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Abstract

Gait and Postural Analysis in Healthy Young Adults and People with Parkinson’s Disease

By

Aisha Chen

Claremont Graduate University and California State University Long Beach: 2019

Postural analysis is the study of how the position of the body in any mode interacts with

internal and external forces. This type of analysis is typically used to assess potential

abnormalities in the balance control system and to understand how the balance control

system changes with time. However, compared to other medical fields of study, postural

analysis is relatively new [1]. In fact, although widely used in clinical and research studies,

postural assessment methods are scientifically inaccurate, and some data collection methods

are relatively expensive. A better understanding of the human balance control system could

lead to more accurate and less expensive postural assessment techniques.

The human balance control system must continuously act because the human body is an

inherently unstable system. In fact, gait and balance impairments lead to loss of mobility,

falls, and a diminished quality of life. Advanced age, orthopedic and neurological conditions

affect overall balance control, which leads to gait and balance impairment [1, 2]. In fact,

disability, falls and increased mortality are all associated with insufficient balance control

during gait and postural support [2].The ability to maintain stability is dependent on execut-

ing postural movements to control the temporal and spatial change in the center of mass of

the body [3]. The inability to maintain this stability, results in falls and fall related injuries.

Although the risk of falling increases with age and neurological condition, there is some

risk of falling for adults of all ages and circumstance [4]. In fact, falling is one of the leading

causes of accidental death in the United States [5]. In 2015, the total medical cost of falls

older adults was $31.9 billion, and of that total $637 million of that cost was due to death

[5]. One of the main causes of falls is a trip, which accounts for 35-53% of all falls and

is responsible for 12-22% of hip fractures [6]. Therefore, an understanding of the postural

instability that leads to a trip could lead to prevention of a significant portion of falls, which



would ultimately lead to a decrease in the cost associated with falls. Nonetheless, there are

many other factors that can contribute to an individual falling, and a better understanding

of the postural control system can lead to an understanding of how to prevent recurring falls.

Traditionally, gait initiation and reaction to postural perturbation can be observed in

order to evaluate the potential an individual has to fall [7, 8, 9]. In addition, analysis

of standing upright posture allows for a better understanding of the overall balance control

system and the ability to identify strategies the human body uses to maintain upright posture

[10, 11, 12]. Kinematic, kinetic, and electromyographic signals have all previously been used

to identify strategies the body can use to main posture, initiate movement, or recover from a

perturbation. Each signal offers information about the balance control system, which could

ultimately lead to a better understanding of postural stability.

While several studies have focused on kinetic and electromyographic (EMG) signals in

order to analyze posture during perturbation, there a very few studies that have added

kinematic information as a factor [8, 13]. In contrast, there have been several studies that

have used kinetic and kinematic signals or kinematic and electromyographic signals in order

to analyze gait initiation but there have been only a few studies that have used all three

signals [14, 15]. Lastly, most studies focus on kinetic information in order to analyze standing

posture, but few studies use both kinetic and electromyographic information[7, 11]. The main

purpose of this study is to analysis an appropriate basis for stereotypical gait and posture. A

secondary purpose is to analyze how that basis can be applied to gait and postural analysis

of people with Parkinson’s disorder.



Dedication

Gait and posture are of particular importance to living independently. I can recall a time

before my grandmother passed when she was no longer able to walk as long or as far as she

could in the previous year. I remember her tenacity in insisting she could still get around

on her own and refusing to use some of the walking aids my mother and uncle persistently

asked her to use. When I would come home to visit her she would climb up the stair to see

me, even though she knew I would prefer her to safely wait for me to see her. I would then

promptly insist that she let me assist her back down to her living quarters, and she would

insist that she would be able to make it using the railing. Her persistence reinforced the

notion that independence of movement was important to quality of living.
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Chapter 1

Introduction

Postural analysis is the study of how the position of the body in any mode interacts with

internal and external forces. This type of analysis is typically used to assess potential ab-

normalities in the balance control system and to understand how the balance control system

changes with time. Although widely used in clinical and research studies, postural assess-

ment methods are scientifically inaccurate, and some data collection methods are relatively

expensive. A better understanding of the human balance control system could lead to more

accurate and less expensive postural assessment techniques. This is a review a commonly

used practices in analysis of quiet standing, postural perturbation, and gait initiation.

1.1 Quiet Standing

Quiet standing is the act of standing in one place without moving, which is complicated by the

human body being a multi-link inverted pendulum [16]. This causes difficulty in preventing

postural sway, because the balance control system must continuously act. However, the

central nervous system solves this challenge by continuously stabilizing the center of mass by

using sensorimotor coordination, which involves muscle contractions that can be seen using

electromyography [16, 17, 10]. One way to measure efficiency of the balance control system

is to look at postural sway, which can be identified by changes in the body’s center of mass

(COM)[16]. Stable quiet standing is achieved when the area of projected COM displacement

is significantly smaller compared to the area of the supporting contour of the feet [16]. In
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addition, studies have shown that center of pressure (COP) data such as amplitude, area,

and root mean square (RMS) of the COP displacement can identify reduced ability to recover

balance in neurological populations [18, 10, 11].

Since quiet standing involves relaying information to and from the CNS and it has already

been shown that the main signal for the balance control system comes from vision, some

studies have focused on secondary sensory conveyors. In particular, studies have shown

that light fingertip contact (< 1N) can lead to a decrease in overall postural sway when

visual information is not available [16, 17, 19]. According to previous studies, significant

reduction of body sway at the smallest possible force of finger contact must be a result

of feedback from proprioceptive means rather than as a result of the mechanical support

provided by the contact itself [16, 19, 20]. Overall, studies have identified the motor mech-

anisms of balance during quiet standing, but more information of how COP displacement

and electromyographic activity could lead to a better understanding of the balance control

system.

1.2 Postural Perturbation

A perturbation is a sudden deviation from normal gait or standing posture, which acts as a

destabilizing force and results in a displacement of the body’s center of mass (COM) [21].

These perturbation can occur internally (by the individual) or externally (by the environ-

ment) [21]. While perturbations happen in daily life, healthy young individuals are more

likely to recover balance from a perturbation than elderly people or people with neuromuscu-

lar disorders such as Parkinson’s (PD). Therefore, some studies investigate balance recovery

during perturbation to understand the difference in the balance control system between these

two groups.

According to prevoius studies, there are two main strategies to restoring balance after a

perturbation: feedforward control (or anticipatory postural adjustments, APA) and feedback

control (or compensatory postural adjustments, CPA) [21, 22, 23, 24]. Previous studies have

shown that a delay and/or diminishing occurs in APAs for elderly people and people with

neurological conditions, such as Parkinson’s [22, 25, 26, 27]. Therefore, methods that could
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strengthen APAs during perturbations could lead to an increase in overall stability.

Specifically, when a standing person with eyes closed receives a perturbation, providing

an additional support can significantly enhance the stability [21]. While studies have focused

on the instability within muscles, overall stability can be determined from ground reaction

forces (GRFs) [21, 28]. In addition, if stability is increased due to additional support, then

the motor mechanisms behind that increased stability can help to identify the decrease in

stability seen in neurlogical populations.

1.3 Gait Initiation

Gait initiation is the transition between the steady states of standing and walking[29, 30,

31, 32, 33, 34]. The transitional period is broken down into two main phases: anticipatory

postural adjustments (APAs) and execution phase[29, 32, 33, 6, 35]. Gait Initiation marks

the end of APAs and the beginning of the execution phase, which ultimately leads to heel-off

then toe-off of the reference limb1,4,9. APAs are necessary in order to achieve balance and

movement while walking[33, 34]. Impairment of APAs can lead to imbalance during gait

initiation, which sometimes can result in sudden falls[31, 33, 6]. In fact, participants with

neurological conditions, such as Parkinson’s disease (PD) tend to have higher incidence rate

of falls compared to healthy participants[36, 37]. An accurate and a reliable gait initiation

onset detection method is essential for a precise evaluation of both APAs and the execution

phase. Gait initiation in PD is complicated by neural disruption in the basal ganglia[30, 38].

Some symptoms of PD include freezing of gait and postural instability, which leads to falls,

fear of falling, and physical injuries[36, 39, 40]. Specifically, freezing of gait refers to an

absence or reduction of movement during any point of the gait cycle; however, it tends to

occur during postural transitions, including during gait initiation[36, 40]. Therefore, analysis

of gait initiation is of particular interest within this population as well as in any neurologically

impaired population.
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Onset Detection Methods

Over the last decade, several methods of gait onset detection have been proposed using

different types of data including electromyography[41], COP [42, 29, 32, 35, 43], and center of

mass [15, 44]. However, despite the substantial importance of reliability and accuracy of the

gait onset detection for the correct assessment of gait initiation performance, these methods

- especially those based on COP data - have been poorly standardized [29, 45, 41, 15, 44].

