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LATTICE-ORDERED RINGS AND FUNCTION RINGS

MELVIN HENRIKSEN AND J. R. ISBELL

Introduction: This paper treats the structure of those lattice-ordered
rings which are subdirect sums of totally ordered rings—the f-rings of
Birkhoff and Pierce [4]. Broadly, it splits into two parts, concerned
respectively with identical equations and with ideal structure; but there
is an important overlap at the beginning.

D. G. Johnson has shown [9] that not every /-ring is unitable, i.e.
embeddable in an/-ring which has a multiplicative unit; and he has given
a characterization of unitable /-rings. We find that they form an
equationally definable class. Consequently in each /-ring there is a definite
Z-ideal which is the obstruction to embedding in an /-ring with unit.
From Johnson's results it follows that such an ideal must be nil; we find
it is nilpotent of index 2, and generated by left and right annihilators.

Tarski has shown [13] that all real-closed fields are arithmetically
equivalent. It follows easily that every ordered field satisfies all ring-
lattice identities valid in the reals (or even in the rationals); and from
a theorem of Birkhoff [2], every ordered field is therefore a homomorphic
image of a latticeordered ring of real-valued functions. Adding results
of Pierce [12] and Johnson [9], one gets the same conclusion for commutative
/-rings which have no nonzero nilpotents. We extend the result to all
zero /-rings, and all archimedean /-rings. We call these homomorphic
images of /-rings of real functions formally real /-rings.

Birkhoff and Pierce showed [4] that /-rings themselves form an
equationally definable class of abstract algebras, defined by rather simple
identities involving no more than three variables. The same is true for
unitable/-rings. However, no list of identities involving eight or fewer
variables characterizes the formally real /-rings. The conjecture is that
'"eight" can be replaced by any n, but we cannot prove this.

We call an element e of an /-ring a superunίt if ex ^ x and xe ^ x
for all positive x; we call an /-ring infinitesimal if x2 ^ \x\ identically.
A totally ordered ring is unitable if and only if it has a superunit or is
infinitesimal. A general unitable /-ring is a subdirect sum of two
summands, L, I, where L is a subdirect sum of totally ordered rings
having superunits (we say L has local superunits) and /is infinitesimal.
The summand L is unique.

We call a maximal J-ideal M in an /-ring A supermodular if AjM
has a superunit. The supermodular maximal Z-ideals of A, in the hull-
kernel topology, form a locally compact Hausdorff space ^{A). If A
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534 MELVIN HENRIKSEN AND J. R. ISBELL

is infinitesimal, of course, the space is empty. If A has local superunits,
each supermodular maximal ί-ideal contains a smallest supermodular
primary Z-ideal G, and the intersection of all these ideals G is zero.

In case the intersection of the supermodular maximal I -ideals of A
is zero, we call A supermodular semisimple or S-semisimple. This
implies there are no nonzero nilpotents. Hence a commutative S-semisimple
/-ring is a residue class ring of an /-ring of realvalued functions modulo
an intersection of supermodular maximal Z-ideals. The ideal structure
of any S-semisimple /-ring A is fairly closely bound to the structure
space ^t(A); the correspondence between direct summands and open-closed
sets is imperfect in the noncompact case, but even then the ideals which
are kernels of closures of open sets in ^£{A) are precisely the annihilator
ideals. This correspondence between enough subsets of ^(A) to form
a base for the topology and a family of ideals determined by the ring
structure alone leads to a result on reordering: If A and B are two
S-semisimple /-rings which are isomorphic rings, then ^{A) and ^(B)
have dense homeomorphic subspaces, and if ^£{A) or ^£{B) has no
nonempty open totally disconnected subset, then any ring isomorphism
must preserve order.

The contents are as follows. §1, The characterizations of unitable
/-rings; §2, Idempotents; §3, Z-semisimple and archimedean rings; §4,
General formally real rings; §5, Supermodular ideals; §6, Structure space
and reordering.

The defining identities for /-rings [4] are

x+y+ A x~ = 0 y+x+ A x~ = 0 ,

where x+ = x V 0, x~ = (—x)+. For unitable /-rings,

[x Ay A(x2 -x) A(y- xyψ = 0

[x A y A (x2 - x) A (y - yxψ = 0 .

The left side of the first of these two identities is a right annihilator
in any /-ring, and symmetrically.

The results in §2 are, first, that the idempotents of a unitable/-ring are
central; and further results on idempotents of any/-ring which emphasize
how nearly unitable they all are. The central idempotents of any ring are
known [7] to form a Boolean ring under the operations (x — y)2, xy; the
idempotents of any /-ring are closed under these operations, but need not
commute. Indeed, if they commute with each other, they are central.
A totally orderedring admits a ring direct sum decomposition A 0 B where
all the idempotents are in A, either all nonzero idempotents are left units
for A or all are right units, B is a zero ring, and the direct sum is
lexicographically ordered; but no such decomposition exists in general.
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In arbitrary /-rings one has

χy+ = [xy Λ (χ2y + » ) ] V [ O Λ ( - x*y - y)]

and similar identities which permit the reduction of any ring-lattice
polynomial to an equal lattice polynomial in ring polynomials. It follows
that any identity is equivalent to a conjunction of identities of the form
\P1 A

 β Λ Pm]+ — 0, where the P* are ring polynomials. (Naturally,
this does not apply to the identities which define /-rings.) These lemmas
have helped us to get a nine-variable identity which is valid in the reals
and not a consequence of valid identities in fewer variables; but we
cannot see how to go further. The lemmas are interesting also because
they lead to a proof that ordered fields are formally real /-rings which
seems to us much easier than Tarski's proof. Artin has proved in two
or three pages in [1] a theorem which yields by a short sequence of
easy steps the conclusion that any identity [Px Λ Λ P w ] + = 0 which
is valid in the rationale is valid in every ordered field. This is just
what is needed to complete the proof.

The theorem that a lattice-ordered zero ring is formally real solves a
problem of Birkhoff [3, Problem 107]. The decomposition of a unitable
/-ring A into a subdirect sum of summands L, with local superunits,
and J, infinitesimal, specializes in case A is archimedean; L has no
nilpotents and / is a zero ring. Since each archimedean /-ring A is known
to be commutative [4], this decomposition shows that A is formally real.

§4 includes three characterizations of free formally real /-rings. Two
are in terms of piecewise polynomial functions and of totally ordered
(free) rings of polynomials. Further, a free commutative /-ring modulo
its i-radical (the i-ideal of all nilpotents [4]) is free formally real.

The results of §§5, 6, have already been described, except for the
theorem that given a unitable /-ring there is a unique smallest /-ring
with unit containing it.

1- The characterizations of unitable /-rings.

A lattice-ordered ring is an (associative) ring that is also a lattice
in which x ^ 0 and y ^ 0 imply xy ^ 0. We will regard lattice-ordered
rings as abstract algebras (in the sense of Birkhoff [3]) with five operations
+ , —, , V, and Λ.

Recall from [4] that a class of abstract algebras is said to be
equationally definable if it can be characterized by means of a (possibly
infinite) list of identities. Birkhoff and Pierce show in [4] that lattice-
ordered rings form an equationally definable class of abstract algebras
(defined by means of finitely many identities).

It is clear that every equationally definable class Ssf of abstract
algebras contains all subalgebras, homomorphic images, and subdirect
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products of elements of jy\ We will also need below the nontrivial
converse of this last statement, proved by Birkhoff in [2].

An f-ring is a lattice-ordered ring A such that for all x, y, z ^ 0
in A, y A z = 0 implies xy A z = yx A z = 0. This class of lattice-ordered
rings, which contains all totally ordered rings, was introduced by Birkhoff
and Pierce in [4], where they showed that /-rings are equationally definable
by means of finitely many identities. We will consider only/-rings below,
and we will almost always follow the notation and terminology of [4],
In particular, if A is a lattice-ordered ring, A+ — {a e A : a ^ 0}, a+ =
a V 0, α~ = (-α)V0, and | a \ — a V (—α) The kernel of a homomorphism
(preserving all five operations) is called an l-ίdeal. It may be characterized
as a ring ideal I such that x e I and \y\ ^ \x\ imply y el. By a unit
of A, we mean a multiplicative identity element. The notation >, and
the term strictly positive, will be reserved for totally ordered rings.

Another important characterization of/-rings is: a lattice-ordered ring
is an /-ring if and only if it is a subdirect sum of totally ordered rings
[4]. Thus, any identity valid in all totally ordered rings is valid in any
/-ring, and an identity is valid in a particular /-ring if and only it if is
valid in all totally ordered homomorphic images.

We call an /-ring unitable if it can be embedded in an /-ring with
unit. Unitable /-rings have been investigated by D. G. Johnson [9],
whose results include a characterization and the theorem that every /-ring
having no nonzero nilpotents is unitable. We shall not use Johnson's
characterization; we note that the quantifiers in it appear in the pattern,
universal, existential, universal. The main point of this section is a char-
acterization of unitable /-rings by means of certain identities, examination
of which will sharpen Johnson's result.

The identities are

( 1 0 ) [x Ay A (x2 - x) A (y - xyψ = 0

[x A y A (x2 — x) A (y — xy)]+ = 0 ,

We prove first

1Λ. Every unitable f-ring satisfies the identities (1.0).

Proof. It suffices to prove (1.0) in an /-ring with unit, and even
in a totally ordered ring with unit, since the image of a unit under a
homomorphism is a unit for the image. But then it suffices to prove
that if x, y, and x2 — x are strictly positive, neither y — xy nor y — yx
is strictly positive. Since x2 > x > 0, x must be greater than 1, xy ^ y,
and yx ^ y. This completes the proof.

For the converse of 1.1, it again suffices to consider totally ordered
rings. In any /-ring A, we call an element e a superunit if ex ^ x
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and xe ^ x for all positive x. On the other hand, we call A infinitesimal
if x2 g I x I identically. The infinitesimal /-rings form an equationally
definable class, since x2 g \x\ if and only if (x2 — \x\)+ = 0.

1.2. A totally ordered ring satisfying (1.0) either is infinitesimal
or has a super unit.

Proof. If the ring is not infinitesimal, one has x2 — | # | 2 > \x\ for
some x, and then (1.0) says t h a t \x\ is a superunit.

The following will be useful below.

