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Abstract

Teacher Self-Efficacy and Mathematics Achievement Among Racial and Ethnic Minority 
Students: Evidence from the High School Longitudinal Study of 2009

By
Eliud Partida

Claremont Graduate University: 2022

Current data suggests that for every 1000 U.S. high school students only about a dozen from 

Racial and Ethnic Minority (REM) groups will obtain a STEM degree and pursue a STEM 

occupation. These numbers underscore the wealth of untapped talent in our high schools and the 

pressing need to broaden participation among REM students in STEM. Yet, policies aimed at 

improving teacher quality as a vehicle for broadening participation of REM students in STEM 

use measures that at best, are only weakly associated with positive educational outcomes for 

REM students. This study contributes an ecological perspective and analysis to advance current 

conceptions, research and policy around STEM teacher quality and improving the educational 

outcomes for REM students in STEM. It applies multilevel modeling to data from the High 

School Longitudinal Study of 2009 to examine the relationship between Teacher Self-Efficacy 

and the Mathematics Achievement of REM high school students. The results showed that Teacher 

Self-Efficacy was strongly associated with the Mathematics Achievement of REM students, even 

after controlling for prior achievement, individual student characteristics, and teacher quality 

measures such as teaching certification, subject-matter expertise, and years of teaching 

experience. Furthermore, School Climate was found to moderate the relationship between 

Teacher Self-Efficacy and the Mathematics Achievement thereby underscoring the particular 



importance of both teacher beliefs and school context for REM students. The final model 

detected no Mathematics Achievement gap between the REM student subgroup and the general 

student population. However, Asian and Black students performed statistically significantly 

above and below the national average respectively. Finally, model comparisons revealed notable 

differences in the relative influence of individual, teacher, and school factors on the Mathematics 

Achievement of American Indian, Black/African American, Hispanic, and Hawaiian/Pacific 

Islander student subgroups. Limitations and implications for policy and practice are discussed.
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Teacher Self-Efficacy and Mathematics Achievement Among Racial and Ethnic Minority 

Students: Evidence from the High School Longitudinal Study of 2009

In the last decade, there has been renewed interest and focus on STEM education reform. 

The STEM acronym is generally used to describe issues related to Science, Technology, 

Engineering and Mathematics but recently, it has come to represent an educational zeitgeist 

reminiscent of the Sputnik era. At that time (1957), the Soviet Union’s successful launch of the 

first earth-orbiting satellite signaled a direct threat to U.S. dominance in science and technology. 

The response was swift; galvanizing politicians, educators and the public in support of the 

National Defense Education Act of 1958 (Urban, 2010). The curricular reforms that followed—

spearheaded mostly by scientific committees and government agencies—sought to reform 

science and mathematics education in their own image, that is, favoring deeper conceptual 

understanding of science topics and its processes (inquiry) rather than the emphasis on 

vocational training being promoted by progressive educators of the era (Bybee, 2013). While 

prolific—in terms of the curricular materials borne out of this era—the reforms were short-lived, 

giving way to the accountability movement set into motion by the release of the seminal report A 

Nation at Risk: The Imperative for Education Reform (1983). In the decades that followed, the 

call for increased rigor in mathematics and science education was operationalized into a system 

of curricular standards, testing and accountability measures codified in the No Child Left Behind 

Act of 2001. Despite having a modest impact on mathematics achievement at the elementary 

level, the legislation had little impact at the secondary level mathematics or science (Dee & 

Jacob, 2010). Today, there is again a call to reform STEM education and while threats are more 

nebulous (i.e., globalization, knowledge economy, etc.) the refrain is familiar— if the U.S. is to 
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sustain global competitiveness, it must develop a highly skilled 21st-century workforce and 

doing so will depend heavily on reforming STEM education  (Bybee, 2007; National Reseach 

Council, 2011). 

The thrust of the argument for STEM education reform is primarily economic. The 

information age and globalization of markets present unique challenges that call for more highly 

skilled technological workforce. Industries such as communication, transportation, logistics, 

manufacturing, energy, and healthcare all increasingly rely on high-skilled workers with 

specialized technical training and/or advanced degrees in the STEM disciplines. Moreover, 

technological advances and innovation resulting from basic and applied research are expected to 

fuel the engines that will drive economic growth and security well into the future. Thus, the high 

school diploma—which was once considered the base-level of preparation for entry into 

workforce—is no longer sufficient for individuals to enter the technologically demanding 

occupations of the 21st century. As such, reforming STEM education is seen as critical for the 

future economic security of the nation (National Research Council, 2011).

A major challenge to meeting the demand for a STEM workforce is that certain groups 

are underrepresented in STEM fields, yet they make up an increasing proportion of the U.S. 

population (National Academy of Engineering, 2014). For instance, with respect to Hispanics 

and black non-Hispanics in the workforce, each of these groups accounts for only six percent of 

STEM workers, but 14 and 11 percent of overall employment, respectively (U.S. Department of 

Commerce 2011). From 2000 to 2009, Hispanics as a share of the overall workforce increased by 

four percent, while their representation among STEM occupations increased by only one percent. 

Non-Hispanic black workers increased as a percentage of the overall workforce by one percent 
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over this time period, while their share of STEM workers held constant. In part, this can be 

attributed to the lower high school and college graduation rates among these groups; however; 

among college graduates, Hispanics and black non-Hispanics are less likely to major in STEM 

fields, and, among STEM majors, individuals in these groups are less likely to ultimately end up 

in STEM jobs (U.S. Department of Commerce 2011a). 

Women are also underrepresented in the STEM domains.  In 2009, women earned 57 

percent of all bachelor’s degrees awarded, up from 54 percent in 1993 (U.S. Department of 

Commerce, 2011b). However, at the same time, the share of bachelor’s degrees awarded to 

women in mathematics and statistics declined by 4 percent and in computer science by 10 

percent. Consequently, while women have comprised a growing share of the college-educated 

workforce, their share of the STEM workforce has not increased. Only 14 percent of engineers 

are women, as are just 27 percent of individuals working in computer science and math 

positions. Women’s increased participation in the STEM workforce is essential to alleviating the 

shortage of STEM workers.

The broad challenge for improving STEM education is thus two-fold, as aptly captured in 

the title of the 2010 report: Prepare and Inspire: K–12 Science, Technology, Engineering, and 

Math (STEM) Education for America’s Future (PCAST, 2010). The first is to better prepare 

students to enter the 21st century workforce. The second is to broaden participation by ‘inspiring’ 

more students—particularly those from underrepresented groups—to pursue advanced degrees 

and careers in STEM. Accordingly, what follows is a closer examination of the STEM career and 

educational landscapes in the U.S.; including STEM employment trends, K-12 mathematics and 

science learning, high school course-taking in mathematics, and interest and motivation in 
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STEM. Lastly, this chapter concludes with an explanation of the importance of this study within 

the broad educational, policy and research context described.