While several studies have used two [32, 6, 43] or three [35, 46] times of standard deviation

of COP displacement from baseline to detect the onset of gait initiation, the authors in [34]

applied a threshold equivalent to 10% of maximal COP velocity to calculate the onset.

Nevertheless, many studies commonly use the tedious visual inspection of COP velocity or

displacement to obtain the gait onset when the chosen algorithm fails to detect the correct

onset [15, 35, 47]. Evaluation of both reliability and accuracy of the gait onset detection

algorithms can address these issues and help with standardization of the gait onset detection

methods. Despite such a need, there exists a lack of existing literature regarding the accuracy

of onset detection algorithms. As for the reliability analysis, in a recent study, Sousa et al.

have tested the reliability of two algorithms - one employing 2-standard deviations of COP

displacement from the baseline to detect the onset and the other one using 5% of the first

peak of COP displacement as the threshold to obtain the onset[29]. The result of this study

revealed that the displacement baseline-method had higher reliability than the maximal

displacement-based method.

Additional Load

The process of gait initiation is innately unstable due to the transition of posture into a

single-leg stance and the simultaneous production of momentum to take a step with the

swing leg [48]. This transient state is marked by anticipatory postural adjustments (APAs),

which result in a deviation from the steady state of quiet standing [49, 14]. APAs are then

followed by the execution phase (EP), resulting in in steady state walking [50]. Impaired

and inadequate APAs are shown to be associated with an increased risk of falling [6].

The center of pressure (COP) response and its reliability during gait initiation has al-
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ready been well documented [49, 51, 45]. From the literature, we know that additional load

negatively affects dynamic balance during walking [52], the duration of APA during gait

initiation [50], and postural control during quiet standing [53]. However, to the best of the

authors knowledge, the effect of additional load on COP stability during the APA or EP

phase of gait initiation has not been studied yet. This work is aimed at investigating the role

of additional weight on COP stability and muscle activation (latency) during gait initiation.

We hypothesized that additional load would cause earlier muscle activation and lower COP

stability.

1.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) have been used to map gait measurements onto COM

data [54, 55]. Since gait initiation is inherently unstable, understanding how other gait

measurements coordinate with COM measurements can lead to a better understanding of

the balance control system. In particular, gait patterns are accommodated in people with

neurological conditions such as Parkinson’s. For example, the relative EMG signal amplitude

in the tibialis anterior in subjects with Parkinson’s shows inconsistency during gait initiation.

ANNs can be used to map the EMG signal to the COM data in order to understand how

the change in activity relates to the overall gait output.

1.4 EMG Normalization

Regarding gait and perturbation studies that use EMG data, normalization of EMG signals

is a crucial step that helps rule out confounding errors in interpretation [56]. Currently there

exist several methods for normalization [57, 58, 24]. While several studies have looked at

the effect of different normalization techniques during walking, to the best of our knowledge

no study has investigated the effect of these techniques on gait initiation or perturbation

[57, 58]. EMG signals can be a valuable tool for investigating muscle activity. However, to

properly quantify EMG data an appropriate normalization technique is needed for subject

to subject comparison [56].
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Chapter 2

A Comparison of EMG Normalization

Techniques in Gait Initiation and

Perturbation Studies

2.1 Introduction

Electromyography (EMG) shows the electrical activity in the muscles and is a commly used

tool in gait and postural studies. In particular, surface EMGs are commonly used because

of thier accesibility and ease of use. The normalization of EMG signals is a crucial step that

helps rule out confounding errors in interpretation and allows for comparison of in-group

subject-to-subject muscle activity [56]. Since normalization is an essential step in gait and

postural studies, the criterion for normalization should be considered carefully [56].

Currently there exist several methods for EMG normalization; however, the most effective

technique for normalization is unknown [57, 58, 24, 59]. In particular, a study on the spatial

variabilty of the muscle activity found using the peak EMG value during the stance phase

of walking or using the maximal volutary contractions reduced the spatial variablity of the

soleus muscle compared to unnormalized EMGs[59]. The study also noted that using the

peak value was more effective at reducing the variability compared to using the maximal

voluntary contractions[59]. However, it should be noted that only male subjects were used in
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this study[59]. This results show promise for the peak EMG value during the stance phase;

however, another study suggest using the maximum value obtained during walking trials

gave significantly different muscle forces than those obtained using the maximal voluntary

contraction method[57]. However, it should be noted that only two healthy subjects were

used to estimate significance[57].

While several studies have looked at the effect of different normalization techniques during

walking, this study seeks to investigate the effect of these techniques on gait initiation and

perturbation [57, 58, 59]. Specifically, the aim of this investigation is to compare dynamic

versus static peak EMG normalization techniques. We hypothesize that calculating the peak

using dynamic data will lead to a larger maximum EMG compared to using static calculation.

2.2 Materials and Methods

2.2.1 Experimental Protocol

For this study 10 healthy right leg dominant subjects (5 female, 5 male) consented to par-

ticipate in an investigation of gait initiation and perturbation. Surface EMG markers were

attached to 10 muscles unilaterally on the right side of the subject (soleus (SOL), erector

spinae lateralis (ESL), gluteus medius (GMED), tibialis anterior (TA), biceps femoris (BF),

external obliques (EO), vastus medialis (VM), medial gastrocnemius (GM), rectus femoris

(RF), rectus abdominis (RA)).

To get the static maximal contractions for the respective muscle the subjects pushed and

pulled a fixed bar with maximal effort for 5 seconds each to collect the static peak contraction

value for the muscles that opposed the action [24]. The subjects then stood on an AMTI

force plate and were perturbed with a pendulum (3% body weight) at the shoulder level

in front and back directions with both eyes open and closed at random sequence intervals

for a total of 60 perturbations. The accelerometer was placed on the subjects’ right knee.

The subjects then stood on a force platform and commenced gait initiation starting with

the right leg at a self-selected speed with and without 15% body weight added around the

pelvis for a total of 30 gait initiations.
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2.2.2 Data Analysis

After data was collected, the EMG signal was rectified and filtered using a Butterworth

band pass filter (10-50Hz). The data was then segmented and integrated. The integrated

data was then normalized using two methods: (1) dynamically - using the peak EMG value

during walking trials and (2) statically - using the peak EMG value during the static peak

contraction collection [60, 59]. Finally, the maximum integrated EMG (IEMG) from each

normalization method was calculated for each muscle by taking the maximum value across

all trials.

2.2.3 Statistics

The difference between the static and the dynamic methods were then compared using a

t-test between normalization methods (p < 0.05) Statistical analysis was performed using

Matlab R2016.

2.3 Results

The standard t-test gave significant values during perturbation for integrated EMGs for all

muscles except the GM and BF. Specifically, the integrated EMGs were significanlty higher

using the dynamic method. Similarly, during gati initiation all muscles except ESL were

significantly higher with the dynamic approach. Table 2.1 shows the result of the t-test for

both pertubation and gait initiation trials, and figure 2.1 shows the peak integrated EMG

values calculated for both methods.
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Figure 2.1: Bar Plot of Max IEMG between Static and Dynamic Trials

Table 2.1: Results of t-tests for Perturbation (Pert) and Gait Initiation (GI) Experiments

Muscle: SOL ESL GMED TA BF EO VM GM RF RA

Pert: 0.0013 0.0008 0.0012 0 0.1769 0 0 0.1052 0 0

GI: 0.0001 0.5599 0.0004 0 0.0209 0.0013 0 0.0088 0 0.0002

2.4 Discussion

The results show that during both gait initiation and perturbation dynamic versus static

calculation of maximal muscle contraction lead to significant differences in the peak value

for several muscles. For the two normalization methods tested, dynamic calculation lead to

higher values compared to static calculation. The higher integrated EMG for both conditions

may be due to an inability to reach the same muscle activity in the static trials. This finding

has important implications considering the selection of a normalization method. Specifically,

these findings corroborate those from a previous study [57]

These results may not be generalized to other age groups, and there should be additional

considerations for persons with muscle disorders or neurological conditions that effect muscle

activation. This study could benefit by considering bilateral muscle activity, since previous

studies have shown inhomogenous muscle activities in some conditions[61]. Furthermore,

this study could benefit from considering the maximal voluntary contractions method of

normalization since it is considered the gold standard for EMG normalization[57, 59]. Since
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most muscles had a higher peak value with the dynamic approach for both experiments, we

would recommend using this approach for both gait initiation and perturbation.
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Chapter 3

The Effect of Vision Compared to

Unilateral Additional Support on

Stability After a Perturbation

3.1 Introduction

The central nervous system (CNS) regulates postural control by integrating information from

the vestibular, proprioceptive, and visual systems [62]. When a perturbation or disturbance

of balance occurs, each system detects the change in balance and an output response to

correct the balance is generated based on the sum of the signals received from each system

[62]. Specifically, the CNS uses anticipatory postural adjustments (APAs) and compensatory

postural adjustments (CPAs) to restore balance [8, 63, 64]. APAs are initiated prior to the

perturbation and are based on the perceived effects that the perturbation may have on the

balance control system [8, 63, 64]. CPAs are initiated after the perturbation and serve to

restore the body’s position after a perturbation [8, 63, 64]. In particular, a past study has

shown that decreased visual acuity leads to a decrease in anticipatory postural adjustments

[64].