1 3 Let x and y be elements of any totally ordered ring A.
(i) // xy > y > 0 or if yx > y > 0, £/̂ w (2#)2 > 2x.
(ii) 1/ x2 > x > 0, cmd xy — 0 (resp. ^ = 0), £/*>ew zy = 0 (resp.

yz — 0) /or αii ze A.

Proof of (i). If x2 ^ x =£ 0, then 2x2 > x2 ^ x, so 4x2 > 2a?. Hence,
we may assume that x2 < x. Suppose that xy > y > 0. Then 0 g (#—#2)?/ =
x(y — xy) g O . If x2 g a? — #2, then x2y ^ (x — x2)y = 0, whence x2y — 0.
But then y <^ xy — (x — x2)y + x2y = 0. It follows that #2 > a? — x2, or
2x2 > #. Thus (2x)2 = Ax2 > 2B . We proceed similarly if yx > y > 0.

Proof of (ii). We give the proof in case #1/ = 0. We may assume
without loss of generality that y and z are in A+.

W r i t e z = (zx Λ z) + w, w h e r e w — z — zxAz^O. S i n c e 0 g
^ Λ ^ 2£, and zxy = 0, we have (zα? Λ z)ί/ = 0.

(zx A z)x = zx2 Λ zx = zx since x2 > x > 0. So w# = 0. We must
have w < x; for, if w ^ #, then 0 = wx ^ x2. Hence 0 S wy ^. xy — 0.
Thus, zy = {zx A z)y + wy = 0 + 0 = 0.

1.4 Every infinitesimal f-ring is unitable.

Proof. We may consider only the totally ordered infinitesimal rings
A. Let B denote the set of all ordered pairs (n, α), where n is an integer
and ae A. We define addition of elements of B coordinate wise and
multiplication by (n, a) (m, b) = (nmy nb + ma + ab), where the products
nb, ma, are defined by repeated addition in A. We order B lexicographically,
i.e., so that (n, a) is positive if n > 0 or if n = 0 and a ^ 0 in A. To
see that a product of positive elements (n, a), (m, 6), is positive, observe
first that it is trivial when n and m are both zero or both nonzero. In
case m = 0, the product is (0, nb + ab) ̂  (0, b + ab).

Suppose that b + ab < 0. Then ί> ̂  0, and since (0, b) is positive,
b > 0. Also, α < 0; so we may write a = — c, where c > 0. Thus, we
have cb > 6 > 0. By 1.3, this implies that (2c)2 > 2c, contrary to the
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assumption that A is infinitesimal. Thus, B is a totally ordered ring
with unit (1,0) that contains A.

REMARK. This proof, like almost everything else in this paper,
applies with trivial modifications to algebras over the reals or any other
ordered field.

The conclusion of the next lemma is Johnson's necessary and sufficient
condition for a totally ordered ring to be unitable [9] (in slightly different
language).

1.5. In a totally ordered ring A having a superunit, for each
positive integer n and each positive ring element a, either ab ^ nb and
ba ^ nb for all positive b or ab ^ nb and ba ^ nb for all positive b.

Proof. Suppose that the conclusion is false for some n and a.
Then, by 1.3

(i), (2a)2 > 2a > 0; we shall show also that a (and hence 2a) is a
proper zero divisor, whence by 1.3

(ii), no z e A+ can be a superunit. This contradiction will establish 1.5.
Suppose for example α2 — na Ξ> 0 > ab — nb. Multiplication by the

positive elements b and a yields a2b — nab >̂ 0 ^ a2b — anb = a2b — nab;
and a is a proper zero divisor. Similarly if ab — nb > 0 ^ α2 — na,
a(ab — nb) — 0. With the parallel computations involving ba, this shows
that unless all ab — nb and ba — nb have the same sign as α2 — na, a
is a proper zero divisor.

We shall just sketch the embedding of a totally ordered ring A with
a superunit e in a totally ordered ring B with unit. Johnson has done
essentially this in detail [9; III. 2.5, III. 3.1]. One forms as usual a
ring BQ of all ordered pairs (n, a), n an integer, a in A; but one must
then divide out the ideal of all (n, a) such that both ab = — nb and
ba = —nb for all b in A. The resulting ring B has, like Bo, a unit;
and it still contains A isomorphically. By 1.5, one can order B by calling
(n, a) positive if nb + ab is positive for all positive b in A.

This completes the proof of

1.6. THEOREM. Unitable f-rings form an equationally definable
class of abstract algebras, characterized among the f-rings by the identities
(1.0). Also, the unitable f-rings are precisely the subdirect sums of in-
finitesimal totally ordered rings and totally ordered rings having
superunits.

1.7. THEOREM. In any f-rίng,

z[x Ay A (x2 - x) A (y - xy)]+ = 0
and
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[x A y A (x2 — x) A {y — yx)]+z = 0

identically. Hence an f-ring whose left and right annihilator ideals
vanish is unitable. More generally, the homomorphic image of an f-ring
under any homomorphism whose kernel contains the left and right
annihilator ideals is unitable.

Proof. To prove the identities in suffices to consider totally ordered
rings. Here if [x A y A (x2 — x) A (y — xy)]+ is not zero, we have
x2 > x > 0, and y > xy. So x^y ̂  xy, and xy ̂  x2y, whence x(y — xy) = 0.
Thus, by 1.3 (ii), (y — xy) is a right annihilator of A. But 0 ^
[x A y A (x2 — x) A (y — xy)]+ ̂  (y — xy), so the bracketed expression is
also a right annihilator of A. The rest of the theorem is evident.

2. Idempotents.

2 1 The only idempotents of a totally ordered ring with unit are
0 and 1. Hence all idempotents of a unitable f-ring are central.

Proof. If x is an idempotent, then so is 1 — x, and x(l — x) = 0.
Since x(l — x) lies between x2 and (1 — α?)\ one of these squares is zero;
but x and 1 — x are idempotents, so x = 0 or x = 1. The rest of the
theorem is immediate.

A. L. Foster [7] and D. R. Morrison [11] have pointed out that the
central idempotents of any ring are closed under the operations (x — y)2

and xy, and form a Boolean ring under these operations. We go on to
examine the idempotents of an arbitrary /-ring, to throw some light on
the obstructions which may prevent an /-ring from being unitable.

D. G. Johnson's example [9] of a nonunitable /-ring is essentially
as follows. The ring consists of all ordered pairs of integers, added
coordinatewise, multiplied by (α, b) (c, d) = (ac, ad), and ordered lexico-
graphically. All (1, b) are idempotent zero divisors. For nonzero
idempotents e and /, ef = /; (e — / ) 2 = 0.

A simple modification of Johnson's example yields a nonunitable
commutative /-ring generated by two elements. This example will also
introduce a general construction. If A is any totally ordered ring, and
B is a totally ordered zero ring, let A 0 B denote the totally ordered
ring which is the ring direct sum of A and B, ordered lexicographically.
A product of positive elements is positive, since its coordinate in B cannot
cause any trouble. If J is the ordered ring of integers, and Z is the
ordered group of integers made into a zero ring, then JQ)Zis commutative
and nonunitable, since its unique idempotent (1, 0) is a zero divisor.

We pause to note that there are plenty of nonunitable ordered rings
without idempotents. If S is the semigroup on two generators, x, y,



540 MELVIN HENRIKSEN AND J. R. ISBELL

with all xn distinct but xy = yx = y2 = 0, the ordering xn+1 > xn >
• > x > y induces a natural ordering on the semigroup ring which
makes it nonunitable.

Our results are as follows.

2.2 THEOREM. Let A be a totally ordered ring, let x and y be
nonzero idempotents of A, and let n be any integer. Then

( i ) xy = x or xy = y. Indeed, if xy = x (resp. xy = y), then xz = x
(resp. xz = z) for any idempotent z of A.

(ii) (χ-yy = Q.
(iii) (n + l)x — ny, x + y — xy, and x + n(xy — yx) are idempotents.
If A contains only finitely many idempotents, then it contains at

most two, and they are in the center; otherwise the idempotents do not
commute with each other.

23. COROLLARY. If x and y are idempotents of an f-ring A, and
n is any integer, then xy, (x — yf, x + y — xy, and x + n(xy — yx) are
idempotents. If all the idempotents of A commute with each other,
then they are in the center of A.

2 A. THEOREM. Every totally ordered ring can be decomposed into
a direct sum A©J3, lexicographically ordered, so that all the idempotents
are in A, either all nonzero idempotents are left units for A or all
are right units, and B is a zero ring. If there is a nonzero idempotent,
then the decomposition is unique.

Proof of 2.2. Since y2 = y, {2yf > 2y, and (x - xy)2y = 0. So by
1.3 (ii), (x — xy)x = 0, i.e., xyx = x. Then xyxy — xy, so that xy is an
idempotent e between x2 = x and y2 = y; and so is yx = /. But ef =
xyx — x, and fe = y. Since ef and fe must be between e and /, e and
/ must be x and y in some order.

Suppose that xy — x, and let z be any idempotent in A. If z lies
between x and y, then xz lies between x2 = x and xy = x, so xz — x.
Similarly, if xy = y, and z lies between x and y, then xz = z. If xy = y
and x lies between y and z, we may use this latter argument to conclude
by contradiction that xz = z. The remaining cases are similar. This
completes the proof of (i).

Since (x — yf = x — xy — yx + y, (i) immediately implies (ii). Further
routine ring computations yield (iii).

Clearly, if x Φ y, then {(n + ΐ)x — ny : n = 1, 2, •} is an infinite
family of distinct idempotents; also, (i) shows that no two distinct nonzero
idempotents commute. Hence, it remains only to prove that if there
is just one nonzero idempotent, then it is central.

Computation shows that if e is a nonzero idempotent, then so is
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e + xe — exe for any x. That it is idempotent we leave to the reader;
it is not zero since e(e + xe — exe) = e. Similarly, e + ex — exe is a
nonzero idempotent. If e is the only nonzero idempotent, this implies
xe = exe — ex. (This is a pure ring computation and doubtless well
known). This proves 2.2.

The corollary follows at once.