STEM Occupation Outlook

The outlook for STEM employment can be summed up as high wages and increasing 

opportunity for those with the advanced eduction and training required for these jobs (BLS, 

2017). According to the Bureau of Labor Statistics (2017) , there were approximately 8.6 million 

STEM jobs in 2015, representing a 10.5 percent growth rate since 2009 compared to 5.2 percent 

for non-STEM occupations. Of these, computer occupations and engineers saw the highest job 

gains of any other STEM occupation. Combined, these two occupations comprised 5.5 million of 

the 8.6 million or 64% of STEM jobs in 2015. The growth in demand for these jobs has driven 

salaries for STEM occupations. Of the 100 STEM occupations included in the 2015 BLS report, 

93 had wages above the national average. The national average for all STEM occupations was 

$87,570 compared to $45,700 for non STEM occupations. Accordingly, STEM occupations 

require higher levels of education compared to non-STEM occupations. Virtually 100% of 

STEM employment was in occupations that require at least some post-secondary education. Of 

these jobs, 73 percent, namely software developers and engineers, require at least a bachelors 

degree compared to only 21 percent in all other non-STEM occupations. These trends are 

projected to continue into the next decade with the fastest STEM occupations expected to grow 

at a rate of between 23 and 33 percent. With strong demand for highly skilled STEM workers 

projected to continue into the next decade, there are concerns about our educational system’s 

ability to keep pace with the demand.
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Data from the National Center for Educational Statistics suggest that these concerns are 

warranted. They place the total number of STEM degrees conferred in 2016 (including 

certificates below the associates level) at approximately 668,000 representing a 5% increase 

from the year prior (NCES, 2019). In terms of raw numbers and current trends, these data 

suggest that our education system will indeed need to find ways to bolster the STEM educational 

and career pipelines. In the following section, I will discuss the two broadest inputs that are 

being targeted by policy makers as possible solutions to the shortage of STEM workers. The first 

is improving the preparation of K12 students to pursue post-secondary degrees in STEM and the 

second is increasing the number of students who not only choose STEM degrees but ultimately 

pursue STEM occupations.

K-12 Mathematics and Science Learning

As discussed above, there is virtually no pathway into STEM occupations that does not 

require rigorous preparation in mathematics and science. From research scientists and engineers, 

to high-skilled technical workers, preparation for these occupations begins in K-12 schooling. 

Broadly speaking, the preparation of U.S. students in STEM is often measured by their 

performance on national and international standardized assessments such as the National 

Assessment of Educational Progress (NAEP), the Programme for International Student 

Assessment (PISA), and the Trends in International Mathematics and Science Study (TIMSS). 

The NAEP is the largest ongoing nationally representative assessment of fourth, eighth and 

twelfth graders in various subject areas including mathematics, science and more recently 

technology and engineering literacy. In contrast, both PISA and TIMSS compare U.S. student’s 

performance in mathematics and science with that of students from other countries. Every 3 
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years since 2000, PISA has assessed 15-year old students in mathematics, science and 

technology literacy—that is, how well students are able to apply their knowledge of 

mathematics, science and technology to solve problems they are likely to encounter in real-life. 

Similarly, TIMSS assesses the mathematics and science performance of fourth and eighth graders 

every four years as well as in advanced mathematics and physics in student’s last year of 

schooling. Together, these assessments provide insights into how well U.S. students are prepared 

in STEM domains as well as how they perform relative to students from other nations.  

Over the past several decades, numerous reports have decried the underperformance of 

U.S. students on the aforementioned benchmarks of science and mathematics achievement 

(Bybee, 2007). While student’s average mathematics scores on NAEP have shown a modest 

increase since it was introduced in 1990, the trend has flattened in recent years (see Appendix A). 

Furthermore, in 2015, only 40% percent of fourth graders, 33% of eighth graders, and 25% of 

twelfth graders achieved a level of proficient or higher in mathematics (Appendix B). Similarly, 

38% of fourth graders, 34% of eighth graders, and 22% of twelfth graders achieved a level of 

proficient or higher on the science assessment (Appendix C).

These general trends also hold true across socio-economic, racial and gender lines; 

however, there are substantial gaps in average scores and proficiency levels across these groups. 

For instance, the gap in average mathematics and science scores between students who qualify 

for free and reduced lunch and students who do not, is between 23 and 29 points across all grade 

levels (Appendix B ). Similarly, the gaps in math and science achievement between white 

students and their Black and Hispanic counterparts start at 18 and 24 points respectively 

(Appendix B & C). Gender differences are less pronounced with males outscoring female 
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students by between two to five points in grade 12 and virtually no differences in grades four or 

eight. To put these gaps in average mathematics and science achievement into perspective, 

consider that in 2015, students who were either poor, Black or Hispanic performed about as well 

as their White and Asian counterparts did when the assessment was first administered in 1990.  

Data from the Program for International Assessment (PISA) 2015, and the Trends in 

International Mathematics and and Science Study (TIMSS) show a similar improvement pattern 

to NAEP; however, U.S. students score well below other industrialized countries. For instance, 

while the average mathematics achievement scores of U.S. fourth and eighth graders have 

increased by 21 & 26 points respectively since TIMSS 1995, they are 54 & 62 points below the 

average scores of fourth and eighth grade students from the top 5 performing countries 

(Provasnik et al., 2016). Similarly, PISA 2015 results show that U.S. 15-year olds scored below 

the Organization for Economic Co-operation and Development (OECD) average; in fact, they 

scored behind 36 other education systems. In contrast, U.S. 15-year olds fared slightly better in 

science literacy; scoring virtually the same as the OECD average and behind 18 other systems 

(NSB, 2018).

Overall, the U.S. has shown some improvement in mathematics and science achievement 

at both the national and international levels over the last 20 years. However, the modest gains in 

overall scores have not erased persistent achievement gaps between socio-economically 

disadvantaged, Black and Hispanic students and their more affluent White and Asian 

counterparts. Moreover, compared to other industrialized nations, U.S. students typically rank 

near the middle or the bottom of the pack suggesting that by these measures, U.S. students are 

not as well prepared as students from other developed countries to enter STEM fields. Still, some 
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argue that performance on international benchmarks—or any other standardized test for that 

matter—are poor indicators of student’s preparation and prospects for future careers. They point 

out that measures of achievement do not capture other important skills (i.e., creativity, 

communication, critical thinking etc.) that matter more than scores on standardized tests. 