However, there are some common situations that may occur that suddenly decrease

the visual systems’ input into the CNS. For example, a sudden power outage during the
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night would lead to a lack of visual acuity. A previous study has already shown that using

a walker, which would provide bilateral support showed a CPA response similar to those

shown with vision [21]. That same study, showed that in conditions where vision is available,

visual information overruled simultaneously available proprioceptive information [21]. While

studies have focused on the the response seen in muscle activation, actual output response can

be determined from ground reaction forces [21, 28, 65]. We hypothesize that with unilateral

support when no visual information is available, CPA response should be similar to those

seen when visual information is available. This study aims to provide further evidence for

improved stability due to additional support when vision is limited.

3.2 Materials and Methods

3.2.1 Experimental Protocol

15 healthy young, right-legged adults (7 females, 8 males; age 21.9± 3.2 years) consented to

participate in this study. Surface EMG electrodes were attached to the following 10 muscles:

soleus (SOL), erector spinae lateralis (ESL), gluteus medius (GMED), tibialis anterior (TA),

biceps femoris (BF), external obliques (EO), vastus medialis (VM), medial gastrocnemius

(GM), rectus femoris (RF), rectus abdominis (RA). An accelerometer was attached to the

left clavicle. The subject stood on a force platform while a perturbation to the shoulder via a

swing pendulum was applied during standing [21] under the following conditions: eyes open

(EO), eyes closed (EC), and eyes closed while holding a grip force transducer on a stable

adjustable table (ECG).

3.2.2 Data Analysis

All data was processed using MATLAB R2012a. The EMG signals were first filtered with

a bandpass filter with cut-off frequencies 10-500Hz [14, 51]. The signals were then rectified

and low pass filtered with cut-off frequency 50Hz[21]. EMG onset was defined as the moment

the signal was greater than 2 standard deviations from the mean calculated from baseline.

In the case that the threshold method failed to produce an onset, the EMG signal was
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visually inspected for an onset. The onset (t0) was determined as the time in which the

accelerometer data deviated 10% from the mean. Finally, muscle latencies were defined as

the time difference between EMG onset and t0. Similarly, ground reactions were filtered using

a 20Hz Butterworth low pass filter. The center of pressure (COP) was then calculated and

divided into two sections: anticipatory (APA), which was defined as the COP from 250ms

before t0 until t0 and compensatory (CPA), which was defined as the COP from t0 to 250ms

after t0. Time domain features were then calculated in both sections for COP and included:

root mean square (RMS), mean distance from center, mean velocity, approximate entropy

(apEn), total excursion area (Area), total displacement (TD). All features were averaged

across trials for each subject.

3.2.3 Statistics

A one-way ANOVA was used to determine if there was a significant difference between

conditions for each feature. When a significant difference (p < 0.05) was found post hoc

analysis with Bonferroni correction was used to compare conditions.

3.3 Results

A significant difference between conditions was found for the following muscle latencies: TA,

BF, VM, RF, and RA (Table 3.1). Post hoc analysis revealed that for all muscles, latency

was significantly lower for the EO condition compared to both EC and ECG (Figure 3.1).

However, there was no significant difference for muscle latency between EC and ECG. During

CPA, a significant difference was seen for the total excursion area, total displacement, mean

distance, and approximate entropy of COP data. Specifically, total displacement, total

excursion area, mean distance, and approximate entropy were all significantly larger for

EC compared to either EO or ECG. No significant difference was found between the three

conditions during APA (table 3.2, figure 3.2).
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Figure 3.1: This shows a boxplot for each of the muscle latencies (p < 0.05)

Table 3.1: ANOVA Results for Muscle Latencies after a Perturbation

Muscles p-Values

SOL 0.553
ESL 0.972
GM 0.239
TA 0.020
BF 0.001
EO 0.596
VM 0.000

GMED 0.119
RF 0.000
RA 0.014

Figure 3.2: This shows a boxplot for each of the significant COP features (p < 0.05)

3.4 Discussion

The goal of this study was to examine the role of unilateral support and vision on balance

regulation after a perturbation. We were also interested in the response seen in information

from the ground reaction forces. We hypothesized that additional support would show a

similar response in CPAs as seen when visual information is available.
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Table 3.2: ANOVA Results for Center of Pressure Features for Anticipatory Postural Ad-
justments (APA) and Compensatory Postural Adjustments (CPA)

Feature APA CPA

MD 0.298 0.027
rmsAP 0.869 0.754
rmsML 0.481 0.651

MV 0.721 0.193
MF 0.997 0.366
TP 0.861 0.641
PF 0.882 0.286
f50 0.354 0.77
f75 0.768 0.794
HE 0.44 0.619
TD 0.219 0.01

apEn 0.083 0
Area 0.137 0.003

3.4.1 The Role of Additional Support

The addition of unilateral additional support showed a reduction of CPAs even though the

muscle latencies show that APAs were negligible. Specifically, the COP response showed no

significant difference between the condition with vision and the condition with no vision and

unilateral additional support. This result is similar to those found in previous studies[21, 8,

64]. Specifically, when vision is not available APAs are not generated, which can we see in

our muscle latencies[21, 8, 64]. However, when vision is not available and additional support

is available, then CPAs show a reduction of the COP response. These results suggest that

when vision is not available using unilateral additional support can be a valuable strategy

to improve postural control.
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Chapter 4

The Effect of Light Touch on Stability

During Quiet Standing

4.1 Introduction

Human beings employ multiple strategies to maintain body balance in standing position.

Specifically, the central nervous system (CNS) receives signals from visual, vestibular, and

proprioceptive systems and uses that input to output appropriate corrective responses[62]. In

particular, light touch can be used as a proprioceptive means of maintaining balance [19, 66].

Light touch has been defined as a force no greater than 1N that gives a non-supportive

fingertip contact with another stable object[19, 67, 68, 69]. Other studies have shown that

light touch increases postural stability[17, 19, 70, 67, 69, 66, 71]. The Hurst’s exponent is

a measure of long-term memory of a time series[72, 73]. We hypothesize that traditional

analysis will not be able to quantify the subtle changes that occur during standing. The

main objective of this study is to use the Hurst’s exponent to quantify the subtle changes

that occur with light touch compared to without light touch.

4.2 Materials and Methods

To achieve this goal, ground reaction forces from a force plate (AMTI) were collected from 15

healthy adults during quiet standing under the following conditions: eyes open while lightly

16



touching a force sensor (EOLT), eyes closed while lightly touching a force sensor (ECLT),

eyes open without light touch (EO), eyes closed without light touch (EC). Three 30-second

trials were collected from each condition, and light touch was defined as any force less than 1

Newton. Ground reaction force data was first filter using a 20Hz low-pass filter. The filtered

data was then used to calculate the center of pressure (COP). The Hurst’s exponent (HE)

was then estimated by first taking the first derivative of the COP and then using dispersional

analysis on the differentiated COP, and then calculating the coefficient of a polynomial of

degree 1 using the MATLAB built-in function polyfit() to a log-log plot[74]. The following

features were also calculated: root mean square, mean distance from center, mean velocity,

approximate entropy, total excursion area, total displacement.

4.3 Results

ANOVA results revealed that only HE was significantly different between conditions. Post-

hoc analysis showed that the HE for ECLT was significantly closer to 1 than the HE for EC

(p = 0.0006) and EO (p < 0.000001) (see Table 4.1 and Figure 4.1).