Proof 0/2.4. If 0 is the only idempotent, taking B = 0 satisfies
the conditions asserted. Otherwise let e be a nonzero idempotent. By
2.2, nonzero idempotents are multiplied either by the rule xy — x or by
the rule xy = y. Suppose it is xy = x. Then define A as the set of
all a such that ae = a, B as the set of all a such that ae — 0. Obviously
A and B are left ideals. Now recall that for all x, e + ex — exe is a
nonzero idempotent. Therefore (e + ex — exe)e — e + ex — exe, which
means exe = ex. Then for a in A, the product axe — aexe = aex = ax;
that is, A is a two-sided ideal. B is not only a right ideal but a left
annihilator, by (1.3) (ii) and (2e)2 > 2e. Evidently A Π B = 0; also, any
x in the ring is the sum of xe e A and x — xe e B. Then the given ring
is the direct sum of A and B. Moreover, B is a zero ring, since it left
annihilates itself. Finally, every positive element a of A exceeds every
element b of B, since ae = a > 6e. In A, e is a right unit, and so is
every other nonzero idempotent since these idempotents multiply by the
rule xy — x. Finally, for uniqueness, any subset of the ring on which
e is a right unit must be contained in A, and any subset annihilating
e must be contained in B.

One might conjecture, seeing 2.4, that every commutative totally
ordered ring is the direct sum of a unitable ordered ring and a zero
ordered ring. However, it is easy to describe a nonunitable example
which has no proper direct sum decomposition. If F is the free commutative
ring on three generators, and / the ideal generated by xz, yz, z\ and
x2 — y3 — z, then one can show that F/I is not a direct sum. On the
other hand, every element of F\I can be written uniquely as P(x, y) + nz,
where the polynomial P is a sum of monomials mxayb, b ^ 2, a + b ^ 1.
Define the degree of such a monomial as 3a + 2b if m Φ 0; define the
degree of nz as 0(n Φ 0), and the degree of 0 as —1. Then define
P(x, v) + nz to be positive if its term of highest degree has a positive
coefficient. One can verify that this makes F\I a nonunitable ordered ring.

3. Z-semisimple and archimedean rings. We define a formally real
/-ring as a member of the smallest equationally definable class which
includes the ordered real field. Thus, an /-ring is formally real if and
only if it is a homomorphic image of a lattice-ordered ring of real-valued
functions. The following arguments will show (and it is easy to show
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directly) that one would get the same class if the reals were replaced
by the rationale in the definition. It seems worth while also to define
a strongly real ring, as a ring which is ring-isomorphic with at least
one formally real /-ring and is not ring-isomorphic with any /-ring which
is not formally real. We shall see that this latter concept is a direct
generalization of the (standard) concept of a formally real field.

3 1 LEMMA. In any f-ring,

x2y+ — xy+ + y+ ^ 0 .

Proof. This is equivalent to an identity, since a ^ 0 means a A 0 = 0;
hence it suffices to consider totally ordered rings. We may write y
instead of y+. Then in case x2 ^ x, we have (x2 — x)y + y Ξ> 0 as required.
In case y ^ xy, x2y + (y — xy) ^ 0. If neither of these is the case, we
have xy > y and x > x2 ^ 0. Hence xxy ^ xy, and (x2y — xy) + y ^ 0.

3 2 LEMMA. In any f-ring.

xy+ = [xy A (x2y + y)] V [0 Λ (—x2y — y)] .

Proof. In case y Ξ> 0, xy ^ x2y + y by 3.1, and 0 ^ — x2y — y
obviously. Then the proposed formula reduces to xy V ( — x2y — y).
Applying 3.1 to — x and y, we find —( — xy) ^ —x2y — y, and the
equation-reduces to xy+ = xy, which is correct in this case. The case
y < 0 is similar.

Evidently there are corresponding formulas expressing x+y, xy~, and
x~y as lattice polynomials in ring polynomials in x and y. Using further
formulas from [4; 57] (such as x+(y V z) = x+y V x+z) and the fact that
the lattice operations in a lattice-ordered group distribute over each other
[3; Ch. XIV] reduces the following theorem to an exercise; we omit
the details.

3.3 THEOREM. If A is an f-ring and S a subring, then the least
sublattice of A which contains S is also a subring of A.

3Λ. COROLLARY. If S is a ring of real-valued functions on a
set, the least lattice of functions which contains S is also a ring.

3*5. COROLLARY. Every word (element) in a free f-ring is a lattice
polynomial in ring polynomials in the generators.

3.6. COROLLARY. Every identity in f-rings is equivalent to a
conjunction of identities of the form (Pi A Λ Pm)+ = 0, where the
Pj are ring polynomials.
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Now Artin has proved a theorem [1; Satz 3] more general than the
following statement. Let E be an ordered field consisting of the field
of rational functions Q(xl9 •••,»«) over the rational number field Q, in
any ordering. Let fu , fm be elements of E, with each fό > 0 in E.
Then there exists a rational w-tuple q = (ql9 9qn) such that the functional
values fj(q19 * , # J are all finite and strictly positive.

From Artin's theorem and 3.6 there follows

3.7. Every ordered field which is a pure transcendental extension
of the rationals satisfies all lattice-ordered ring identities which are
valid in the rationals.

Proof, Since an ordered field is an /-ring, 3.6 applies. Now the
negation of an identity of the form in 3.6 is the conjunction of a set
of inequalities Pj(xl9 , xnj) > 0. In a pure transcendental extension
of Q, the Xi& are rational functions of finitely many independent
transcendentals yk. For each xif either x{ > 0 or — x{ > 0. By Artin's
theorem, rational values qk can be substituted for the yk so that (in
particular) all the x{ are finite and all the Pά are strictly positive in Q.
Then the conjunction of the inequalities Pj(xlf , xnj) > 0 is satisfiable
in Q, so that its negation is not valid.

But now

3.8 Every ordered field is formally real.

Proof. Since any single identity involves only finitely many free
variables, it suffices to consider a finite extension F of Q. Any such F
is a simple algebraic extension of a pure transcendental extension; let
F= Q(xl9 •••,#») [<*]. It suffices to show that there is an ordering on
D = Q(xl9 , cθ[ccn+il f° r which some homomorphism h of D onto F is
order-preserving. (For it is immediate from 3.7 that D is formally real.)

Let h be any ring homomorphism of D onto F. The kernel H of h
is a principal ideal generated by a prime element p of D. Every element
of D can be written uniquely in the form apm, for some nonnegative
integer m and some a $ H. Let apm > 0 if and only if h(a) > 0 in F.
Evidently this does it.

After we had proved 3.8, Dana Scott pointed out to us that the
result can be deduced from Tarski's decision method for the algebra of
real-closed fields [13]. That deduction is shorter, but it does not give
the additional detail about the rationals.

Previously known results enable us to push 3.8 considerably further.
Obviously every ordered integral domain, being a sub-/-ring of an ordered
field, is formally reah From Johnson's work [9], the same holds for
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totally ordered rings without unit which are commutative and l-semisimple
in the sense of [4], i.e. without nonzero nilpotents. But Pierce has shown
[12] that an Z-semisimple /-ring is a subdirect sum of i-semisimple totally
ordered rings. Note finally that Z-semisimplicity is independent of the
ordering; and we have

3.9, THEOREM. Every commutative l-semisimple f-ring is strongly
real (and in particular, formally real).

For the next result we shall use the fundamental theorem concerning
linear homogeneous inequalities over an ordered field, which may be
stated in either of the following ways. Let Σ be a finite system of linear
homogeneous strict inequalities; then Σ has a solution if and only if the
inequality 0 > 0 is not deducible from Σ by addition and multiplication
by positive scalars. Or, let S be a convex cone; then S has an interior
point if and only if the polar cone S* contains no nonzero linear subspace.
The theorem is due to Farkas, [6]; one can of course find it in several
places in the Annals Study on linear inequalities [10].

3 10. THEOREM. Every zero f-ring is strongly real; in particular,
it is formally real.

Proof. Evidently it suffices to treat the totally ordered case. Suppose
the theorem false. Then as in 3.9 we have a homomorphism h: A—> E
of a free /-ring into a totally ordered zero ring taking some word M =
JSP8 e A to a positive element h(M) of E. Here the Ps are polynomials
in the generators yu ,yn of A, and supposedly g(M) ^ 0 for all
homomorphisms g of A into the reals. Since h(P8(yu , yn)) — Ps{h{y^), ,
HVn)) > 0, there are nonzero first degree terms in each Ps. Write
PsiVi, ,Vn) = us y + P's{y)y where us is an integral ^-vector and P[ has
no first degree terms. Consider the cone generated by the us in w-space
over the rationale. It contains no nonzero linear subspace, i.e. 0 has no
nontrivial positive representation as Σcsu

s; for if it did, we could first
convert the rational coefficients to integers by multiplying by the least
common denominator, and then deduce Σcsh(Ps) = 0 in E. Consequently
the polar cone has interior points q = (ql9 •••,?»). For such a g, or
any positive scalar multiple of it, us q > 0; for a sufficiently small scalar
multiple, u*-q exceeds the quadratic \Ps(q)\, and Ps(q) > 0. Then map
A into the reals, sending each generator y3- to q3 ; each Ps goes to a real
number > 0, and the contradiction completes the proof.

It is obvious that every lattice-ordered zero ring satisfies the defining
identities for /-rings, given in [4] and reproduced in the introduction
to this paper. Since every vector lattice becomes an /-algebra under
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the zero multiplication, 3.10 solves Problem 107 of [3].

3.11. THEOREM. Every archimedean f-ring is a subdirect sum of
an l-semisimple and a zero f-ring, and therefore is formally real.

Proof. To begin with, an archimedean /-ring A is commutative [4].
Let M denote the set of all elements m of A such that \m\ ^ xy for
some x and y in A; let N denote the set of all ae A such that a2 = 0.
By definition M contains all products. It also contains sums of its own
elements, since xy + uv ^ \xy\ + \uv\ ^ (\x\ + |w|)(|2/| + \v\). Then M
is an i-ideal; and evidently A/M is a zero /-ring. To complete the proof
we need only show that N is the Z-radical of A and that I f l N = 01
it will then follow that A is a subdirect sum of the semisimple /-ring
A/N and the zero /-ring A\M.

To show that N is the i-radical, it suffices to show that there are
no positive nilpotents of index 3. That is, for any x > 0 such that
x3 = 0, x2 — 0 also. Since A is archimedean, it suffices to show nx2 ^ x
for all positive integers n.