Furthermore, students may have little to no incentive do well on a test that they perceive as 

having little relevance to their future or educational aspirations, especially given the ubiquity of 

high-stakes, low-relevance tests that have characterized the U.S. education system for the past 3 

decades (Koretz, 2017).

High School Coursetaking in Math and Science

Another measure of how well students are prepared to pursue STEM degrees are the 

courses they take during their secondary schooling. Students who aspire to go to college in the 

U.S. must meet minimum course requirements and take college admissions exams such as the 

Scholastic Aptitude Test (SAT) and the American College Testing (ACT). While the minimum 

high-school graduation course requirements vary from state to state and sometimes by school 

district, college admission requirements are more uniform. By and large, most 4 year colleges 

require a minimum of three years of mathematics; specifically algebra I, geometry, and algebra 

II; and 3 years of science, including at least one year of a laboratory science course (Bromberg & 

Theokas, 2016).  However, while meeting the minimum requirements help students gain entry 

into college, it is those who take more advanced mathematics and science courses that are more 

likely to persist in earning STEM degrees in college (Tyson, Lee, Borman, & Hanson, 2007; 

Wang, 2013). Therefore, high-school course-taking patterns, particularly advanced courses, are 

good indicators for how well prepared students are to pursue and earn STEM degrees in college.
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According to the National Science Board (2018), approximately 89% of students who 

graduated high school in 2013 completed algebra II or higher (Appendix D). Of these, 

approximately 25% stopped with algebra II; 24% took trigonometry or other advanced math; 

22% took calculus and 19% took calculus or higher. Put differently, approximately two out of 

every three high school students in the U.S. will take an advanced mathematics (beyond algebra 

II) course during high school; and four in ten will take calculus. In contrast, socio-economically 

disadvantaged, Black and Hispanic students are much less likely to take advanced mathematics 

courses. For instance, whereas 37% of students in the top SES quintile took advanced 

mathematics courses, only 9% of students in the bottom SES quintile did. Similarly, Black and 

Hispanic students took advance courses at a rate of 15% and 9% respectively compared to 22% 

of white students (Appendix D). Asians had the highest rate of advanced mathematics course-

taking across all groups at 50%.   

Compared to mathematics, a smaller number of students took advanced science courses 

with 79% of students who graduated high school in 2013 taking at least 1 general science course 

and 21% at least one advanced course (Appendix E). Put differently, whereas two in three 

students take advanced math, only about 1 in 5 take advanced science. Moreover, economically 

disadvantaged, Black and Hispanic students were less less likely to take advanced science 

courses. The number of students in the highest SES quintile who took advanced science courses 

outnumbered those from the lowest SES quintile by a factor of 3 to 1. The percentage of Blacks 

and Hispanics who took advanced science classes were 14% and 16% respectively. Asian 

students were once again more likely to take advanced courses with a 51.5% taking an advanced 

class and 20% taking advanced physics.  
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The course taking patterns described above suggests that a majority of students are 

meeting the minimum requirements for college admission eligibility. Collectively, 89% and 79% 

of high school students take advanced mathematics and science courses respectively. Yet, 

eligibility does not necessarily translate into college admission and admission does not mean that 

students are prepared and will persist in rigorous STEM majors. Several studies place post-

secondary STEM attrition rates somewhere in the range of 50% with the strongest correlate 

being prior preparation (Chen, 2009; Bettinger 2010; Lowell et al. 2009; Zumeta and Raveling 

2002). Many colleges and universities, particularly those who serve populations that are 

underrepresented in STEM, offer remediation courses for freshman despite evidence indicating 

that students who take less rigorous courses during their freshman year are more likely to drop 

out (Chen, 2013). Therefore, although high school students may be taking the required 

coursework to get into college, the post-secondary data suggests that these courses may not be 

adequately preparing them to succeed in college. Data from both NAEP and the American 

College Testing (ACT) exams echo this claim, putting the percentage of college-bound high-

school completers that are prepared for college-level STEM coursework at between 37%-42% 

(Kena et al., 2016). These percentages drop to between 21%-27% for Hispanics and 11%-13% 

for Blacks. Thus, while students are taking the coursework and exams necessary to enter college, 

there appears to be a disconnect between the level of preparation students receive at the high-

school level and the rigor demanded of college-level coursework.

Transitions into STEM Majors

In order for students to enter STEM careers, they must first choose to pursue post-

secondary education. Using data from a nationally representative sample of high school students, 
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Datlon, Ingels and Fritch (2016), found that approximately 76% of study participants who were 

9th graders in 2009, were either enrolled or planned to enroll in a post-secondary degree program 

in 2013; 42% in a bachelor’s degree program and another 34% in an associate’s degree program 

(Appendix F). The rates were lower for socio-economically disadvantaged, Black and Hispanic 

students. Among students in the lowest SES quintile, only 15% enrolled or planned to enroll in a 

bachelor’s degree program, compared to 67% of those in the top SES quintile. For Blacks and 

Hispanics the rates were 32% and 25% respectively compared to white and Asian students who 

were at 50% and 52% respectively. The numbers for associates degrees were more even with 

Blacks and Hispanics enrolling at rates of 35% and 41% respectively, compared to 30% for both 

White and Asian students. There were no gender-based differences in either bachelor’s degree or 

associate’s degree pursuits with percentages mirroring the overall program enrollment rates. 

These results are consistent with both achievement and course enrollment data; namely, that 

factors related to socio-economic status and race play a major role in students post-secondary 

pursuits; particularly in relation to enrollment in Bachelor’s degree programs. 

The percentage of who enroll in post-secondary degree programs are just the first part of 

picture of STEM degree attainment. Dalton et al., (2016) also reported the percentage of high 

school students who identified STEM majors as their post-secondary course of study (Appendix 

G). Overall, approximately 23% of study participants who graduated high school in 2013 

identified a STEM major as their field of choice. These percentages were slightly higher for 

those seeking Bachelor’s degrees with 32% choosing STEM majors compared to 17% of those 

pursuing Associate’s degrees. While there were virtually no gender differences in post-secondary 

enrollment rates, there were significant differences in STEM major choice with males out 
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numbering females by approximately two to one. Differences along socio-economic lines were 

also pronounced with students in the bottom SES quintile choosing STEM majors at a rate of 

17% in Bachelor’s degree programs and 29% in Associate’s degree programs compared to 30% 

and 35% respectively for students in the highest quintile. Asian students had the highest rates of 

STEM major choice, with those pursuing Bachelor’s degrees choosing STEM majors at a rate of 

53%; and those pursuing Associates degrees at 27%. These rates were 23% & 12% and 28% & 

16% for Black and Hispanic students respectively (Appendix G). The rates for STEM major 

choice for White student’s were not markedly different than the rates of non-Asian students with 

32% choosing STEM Bachelor’s majors and 16% choosing STEM Associate’s degree program 

majors. This data suggests, that with the exception of Asian students, the rates of STEM degree 

choice are fairly even across racial lines but differences are more pronounced across socio-

economic and gender lines.

