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Figure 4: A serving of blancmange, “made according to a rather purist recipe, containing
only almonds, water, milk, sugar and gelatin”. Image by SKopp - Own work, CC BY-SA
3.0, https://commons.wikimedia.org/w/index.php?curid=33502092

5.2. Building the Function

In establishing our function, we must start with its building blocks. First
consider the function

x foro0<z<1i
x) = - Y
filz) {1—:1: forégzgl,

where values repeat over each succeeding unit interval (i.e. fi(x+1) = fi(x)).
(See Figure 5.)



250 On French Pudding and a German Mathematician

Figure 5: The first blancmange sawtooth function: fi(z). Image from [10] used with
author’s permission.

For subsequent functions we let

Fulz) = 2:_1 F(2 1),

This gives us fa(z) = 3 f1(2x), f3(x) = ;f1(4z), and so on.

Building off of this function, we form sequences b, () of their sums:

bi(z) = filz),
ba(x) = fi(x)+ fol),

bu(x) = booa(2) + fulz) = Y filx).

(See Figure 6 on the next page.)
We are now ready to define our blancmange function as b(x) = lim b,(x) for

n—oo

all x € R. Or, equivalently:
ba) =) fula). (3)
n=1

At this juncture, do note some algebraic and geometric properties of our
function h. Algebraically, the b, () sequences as n approaches infinity rapidly
approximate b(x) very precisely. Take, for example, n = 20. Then,

That is, by () approximates b(x) to within 0.000001. Geometrically, though,
no matter how large n is, b,(z) will never be a good approximation of b(x).
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Figure 6: Here are the first few steps in the construction of b, (). Notice how the function
already begins to stabilize slightly at bg(x), due to the rapid scaling-down of the sharktooth
fn(z). Image from [10] used with author’s permission.

Considering the difference between our function and one of its partial sums
for an arbitrarily large value of n, we get that

b(w) — by (z) = %b@”x).

That is, b(x) is a fractal.
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5.8. Proof of Uniform Continuity and Nowhere Differentiability

We begin with two lemmas:

Lemma 3. The difference b(z) — b,(x) can be made arbitrarily small.

Proof. For any fixed value of z, the sequence b (z),bs(z), ..., bx(x), ... is in-
creasing and bounded above by 1. For any k£ > n we know

0 bi(@) = ba(@) = fars (@) + -+ fiule) < (%)nﬂ +ot G)k
O (-0

1 —

1 n+1
< | = .
(3)

S0, bp(x) < bp(x) < by(x) + (5)" for k > n. Allowing n to increase so that
br(z) tends to b(x), the above statement becomes

1
2

1

bu(z) < b(a) < ba(a) + (5)

b(x) — bo(x) < (%)HH

As n increases, (%)"Jr1 decreases exponentially. Thus, a large n can be chosen
to make the difference b(z) — b, (x) arbitrarily small. O

Lemma 4. If |s —c| < 9, then |b,(s) — by(c)| < In.

That is,

Proof. While b(z) has a wobbly, fractal form, b,(x) is made up of straight
line segments produced in summing together n saw teeth, each of which with
a slope of +1. Thus the gradients of the line segments of b, (x) lie between

—n and +n. That is, @ < n. Or, equivalently,

|6, (s) — bu(c)| < nls— .
So, if |s — ¢| < 9, then we can substitute into the above equation to obtain

|br(s) — bu(c)| < dn. O
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Now we are ready to prove the first part of our main result:

Theorem 5. The blancmange function b(x) of Equation (3) is everywhere
continuous.

Proof. Given any fixed ¢ > 0 and s € R, let § = -, and assume |s — c[ < 4.
Consider

[b(s) = blc)| = [(b(s) = ba(s) + bn(c) = b(c)) + (bn(s) = ba(c))]-

By applying the triangle inequality to the right hand side of the above equa-
tion, we obtain

[b(s) = bc)| < |(b(s) = bn(s)) = (b(c) = bu(c))| + |(bn(s) — bu(c))]-

By Lemma 3, (b(s) — b,(s)) and (b(c) — b,(c)) can each be made arbitrarily
small. Thus their difference can, for our arbitrarily large n, be less than
By Lemma 4, we have that |s —¢| < § = o, then [b,(s) — bu(c)| < dn =
We are thus left with the statement

N D™

e €
b(s) —b —+-==c
bls) —b(e) < 5+ 5 =<
Thus if |s — ¢| < 5, then |b(s) — b(c)| < €. Because ¢ > 0 and s € R were
chosen arbitrarily, the inequality holds for any € > 0 and s € R. As such, we
can conclude that b(z) is uniformly continuous. O

Finally we wish to convince the reader that the following holds:

Theorem 6. The blancmange function b(x) of Equation (3) is nowhere dif-
ferentiable.

Proof. Earlier we mentioned the fractal property of the blancmange function.

That is,

b() — bu(z) = 2—171 (2"2).

Examining the above equation for various n, we see that when n = 1, b(x) —
bi(x) = 1b(2x) (We display this in Figure 7 below).

— 2
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Ay =bi()

\bl(X)

1 — 1

Figure 7: The left image is b(xz) — b1 (x), which equals the right image, %b(?:z:), of half-sized
blancmange functions. Image from [10] used with author’s permission.

See Figure 8 for when n = 2 and n = 4, that is, for the graphs

b(m)—bg(x):;lb(élx) and b(:p)—b4(:x):%b(16x).
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Figure 8: The left image shows the quarter-size blancmange functions that emerge when
n = 2. The right image shows the sixteenth-sized blancmange functions that emerge when
n = 4. Image from [10] used with author’s permission.