The implication, if xd = 0, then nx2 <£ x, is valid in arbitrary /-rings.
The proof again reduces to the totally ordered case, and we leave it to
the reader.

Finally suppose that ze M Γ\ N. This means that z2 — 0 and | z | ^ xy
for some x, y in A. It suffices to consider the case when x, y and z
are positive. If u = x + y, then u2 ^ xy > 0 = (nzf for any positive
integer n. Hence nz^u, since this holds in any totally ordered homomorphic
image of A. Since A is archimedean, 2 = 0.

We conclude this section with two remarks about 3.11. First, not
every archimedean /-ring is strongly real. An example is the direct
sum A = R © Rf of the real field R and the zero ring Rf having the
same additive group. A can be ordered both lexicographically and
coordinate wise. In the latter order, it is archimedean. In the former
order, it is not unitable by 1.1. Thus A is not strongly real. Second,
"subdirect sum" cannot be strengthened to "direct sum" in 3.11. To
construct an example consider the additive group of those continuous
real functions on [0,1] which are piecewise polynomial and vanish at 0.
Form the direct sum of two copies of this, both ordered by functional
values, one with natural multiplication, one with zero multiplication.
Consider the subset consisting of those pairs of functions (/, g) for which
/ and g have the same derivative at 0. One can verify that this archimedean
/-ring is not a direct sum of a zero and an Z-semisimple summand.

4. General formally real rings. Birkhoff's theorem on equationally
definable classes [2] yields the following.



546 MELVIN HENRIKSEN AND J. R. ISBELL

THEOREM (Birkhoff). Every formally real f-ring [f-algebra] is a
homomorphic image of an f-ring [f-algebra] of real-valued functions.

4.1 COROLLARY. Every formally real f-ring can be embedded in
a commutative f-ring in which whenever \x\ ̂  \y\, x is a multiple of y.

Proof. It suffices to show that any formally real /-ring B with unit
can be so embedded. Then B is a homomorphic image of an /-ring A
of real-valued functions, by a homomorphism with kernel K, and we
may assume that A has a unit. Relative to some representation of A
as a family of functions, let A* be the set of all functions g such that
\g\ ̂ / for some/ in A. If K* is the smallest ϊ-ideal in A* that contains
K, then if* ΓΊ A = K. Thus, A*/#* is an /-ring £ * containing B.
Finally, if \x\ ̂  \y\ in J5*, let x0, y0 be representative in A* of the cosets
x, y. Then xλ — (x0 A \yQ\) V ( — \yo\) is another representative of x, and
since \xx\ ̂  \yQ\,Xι is a multiple of y0 in A*.

A commutative ring is called a valuation ring if for any two elements,
at least one is a multiple of the other. Since the property in 4.1 is
preserved under homomorphic images, we have at once

4 2 COROLLARY. Every formally real f-ring can be embedded in
a product of totally ordered commutative valuation rings.

We do not know whether conversely every totally ordered commutative
valuation ring is formally real.

4 3. COROLLARY. Every formally real f-ring can be embedded as
a sub-ring in a formally real f-algebra.

This corollary follows from BirkhofΓs theorem in the same manner
as 4.1. We have no idea how large a class of /-rings can be embedded
in /-algebras—conceivably all of them.

These corollaries can be established without using Birkhoff's general
theorem, going by way of

4A. A free formally real f-ring is an f-ring of real-valued
functions; specifically, if the number of generators is m, the f-ring is
the smallest lattice of functions on a product of m real lines which
contains the polynomials in the coordinate functions with integral
coefficients and zero constant term.

Proof. In view of 3.4, the indicated set of functions forms an /-ring
generated by the coordinate functions xa% It remains only to observe
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that no word in the xω vanishes as a function unless it vanishes for all
real values of the xa, and thus in all formally real /-rings.

4 5. THEOREM. The free formally real f-rίng on a set of generators
is the residue class ring of the free commutative f-ring on the same
generators modulo its l-radical.

Proof. Consider the natural homomorphism h of the free commutative
/-ring C upon the corresponding free formally real /-ring F. By 3.9, C
modulo its i-radical is formally real; hence the kernel of h is contained
in the radical. By 4.4, the kernel contains the radical.

At this point we need to recall some details of the proof that an
integral domain in which 0 is not a sum of squares can be totally ordered.
We number the lemma for convenience, but the proof is in many standard
references, cf. [14].

Recall that a semiring P( +, ) is a set of elements P with two
binary operations such that P( + ) and P( ) are semigroups, and a(b + c) =
ab + ac and (b + c)a = ba + ca for all a,b, ce A.

4 6* LEMMA. Let Abe a commutative ring without proper divisors
of zero, and Pa semiring contained in A, containing all nonzero squares,
and not containing 0. Then A can be totally ordered so that every
element of P is positive.

4J. THEOREM. Let G be a free commutative ring, E a formally
real totally ordered ring, and h a ring homomorphism ofG into the ring
E. Then there is a total ordering of G such that h is order-preserving.

Proof. By 4.6, it suffices to show that the smallest subsemiring P
of G containing all nonzero squares and all g such that h(g) > 0 in E
does not contain 0. The elements g of the free ring are polynomials in
the generators xΛ; let us write g = g(x). For any finite set of positive
elements h{g^) of the formally real ordered ring E, one can find real
numbers rω such that the polynomial functions g{ all take positive values
at the point f with coordinates ra. Moreover, all g{ are positive on a
neighborhood of r. Further, a nonzero polynomial of the form // is
nonnegative everywhere, and vanishes only on a nowhere dense set.
Hence any sum of products of the polynomial functions g{ and // is strictly
positive almost everywhere near f, and 0 is not in P.

4.8* COROLLARY. The free formally real f-ring on any set of
generators is a subdirect product of totally ordered free commutative
rings on the same set of generators] specifically, if C is the free com-



548 MELVIN HENRIKSEN AND J. R. ISBELL

mutatίve ring, embedded in the product P of all totally ordered rings
isomorphίe with C, then the smallest sub-f-ring of P which contains C
is free formally real.

This brings us to the promised example to show that identities in
eight variables or fewer cannot characterize formally real /-rings. The
argument involves the following identity in nine variables.

[xλ A x2 A x3 A y1 A y2 A y3 A z1 A z2 A z3 A (x1z1 ~ yxz2)

A {x2z2 - y2z3) A (x3z3 - y,zx) A (y^y, - X ^ Ά Ψ = 0 .

There is no difficulty in verifying this identity for real numbers.
First we describe the essential features of our argument. Starting

with nine generators xif yjf zk, which will not be allowed to satisfy the
above identity, we construct a nilpotent totally ordered algebra A. The
products of two or more of the generators all lie in a formally real ideal
7; moreover, the subalgebra generated by / and any eight of the generators
is formally real. Finally, any subalgebra of A generated by eight or
fewer elements can be thrown into one of these by an automorphism of A.

The construction involves something which may reasonably be called
the semigroup algebra with zero of a semigroup S with zero. This is
the set of all formal linear combinations of nonzero elements e{ of S,
added formally and multiplied by eiei = ek or e^j — 0 according to the
multiplication in S. Moreover, we shall define a total ordering of S,
and induce the lexicographic ordering on A. (That is, Σa^i > 0 if the
largest e{ whose coefficient is nonzero has a positive coefficient.) One
may verify that sufficient conditions for this to make A an ordered algebra
are that S is commutative, 0 is the smallest element of S, and if x > y
in S then either xz > yz or xz — yz = 0.

We now describe the elements, the order, and the multiplication of
S. The elements will be named unambiguously by expressions e(n), for
79 particular integers n. The first nine values of n are 10000, 10020,
10080, 10260, 10800, 11123, 16000, 16081, and 16322. The other seventy
are 20000, 20020, 20040, 20080, 20100, 20160, 20260, 20280, 20340, 20520,
20800, 20820, 20880, 21060, 21123, 21143, 21203, 21383, 21600, 21923, 22246,
26000, 26020, 26080, 26081, 26101, 26161, 26260, 26322, 26341, 26342, 26402,
26582, 26800, 26881, 27122, 27123, 27204, 27445, 30000, 30020, 30040, 30060,
30080, 30100, 30120, 30160, 30180, 30240, 30260, 30280, 30300, 30340, 30360,
30420, 30520, 30540, 30620, 30780, 30800, 30820, 30840, 30880, 30900, 30960,
31060, 31080, 31123, 31140, and 31143. These are the sums of numbers
from among the first nine which do not exceed 31143. Multiplication is
defined by e{m)e{n) = e(m + n) so long as m + n is in the list; beyond
this, e(31140) (not e(31143)) is the zero element 0 of S, and e(m) e{n)
is defined to be e(31140) if m + n > 31143. Finally, the order of S is
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decreasing in the order of the list except that e(31123) > e(31143) > 0 =
e(31140); that is, e(31143) is displaced one place.

One may verify that S satisfies the conditions indicated above which
make the semigroup algebra with zero of S a totally ordered algebra A.
On the other hand, A is not formally real. To see this let yl9 y2, xx x2, x3,
yB, zlt z2, zZ9 in that order, be the elements of A corresponding to the first
nine elements of S. (That is, yx is the expression 1 e(10000), and so for
the others.)

The integers 10000, , 31143 are so chosen that (among other things)
every nonzero element of S can be factored uniquely into prime factors.
This makes it possible to construct certain automorphisms of A in the
following manner. Let us relabel the generators yl9 , zs in order as
8l9 , s9. For any i among 1, , 9, let t{ be any element of A of the
form as{ + r, where a is a strictly positive scalar and | r | is smaller than
any strictly positive scalar multiple of s{. There is a unique automorphism
p of A which sends S; to t{ and leaves the other eight generators fixed.
To prove this, observe that since sl9 , s9 generate Af one can write a
formula for p; and one can then verify that p is an order-preserving
automorphism.

For i = 1, , 9, let B{ be the subalgebra of A which is the semigroup
algebra with zero of S — {SJ. We conclude next that any eight elements
Qu * > #8 of A can be sent into some B{ by an order-preserving
automorphism. For this, evidently, we need only consider those g5 which,
written as Ia{jeiy have nonzero coefficients attached to some of the
generators sl9 , s9; and if the indices ί(j) of the largest s{ involved
in gά are all different, then eight applications of the preceding paragraph
will suffice. But by a simple elimination we can replace g19 •• ,g 8 with
elements hu , h8 which satisfy the latter condition and generate the
same linear subspace (a fortiori the same subalgebra) as glf •• ,<78.