The Importance of Teachers

Improving the quality and number of STEM teachers is a major focus of current policy 

efforts (PCAST, 2011). Federal programs such as the Robert Noyce Teacher Scholarship, Teacher 

Quality Partnership, and Math for America provide tuition and salary supplements to individuals 

with STEM degrees who obtain their teaching certification and commit to teach in a high-need 

school for a minimum number of years. On the whole, these programs provide extensive 

professional training, support, and mentorship that prepare them to become mathematics and 

science teachers in teacher shortage areas. The central assumption of this strategy is that highly 

qualified teachers, that is, those that have a strong background in the content, will be more 

effective teachers. While there is some evidence that teacher exams are positively correlated with 
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student outcomes, a recent literature review conducted by the National Council on Teacher 

Quality reports the effect size of such teacher examinations to be between 1-3% of a standard 

deviation (Putman & Walsh, 2021) , making teacher examinations among the weakest predictors 

of achievement in the literature (Hattie, 2009). That is not to say that licensure examinations are 

not important or should not be used as signals of teacher quality but rather that effective teaching 

requires a broader set of knowledge, skills and practices that go beyond the teachers knowledge 

of the subject being taught. In his seminal synthesis of meta-analyses, Hattie (2009) found 

teacher beliefs and teaching approaches to be among the strongest predictors of student 

achievement with Teacher Collective Efficacy to be the highest predictor of achievement above 

all other student, home, teacher or curricular influences. Collective Efficacy is defined as the 

shared belief among teachers at a school that they have the ability to bring about the academic 

success of the students they teach. The effect size of Teacher Collective Efficacy is estimated to 

be in the range of 1.7 standard deviations which is of much more practical significance when 

compared to the range of effect sizes reported for teacher examinations on student achievement. 

There is no doubt that teachers matter and the overwhelming evidence points to teacher beliefs as 

a major source of variation in academic achievement (Cherry, 1986). Less clear is whether or not 

the effect of teacher beliefs is consistent across racial groups. Furthermore, the fact that 

Collective Teacher Efficacy was found to the top predictor of achievement signals that teacher 

effectiveness is not a personal characteristic but rather a function of both the explicit and implicit 

social structures within a school that support teachers in promoting the academic success of their 

students.

Need for Ecological Perspectives
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Prepare and inspire are the two primary directives for STEM education reform. The data 

presented here, show that on the ‘preparation’ side, there are uneven achievement outcomes in 

STEM along socio-economic and racial lines. In addition, there are also disparities along these 

lines with respect to proportion of individuals who pursue post-secondary STEM degrees and 

ultimately choose STEM careers. These patterns are consistent from primary grades through 

college ultimately resulting in a shrinking proportion of students remaining on paths towards 

STEM careers. A simple thought experiment can illustrate the point. Considering a hypothetical 

representative population of 1000 U.S. high school students, the data suggests that by the end of 

their K-12 educational trajectory, we might expect 420 of these students to enroll in a Bachelor’s 

degree program after high school. Based on national benchmarks, we might also estimate that 

less than half of them would be adequately prepared for college level mathematics and science 

coursework. Of these college-bound students, approximately 137 would choose to pursue STEM 

degree programs with 32 being female and 105 male. Furthermore, approximately 113 of them 

would be either White or Asian, 13 would be Hispanic and 10 would be Black. Considering 

attrition rates for STEM majors, only 66 would actually complete their degree (Appendix H). 

Lastly of the graduating class of STEM majors, six would be Hispanic and six would be Black. 

The number of Native American or others would be 1 or 0. This illustrative model, while 

rudimentary, represents the central challenge of broadening participation in STEM.

Thus, there is a need to understand how to better prepare students in mathematics and 

science as well as how to increase interest in STEM pursuits for all students, especially those that 

have been historically underrepresented in these fields. This includes both understanding how to 

improve achievement in STEM but also the factors that result in these gaps in outcomes. Given 
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the economic impetus for education reform, policies around STEM education often follow labor 

market models that point in increased teacher quality, quantity and academic standards as the 

main levers to increasing achievement. However, these input/output models often treat schools 

and school systems as black boxes that explain little about why or how the inputs lead to the 

observed outputs. Understanding these interrelations is critically important because it moves 

towards a more nuanced understanding—one that places achievement within a network of 

individual, school and societal factors that make up an opportunity context that influences 

educational and societal outcomes (Pollack, 2017). From this perspective educational systems 

can be characterized as an ecology of opportunity that can be analyzed and understood at 

different levels of organization and as such provide more explanatory power for describing 

observed phenomenon. Such an understanding is needed to develop practical solutions in the 

form of interventions and or policies that support the development of systems that spark, develop 

and sustained interest and achievement in STEM. 

From a theoretical standpoint, the field of STEM Education research has turned its 

attention to motivation and interest development (Potvin & Hasni, 2014). This line of inquiry 

stems from the troubling and repeated finding that interest in STEM domains declines across 

schooling (Potvin & Hasni, 2014). Even more troubling is the fact that these patterns seem to be 

more salient in developing countries and are not attributable to differences in achievement—that 

is, in developed countries with above average achievement in STEM domains, students seem to 

be less interested in STEM compared those developing countries (Olsen & Lie, 2011). These 

patterns  point to a need to move beyond measures of achievement as important indicators for 

future STEM career interests. Achievement alone does not explain why or why not students 
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become interested or choose to pursue STEM careers therefore more research is needed to 

understand the factors that are driving these decisions in young people. Nevertheless, 

achievement in general and mathematics achievement in particular is an important educational 

outcome that has major implications for who does and does not ‘qualify’ to pursue STEM 

degrees and careers. This is particularly important given the strong relationship between prior 

mathematics achievement and persistence in post-secondary STEM degrees. Thus, examining the 

relationship between teacher practices, beliefs, and mathematics interest and mathematics 

achievement will contribute to the theoretical understanding of how these factors interact and 

shape future educational and career decisions. 

