in B_1,
$$

and

$$
f^{(k)}(z) = f_k^{(k)}(z) \qquad \text{for } z \in B_{k+1}.
$$

Then

$$
f_k \equiv f \pmod{M^k},
$$

whence

 $L_{k\to\infty} f_k = f$.

REFERENCES

1. N. Bourbaki, *Étude locale des fonctions*, Actualités Sci. Ind., No. 1132, Hermann **et Cie., Paris, 1951.**

2. I. S. Cohen, *On the structure and ideal theory of complete local rings,* **Trans.Amer.** Math. Soc. 59 (1946), 54-106.

3. R. H. J. Germay, Sur une application des théorèmes de Weierstrass et de Mittag-Leffler de la théorie générale des fonctions, Ann. Soc. Sci. Bruxelles, Ser. I, 60 (1946), 190-195.

4. **•••••••••••**, Extension d'un théorème de E. Picard relatif aux produits indéfinis de *facteurs primaires,* **Bull. Roy. Sci.** Li~ge **17 (1948),** 138~143.

5. O. Helmer, *Divisibility properties of integral functions*, Duke Math. J. 6 (1940), 345-356.

6. M. Henriksen, *On the ideal structure of the ring of entire junctions,* **Pacific J. Math.** 2 (1952), 179-184.

7. W. Krull, *Idealtheorie,* **Ergebnisse der Mathematik, Julius Springer, Berlin, 1935.**

8. N. McCoy, *Rings and ideals,* **Mathematical Association of America, Buffalo, 1950.**

9. O. F. G. Schilling, *Ideal theory on open Riemann surfaces,* **Bull. Amer. Math. Soc.** 52 (1946), 945-963.

10. W. Sierpihski, *Sur une propriete des ensembles ardannes.* **Fund. Math. 36 (1949),** 56-67.

11. - **Fig. 5**. Sur un problème concernant les sous-ensembles croissants du continu, Fund. Math. 3 (1922), 109-112.

PURDUE UNIVERSITY