It remains to show that each of Bu « , 5 9 is formally real. For
each Bi we shall construct a totally ordered cancellation semigroup Tif

and then a totally ordered integral domain D{ mapping homomorphically
upon B{. We shall use the following property of our description of S9

which is clear from the list above. With exceptions, any two different
integers, i, j 9 which are indices of elements e(i), e(j) of S differ by more
than 12. The exceptions are 26080, 26081; 26342; 27122, 27123; and
31140, 31143. They correspond to the products appearing in the last
displayed identity.

The semigroup 7\ is generated by eighteen elements which we
designate as f(n)9 for numbers n as follows: 10020, , 16322; 19992,
25996, 26318; 26081; 29988. Here the first group of numbers are the
indices attached to s29 , s9 in S. The others, except 26081, correspond
to the ten additional primes in the semigroup S — {sj, and are the indices



550 MELVIN HENRIKSEN AND J. R. ISBELL

they would have if the index of sx were changed from 10000 to 9996.
Hewever, we leave 26081 = 10000 + 16081 alone. Now 2\ consists of all
expressions f(n) which can be generated from these by f(i)f(j) = f(i + j),
and is ordered by f(i) > f(j) if and only if i < j . Because of the ordering,
it is clear that the semigroup algebra of TΊ is an integral domain A
(This is the usual semigroup algebra, since 2\ has no zero.) Moreover,
lexicographic ordering makes A an ordered algebra; since it is an integral
domain, it is formally real. Finally, to define a homomorphism of A
upon Blf map each of the generators f(n) to that nonzero e(m) in B1 for
which \m — n\ is a minimum. We omit details of the verification, but
note that the conceivable difficulties at 26081 and 31143 do not arise
because e(26081) is an annihilator in A and because it is /(31139) that
goes to e(31143).

For the construction of Tiy i = 2 or 6, use the same device of
subtracting 4 from the index of s{ with an exception for 26342, 27123,
respectively. The cases i = 3, 4, 5 differ only in that one adds 4 instead
of subtracting. For T7, add 4 to the index of s3 throughout except in
s3s7. (There are only fourteen n's: 10000, 10020, 10084, 10260, 10800,
11123, 16081, 16322, 26000, 26020, 26080, 26260, 26800, 27123.) For T8,
do the same with s4, and for Γ9, with s5. This concludes the description
of the example A.

One might naturally inquire what are the properties of the smallest
equationally definable class of /-rings, which includes the integers. One
obvious and very restrictive identity is x2 V x = x2. It seems worth
pointing out further that every unsolvable Diophantine equation yields
an identity for the integers. For example, the implication x* = 2^ =Φ x = 0
yields

[ίi Λ ^ Λ (x2z - 2y2z + z) A (2y<iz - x2z + zψ = 0 .

5 Supermodular ideals. We shall want some lemmas on general
/-rings. In any latticeordered ring (or group), for any subset S, we define
the polar set S1- to be the set of all x such that for every s in S,
fa?I Λ IβI = 0. It is trivial to verify that SLL =) S, S±±L = S1, and SL is
always a convex sublattice and additive subgroup.

5 1 A lattice-ordered ring is an f-ring if and only if every polar
set is an l-ideal.

The verification is trivial. Observe that for two polar ideals,
H, K, (H+ K)L is exactly H1 n K^ (H n K)1 contains H± + KL, generally
properly.

5.2 For any two l-ideals, /, J, in an f-rίng, a maximal l-ideal
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which contains I fϊ J contains I or J.

Proof. Suppose this is false for the maximal Z-ideal M in the /-ring
A. Then A = M+I=M+J. For any xeA, there are an ieI and
a je J such that x = i = j (mod ilί). Then \x\ = \i\ A \j\ = 0 (mod M)
since I f] J a M, contray to the assumption that M is proper.

Following the usage of [9], an /-ring is called l-simple if it has no
proper Z-ideals and is not a zero ring.

5,3. An l-simple f-ring has a super unit.

Proof. Let A be an /-ring without proper Z-ideals. Clearly A is
totally ordered, as otherwise there would be a proper polar ideal. If A
were not unitable, then by 1.6 and 1.7, it would contain both nilpotents
and non-nilpotents. Then its I -radical would be proper. Hence A has
a superunit or is infinitesimal. Suppose that the latter holds. Then A
is a subring of a totally ordered ring B with unit 1, and \a\ < 1 for
all a e A. Thus, for all positive x, y in A, xy <£ x Λ ?/. Hence every
order-convex additive subgroup of A is an Z-ideal. If x is in the smallest
convex subgroup of A containing x\ then there is a positive integer n
such that nx1 *tx. But then (nx — l)x Ξ> 0, whence nx ^ 1, contrary to
the fact that xeA. Thus #2 = 0, and.A is a zero ring.

For future reference, we display the corollary

5A* An f-ring without proper l-ideals is unitable.

The rest of the paper is concerned with unitable /-rings, though we
omit "unitable" from the hypothesis when it causes no extra work to
do so. Recall that a unitable /-ring is a subdirect sum of a family of
totally ordered rings each of which either is infinitesimal or has a superunit.
If all the summands are infinitesimal, so is the sum. We shall say that
an /-ring has local superunits if it is a subdirect sum of (totally ordered)
/-rings having superunits. Evidently the definition is the same whether
we include the parenthesis or not. Now the decomposition of an
archimedean /-ring given in 3.11 can be generalized as follows.

We call an Z-ideal J in an /-ring A supermodular if A\J has a
superunit.

5.5. THEOREM. Every unitable f-ring can be represented as a
subdirect sum of an infinitesimal f-ring and an f-ring having local
superunits. The second summand is unique.

Proof. Let A be a unitable /-ring, and K the intersection of all



552 MELVIN HENRIKSEN AND J. R. ISBELL

supermodular i-ideals of A. Then AjK has local superunits; and the
kernel of any homomorphism of A upon such an /-ring must contain K.
Next consider the polar ideal KL. For any x ^ 0, (x2 — x)+ is in KL.
For, suppose on the contrary that (x2 — x)+ Λ k is nonzero for some k ^ 0
in K. Then it has a nonzero image under some homomorphism of A
onto a totally ordered ring T that is unitable and cannot have a superunit,
since the image of K is not zero. Hence T is infinitesimal, by 1.2, and
the image of (x2 — x)+ is zero.

This shows that A/K1 is infinitesimal. Since K n K1 is zero, A is
a subdirect sum of the infinitesimal summand A\KL and the summand
A\K which has local superunits.

Next we show S x c Kf where S is the set of all (x2 — x)+ for x Ξ> 0.
Indeed, for any # not in K, there is a homomorphism h upon a totally
ordered ring with superunit taking y to a nonzero image Λ(?/); for any
positive # such that h(xf > /φθ, (x2 — x)+ Λ \y\ is nonzero. That done,
consider a subdirect sum decomposition of A into an infinitesimal summand
A/L and a summand A\M with local superunits. We have noted that
M must contain K. On the other hand, L must contain S, and M must
be contained in L 1 c S 1 c if. Hence M must be exactly K, and the
proof is finished.

Concerning 5.5, we note that A\KL is the smallest infinitesimal
summand which can be used, since KL is the largest i-ideal which together
with K gives a subdirect decomposition.

If an Z-ideal J is both supermodular and maximal, we call it
supermodular maximal supermodular indifferently. This is justified by

5.6. Every supermodular l-ideal J of an f-ring A is contained
in a supermodular maximal l-ideal. In particular, every l-ideal in
an f-ring with superunit is in a maximal l-ideal.

Proof. If A\J has a superunit x, no proper i-ideal in A\J can contain
x. Then by the usual Zorn's lemma argument (for rings), A\J has a
maximal Z-ideal. Such an ideal must an ideal must be supermodular,
and its inverse image in A is the required supermodular maximal Z-ideal
containing J.

Later (6.11) we shall want the following lemma.

5.1. In an f-ring having local superunits, every proper polar ideal
is contained in a supermodular polar ideal.

Proof. Let H be a proper polar ideal of an /-ring A with local
superunits. Each maximal i-ideal must contain H or HL, by 5.2. Since
the intersection of the supermodular maximal ideals is zero, not all of
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them contain H2-; so one of them, say M, contains H. Let e be a positive
element of A which is a superunit modulo M. Then (β2 — e)+ is not in
M, hence not in H; therefore, there is t^O in H1 such that (e2 — e)+ A t —
u Φ 0. Let K be the polar ideal [u]1. Since u is in i ϊ 1 , if contains H.
It remains to verify that there is a superunit modulo X, namely e. For
any y ^ 0, (e2 — e) Λ (2/ — ey) ̂  0, since, by 1.6, A is unitable. Hence
(V — ey)+ Λ (e2 — e)+ = 0, (2/ — ey)+ is in if, and ey ^ y (mod If).
Similarly ye ^ y (mod if), as required.

Between the supermodular polar ideals and the supermodular maximal
ideals there is another class which we shall examine. The basic idea,
from real function rings, is that of the ideal of all functions vanishing
on a neighborhood of a fixed point. For a supermodular maximal Z-ideal
M in a unitable /-ring A, we define the germinal l-ideal G associated
with M to be the sum of all Z-ideals H such that M + HL = A. We
call an Z-ideal supermodular germinal if it is the germinal ideal associated
with some maximal supermodular ideal. (5.9 below shows that such
ideals are supermodular.)

5.8 If A is a unitable f-ring, M a maximal supermodular ideal,
and x a positive element of A, then the following conditions are equivalent.

( i) x is in the germinal ideal G associated with M.
(ii) x — a~ for some a > 0 (mod M).
(iii) x — e~ for some e which is a superunit modulo M.

Proof. Assume (i). Then x is a finite sum of elements x{ e A+ for
which there exist elements y{ such that x{ Λ 2/< = 0 and y{ > 0 (mod M).
Then y = Ay{ > 0 (mod M), and x A y = 0, so x e M. Thus a = (y — x)
satisfies (ii).