This study seeks to contribute to the theoretical, practical and policy dimensions of the 

problem by investigating Mathematics Achievement from an ecological perspective, that is, one 

that examines how multiple factors at various levels of analysis interact to produce educational 

outcomes. In Chapter Two, I draw on the Museus et al. (2011) Racial and Ethnic Minority 

(REM) STEM Model as an organizational tool to review the literature on factors that have been 

found to both limit and promote the success of REM students in STEM pursuits. The REM 

STEM model, while useful for identifying both inputs and outputs at both the school and 

individual levels, is limited in explaining the processes involved from a theoretical perspective. 

That is, it highlights several inputs (e.g., lower school funding, teacher quality, curriculum) as 

well as outcomes (e.g., achievement, college major, academic preparation) but ultimately it is a 

“black box” model that says little about the processes that involved in producing these outcomes. 

Therefore, in addition to the REM STEM model, I will draw on sociological, socio-cognitive and 

psychological theories to not only examine inputs and outputs but also to theorize about the 
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mediating processes involved across different organizational levels namely the school and 

individual. Given the importance of context and relationships to this analysis I draw on Emile 

Durkheim’s idea structural functionalism as the theoretical basis for how structural features of a 

context can have effects on individuals within this context. I also draw from Albert Bandura’s 

Socio-cognitive theory to theorize about how student interactions with their context can lead to 

both affective and cognitive outcomes including mathematics achievement. As such this study 

will seek to answer the following research questions:

1. Does the variation of Mathematics Achievement of REM students within and between 

schools differ from that of the general student population?

2. Are higher levels of Teacher Self-Efficacy generally associated with higher levels of 

Mathematics Achievement among REM students?

3. To what extent is the Mathematics Achievement of REM students attributable to 

differences in Mathematics Teacher’s Self-Efficacy after controlling for Student 

Characteristics?

4. To what extent is the Mathematics Achievement of REM students attributable to 

differences in Mathematics Teacher’s Self-Efficacy after controlling for both Student 

Characteristics and Teacher Quality?

5. Does the nature of the relationship between Mathematics Teacher Self-Efficacy and the 

Mathematics Achievement of REM students vary across schools?

6. Does the School Context influence the relationship between Mathematics Teacher Self-

Efficacy and the Mathematics Achievement of REM students?
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7. How does the nature of the relationship between Mathematics Teacher Self-Efficacy, 

Mathematics Achievement and School Context vary across REM subgroups?

Chapter 3 describes the theoretical and statistical basis for using Multi-level modeling, 

variables used, and the analytic approach. Chapter 4 includes an analysis of the results in three 

parts. The first part includes descriptive statistics for all the variables including select cross 

tabulations for achievement outcomes by race and socio-economic status. Next, an analysis of 

the correlation matrix for all the variables included in the model is provided. Finally, the results 

of each statistical model are provided and discussed in relation to the research questions. The 

implications for both theory and policy as well as potential next steps for research are discussed 

in Chapter 5.
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Chapter 2. Review of Literature

Introduction to Literature Review

The disparities in educational outcomes among underrepresented groups is among the 

most widely studied aspects of education since the publication of the Coleman Report (1966) 

over 50 years ago. This seminal study was the first to highlight important sociological factors 

that contributed to disparities in educational outcomes for racial and ethnic minority students 

including the social composition of the school, the student's sense of control of their environment 

and future, the verbal skills of teachers, and the student's family background (Coleman, 1966). 

More recently, the attention on STEM education has resulted in a body of research into the 

STEM-related educational experiences of underrepresented groups and factors that contribute to 

gaps in the educational outcomes of these groups.

While the term underrepresented minority or URM is widely used in research and policy, 

some scholars argue that the term itself is harmful because it obfuscates the origins of inequality 

for Black, Brown and Indigenous people (Bensimon, 2017; McNair et al., 2020; Walden et al., 

2018). According to Bensimon (2017), this bypasses the “race question” which constitutes a 

form of malpractice that erases the unique experiences and histories of Black, Indigenous People 

of Color. This argument extends to a wide range of terms such as ‘at risk’, urban, 

underprivileged, underserved, under-resourced, which signal race but avoid explicit mention of 

it. In response, the term Black Indigenous People of Color (BIPOC), has been adopted by various 

groups as a way to center the unique histories, voices and experiences of of Black and 

Indigenous people in the United States (Garcia, 2020). Despite ongoing discussion among 

academics, activists and allies, there is no consensus for which term or terms best serve to both 
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build solidarity among oppressed groups while also maintaining and amplifying each group’s 

unique history and shared experiences with oppression in the United States. Deo (2021) urges 

scholars to examine the language we adopt and carefully match it to our data, priorities and 

conclusions. With this in mind, this study will use the following terms with respect to racial and 

ethnic identities while also acknowledging that racial identification is complicated and that racial 

categories, language and labels may not fully represent the experiences, histories and voices of 

any one group either collectively or individually.

Race–Categorizations that are created by humankind based on the hereditary traits of 
different groups of people, thereby creating socially constructed distinctions. Racial 
identification is complicated and racial categories overlap, meaning that one person can 
fit into two or more of the racial categories.

Ethnicity–Identity based on a person’s nationality or tribal group. Each racial group 
consists of many different ethnicities. For the purposes of this study, ethnicity is an 
identity based on membership in a segment of a larger society that does not share the 
same culture with other segments of society.

Racial and ethnic minority (REM) students–Students who identify as Asian American and 
Pacific Islander (AAPI), Black, Hispanic, or Native American. Mixed-race individuals 
are excluded in this definition.

Asian American and Pacific Islander–Although Asian Americans and Pacific Islanders 
are two distinct groups, they are often lumped together under this term and categorized as 
one race. Where statistics or literature refers to both groups, I use the term “Asian 
American and Pacific Islander,” which refers to a person with origins in East Asia, South- 
east Asia, the Indian subcontinent, or the Pacific Islands. Asian Americans include, but 
are not limited to, Americans of Bangladeshi, Cambodian, Chinese, Filipino, Hmong, 
(Asian) Indian, Indonesian, Japanese, Korean, Laotian, Malaysian, Pakistani, Sri Lankan, 
Taiwanese, Thai, and Vietnamese descent. Pacific Islanders include, but are not limited 
to, Native Hawaiian, Guamanian/Chamorro, Samoan, Tongan, and Fijian groups.