Figure 4.1: This shows a boxplot for each of the significant COP features (p < 0.05)
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Table 4.1: ANOVA Results for Center of Pressure Features for Vision and Touch Conditions

Feature p-value

MD 0.274269

rmsML 0.999247

rmsAP 0.877062

MV 0.149532

MF 0.825123

TP 0.985715

PF 0.954709

f50 0.475318

f75 0.995399

HE 1.35E-05

TD 0.612056

apEn 0.148704

Area 0.590554

4.4 Discussion

We hypothesized that traditional analysis would not be able to quantify the subtle changes

that occur in standing. The results show that only the Hurst’s exponent differentiated the

differences between light touch and no light touch. These results are in agreement with

findings from previous studies[19, 72]. We conclude that compared to traditional analysis,

HE analysis could discriminate the subtle postural changes associated with the displacement

of COP in healthy adults. This parameter could potentially be employed to discriminate the

postural changes associated with aging process and with neurological disorders.
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Chapter 5

Accuracy & Reliability of Onset

Detection Algorithms in Gait

Initiation for Healthy Controls and

Participants with Parkinson’s Disease

5.1 Introduction

Gait initiation is the transition between the quasi-static state of standing and the dynamic

state of walking[34, 30, 33, 31, 29, 32]. This transitional period is broken down into two main

phases: the postural phase and the execution phase. In the postural phase, the anticipatory

postural adjustments (APAs) for balance and moving is achieved via the displacement of cen-

ter of pressure (COP) in the posterior direction (by inhibition of soleus and bilateral gastroc-

nemius and the activation of tibialis anterior) and in the lateral direction (by preloading of the

leading foot by hip abductors)[34, 75, 76, 77]. On the other hand, the execution phase begins

with the unloading of the swing foot, which is followed by the unloading of stance foot[78, 42].

The motor program for APA is controlled through a stable mechanism in central nervous

system to manage the inherent instability of upright bipedalism during gait initiation5. The

impairment of APAs can lead to imbalance and sudden falls during gait initiation[33, 31, 6].
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Thus patients with neurological conditions such as Parkinson’s disease (PD) or stroke tend

to have higher incidence rate of falls compared to healthy participants[36, 37, 39, 40]. In

fact, gait initiation in PD is complicated by neural disruption in the basal ganglia[30, 38].

Freezing of gait – a common symptom of PD defined as an absence or reduction of move-

ment – tends to occur during any point of the gait cycle, especially gait initiation[37, 40, 45].

Analysis of gait initiation can help with better understanding of motor control system and

its impairment/degradation in the patient/older populations. Gait initiation analysis can

also assist with the development of rehabilitation programs or interventions for neurologi-

cally impaired population in a more efficient manner[29]. Accurate and reliable detection

of the onset of gait initiation is a pre-requisite for correct assessment of gait. For example,

the values of various quantitative measures of gait initiation including displacement of COP

during APA are dependent on the correct measurement or detection of the gait onset[29].

Over the last decade, several methods of gait onset detection have been proposed using dif-

ferent types of data including electromyography[41], COP[34, 29, 32, 35, 43], and center of

mass[15, 44]. However, despite the substantial importance of reliability and accuracy of the

gait onset detection for the correct assessment of gait initiation performance, these methods

- especially those based on COP data - have been poorly standardized[29, 45, 41, 15, 44].

While several studies have used two[32, 6, 43] or three[35, 46] times of standard deviation

of COP displacement from baseline to detect the onset of gait initiation, the authors in

1 applied a threshold equivalent to 10% of maximal COP velocity to calculate the onset.

Nevertheless, many studies commonly use the tedious visual inspection of COP velocity or

displacement to obtain the gait onset when the chosen algorithm fails to detect the correct

onset[35, 43, 47]. Evaluation of both reliability and accuracy of the gait onset detection

algorithms can address these issues and help with standardization of the gait onset detection

methods. Despite such a need, to the best of our knowledge, no study has ever evaluated the

accuracy of existing onset detection algorithms. As for the reliability analysis, in a recent

study, Sousa et al. have tested the reliability of two algorithms - one employing 2-standard

deviations of COP displacement from the baseline to detect the onset and the other one us-

ing 5% of the first peak of COP displacement as the threshold to obtain the onset[29]. The

result of this study revealed that the displacement baseline-method had higher reliability
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than the maximal displacement-based method. To our knowledge, no other study on relia-

bility analysis of gait onset detection has been published. In response to the existing need

for the standardization of gait onset detection methods, in this study we investigated both

the reliability and accuracy of three gait onset detection algorithms using COP data: The

first and second algorithms were a velocity baseline-based method (Method 2) and a velocity

extrema-based method (Method 3)[34], respectively. The reliability and accuracy of these

algorithms were obtained and then compared with those of the displacement baseline-based

method (Method 1), which had showed high reliability in the work of Sousa et al.[29]. Given

that the COP velocity is derivative of COP displacement and consequently more sensitive to

the changes in the signal, we hypothesize that the velocity-based detection methods (Method

2 and Method 3) will be more accurate and reliable than COP displacement baseline-based

method (Method 1).

5.2 Materials and Methods

Participants: 16 healthy right leg dominant participants (7 females), age (22.1± 3.1) and 3

participants with Parkinson’s disease (2 females), age (68.7 ± 7.7) consented to participate

in our study. All participants were required to be able to follow instructions and walk inde-

pendently (with or without any aid or orthosis) for at least 10 meters without rest, have no

pacemaker, no shoulder dislocation, no pain or sensory disturbances that may interfere with

their daily activities and should have no known auditory pathology. The experiment was

approved by the institutional review board at California State University, Long Beach. Be-

fore participation in the study, participants with PD took a Montreal Cognitive Assessment

(MOCA) test to assess their cognitive ability and were required to have a score above 24 to

participate in the study[79]. Data Acquisition: Participants were instructed to stand on a

force plate and given a verbal cue to initiate gait with their dominant leg. (Figure 5.1) shows

a schematic of positions of feet during the experiment: starting on force plate 1, using force

plate 2 as a marker for the initial swing position and ending after force plate 2. Participants

performed 10 trials of gait initiation. Ground reaction forces (GRFs) were recorded with

sampling frequency of 2000Hz. Initial Data Processing: The COP signals in the mediolat-
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eral direction (COPML) and anterior-posterior direction (COPAP ) were calculated from the

GRFs for each trial using the following equations:

COPML = −(My + Fz × z0)/Fz

COPAP = (Mx − Fy × z0)/Fz

where Mx and My are the moments around the mediolateral and anterior-posterior direc-

tions respectively. Fz, Fy and Fx are the forces in the z, mediolateral and anterior-posterior

directions respectively, and z0 is the plate thickness. The COP signals were filtered using a

second order Butterworth low-pass filter with cut-off frequency of 20Hz. To get a zero-phase

distortion, after filtering the data in the forward direction, the filtered sequence was reversed

and ran back through the filter[80]. Baseline data was defined as the first second of the trial

during which the subject was standing. Gait Onset Detection Algorithms: For Method 1,

the onset detection threshold was calculated as three times the standard deviation greater

(less) than the mean of baseline COP displacement in ML (AP) direction. For Method 2,

the threshold was calculated as three times the standard deviation greater (less) than the

mean of baseline COP velocity in ML (AP) direction. For Method 3, the threshold was

calculated as 10% of the peak (trough) of COP velocity in ML (AP) direction. For all al-

gorithms, onset was determined as the first instance (after the baseline) in which the COP

signal (displacement or velocity) in the AP (ML) direction was above (below) the threshold

for at least 50ms (average electromechanical delay) to exclude variations unrelated to gait

initiation[29, 81] (Figure 5.2). The onset was also detected visually at the base of a signifi-

cant deviation from initial COP for each trial. COP displacement during the postural phase

(∆COP ) was calculated as

∆COP = |COP (t0)− COP (tRHO)|

where t0 is the onset time of gait initiation and tRHO is the heel-off moment for the right

foot, i.e. when the maximum peak (minimum trough) of COP data in ML (AP) direction

occurs. Statistical Analysis: Statistical analysis was performed in Matlab R2017b (Math-
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Works, Inc, Natick, MA). The relative (intrasession) reliability and absolute reliability of

each algorithm were evaluated. For relative reliability, we calculated the degree of absolute

agreement among measurements of ∆COP through a two-way random effect model[82]. For

this purpose, intra-class correlation coefficients (ICC) type (2,k) of ∆COP and their 95% con-

fidence interval were obtained[45, 83, 84, 85]. Then the following ranges were used to report

the degree of ICC reliability[29]: 0–0.25 = very low correlation; 0.26–0.49= low correlation;

0.5–0.69 = moderate correlation; 0.7–0.89 = high correlation; and 0.9–1 = very high corre-

lation. To evaluate the statistical difference between intrasession reliabilities, t-statistic was

employed following the application of Fisher’s Z transformation[29]. To measure absolute

reliability, we calculated the coefficient of variation (CV) for ∆COP of each subject as[29, 85]:

CV = SD/Mean,

where Mean and SD are the average and standard deviation of data (∆COP ) across all

trials for each subject. Paired samples t-test was used to compare ∆COP and CV between

the methods and between ML and AP directions within each method. Unpaired t-test was

used to compare the results between healthy and PD subjects. A probability of less than

0.05 was used to indicate statistical significance. To measure accuracy of the algorithms, the

onset detection error of each algorithm relative to that of visual inspection was calculated

as:

∆t = |t0(visual)− t0(algorithm)|

A Wilcoxon rank-sum test was done on ∆t (due to non-Gaussian distribution) to measure

the significance of the difference between the accuracy of the three algorithms. We also

calculated the normalized histograms of onset detection error for each algorithm and used

the area under the normalized histogram for error values smaller or equal to 50 ms, as another

quantitative measure to compare the accuracy of the three algorithms.
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5.3 Results

With respect to reliability, all three algorithms had high to very high intrasession reliabil-

ity; however, the onset of the velocity baseline-based method (Method 2) and the velocity

extrema-based method (Method 3) showed significantly better absolute reliability than the

displacement baseline-based method (Method 1) in healthy controls. Figure 5.2 shows ex-

ample selections of each algorithm. For healthy subjects, significant differences of ∆COP

between all the methods were observed in both ML and AP directions (Table 5.1). In fact,

paired t-test analyses revealed that the calculated COP displacement by Method 1, Visual,

Method 2 and Method 3 were in increasing order (significantly), respectively. We also ob-

serve that regardless of the method, the COP displacement in AP direction was significantly

greater than that of ML direction. For the PD subjects, while Method 1 achieved the lowest

COP displacement among the methods (ML: p=0.02, AP: p=10-4), the other three methods

(Method 2, Method 3 and Visual Selection) showed no significant difference (ML: p=0.08,

AP: p=0.26). Similar to healthy subjects, the COP displacement of PD subjects in AP

direction was significantly greater than that of ML direction, regardless of the employed

onset detection method. Comparison of the ∆COP of healthy and PD subjects revealed that

COP displacement of PD subjects were significantly lower than those of healthy subjects in

both ML and AP directions for all the methods: SDD (p=10-4 and p=10-5), SDV (p=10-4

and p=10-8), EXV (p=10-3 and p=10-8), Visual (p=10-5 and p=10-7). For healthy par-

ticipants, all four methods (including Visual) showed high correlation in the ML direction

and very high correlation in the AP direction (except for Method 1 which showed high

intrasession reliability) (Table 2). However, no significant difference between AP and ML

intrasession reliabilities were observed for any of the methods (Method 1: p=0.70, Method 2:

p=0.17, Method 3: p=0.34, Visual: p=0.33). Interestingly, no significant difference among

the intrasession reliabilities of all four methods were also observed for healthy subjects (ML:

p=0.40, AP: p=0.05). For PD participants, all four methods showed high intrasession relia-

bility in both ML and AP directions, except for Method 3 in ML direction and Visual in AP

direction which demonstrated a very high correlation. Similar to healthy participants, no

significant difference between AP and ML intrasession reliabilities were observed for any of
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the methods (Method 1: p=0.42, Method 2: p=0.67, Method 3: p=0.38, Visual: p=0.47).

Furthermore, no significant difference among the intrasession reliabilities of all four methods

were also observed for PD subjects (ML: p=0.10, AP: p=0.54). Finally, the comparison of

ICC values of healthy to those of PD subjects revealed no significant difference for any of the

methods and in any directions. According to the absolute reliability analyses for the meth-

ods, the onset detection in the AP direction using Method 2 and Method 3 showed the most

reliability (Table 5.3). Paired sample t-test showed that CV values in ML direction were

significantly greater than those of AP direction for Method 1 (p=0.007), Method 2 (p=0.04).

However, for Method 3 and Visual selection, there were no significant differences between

the CV values of ML and AP directions (p=0.08 and p=0.20, respectively). The ANOVA re-

vealed that for healthy subjects there were significant differences between the CV of methods

in the ML direction (p=0.01). Specifically, while CV values of Visual selection and Method

3 revealed no significant differences (p=0.12), both methods showed significantly smaller

CV values relative to Method 2 (p=0.03). Among all four methods, Method 1 showed the

highest values of CV (p=0.001). Similarly, in the AP direction, ANOVA revealed significant

differences in CV values of all methods (p=0.03). However, further analysis showed that

only Method 1 had significantly higher CV values than the other three methods (p=0.008),

and in fact, the difference between absolute reliability of the other three methods were not

statistically significant. For PD participants, the CV values in the ML and AP directions

showed no statistically significant difference for any of the methods: Method 1 (p=0.09),

Method 2 (p=0.13), Method 3 (p=0.15), Visual (p=0.14). Furthermore, the ANOVA re-

vealed no significant difference in the CV values of among the four methods in ML (p=0.26)

or AP (p=0.11) directions. An unpaired t-test between the CV values of healthy and those

of PD subjects revealed no significant difference for any of the methods and in any directions

other than the following: For Visual selection (Method 3), CV values of PD subjects were

significantly larger than healthy subjects in ML (AP) direction with p=0.02 (p=0.01).

For both healthy and PD subjects, Method 2 has the highest accuracy in both the AP

and ML direction. All three algorithms were able to detect the gait onset close to that of the

visual inspection (difference being less than 100 ms), but the onset of the velocity baseline-

based method (Method 2) seems to be closer to that of visual inspection relative to the other
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two methods (Figure 5.3). In addition, the area under the histogram measure shows how

often (on average) each algorithm can estimate the gait initiation onset with an error less

than or equal to 50 ms (Figure 5.4). Note that the more accurate the algorithm, the higher

values of normalized histogram for smaller values of error. Thus, an algorithm with a higher

area under the histogram will be more accurate. Based on this interpretation, the results

showed that for an estimated error equal or less than 50 ms, Method 2 is the most accurate

algorithm for gait onset detection in both healthy and PD subjects with an overall accuracy

equal or greater than 0.76 (Method 1: 0.37, Method 2: 0.53). If the upper bound for the

estimated error is increased to 200 ms, the overall accuracy of Method 1, Method 2 and

Method 3 would increase to 0.63, 0.80 and 0.70, respectively (Table 5.4). For healthy adults,

the Wilcoxon rank-sum test revealed that in the ML direction, the estimated error of Method

2 was significantly lower than that of Method 1 (p=10-10) and Method 3 (p=0.01). Between

Method 1 and Method 3, the latter showed significantly lower estimation error. Similarly,

in the AP direction, Method 2 showed significantly lower estimation error than the other

two algorithms (Method 1: p=10-19, Method 3: p=10-6). For participants with PD, the

Wilcoxon rank-sum test revealed that in the ML direction, Method 2 had significantly lower

estimation error than that of Method 1 (p=0.02). However, there was no significant difference

between Method 2 and Method 3 (p=0.26) or between Method 1 and Method 3 (p=0.52).

Similarly, in the AP direction, Method 2 had significantly lower estimation error than that

of Method 1 (p=10-4). However, there was no significant difference between Method 2 and

Method 3 (p=0.23) or between Method 3 and Method 1 (p=0.1). Finally, the comparison of

error values between healthy and PD subjects revealed that the estimation error of Method

2 in healthy and PD subjects were not significantly different for both ML (p=0.21) and AP

(p=0.05) directions. However, Method 1 and Method 3 performed worse in PD subjects for

AP direction (p=10-4) and ML direction (p=0.01), respectively.
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Figure 5.1: Schematic of positions on force plate during gait initiation. ‘R’ denotes the Right

foot.

Figure 5.2: Sample threshold and onset detection values: (A) displacement baseline-based

method (Method 1); (B) velocity baseline-based method (Method 2); (C) velocity extrema

method (Method 3).
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Figure 5.3: Sample displacement and velocity of COP in a representative healthy young

adult and a participant with PD: (A) COP-ML direction in healthy; (B) COP-ML direction

in PD; (C) COP-AP direction in healthy; (D) COP-AP direction in PD.
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Figure 5.4: Normalized histogram of gait onset detection errors for three algorithms in

healthy and PD patient groups (A) using COP-ML data in healthy; (B) using COP-ML

data in PD; (C) using COP-AP data in healthy; (D) using COP-AP data in PD.