If (ii) holds, since AjM is Z-simple, there is a z ^ 0 such that za+

is a superunit modulo M. Let e — za+ — a". Then e~ = a~ — x, e = za+

(mod ikf), so (iii) holds.
Clearly (iii) implies (i).
An i-ideal is called primary if it is contained in a unique maximal

Z-ideal.

5.9. THEOREM. A proper l-ideal of a unitable f-ring A is super-
modular and primary if and only if it contains some supermodular
germinal l-ideal. A has local superunits if and only if the intersection
of the supermodular germinal l-ideals of A is 0.

Proof. Let M be a supermodular maximal Z-ideal, and let G be the
associated supermodular germinal Z-ideal. Let x e A+ be a superunit
modulo M. We shall show that xf = 2x is a superunit modulo G. For
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any positive y, (y — x'y)+ generates an Z-ideal H such that H1 centains
{x'f — xr. (Apply 1.6 to each totally ordered subdirect summand of A.)
Also {x'Y - x' > 0 mod Mf so M + H± = A, whence H c G. The same
reasoning applies to (y — yx')+, and shows that G is supermodular.

To see that G is primary, consider any other maximal Z-ideal N, and
recall that there exist xl9x2, such that (x2 — xλ)

+ is in N but >0 (mod
M) and (xx — x2)

+ is in M but >0 (mod N). Then if H is the principal
Z-ideal generated by (x± — x2)

+, M + HL = A. Hence G contains iJand
cannot be contained in N. Thus, G is supermodular and primary, as is
any proper Z-ideal containing it.

Next consider a supermodular i-ideal J, contained in M, which fails
to contain G. J cannot contain all the positive elements of G; thus for
some α, a > 0 (mod M) and a~ is not in J. Then J and a+ generate a
proper ί-ideal K. Since K contains J, it is supermodular and is contained,
by 5.6, in a supermodular maximal i-ideal L. Since K + M is already
A, L Φ M, and J is not primary.

If the intersection of the supermodular germinal ideals is 0, then
so is the intersection of the supermodular ideals, and the ring has local
superunits. Conversely, if the ring has local superunits, any nonzero
positive x has a strictly positive image in a totally ordered ring T having
a superunit e. The kernel of the homomorphism upon T is a primary
Z-ideal I contained in a maximal ϊ-ideal M. Then x cannot be in the
germinal ideal associated with ikf, by 5.8 (ii); for a > 0 (mod M) implies
a > 0 (mod /), a+ A x Φ 0, and x φ or. This completes the proof of
5.9.

We note that one can show

5 1O In an l-semisimple f-ring, every polar ideal, and also every
supermodular germinal ideal, is an intersection of prime l-ideals.

We conclude this section by examining what happens to Z-ideals on
embedding in an /-ring with unit. The main point is that those maximal
i-ideals which are supermodular correspond to maximal ideals of the
bigger ring, and the others do not. Another interesting point is that
there is a unique smallest containing /-ring with unit. This was con-
jectured by D. G. Johnson, who proved it in the totally ordered case [9].

Let A be a unitable /-ring and B an /-ring with unit containing A.
We say that B is a smallest /-ring unit containing A if no proper subring
of B is an /-ring with unit containing A. (This is stronger than the
condition that A and 1 generate B as an /-ring.) We understand
"unique" in the usual sense of an isomorphism leaving A elementwise
fixed; then Johnson's result [9] is that the smallest f-ring with unit
containing a unitable totally ordered ring is unique. It is, of course,
totally ordered; and note that a totally ordered ring with unit containing
A is smallest if it is generated by A and 1 (since 1 is the only nonzero
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idempotent by 2.1).
If I is a subset of a sub-/-ring A of an /-ring B9 we let IB =

{xe B: \x\ Λ |α | = 0 for all a el}. I^1 is defined similarly.

5*11 THEOREM. If A is a unitable f-ring, then
( i ) A is contained in a unique smallest f-ring B with unit.

Moreover, B = A^1.
(ii) For each supermodular maximal l-ideal M of A, there is

exactly one maximal l-ideal Mf of B such that M = Mr Π A.
(iii) A is contained in no proper l-ideal of J5, or in exactly one

l-ideal M of B (which is maximal) according as A has a superunit
or not.

(iv) In the latter case, if H is the germinal ideal associated with
M, then H f] A is the sum of all the polar ideals I of A such that I1 is
supermodular.

(v ) For every supermodular germinal ideal G of A, there is
exactly one germinal ideal G' of B such that G = Gr Π A.

(vi) There are no maximal l-ideals of B other than those described
in (ii) and (iii).

(vii) If I is a polar ideal of A, then I = I^1 Π A.

Proof. Regard A as the subdirect sum of all of its totally ordered
homomorphic images Ta; embed each T^ in the unique smallest (totally
ordered) ring with unit UΛ containing it. Let C be the direct sum of
all Ua, and B the sub-/-ring generated by A and 1. To see that B is
smallest, note that a unit u for any sub-/-ring containing A must have
image 1 in each UΛ.

Now consider any smallest /-ring D with unit containing A. Without
loss of generality we may assume that A and 1 generate D. We show
next that A^1 has a unit. Indeed, D/A^j1 is generated by 1 (if 1 is
not already in A^1). But D/A^1 contains A1 isomorphically. Then if
A% is not zero, it has a superunit /. A% also contains / Λ 1, an idempotent;
and 1 — (/ Λ 1) is a unit in A^1-. Hence we may now assume D = A^L.

Next, we prove the uniqueness of B.
Observe that since A and 1 generate Ό, for every de D there is an

ae A and an integer n such that \d\ <* n + a. For any Z-ideal /of A, let

Γ = {d e D: \d\ S i for some i e 1} ,

and let

Γ = {deD:\d\ A \a\eP for all aeA} .

It is easily verified that P and I1 are i-ideals of D such that

i° n A = r n A = i.
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Let Ia denote the kernel of the homomorphism of A onto the ordered
ring Ta. We show next the intersection of all the /j is 0, for i — 0,1.

If d Φ 0 is in all the II, then \d\ ^ a for some aeA, and there is
a homomorphism h of D onto a totally ordered ring such that h(d) Φ 0.
Then h(a) > 0, and the kernel K of h meets A in some /*. Then d is
not in that I£. It follows also that the intersection of all the II is in
A#,'and we showed above that Ai = 0.

We prove next that D\Il is totally ordered (for any fixed a). It
suffices to show that Ta, the image of A under the homomorphism h of
D onto D/I^, and 1 together generate a totally ordered ring. Every
element of this latter takes the form a + n for some a e Ta, and some
integer n. Suppose that one of these elements is incomparable with 0.
This cannot happen for n = 0. Then by change of sign if necessary,
we can rewrite the element as a -- n, where n ^ 1. Since Ta is totally
ordered, a2 and na are comparable.

We show first that if a2 Ξ> na then (a — n)~ = 0. Let α0 be a
representative of a in A. We must show (α0 — n)~ e II, i.e., for any
positive b0 in A, b0 Λ (a0 — n)~ e Ia. Let b = h(b0). We need 6 Λ (a—n)~ = 0,
and clearly it suffices to prove this for b Ξ> a.

Since α2 ^ na ^ α, T* is not infinitesimal, and as in the proof of
1.5, a cannot be a zero divisor. From the same proof, then, ba Ξ> nb
for all positive 6. Then b(a — n) = b(a — n)+ — b(a — n)~ ^ 0; since
(α - w)+ Λ (a - n)~ = 0, &(α - w)~ must be 0. Trivially 26(2α - 2m)- = 0;
also, when 6 ^ α, then 26 Ξ> 2α.

The conditions #(# — 2w)~ = 0 and x ^ y ^ 0 imply a? Λ 0/ — 2w)~ = 0
in all /-rings. To prove this it suffices to treat the totally ordered case.
Then suppose y Ξ> n. We have x ^ n and x(y — 2ri)~ ^ n{y — 2w)~;
since #(# — 2n)~ = 0, (y — 2w)~ = 0 ^ α?, and the meet is zero. In the
contrary case y <n,(y — 2ri)~ > n, x(y — 2n)~ ^ nx, and since the product
is zero, x must be zero. This proves the implication, and for the case
α2 ^ na we have (a — n)~ = 0.

Suppose that a2 < na. For this case we shall show b Λ (a — n) = 0
for all positive 6 in T*, so that (α — n)+ must be zero as before. From
the statement of 1.5 we have ba ^ nb in this case, hence b(a — n)+ = 0,
Again we can assume b ^ α, and this with b(a — n)+ = 0 implies
& Λ (α — w)+ = 0 as before. This completes the proof that Djll is totally
ordered.

Since Ώ\Il is a totally ordered ring with unit generated by Ta and
1, it is UΛ. Since D is the sub-/-ring of the direct sum of all UΛ generated
by A and 1, it is B; and (i) is proved.

In the special case that Ia as treated above is super modular maximal,
it is clear that any maximal Z-ideal of B(= D) intersecting A in Ia must
contain II. But UΛ has a unique maximal i-ideal; this ideal cannot
contain TΛ, since there is an element ^ 1 in Tai and its intersection
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with TΛ is therefore 0. This proves (ii).
Let A have a superunit e, and let / be any Z-ideal of B containing

A. Then, since (e Λ 1) is a unit for A in J, we have I = B, so A is in
no proper Z-ideal of 5. If A has no superunit, then A0 is an i-ideal of
B containing A such that B/A° is the ordered ring of integers. Since
B — A^1, A0 is maximal, and any i-ideal of B containing A contains A0.
Thus A0 is the unique ί-ideal of B containing A. This proves (iii).

We leave the proofs of the remaining assertions for the reader.
An Z-ideal I in an /-ring A is called modular if A\I has a unit.

Modular i-ideals are extensively investigated in [9], We have

SΛ2. THEOREM. An f-ring can be embedded as an l-ideal in an
f-ring with unit if and only if it is unitable and every supermodular
ideal is modular.

Proof. Necessity of the conditions is obvious.
Suppose conversely that A is unitable and every supermodular ϊ-ideal

of A is modular. Let B be the smallest /-ring with unit containing A.
We show first that for a in A, a A 1 is in A. Let K be the smallest
Z-ideal of A modulo which a is a superunit, i.e., the Z-ideal generated
by all elements (ax — x)~ and (xa — x)~ for x e A+. We show next that
a is a unit modulo K + Kj[. For any x in A+, ax — x — (ax — x)+ —
(ax — x)~. Here (ax — x)~ is in K. To show that (ax — x)+ is in KL

y

it suffices to show that (ax — x)+ A (ay — y)~ and (ax — x)+ A (ya — y)~
vanish for all y in A+. For these to vanish it suffices that their images
vanish in any totally ordered homomorphic image of A, and from 1.5
this is easily seen. Similarly, each xa — x, for xeA+, is in K + K±.