Black–Persons with origins in any of the Black racial groups of Africa or persons with 
ethnic origins in the Black racial groups of the Caribbean, Central America, South 
America, and other regions of the world.
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Hispanic–Persons having ethnic origins in the peoples of Mexico, Puerto Rico, Cuba, 
Central America, South America, or other Spanish cultures and communities. This word 
includes groups who identify as Chicano, Latino, and Mexican American.
Native American: This word refers to a person having ethnic origins in the indigenous 
peoples of North America and who identifies with indigenous tribes or communities. This 
category includes American Indians and Native Alaskans.

White–Persons with ethnic origins in the peoples of Europe, White peoples of North 
Africa, or peoples of the Middle East.

As discussed in the introduction, reducing student group differences in educational 

outcomes is a key challenge that policy makers (and practitioners) face in broadening 

participation in STEM pursuits. Generally referred to as the “achievement gap," educational 

disparities between students who are economically and culturally enfranchised and those who are 

not can be conceptualized as nested sources of gaps in opportunity and achievement across 

different units of analysis (Ream, Ryan, & Espinoza, 2012). This ecological view, urges 

researchers to consider the various factors and interactions that give rise to patterns in 

educational outcomes at various levels of analysis. Given the focus of policy makers with 

achievement outcomes, this literature review will first examine the extant literature on the 

relationship between academic preparation and future success in STEM pursuits. Next, it will 

examine the research around the factors that have been shown to negatively impact the success 

of racial and ethnic minority students in STEM as well as those factors that promote their 

success. Lastly, this chapter will conclude by situating this study at the convergence of the 

various lines of inquiry described.

Academic Preparation and STEM Success

The future prospects for students engaging and finding success in STEM degrees 

increases dramatically when they are rigorously prepared in secondary mathematics and science. 
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The courses students take in  middle and high-school, the rigor of these courses and student 

performance in these classes by and large determine how likely a student to receive further 

training in STEM fields. For instance, using data from the National Education Longitudinal 

Study 1988 which tracked 8th grade students for 12 years, Adelman (2006) found that the rigor 

of academic preparation students received in their secondary schooling was the strongest 

predictor of them completing a baccalaureate degree; even after controlling for other precollege 

factors.  Although, Adelman’s (2006) findings reflected aggregate completion rates across all 

majors and were not specific to STEM degrees King (2015) analyzed the same dataset and found 

that students with rigorous secondary school mathematics preparation were about one and a half 

times more likely to persist in a STEM majors compared to those less well prepared. King (2015) 

also noted that prior mathematics achievement predicted persistence even after controlling for 

socioeconomic status, gender and race. Thus, rigorous secondary mathematics appears to be an 

important protective factor that contributes to persistence in post-secondary STEM majors. This 

is particularly important given the low rates of racial and ethnic minority choosing to pursue 

Bachelor’s degrees in STEM and the persistent gaps in mathematics achievement already 

discussed.

School Funding

At the broadest level, scholars view inequitable educational outcomes as resulting from 

social class and power dynamics whereby disparities are a result of historical and current socio-

cultural forces such as conscious and unconscious bias, cultural capital, as well as systemic 

oppression (Delpit, 2012; Sensoy & DiAngelo 2017; Tatum 2017). These explanations range 

from societal and cultural norms about who does or does not have the ‘natural’ aptitude to pursue 
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certain careers or courses of study. Socio-cultural norms and biases are believed to impact 

achievement by shaping perceptions about who can and cannot be successful in STEM as 

portrayed in media and reinforced both conscious and subconsciously in society. This results in 

systems that create and reproduce inequities in educational opportunities for racial and ethnic 

minorities such as unequal school funding, tracking into remedial courses, underrepresentation in 

advanced placement courses, exposure to under-qualified teachers as well as low expectations 

from teachers (Museus, Palmer, Davis, & Maramba, 2011). Together these factors contribute to 

persistent and systemic disparities in the academic preparation of racial and ethnic minority 

students by limiting their opportunities to pursue higher education and STEM careers.

School funding is one such factor that has been found to have a significant impact on 

educational outcomes in general and STEM educational outcomes in particular. A large portion 

of school dollars comes from local property taxes which results in the inequities because racial 

and ethnic minorities are much more likely to live in schools that are in neighborhoods with a 

lower than average tax base and thus receive less per pupil spending compared to school is more 

affluent areas (Adelman, 2006; Flores, 2007; Oakes 1990). This often results in schools not 

having adequate facilities, curricular materials, staffing as well as other forms of support for 

students such as tutoring, special programs and other forms of educational opportunities like 

field-trips or science laboratories that provide students with early exposure to STEM careers 

(May & Chubin, 2003). According to data from the National Assessment of Educational Progress 

(NAEP), approximately 35% of students of color (Black and Hispanic) attend schools where 

more than 75% of students qualify for free and reduced lunch (Flores, 2007). As a result, 
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inequities in school funding disproportionately limit the educational opportunities that racial and 

ethnic minority students’ have to succeed in mathematics and science (Wenglinsky, 1997).

Academic Tracking

     Academic tracking has also been found to have a negative impact on the academic 

preparation of racial and ethnic minority students. Academic tracking refers to the systemic 

practice of restricting access to college preparatory and/or advanced placement courses in ways 

that disproportionately exclude racial and ethnic minority students. In practice, academic 

tracking may take the form of imposing what are deemed to be merit-based pre-requisites to 

enroll in certain courses or advanced academic tracks (Oakes, Gamoran, and Page, 1992). These 

may include grades, test scores or sometimes even teacher recommendations. While intentional 

or not, these practices lead to systemic exclusion of racial and ethnic minorities because when 

enacted, these policies make an assumption that students are playing on an even playing field and 

are also based on very narrow notions of ability. Furthermore, studies have shown that students 

learn more when exposed to rigorous curriculum and advanced concepts regardless of their prior 

achievement (Gamoran, Porter, Smithson & White, 1997). More troubling, is the fact that racial 

and ethnic minority students are more likely to be tracked into remedial tracks than their white 

counterparts even after controlling for standardized assessments (Gándara, 2006; Flores, 2007; 

Oakes 1995). This suggest that tracking as a systemic practice is biased against racial and ethnic 

minorities even when the tracking is based on ‘objective’ measures. Given the fact that academic 

tracking can start as early as elementary school (Oakes & Lipton, 1990), it poses a significant 

barrier to racial and ethnic minority student’s opportunities and access to rigorous STEM 
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curriculum which in turn has a negative impact on their level of preparation to pursue advanced 

education and careers in STEM fields.