Table 5.1: Calculated COP displacement (∆COP ) values as mean± SD (in cm) using different

methods. * indicates significant results

Method 1 Method 2 Method 3 Visual

p-value
between

the methods

ML 3.79± 1.89 4.68± 1.62 4.84± 1.53 4.60± 1.42 10−8*

p-value
between

ML and AP
p = 10−8* p = 10−22* p = 10−25* p = 10−21*Healthy

AP 4.79± 1.66 6.79± 1.66 7.08± 1.99 6.59± 1.89 10−27*

ML 2.66± 2.47 3.58± 2.67 4.20± 2.54 3.33± 1.86 0.04*

p-value
between

ML and AP
p = 0.03* p = 0.006* p = 0.02* p = 0.003*PD

AP 3.28± 1.70 4.72± 1.93 4.85± 1.99 4.55± 1.71 0.004*
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Table 5.2: Intrasession reliability (ICC(2,k)) as mean (95% confidence interval) using differ-

ent methods. * indicates significant results

Method 1 Method 2 Method 3 Visual

p-value
between

the methods

0.83 0.85 0.87 0.88
ML

(0.67,0.93) (0.70,0.94) (0.75,0.95) (0.78,0.95)
0.4

p-value
between

ML and AP
p = 0.7 p = 0.17 p = 0.27 p = 0.33

0.8 0.92 0.92 0.93

Healthy

AP
(0.61,0.92) (0.84,0.97) (0.85,0.97) (0.86,0.97)

0.06

0.71 0.81 0.94 0.83
ML

(0.31,0.99) (0.22,1) (0.79,1) (0.24,1)
0.1

p-value between
ML and AP p = 0.42 p = 0.67 p = 0.38 p = 0.47

0.85 0.87 0.89 0.90

PD

AP
(0.29,1) (0.41,1) (0.53,1) (0.58,1)

0.54
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Table 5.3: Absolute reliability (CV) values as mean± SD using different methods. * indicates

significant results

Method 1 Method 2 Method 3 Visual

p-value
between

the methods

ML 0.44± 0.31 0.27± 0.18 0.23± 0.14 0.22± 0.12 0.01*

p-value between
ML and AP p = 0.007* p = 0.04* p = 0.08 p = 0.20Healthy

AP 0.29± 0.18 0.20± 0.07 0.19± 0.07 0.20± 0.08 0.04*

ML 0.72± 0.15 0.48± 0.27 0.33± 0.12 0.40± 0.19 0.15

p-value between
ML and AP p = 0.09 p = 0.13 p = 0.19 p = 0.14PD

AP 0.47± 0.14 0.28± 0.10 0.30± 0.08 0.26± 0.06 0.11

Table 5.4: Calculated areas under the normalized histograms of three algorithms for errors

less than or equal to 50ms

Healthy PD

ML AP ML AP

Method 1 0.57 0.59 0.47 0.37

Method 2 0.83 0.86 0.67 0.67

Method 3 0.81 0.73 0.53 0.53

5.4 Discussion

Employment of an accurate and reliable gait onset detection algorithm is a necessary step for

correct gait analysis. However, gait onset detection algorithms have been poorly standardized[29,

41, 15, 44] In response to this need, this study evaluated the reliability and accuracy of three

algorithmic methods in both healthy and PD subjects: a COP displacement-based algorithm

(Method 1), a COP velocity-based algorithm (Method 2) and a COP velocity-extrema al-

gorithm (Method 3). Our results revealed that all three algorithms have high or very high
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intrasession reliability in both ML and AP directions and for both healthy and PD subjects.

In fact, the analysis showed that there was no significant difference between intrasession

reliability of the any of the algorithms and that of the Visual method. These high values

of intrasession reliability corroborate that gait initiation is the result of some stereotyped

patterns of activity[29, 86]. These results are also consistent with the observation that COP

displacement achieves high reliability even in upright standing of PD subjects, even though

PD subjects present a decreased COP displacement backwards and towards the swing leg

compared to the healthy individuals[87]. With respect to absolute reliability, Method 1

showed the lowest reliability among the methods in both ML and AP directions for healthy

subjects. The differences of absolute reliability for Method 2, Method 3 and Visual selection

were not statistically significant in healthy subjects. For PD subjects, no significant differ-

ences were observed between the absolute reliability of the methods. However, the results of

CV analysis for PD subjects should be interpreted with caution, because in contrast to ICC

rendering one value per trial and for each subject, CV has only one value per subject. Given

the low number of PD participants in this study, the obtained CV analysis results may not

be valid for PD subjects.

Our results also indicated that, regardless of the algorithm used, the COP displacement

in the AP direction was significantly greater than that of the ML direction for both healthy

and PD subjects. This observation is consistent with those of [42, 35, 43, 88] and could be

explained by the fact that at gait initiation, the COP displacement backward would be more

substantial to produce the sufficient moments to propel the body center of mass forward in the

intended direction of stepping[43]. We also observed that COP displacements of PD subjects

in both ML and AP directions were significantly smaller than those of healthy subjects,

corroborating that the under-scaled voluntary movement in PD patients is present during

the preparation phase[43, 89] and emphasizing on the role of the basal ganglia in ‘energizing’

muscle activation for appropriate magnitude of scaling for particular tasks[42, 90]. Our

results also showed that among the three algorithms, Method 1 (Method 3) achieved the

smallest (largest) COP displacement values. This can be explained by the fact that Method

1 is a COP displacement baseline-based detection method while Method 3 is COP velocity

extrema-based method. Thus, Method 1 is more sensitive to the baseline variation (i.e.
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swaying in quiet standing) and has an onset later than that of Method 3. Since Method

1 (Method 3) has the latest (earliest) onset among the three algorithms, it presents the

smallest (largest) COP displacement during postural phase of gait initiation.

With respect to algorithm accuracy, in healthy subjects, Method 1 achieved the lowest

accuracy while Method 2 proved to be the most accurate one (in both ML and AP direc-

tions). In PD subjects, Method 1 still performed as the least accurate one, however, no

significant differences were observed between the performance of Method 1 and Method 3.

This observation in PD subjects could be explained by the fact that COP displacement sig-

nal is dampened in PD relative to healthy individuals11 . As both Method 1 and Method

3 detect the onset based on the changes in COP velocity signal, their difference in the lo-

cation of the detected onset was diminished by the dampened COP due to pathophysiology

of PD. In contrast, Method 1 finds the onset based on the COP displacement during quite

standing. PD subjects have increased body sway (in both ML and AP directions) [91]. The

increased body sway can result in a higher threshold value for the onset detection in Method

1. Consequently, the onset of Method 1 in PD subjects will still be significantly later than

those detected by Method 2 and Method 3. Our results also indicated that Method 2 was

the only algorithm whose accuracy did not significantly downgrade for PD subjects. So, in

conclusion, Method 3 seemed to be the most accurate algorithm. To our knowledge, this

is the first study evaluating both reliability and accuracy of gait onset detection algorithms

using COP data. All three algorithms had high intrasession reliability. But Method 2 and

Method 3 showed better absolute reliability than Method 1. From an accuracy point of view,

Method 1 outperformed the other two algorithms. Therefore, this study recommends using

the Method 2 algorithm for accurate and reliable gait onset detection.
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Chapter 6

Analysis of Stability during Gait

Initiation with Additional Load

6.1 Introduction

Gait initiation is a voluntary internal perturbation from upright stance leading to a steady

state gait cycle [49]. The process of gait initiation is innately unstable due to the transition of

posture into a single-leg stance and the simultaneous production of momentum to take a step

with the swing leg [48]. This transient state is marked by anticipatory postural adjustments

(APAs), which result in a deviation from the steady state of quiet standing [49, 14]. APAs

are then followed by the execution phase (EP), resulting in in steady state walking [76].