From the hypothesis, the supermodular ideal K is modular in A.
Let e be a unit modulo K. Then e is, like a, a unit modulo K + K^;
so e — aeK + Kj. Write e — a = p + q, with q in K^ and peK. We
claim that a A 1 = a + q, which is in A. To verify this, it suffices to
verify that for any homomorphism h of A upon a totally ordered ring,
h(a + q) is a unit if h(a) is a superunit, and h(a + q) is h(a) if this is
not a superunit. But since the image is totally ordered, the kernel must
contain K or iff. If the kernel contains K, h(a) is a superunit and
h(p) — 0, which implies h(a + q) = h(e)—a unit. In the other case h(q) —
0, and h(a + q) = h(a) as required.

We conclude next that in B, the ring generated by A and 1 is a
lattice. This is the set of all a + m, for a in A and m an integer.
Consider (a + m) A (b + n), where n ^ m. This is 6 + m + (a — b) A
(n — m); so it suffices to show that (α — b) A (n — m) is in A. But this
is the same as (a — b) A (n — m) (|α — 6| Λ 1), by an easy check reducing
to the totally ordered case. We have shown that \a — b\ A 1 must be
in A; so (a + m) A (b + n) is in A. The join (α + m) V (b + n) is
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— (—(a + m) Λ —(6 + n))9 and is also in A.
Then B, being smallest, consists only of the elements a + m. If A

has a superunit, then the supermodular ideal 0 must be modular, and
B = A. If A has no superunit, and \a\ ^ |δ + n\ for some α, b e A, then
\a\ + \b\^\b + n\ + \b\^\(b + n) — b\ = \n\; so w = 0. T h i s s h o w s
that A is a proper i-ideal of B.

6Φ Structure space and reordering.
Let ^y be any family of J-ideals of an /-ring A. If S^ c ^X, let

the fcerweZ fc of ^ be the intersection of all the elements of S*. It J
is any J-ideal of A, let the /mίi h of J be the set of all elements of
J? that contain J. Call a subset ^ of ^ dosed if ^ = A- (A(^)). It
is well known that if / 3 Iλ Π I2 implies / 3 Λ or J 3 J2 for any I e ^ ,
and intersections / lf /2 of elements of J?, then ^ becomes a topological
space. (This is noted, at least for ring ideals, in [8].) The resulting
topology is called the hull-kernel topology.

By 5.2, the set of all maximal ί-ideals, the set of all modular maximal
Z-ideals, and the set of all supermodular maximal Z-ideals of A form
topological spaces with the hull-kernel topology. We call the latter the
structure space ^J?(A) of A.

6Λ. THEOREM. The set of all maximal l-ideals of an f-ring is
a Hausdorff space in the hull-kernel topology. The structure space is
a locally compact open subset. Indeed, each M in ^{A) contains a
supermodular ideal I whose hull is a neighborhood of M. If A has a
superunit, then ^€{A) is compact.

Proof. For Hausdorff separation of two maximal i-ideals Mx and
M2, note that A\MX and A\M% are totally ordered. Since Mλ + M2 = A,
there are xx in Mx such that xλ > 0 (mod M2) and x2 in M2 such that
x2 > 0 (mod Mx). Let ^ be the set of all maximal Z-ideals M such that
x2 > xx (mod M). This is an open set, since it is the complement of the
hull of the principal ί-ideal generated by (x2 — x^. Similarly the set of all
M such that xx > x2 (mod M) is an open set 5^, disjoint from ^ . Since
M1 is in <%y and M2 in 5^, the space is Hausdorff.

We show next that if A has a superunit e, then ^£{A) is compact.
Let {^co} denote any family of closed subsets of ^{A) with empty
intersection. Then {k(^~Λ)} together generates A. Hence e is in the
smallest i-ideal containing some finite subfamily {k{^~O,)y , k(^~aJ}.
But then Π?=i^"*ι *s empty. So ^{A) is compact.

Now, let Moe ^d(A), and choose some xeA which is a superunit
modulo Mo. Let x' = 2x, and observe that (x'f = 2xxf > xf (mod Mo).
Let ^f = {Me ^{A) : x' is a superunit (mod M)}. In other words,
is the hull of the Z-ideal K generated by all {x'y — y)~ and (yxf — y)~
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for ye A+. Then xf is a superunit modulo K. Moreover, since A/if has
a superunit, Sίf is compact by the above. Finally Sίf is a neighborhood
of Mo, for it contains the open set of all M modulo which (x'f > xf > 0
(since A/M is unitable by 5.4).

The first theorem we know of to the effect that a space of ideals
of a fairly general partially ordered ring is Hausdorff is due to Gillman
[8], The proof above is similar to Gillman's argument.

Since subspaces of locally compact Hausdorff spaces are completely
regular we have

6*2. COROLLARY. The modular maximal l-ideals of an f-ring form
a completely regular space in the hull-kernel topology.

63. EXAMPLES. (A) The space of all maximal l-ideals of an f-ring
of real-valued functions need not be regular. (B) The space of modular
maximal l-ideals of an f-ring of real-valued functions need not be
locally compact.

EXAMPLE A. Let <%? be the half-line [0, oo), ^4r the subspace of
positive integers, and A the /-ring of all continuous functions / on ^
satisfying the following condition. For some subset ^ of Λ" whose
complement is finite, / vanishes at each n in ^J? and has finite left
and right upper and lower derivates there; and all these derivates form
a bounded set of real numbers.

The structure space of A as we have defined it is the Stone-Cech
compactificatίon βg? of <%?, less the derived set 3f of Λ" (i.e., less
Sf— Λ^~ — ,yf^). However, corresponding to each point d of D there
are two different nonsupermodular maximal Z-ideals, L(d), R(d). Observe
that d is the limit of an ultrafilter &* in ,χ^". L(d) is the set of all
functions f in A whose left upper and lower derivates at points of ίyf^
converge along ^ to 0; R(d) is defined similarly by right derivates.
L(d) and R(d) have neighborhoods disjoint from each other and from
^ " however, neither can be separated from the closed set ^K by
disjoint open sets.

EXAMPLE B. Let R be the real line, and A the /-ring of all continuous
functions f on R such that at each rational point r oί R, f takes a
rational value of the form 2pjqf q an odd integer. It is easy to show
that A contains enough functions to separate points, from closed sets;
and its structure space, as we have defined it, is βR. However, the
subspace of modular maximal ideals is nowhere locally compact, for it
includes all the irrational points of R but none of the rational points.

A homomorphism h of an /-ring A onto an /-ring B induces a
homeomorphism of the structure space of B onto the hull of the kernel
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of h; if this is not completely obvious, it becomes obvious on noticing
that the supermodular maximal ideals are precisely the kernels of
homomorphisms onto Z-simple /-rings.

We call an /-ring supermodular semisimple, or S-semisimple f if the
intersection of the supermodular maximal ideals is zero; equivalently, if
it is a subdirect sum of Z-simple /-rings. Note that an ϊ-simple /-ring
has no proper divisors of zero. Therefore an S-semisimple /-ring is
Z-semisimple. From 3.9 we have

6 A. The commutative S-semisimple f-rings are precisely the residue
class rings of f-rings of real-valued functions modulo ideals which are
kernels of {closed) sets of supermodular maximal l-ideals.

For a in A and M in ^/έ(A), we shall write M(a) for the image
of a in the i-simple /-ring A\M. Note

6.5. If A is an f-ring, Moe ̂ f(A), ^ is a neighborhood of Mo,
and t is an element of AjM0, then there exists a in A such that MQ(a) = t
but M(a) = 0 for all M in

The proof is straightforward.
We prove next

6.6. LEMMA. If A is an S-semisimple f-ring, then ^jf{A) is
compact if and only if A has a super unit.

Proof. By 6.1, we need only prove the necessity. Assume that A
does not have a superunit, and let ̂  denote the family of all supermodular
Z-ideals of A. We will show that the family ^ = {h(IL): Iej?)} of
closed sets has the finite intersection property, and has empty intersection.

For any Ie^F, I Π I1 = 0; so every Me ̂ £{A) contains /or IL by
5.2. Since A is S-semisimple, and has no superunit, at least one such
M contains I1; so h(IL) is nonempty for all Ie ^ . Since (/ Π J)1 3 I1 +
JL for all 7, J, J ^ has the finite intersection property. Finally, let
Me^{A). By 6.1, then is an Iej^ such that h(I) is a neighborhood
of M, so, by 6.5, I1 is not contained in M. Hence the intersection of
all the elements of g7 is empty.

6.1. THEOREM. Let A be an S-semisimple f-ring.
(i) An l-ideal of A is a supermodular direct summand if and

only if it is the kernel of a compact open subset of ^{A).
(ii) An l-ideal of A is a polar ideal if and only if it is the kernel

of the closure of an open subset of

Proof. In (i), necessity is clear.
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Conversely, if ^ and ̂ (A) — ̂ / are open and closed sets with
kernels iϊand K, then, since A is S-semisimple, H Π K = 0. If Me ^£{A)
contains both H and K, then M must be in h(H) (Ί Z (̂iί) = ̂  Π
(^t(A) — <%?), which is empty. Hence, if iJ + if is a proper ideal, any
maximal Z-ideal L containing it fails to be supermodular. It follows that
A/H has no superunit, whence by 6.6, <?/ is not compact. This proves (i).

Similarly, if H and H1 are polar ideals, then y eHL if and only if
the open set of all M for which | M(y) | > 0 is contained in the hull of
H; and symmetrically. Hence H1 and H are kernels of their hulls.
Moreover, the hull of H1 is the complement of the union of the open
sets just described, which by 6.5 is the complement of the interior of
the hull of H. The complement of the interior of a closed set is the
closure of its own interior, and the argument applies to H as well.
Conversely, if 5^ c ^£{A) is the closure of an open set ^ , and H is
the kernel of 5̂ ", then 6.5 shows that there are elements of H1 taking
nonzero values at each point of %s, so that HLL can only be H.