Related to academic tracking,  racial and ethnic minority students are underrepresented in 

advanced placement courses which limits their preparation for advanced studies and STEM 

career pursuits. In a study of a nationally representative sample of high school students, Adelman 

(2006) found that racial and ethnic minorities were less likely to attend schools that offered 

advanced placement courses in advanced mathematics such as trigonometry and calculus 

compared to their white and asian counterparts. One explanation for this pattern is based on a 

supply and demand argument which reasons that schools don’t offer AP courses unless they have 

‘advanced’ students to fill these courses. This notion runs counter to the research showing that 

students of all abilities experience learning benefits from exposure to rigorous curriculum 

regardless of their prior achievement. These benefits include higher performance on standardized 

college entrance exams as well as school persistence (Bonous-Hammarth, 2006; Fergus, 2009). 

According to Ladson-Billings (1997), the lack of exposure to demanding and rigorous 

curriculum serves as gatekeeper for racial and ethnic minority students to pursue opportunities in 

college and beyond. Similarly, Moses & Cobb (2001) see the lack of access to rigorous 

mathematics curriculum, specifically Algebra, as critical not only for equal access to economic 

opportunity but also as a pre-requisite for full participation as a citizen of a democratic society. 

Thus, access to rigorous curriculum is an important factor that must be taken into account when 

examining educational outcomes for racial and ethnic minority students.

Teacher Quality, Expectations and Pedagogy
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While there is little debate that teachers are among the most important factors that 

contribute to educational outcomes, there is less consensus around what constitutes teacher 

quality (Boonen, Van Damme, and Onghena 2014; Hanushek 2011; Harris and Sass 2011; 

Jackson, Rockoff, and Staiger 2014; Stronge, Ward, and Grant 2011). Some researchers 

investigate the extent to which teacher characteristics such as experience, education, salary, exam 

scores, and certification can account for differences in student achievement (Hanushek & Rivkin, 

2006). In contrast, others are more more concerned with outcomes than identifying specific 

characteristics employ evaluation systems that determine the ‘value added’ a teacher has on 

student academic achievement (Darling-Hammond et al., 2012). Still others, seek to identify 

competencies or practices that have the highest impact on student learning and achievement to 

better support teacher development (Hattie, 2009; Marzano, 2003; Walberg, 2006). Regardless of 

the measures used the salient pattern is that “highly qualified” teachers, by any indicator, are less 

prevalent at high-poverty and high-minority schools (NSB, 2016). 

 According to the National Science Board (2016), Black and Hispanic students were half 

as likely to be taught by teachers with a master’s or other advanced degree than their white 

counterparts. In other studies researchers have repeatedly found that teachers with less than 3 

years experience are twice as likely to teach schools that predominantly serve Black and 

Hispanic students (Flores, 2007; Darling-Hammond, 2000; Ladson-Billings, 1997). Similarly 

teachers who teach at high-poverty schools are disproportionately inexperienced compared to 

those who teach in low-poverty schools (Moore, 2000). The scale of this problem was laid bare 

by Akiba et al., (2007) who found that among 46 countries, the U.S. ranked 41st in teachers with 

a mathematics major. Thus, the problem of inexperienced teachers has both racial, and socio-
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economic dimensions and is by comparison a more serious problem in the United States than 

many other countries.

The teacher quality issue is being addressed at the national level through programs 

designed to provide incentives and scholarships for highly qualified individuals that have degrees 

and/or STEM career experience to become STEM teachers (Zambon, 2011). There is ample 

evidence showing that teachers who have a degree in the subject have a positive impact on 

educational outcomes (Goldhaber and Brewer, 2000; Hill, Rowan, and Ball, 2005); however, 

more recent evidence suggest that teachers require additional knowledge and skills to become 

effective teachers of racially and ethnically diverse students in STEM (Ganley, Partida, Mills, 

2019). Thus, teacher quality is being defined both in terms of subject matter competency as well 

as competencies related to teaching culturally and linguistically diverse students (Poplin and 

Bermúdez, 2019). These competencies include knowledge of culturally responsive practices that 

leverage students culture, language and unique identities as assets to enhance motivation and 

learning. Highly competent teachers that have advanced degrees in the subject they teach and use 

culturally responsive teaching practices promote achievement by exposing students to rigorous 

curriculum in a caring and supportive environment that actively seeks to counter persistent 

educational inequities. 

Another issue related to teacher quality is teacher expectations of students; specifically 

low expectations of racial and ethnically diverse students in math and science courses (Bissell, 

2000; Collins, 1992; Thompson, Warren, and Carter 2004). The relationship between teacher 

expectations and student’s academic achievement is a reciprocal one. It is a negative feedback 

loop where teacher’s low expectations have a negative impact on student achievement and lower 
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student achievement has a negative impact on teacher expectations (Cherry, 1987). Coupled with 

the fact that racial and ethnic minority are more likely to struggle academically, these students 

are disproportionately impacted by lower academic expectations. Ochoa (2013) describes 

phenomenon as ‘academic profiling’ that  results in less privileged students having starkly 

different educational experiences that limit their educational opportunities despite their potential 

for success. In mathematics and science classes racial and ethnic minorities (and women) are 

“profiled” as lacking ability in STEM fields through subtle messages that such disciplines are 

White and Asian male domains. Other research shows that racial and ethnic minority students are 

particularly influenced—both positively and negatively—by their perceptions of their teachers 

expectations in mathematics and science courses (Clewell, Anderson, and Thorpe, 1992).

In contrast to academic profiling, culturally responsive teaching is an approach to 

teaching culturally and linguistically diverse students that has been shown to enhance learning 

and increase student achievement (Hammond, 2015). Hammond asserts that culturally 

responsive teaching is a matter of activating children’s brains no matter who the children are and 

creating an environment of curiosity, experiment and play that gives them an opportunity to see 

themselves as competent members of an academic community.  Hammond asserts that culturally 

responsive teaching practices comprise four dimensions including (1) awareness; (2) learning 

partnerships; (3) information processing; and (4) community of learners and learning 

environment. The awareness dimension includes teachers’ knowledge of the socio-political 

factors that result in systemic inequities for culturally and linguistically diverse students 

including the role that schools play in perpetuating and countering such inequities. Learning 

partnerships refers to the idea that teachers see themselves as student’s learning partners by 
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supporting both their cognitive and affective development so they can become independent 

learners. Information processing includes teaching kids how to think and providing them with 

various ways to relate to, and make sense of academic content in a manner that leverages their 

rich cultural and life experiences. Lastly, the community of learners dimension is characterized 

by an environment that is academically and socially safe for learning and one in which students 

see themselves as part of a learning community that values and supports each other’s learning. 