Impaired and inadequate APAs are shown to be associated with an increased risk of falling

[6]. The center of pressure (COP) response and its reliability during gait initiation has

already been well documented [49, 51, 45]. From the literature, we know that additional

load negatively affects dynamic balance during walking [52], the duration of APA during

gait initiation [76], and postural control during quiet standing [53]. However, to the best of

the authors’ knowledge, the effect of additional load on COP stability during the APA or EP

phase of gait initiation has not been studied yet. This work is aimed at investigating the role

of additional weight on COP stability and muscle activation (latency) during gait initiation

for healthy young adults and older adults with Parkinson’s disease. We hypothesized that

additional load would cause earlier muscle activation and lower COP stability.
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6.2 Materials and Methods

6.2.1 Protocol

Fifteen healthy subjects (7 females, 8 males; age 21.9± 3.2 years; weight 142.6± 29.0) and

two older adults with Parkinson’s disease (2 females; age 68.7±7.7) consented to participate

in this study. Subjects were all right-leg dominated (leg-dominance defined as the same

side as the foot a soccer ball would be kicked with) and had no known neurological or

musculoskeletal disorders. This study was approved by the institutional review board at

California State University Long Beach. All participants were informed of the step-by-

step process before being accepted as a volunteer. Electromyography (EMG) signals were

captured using disposable self-adhesive electrodes, which were applied unilaterally (on the

right side) to the following muscles: soleus (SOL), lateral erector spinae (ESL), gastrocnemius

(GM), tibialis anterior (TA), biceps femoris (BF), external obliques (EO), vastus medialis

(VM), gluteus medius (GMED), rectus femoris (RF), rectus abdominus (RA). Center of

pressure (COP) was calculated using the ground reaction forces (GRFs) from two consecutive

forceplates. Using the command go, subjects were asked to stand on a forceplate and initiate

walking as quickly as possible with their right leg. Subjects were instructed to complete one

gait cycle and terminate walking with both feet together past both forceplates (see Figure

5.1). There was a total of 15 trials of gait initiation for each of the following conditions:

subjects performing gait initiation normally (GI), subjects performing gait initiation with

15% body weight added around the pelvis (GIW). Weight was added symmetrically in 3lb

increments using an MiR Champion Belt around the center of the waist.

6.2.2 Data Analysis

After data was collected GRF signals were low-pass filtered with a 4th order Butterworth

filter with frequency 20Hz [45]. The COP was then calculated. The onset (t0) of gait was

defined as the time that the absolute value of first derivative of COP was greater than 2

standard deviations from the mean. The COP was then segmented into two-time epochs:

APA (-250ms to t0) and EP (t0 to heel-off) [76]. Segmented data was then linearly nor-
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malized to 250ms [92]. Each time-normalized COP was then used to calculate the following

features: total power (TP), mean distance (MD), root mean square (rms) for AP and ML di-

rections, mean velocity (MV), mean frequency (MF), median frequency (f50), 75th percentile

of frequency (f75), Hurst exponent (HE), and confidence ellipse area (Area) [92].

EMG signals were filtered with a bandpass filter with cut-off frequencies 10-500Hz [14, 51].

The signals were then rectified and filtered using a moving average filter with a window size

of 50ms. EMG onset was defined as the moment the signal was greater than 2 standard

deviations from the mean calculated from baseline (the first 50ms of trial when subject was

standing). Finally, muscle latencies were defined as the time difference between EMG onset

and t0.

6.2.3 Statistics

Each feature was checked for normality using the Kolmogorov-Smirnov test. The effects

between GI and GIW of additional load were evaluated using a paired t-test (for normally

distributed features) or a rank sum test (for non-normally distributed features). p < 0.05 was

chosen for statistical significance. Statistical analysis was performed using Matlab R2016a.

6.3 Results

The standard t-test for all muscle latencies, MV, and APA duration showed no significant

differences between GI and GIW (with p > 0.05) (see Table 6.1). The results of the paired

t-test for all COP features during APA and EP are displayed in (Table 6.2). We found sig-

nificant differences in the following: 1) for healthy subjects during APA, the mean distance,

the absolute value of the mean velocity, total displacement and approximate entropy were

significantly higher for GI compared to GIW (Figure 6.1, 6.2) for subjects with Parkinson’s

during APA, the absolute value of the mean velocity, total power, approximate entropy, and

area were significantly higher for GI compared to GIW (Figure 6.2, 6.3) for subjects with

Parkinson’s during EP, the 75th percentile frequency and approximate entropy were signifi-

cantly higher for GIW compared to GI (Figure 6.3) for subjects with Parkinson’s during EP,

Hurst’s exponent was significantly higher for GI compared to GIW (Figure 3). These results
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show a decrease in the pre-paratory phase of gait initiation. Lastly, there was no significant

difference found in the maximum values of COP for either subject group.

Table 6.1: Maximum value paired t-test (or rank sum) results between GI and GIW

Feature Healthy Parkinson’s

AP 0.5072 0.1989

ML 0.9181 0.7648

R 0.7086 0.7615

Table 6.2: APA and EP paired t-test (or rank sum test) results between GI and GIW. *

indicates significant results

Healthy Parkinson’s

Feature APA p-Value EP p-Value APA p-Value EP p-Value

MD 0.0410* 0.2488 0.6372 0.1577

rms-AP 0.5508 0.2485 0.1404 0.1004

rms-ML 0.6363 0.2983 0.7758 0.1847

MV 0.0150* 0.6648 < 0.0001∗ 0.9552

MF 0.8208 0.6961 0.1574 0.0883

TP 0.5411 0.314 < 0.0001* 0.1302

f50 0.8357 0.1529 0.3503 0.6601

f75 0.5746 0.8882 0.8685 0.0205*

HE 0.6907 0.4193 < 0.0001∗ < 0.0001∗

TD 0.0075* 0.2508 0.6846 0.1212

apEn 0.0013* 0.1286 < 0.0001∗ < 0.0001∗

Area 0.2174 0.2359 < 0.0001∗ 0.1989
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Figure 6.1: Bar plots showing mean ± standard deviation of significant features for healthy

young adults during the APA phase

Figure 6.2: Bar plots showing mean ± standard deviation of significant features for older

adults with Parkinson’s during the APA phase
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Figure 6.3: Bar plots showing mean ± standard deviation of significant features for older

adults with Parkinson’s during the EP phase

6.4 Discussion

During the EP phase there were no significant differences in the mean velocity with respect

to GI and GIW for either subject group suggesting that the subjects generated similar speed

in both conditions during that phase. However, during the APA phase both subject groups

had a significant difference with respect to GI and GIW. Specifically, GI had a higher mean

velocity than GIW. The results showed that our hypothesis was not supported. For healthy

subjects, the additional load had a significant lower mean distance, total power, and approx-

imate entropy during APA indicating a decrease in the transfer of weight before movement.

According to studies, higher values of mean distance, total displacement and approximate

entropy signify an increase in the COP trajectory, and consequently instability [10, 42].

Similarly, for subjects with Parkinson’s, during the APA phase, additional load significantly

de-creased the mean velocity, total power, approximate entropy, and area. Lastly, during

the EP phase, for subjects with Parkinson’s the additional load significantly in-creased the

75th percentile frequency, the approximate entropy, and the Hurst’s exponent and signifi-

cantly decreased the approximate entropy. The increase in the peak frequency and the 75th

percentile frequency, shows an increase in the frequency of oscillation, and consequently in-

stability [10, 42]. This reveals that the load positively affected stability during the APA
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phase for both subject groups and negatively affected stability during the EP phase for sub-

jects with Parkinson’s [10, 73, 72]. This study highlights the resulting instability due to

additional load during the EP of gait initiation. One previous study found that additional

load did not have a significant effect on the velocity during heel-off but did influence the

overall duration of APA [76]. The current study extended the previous result related to the

velocity not only to APA, but also to EP. In addition, our study revealed some features that

indicate a positive impact on the stability during the APA phase, while some features indi-

cate a negative impact during EP. While some studies have suggested the use of additional

load during therapy [72, 93], it is important to keep in mind the negative effects of additional

load on stability during the execution phase of gait initiation.

6.4.1 Conclusion

In conclusion, during gait initiation with additional weight, both healthy young adults and

older adults with Parkinson’s show increased stability in some COP features during antic-

ipatory postural adjustments. However, during the execution phase of gait initiation with

additional weight, older adults with Parkinson’s show decreased stability in some COP fea-

tures. These findings reveal that when additional load is used during gait initiation, further

precaution should be taken for older adults with Parkinson’s during the execution phase.
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Chapter 7

An Artificial Neural Network Model

for the Generation of Muscle

Activation Patterns During Gait

Initiation

7.1 Introduction

Gait initiation is a voluntary internal perturbation from upright stance leading to a steady

state gait cycle [49]. The process of gait initiation is innately unstable due to the transition

of posture into a single-leg stance and the simultaneous production of momentum to take a

step with the swing leg [48]. In fact, gait initiation is the gait phase in which most falls occur

[94, 88]. Therefore, an understanding of the balance control system during gait initiation

could lead to prevention of a significant portion of falls. The production of muscle activation

patterns during gait initiation involves relaying information to and from the central nervous

system from different sensory inputs. Understanding the relationship between these inputs

and muscle activation could lead to a better understanding of the balance control system.