REMARK. The supermodular polar ideals, of course, correspond to
compact subsets of the structure space that are closures of open sets.
There is no such simple description of the unrestricted direct summands.

A ring isomorphism i of an /-ring A onto an /-ring B is called a
reordering. For the balance of the paper, we discuss properties of
certain classes of /-rings that remain invariant under reordering. If A
and B are S-semisimple, we call i an S-semisimple reordering.

6 8 Polar ideals and direct summands are preserved by S-
semisimple reorderings.

Proof. Recall that in an ί-simple /-ring, xy — 0 implies x = 0 or
y — 0. Hence, in any S-semisimple /-ring, |x| Λ \y\ = 0 if and only if
xy — 0. This proves the invariance of polar ideals, and a direct summand
is just a polar ideal H such that H + H1 is the whole ring.

If i is a reordering of A onto B, a point M of ^f(B) is called a
distinguishing point of i if there is an a e A+ such that M(i(a)) < 0.

6.9. An S-semisimple reordering is an isomorphism if and only
if it has no distinguishing points.

Proof. If i is an S-semisimple reordering of A onto B without
distinguishing points that is not an isomorphism, then i(a) e B+ for all
αeA + , and i(c)eB+ for some c not in A+. But i(\c\) is a different
positive element of B which has the same square as i(c), and this is a
contradiction. The converse is trivial.

6 10 THEOREM. The set of distinguishing points of an S-semisimple
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reordering i of A onto B is open. If A and B have superunits, the
distinguishing points of i also form a totally disconnected set.

Proof. The set 2$ of distinguishing points of i is the union of
{Me^f(B): M(i(a)) < 0} as a ranges over A+. Thus, 3ί is open.

Now, let e be a superunit for A, let Me 3ί, and let iVbe any other
point of ^£(B). Then, for some a e A+, M(i(a)) < 0. We will show next
that there is a zeA+ which is in no proper i-ideal of A, such that
M(i(z)) < 0 and N(i(z)) > 0.

Note that M(i(e2)) ̂  0 > M(i(a)). Since B\M is ϊ-simple, some multiple
t of — M(i(a)) exceeds M(i(e2)). Since BjM has a superunit, the multiplier
can be a square element of B. Applying i"1, we conclude there is an
element y of A+ of the form x*a + e2. By adding to it a suitable square
that lies in M, we obtain a z satisfying all the desired conditions.

Then i(z) has nonzero positive part u, and nonzero negative part v,
since N(u) > 0 and M(v) > 0. Let g — i~\u), and h = i~\v). Since
z = g — h, gh = 0, and z lies in no proper Z-ideal of A, the Z-ideals G, H
generated by g, h respectively, are a pair of direct summands. Therefore,
by 6.8, so are i(G) and i{H), and the hulls of these ideals are open and
closed sets separating M and N.

It is well known [3, p. 174] that every compact totally disconnected
space is zero-dimensional (i.e., has a base of open and closed sets.) Hence
the same is true for locally compact spaces. It follows that a union of
open totally disconnected subspaces of a locally compact space is totally
disconnected. This will be used in establishing

6 11 COROLLARY. The set of distinguishing points 2$ for any
S-semisimple reordering i of A onto B is open and has a dense open
subset that is totally disconnected.

Proof. By 6.10, 3f is open. Since, by 6.1, ^{B) is locally compact,
as remarked above, the union g7 of all the open totally disconnected
subsets of ^ is open and totally disconnected. To prove that g7 is
dense in ϋ^, it suffices to show that there is no open set in 3ί whose
closure & is contained in &f — g\

If there were, the kernel of & would be a proper polar ideal, which,
by 5.7, would be contained in a supermodular polar ideal K. By 6.8,
i~\K) is a polar ideal / in A, which also is contained in a supermodular
polar ideal J. Then, by 6.8, i(J) = L is still polar, and since it contains
K, still supermodular. Thus i induces a reordering j of A\J onto B\L.
(Note that both of these are S-semisimple and have superunits.) Since
h(L) c & c ^ , every point of h{L) is distinguishing for j . So, by
6.10, h(L) is totally disconnected. By 6.7, the interior of h(L) is nonempty;
a contradiction.
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Since g* is open in the locally compact space ^/£(β), it is locally
compact, and hence is zero dimensional. Thus, every point of E has a
compact open neighborhood. Hence, we have established

6X1. COROLLARY. An S-semisimple f-rίng which is not totally
ordered and has no direct sum decomposition admits no S-semisimple
reorderings except isomorphisms.

6 13 THEOREM. An S-semisimple reordering i of A onto B, where
A and B have superunitsf induces a homeomorphism of ^/f{B) onto

Proof. Note first that if M is a nondistinguishing point of i, then
i~\M) is an Z-ideal of A. For otherwise, there would be a y in i~\M)
and an x not in i~\M) with 0 ^ x ^ y. If M(i(x)) > 0, then M(i(y - x)) =
M{i{y)) — M(i(x)) = — M(i(x)) < 0, although y — x ^ 0; so M is distinguish-
ing. The same conclusion holds if M(i(x)) < 0, since x ^ 0.

Moreover, i maps Ali~\M) isomorphically onto BjM. Hence i~\M)
is a point of ^£{A).

We begin by defining Φ(M) = i~\M) for all non-distinguishing

A distinguishing point M of ^/ί{B) is determined by the compact
open sets containing it. Since, by 6.6, ^(B) is compact, these correspond
exactly to direct summands contained in the ί-ideal M. Evidently the
corresponding direct summands in A determine a corresponding point
φ(M) in ^t(A).

Omitting the details, the correspondence we have described is one-
to-one onto because its inverse can be recovered from the reordering i~λ\
the correspondence between nondistinguishing points is a homeomor-
phism because it preserves kernels and hulls; the sets of distinguishing
points are homeomorphic because they are totally disconnected locally
compact and have the same compact open sets. Finally, a set of
distinguishing points Ma has a nondistinguishing point M as a limit
point if and only if for any direct summands /„ each contained in Ma,
their kernel is contained in M. This condition is invariant under i.

REMARK. We can give a more convenient description of the home-
omorphism φ of 6.13. We shall show that Φ(M) contains a polar ideal
J of A if and only if M contains i(J). Since ^(A) is a Hausdorff
space, this will characterize φ (by 6.7 (ii)).

Since φ{M) = i~\M) if M is nondistinguishing, the assertion is
obvious in this case. We note next that M is distinguishing if and only
if φ(M) is distinguishing. Let J be a polar ideal of A such that i(J) is
not contained in the distinguishing point M. This means that M is not
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in h(i(J)). By 6.10, M has a compact open neighborhood disjoint from
h{i(J)). By 6.7 (i), this means there is a direct summand H contained
in M such that H + i(J) = B. Then i~\H) + J = A. From the
construction of φ, since M contains the direct summand H, φ(M) contains
i~\H). Hence φ(M) + J = A. So φ(M) does not contain J. With the
symmetric argument, the proof is complete.

6 14. COROLLARY. AW S-semisimple reordering i of A onto B
induces a homeomorphism of a dense open subset of ^ (B) onto a dense
open subset of ^f(A).

Proof. The proof turns on the polar ideals I of B such that both
I and i~\I) are supermodular. Then for this proof, let us call such an
I a useful ideal. Every proper polar ideal K of B is contained in a
useful ideal; for (by 5.8) K is contained in a supermodular polar ideal
J, the polar ideal i~\J) (6.8) is again contained in a supermodular polar
ideal Γ, and i(Γ) is useful.

Let έ%f be the set of all M$.^/έ(B) which are interior to the hull
of some useful ideal I. By definition, §ϊf is open. Since the assertion
of the last paragraph is equivalent, by 6.7, to the fact that the closure
of every open set contains the hull of a useful ideal, £%f is dense.

We shall show that for every Mz^ίf, there is a (unique) ψ{M) in
^J?(A) which contains exactly those polar ideals of A that are inverse
images of polar ideals of B contained in M, and ψ is a homeomorphism.
To this end, select a useful ideal I having M interior to its hull. The
reordering i of A onto B induces a reordering of Afi~ι(I) onto J?//. Both
of these /-rings are S-semisimple and have superunits; hence by 6.13, i
induces a homeomorphism φ of their structure spaces. These structure
spaces are the hulls of i~\I) and I respectively.

We will show next that if M contains a polar ideal J, then M contains
(/+ J)LL. From this it will follow that φ(M) contains i~\{I + J)LL),
which contains i~\J). From this, and an application of the same argument
to the reordering i~λ of B onto A, it will follow that Φ(M) is the desired
ψ(M). From the continuity of φ and φ~λ, this will complete the proof
that ψ is a homeomorphism.

To prove the assertion, note first that (/+ J)1 = I1 f] J1; hence
what we must show is that M contains ( I 1 Π e7±)±, or that if x > 0
(mod M) then for some y in I x (Ί J 1 , x Λ y Φ 0. For this it suffices
to find a point Ne^(B) such that x > 0 (mod N), N + J x = B, and
N + J x = B; for then there are p in J 1 and q in J 1 such that p Λ q > 0
(mod iV), and we may put y = p A q.

From 6.5, the conditions N+I1 = N+J1 = B will be satisfied if
the hulls of / and of J are neighborhoods of N. Now the set of all

such that x > 0 (mod P) is a neighborhood ^ of Λf. By
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hypothesis the hull of / is also a neighborhood of M, and its intersection
with ^ contains an open neighborhood y of M. Since the hull of J
contains M by hypothesis, and is the closure of an open set by 6.7, cp~
contains an interior point Not the hull of J. Then the proof is complete.

Our final example shows that S-semisimple reorderings need not
preserve compactness of the structure space. Consider the subfield F
of the ordered real field consisting of all a + bV 2 with α, b rational
numbers. Let A be the /-ring of all sequences of elements of F converging
to 0, ordered termwise. Then A has no superunit, whence ^(A) is
not compact by 6.6. But one can reorder A by applying the automorphism
a + bV 2 —> a — bV 2 of F to get an /-ring B. Let {sk}, {tk} be sequences
of integers such that {sk — tkV 2} converges to 0. It is easily verified
that the sequence {sk + tkV 2} is a superunit for B, whence by 6.6
^f(B) is compact.
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