Now, to see the trend as n — oo, consider a larger n, say n = 1000. Reference
Figure 9 to see that the graph r(x) = b(z) — biooo() is yet another identical
blancmange function scaled down.
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Figure 9: r(z) = b(x) — bipoo(x). Image from [10] used with author’s permission.
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Given these illustrious images of the fractal nature of the blancmange func-
tion, we can prove its nowhere differentiability through two thought pro-
cesses. If we think about the function’s behavior in terms of limits, we know
that as « tends towards ¢, |z — ¢| — 0, but b(z) and b(c) will always be
distinct on yet another %—Sized blancmange function. Thus the quotient of
the limit will be undefined; that is, ¥'(c) will not exist at any point c.

If we think of the function’s behavior in terms of tangent lines, it is also
evident that the blancmange function is nowhere differentiable. Zooming in
on a single point will never cause the curve to flatten, due to the fractal or

“wobbly” nature of b(z). Thus, for every ¢, lim Yo)=be) qpes not exist, so
r—cC

Tr—cC

b(x) is differentiable at no point ¢ of our domain. O

6. Functions That Followed

One of the modern mathematicians to tackle the subject of such functions,
Mark Lynch began publishing papers in 1986. As mentioned before, mathe-
maticians of the 20*" century began to search for ways to make their examples
of nowhere differentiable functions unique. We have been through an expla-
nation of McCarthy’s supposedly simple thirteen-line proof. We have been
through the more intuitive and visual blancmange function. Lynch’s function
8] is unique in that it was the first example of such a function that does not
involve uniform convergence in its proof.

Prior to Lynch, everywhere continuous nowhere differentiable functions were
proven to be everywhere continuous via the Weierstrass M-test for uniform
convergence. (Note that the traditional proof showing that the blancmange
function is uniformly continuous uses the Weierstrass M-test and uniform
convergence; I chose to do the more laborious proof in Section 5 for the sake
of visualization.) Lynch experimented instead with the idea of mapping,
using compactness of a function’s graph to prove continuity of a function.
His article gave another construction of a everywhere continuous, nowhere
differentiable function that did not use uniform convergence.'

ncidentally, most of Lynch’s papers thereafter took a unique approach to math, es-
pecially Topology, focusing on much of the field’s quirks and pathological elements (for
example, the topologies where differentiable, nowhere continuous function exist) and at-
tempting to find new and different ways to define pre-existing ideas like limits, continuity,
and differentiability. His 1992 function is worth examining as another example, for its
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7. Prevalence of ND[0,1]

As pathological and, at first thought, as counterintuitive these continuous,
nowhere differentiable functions may seem, the size of the set of all such
functions is even more surprising. Before discussing how it could be that
“most functions” are nowhere differentiable, let us define a few terms.

ND Fora < b,let ND[a,b] be the set of all continuous nowhere differentiable
functions f : [a,b] — R.

Nowhere dense A set is considered nowhere dense if the interior of its
closure is non-empty.

Baire’s Category I Sets that can be written as the union of nowhere dense
sets are of Baire’s first category. We call these sets meager.

Baire’s Category II Sets that are not of the first category, that is, com-
plements of meager sets, are of Baire’s second category. We call these
sets residual.

We are now ready to state the theorem:

Theorem 7 (Banach-Mazurkiewicz Theorem). The set NDla,b| of all
continuous, nowhere differentiable functions on [a,b] is of the second category.

The proof of this theorem (see [11]) uses [a, b] = [0, 1], but a generalization to
the universal case follows easily. Defining F,, as the set made up of functions
that are differentiable at some point n € N, it can be shown that E, is
nowhere dense in the space C0,1]. Therefore, the set of all functions that
are differentiable somewhere can be written as the union of nowhere dense
sets. That is, | J F,, is meager. The complement of this set, the set of nowhere
differentiable functions, is therefore a residual set of Baire’s Category II.

Using other techniques (which will be stated but the complete proof along
with certain definitions will be left to reference [11]), we can prove the fol-
lowing:

unique construction and approach. It is strongly recommended by the author that the
reader consider reading [8].
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Theorem 8. Almost every function in C|0, 1] is nowhere differentiable. That
is, NDI0, 1] is a prevalent subset of C[0.1].

Before discussing this fact, we define:

Lipschitz A function f € C|a, b] is said to be Lipschitz at a point = € [a, b]
if there exists an M > 0 such that for every y € [a, b],

|f(z) = f(y)] < M|z —yl.

Analyzing the set of all nowhere Lipschitz functions, we find that its com-
plement is shy. Thus the set itself is a prevalent set. N D|a,b] is contained
completely within the set of all nowhere Lipschitz functions, meaning the set
of all nowhere differentiable functions is prevalent.

8. Parting Shots

Thank you, generous reader, for taking the time to read my paper. Studying
this topic was quite the “mathematikel” feat for me. That is to say, I learned
a whole lot. I hope you enjoyed learning about some of the history and
mathematics of this subject. Moreover, I hope I was able to somewhat convey
how truly beautiful and fascinating the field of Mathematics can be.

Postscript: This article was originally written for a course I took during my
first year at Pomona College: Introduction to Analysis, taught by Professor
Gizem Karaali. The course, along with this dive I took into everywhere
continuous nowhere differentiable functions, were a few of the experiences
that made me first fall in love with mathematics. I hope that this article
can bring to other students—even the ambitious calculus student!—the joy
of discovering some of the beauties and pathologies of mathematics.
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