However, it is a challenge to completely characterize the many inputs involved. A simpler

model can use kinematic and center of pressure (COP) response values to predict muscle
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activations [54]. The purpose of this study is to demonstrate the ability of an ANN model

to map the kinematic and COP response during gait initiation to the muscle activations

needed for successful gait initiation. Artificial Neural Networks (ANNs) have been used to

map gait measurements onto kinematic and COP data [54, 55, 78]. This study uses a model

similar to [5] and verifies viability of the ANN model across healthy subjects. Furthermore,

this study seeks to validate the viability of the ANN model for mapping gait measurements

in a subject with Parkinson’s.

7.2 Materials and Methods

7.2.1 Experimental Protocol

Fifteen healthy subjects (7 females, 8 males; age 21.9± 3.2 years; weight 64.5± 13.2 kg) and

one subject with Parkinson’s (male, age 60, weight 79.2kg) consented to participate in this

study. Subjects were all right-leg dominated (leg-dominance defined as the same side as the

foot a soccer ball would be kicked with) and had no known neurological or musculoskeletal

disorders. All participants were informed of the step-by-step process before being accepted as

a volunteer. A total of 25 Vicon placement markers and 6 Vicon placement arrays were placed

on the subject, and the kinematic data were collected with infrared cameras using VICON

Nexus 1.51. Unilateral markers were placed on the C7, sternal end of the right clavicle,

and the L5/S1. Bilateral markers were placed on the anterior portion of the acromion,

the most superior aspect of the iliac crest, the posterior superior iliac spine, the superior

anterior aspect of the greater trochanter, the most prominent aspect of the medial and

lateral femoral epicondyle, the most prominent aspect of the medial and lateral malleoli,

the metatarsal head of the greater toe and 5th digit, and the most distal aspect of the

2nd toe. Bilateral arrays were placed on the thighs, shins, and ankles. Electromyography

(EMG) signals were captured using disposable self-adhesive electrodes, which were applied

unilaterally (on the right side) to the following muscles: soleus (SOL), lateral erector spinae

(ESL), gastrocnemius (GM), tibialis anterior (TA), biceps femoris (BF), external obliques

(EO), vastus medialis (VM), gluteus medius (GMED), rectus femoris (RF), rectus abdominus
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(RA). Center of pressure (COP) was calculated using the ground reaction forces (GRFs)

from two consecutive forceplates. Using the command go, subjects were asked to stand on

a forceplate and initiate walking as quickly as possible with their right leg. Subjects were

instructed to complete one gait cycle and terminate walking with both feet together past

both forceplates. There was a total of 10 trials of gait initiation for each subject. EMG,

GRF, and kinematic data were captured simultaneously using the VICON system. The

EMG and GRF data were captured at 2000Hz while the kinematic data were captured at

100Hz.

7.2.2 Data Analysis

After data were collected, the center of motion (COM), right ankle angle, left ankle angle,

right hip angle, left hip angle, right knee angle, and left knee angle were calculated from the

kinematic data using Visual 3D. Each kinematic component was calculated in the x, y, and z

plane. GRF signals were low-pass filtered with a 4th order Butterworth filter with frequency

20Hz [45]. The COP was then calculated using teh following equations:

COPML = −(My + Fz × z0)/Fz

COPAP = (Mx − Fy × z0)/Fz

EMG signals were filtered with a bandpass filter with cut-off frequencies 10-500Hz [14, 85].

The signals were then rectified and filtered using a lowpass filter with frequency 50Hz. The

EMG signal was then normalized using the largest EMG output across all trials for each

muscle and for each subject. COP and kinematic components were normalized by subtracting

the lowest value across all trials and dividing the result by the maximum value across all

data for each component and for each subject. Finally, the normalized COP and EMG data

were down-sampled to 100Hz. Only three seconds of data were further processed. The first

second and the last segment of each data vector were not processed.
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7.2.3 Neural Network Model

This study used a neural network model after [54] with the following modifications: there

were 21 input units, 14 hidden units and 10 output units. The output vector consists of the

muscle activations of the SOL, ESL, GM, TA, BF, EO, VM, GMED, RF, RA. The input

units consisted of the kinematic components and the COP in the ML and AP direction.

Since, the input and output data were time varying a series of input and output vectors were

used where each vector pair was the matching data of a single time step [5]. The neural

network was then trained and tested using the neural network toolbox in MATLAB R2018a.

The data was dividing using 80% for training, 10% for validation and 10% for testing.

7.2.4 Network Assessment

The network model was assessed on its ability to predict the muscle activations on separate

gait initiation trials. The root mean square (RMS) difference between the actual and pre-

dicted muscle activation was chosen to measure degree of error in the magnitude and the

correlation was chosen to capture how well the network modeled the phasic profile [54, 45, 85].

The average and standard deviation of the RMS and correlation value were calculated for

each muscle for both healthy subjects and the subject with PD. A t-test was used to evaluate

if there was difference between trials for each muscle for every subject.

7.3 Results

The muscle activation time histories predicted by the model showed low RMS error and

low to high correlation values. For healthy adults, the RMS error values ranged from 0.02

to 0.11 and the correlation values ranged from 0.07 to 0.96. Standard deviation and mean

values across healthy subjects for each muscle are depicted in (Table 7.1). For the subject

with Parkinson’s, the RMS error values ranged from 0.02 to 0.11 and the correlation values

ranged from 0.14 to 0.91.
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Table 7.1: RMS Error and Correlation

Muscle

RMS error Correlation

Healthy PD Healthy PD

SOL 0.05±0.01 0.07±0.01 0.83±0.06 0.78±0.07

ESL 0.06±0.01 0.05±0.01 0.79±0.09 0.81±0.05

GM 0.06±0.02 0.07±0.01 0.78±0.16 0.82±0.06

TA 0.06±0.01 0.04±0.01 0.79±0.09 0.79±0.07

BF 0.05±0.01 0.03±0.00 0.80±0.07 0.73±0.11

EO 0.07±0.02 0.06±0.01 0.75±0.08 0.81±0.05

VM 0.05±0.02 0.03±0.00 0.77±0.09 0.78±0.09

GMED 0.05±0.01 0.05±0.01 0.80±0.09 0.81±0.08

RF 0.05±0.01 0.06±0.01 0.79±0.08 0.58±0.06

RA 0.06±0.02 0.07±0.01 0.75±0.09 0.53±0.19

A t-test revealed that there was a significant difference RMS error and correlation values

between trials for all muscle and across all subjects. For healthy adults, the correlation was

high for most trials with 49.4% of the trials with a correlation above 0.80, 70.9% with a

correlation above 0.75, and 84.2% with a correlation above 0.7. The weakest results were

obtained from the RA. These low correlation values correspond with low activation of the

RA during gait initiation. Also, the RMS value was low for most trials with 98.6% of the

trials having an RMS value less than 0.10 [54]. For the subject with Parkinson’s, 39% of

the trials with a correlation above 0.80, 59% with a correlation above 0.75, and 75% with a

correlation above 0.7. The weakest results were obtained from the RA. These low correlation

values correspond with low activation of the RA during gait initiation. Also, the RMS value

was low for most trials with 100% of the trials having an RMS value less than 0.10 [54].

(Table 7.2) displays the percentage of trials with a correlation above 0.8 for each muscle.
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Table 7.2: Muscle Correlation Percentage

Muscle

Percent Greater than 0.8 Percent Greater than 0.75

Healthy PD Healthy PD

SOL 73.30% 40% 91.10% 70%

ESL 51.10% 60% 70.00% 90%

GM 53.30% 70% 77.80% 90%

TA 48.90% 30% 74.40% 70%

BF 46.70% 10% 82.20% 50%

EO 33.30% 80% 52.20% 80%

VM 45.60% 50% 65.60% 60%

GMED 58.90% 50% 75.60% 70%

RF 52.20% 0% 72.20% 0%

RA 31.10% 0% 47.80% 10%
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Figure 7.1: Sample Muscle Activation patterns predicted by the model. T represents the

target muscle activation pattern and R represents the model’s output.

7.4 Discussion

The results of the models have demonstrated the feasibility of ANNs to model the kinematic

movement plan and COP response during gait initiation to the muscle activation patterns. A

model similar to [54] was used to verify viability of that ANN model across healthy subjects

and to validate the viability of that model for a subject with Parkinson’s. Overall, the

high correlation values and low RMS values are strong indicators for the model’s ability to

map the gait movement patterns onto the muscle activation patterns. However, there exists
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variability between each trial and differences do exist between the predicted behavior and

muscle activation patterns. Specifically, errors in the level of activation during gait initiation

can have a significant effect on successful gait initiation. In fact, the difference between

the correlation and RMS values in each trial suggests a more robust model is needed to

successfully map kinematic and COP response data to muscle activation patterns during

gait initiation.
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