Studies on culturally responsive teaching show that this approach helps students strengthen their 

connection with school and enhance learning (Kalyanpur & Harry, 2012; Tatum, 2009). 

Culturally responsive teaching is also supported by neuroscience research showing that it helps 

students build fluid intelligence, also referred to as intellective capacity (Hammond, 2014). 

Anderson (1990) and Tate (1994) argue that approaches to mathematics and science teaching that 

fail to draw on the cultures and traditions of racial and ethnic minority students causes those 

students to view these subjects as the exclusive domain of White males which keeps them from 

identifying or seeing themselves in these roles. Other research shows that incorporating 

culturally responsive approaches in mathematics and science classroom has a positive impact on 

Black, Native American, Hispanic and Southeast Asian American students (Denson, Avery, and 

Schell, 2010; Tate 1995; Nelson-Barber and Estrin, 1995; Kiang, 2002). These studies show that 

culturally responsive approaches appear to be important in improving the educational outcomes 

including academic success of Racially and Ethnic Minority students.

Teacher Self-Efficacy

Within the teaching domain, self-efficacy has been theorized and operationalized as both 

personal and general self-efficacy (Kim & Seo, 2018). Personal self-efficacy is most closely 
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aligned with Bandura’s (1977) conception self-efficacy and refers a teachers belief in their own 

ability to successfully perform a teaching-related task such as managing a classroom, 

implementing an instructional strategy, or engaging students in learning. Alternatively, general 

self-efficacy is more closely aligned with Rotter’s (1966) locus of control theory in which 

teacher efficacy is the teacher’s belief as to whether control of reinforcement lies externally, in 

the environment, or internally, within themselves (Tschannen-Moran & Hoy, 2001). This 

difference has led to some inconsistencies in the literature with respect to the link between 

teacher self-efficacy and student achievement; however, the general finding has been that teacher 

self-efficacy is positively associated with student achievement regardless of the scale used (Kim 

& Seo, 2018). Furthermore, the strength of the association is influenced by teacher (i.e., years of 

experience), student (i.e., family background, gender, prior achievement) and school (i.e., 

location, composition) variables. This is consistent with Bandura’s (2006) assertion that self-

efficacy is strongly context dependent which also underscores the challenge in drawing 

inferences when teacher, student and school contextual factors are not available or are not taken 

into account.

Teacher Self Efficacy has been found to be positively associated with quality classroom 

practices and processes, achievement as well as teacher well-being (Zee & Koomen, 2016). 

Teachers with higher levels of Self-efficacy engage in quality classroom practices that promote 

learning including: process-oriented instruction; differentiation; accommodating learning goals; 

relating content to students’ lives; and use of effective teaching strategies that support inclusive 

education (Allinder, 1995;Martin, Sass, & Schmitt, 2012; Thoonen, Sleegers, Oort, Peetsma, & 

Geijsel, 2011; Wertheim & Leyser, 2002). In addition, teachers with high self-efficacy tend to 
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engage more in professional development and are more likely to try out new approaches to 

improve their practice (Geijsel, Sleegers, Stoel, and Kruger, 2009). Therefore, teacher self-

efficacy may indirectly influence student achievement by improving students’ learning context 

thereby increasing opportunities to learn.

Student Self-Efficacy

Self-efficacy refers to confidence in one’s ability to successfully complete a specific task.  

Self-efficacy has been shown to influence behavioral outcomes such as selection, persistence and 

effort to complete similar tasks in the future (Bandura 1986). Furthermore, the theory asserts that 

that there are four major sources of information that influences self-efficacy beliefs: (a) past 

performance accomplishments, (b) exposure to and identification with efficacious models 

(vicarious learning), (c) access to verbal persuasion and support from others, and (d) experience 

of emotional or physiological arousal in the context of task performance. Of these four sources, 

past performance accomplishments have the greatest influence on self-efficacy (Bandura 1986). 

Several studies have found links between racial and ethnic minority student’s self-efficacy in 

STEM (confidence in their ability to learn math and science) and their future success in STEM 

(Colbeck, Cabrera, and Terenzinim, 2001; Prena et al., 2009). In a study of students spanning 

pre-college to post-secondary employment, Leslie, McClure, and Oaxaca (1998) found that self-

efficacy to be an important predictor of success in STEM for racial and ethnic minority students. 

Similarly, Holt (2006) used NELS data (88:00) to reveal links between racial and ethnic minority 

student’s mathematics self-efficacy and their enrollment in higher level mathematics courses. 

Holt also found that racial and ethnic minority students with higher mathematics self-efficacy 

were more likely to persist in STEM education. In a more recent study, Cheema and Galluzo 
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(2013) analyzed data from a U.S. representative sample of 4733 students who took the 2003 

Program for International Student Assessment (PISA) and found that self-efficacy was a 

significant predictor of math achievement over and above that accounted for by demographic 

characteristics. The conclusion that can be drawn from these studies is that self-efficacy is robust 

predictor of success in STEM for racial and ethnically diverse students.

Self-efficacy has also been linked to influencing other important educational outcomes 

for racial and ethnic minority students such as such as interest and goals. In a study of 216 sixth 

grade student’s Turner, Steward and Lapan (2004) found that self-efficacy predicted math and 

science career interest even after controlling for socio-economic variables and gender. In a study 

of 426 Mexican American 8th graders, Navarro, Flores and Worthington (2007) found 

mathematics self-efficacy was a strong predictor of both math and science interest and goals.  In 

a similar study, Austin (2010) found that among 396 African American students, MSE was the 

strongest factor in relation to students’ career decision. However; the role of self-efficacy can 

have a confounding impact, especially for students who have high self-efficacy but are poorly 

prepared (Seymour & Hewitt, 1997). According to Seymore and Hewitt, racial and ethnic 

minority students who come from high schools where they are viewed as being academic 

superior compared to their peers may develop strong confidence but lack the advanced skills 

necessary to succeed in advanced college STEM courses. This can result in a students feeling 

overwhelmed and at greater risk of dropping out or switching out of STEM tracks.

Interest in STEM

Public interest in science and science education has ebbed and flowed over the past 50 

years (Yager & Penick, 1986); however, interest in mathematics and science among school-aged 
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children has seen a steady decline (Potvin & Hasni, 2014). Given the role of interest in the 

STEM education literature as a predictor of positive education and career outcomes, interest 

development is particularly relevant in understanding persistence and success in STEM for racial 

and ethnic minority students (Museus, Palmer, Davis, & Maramba, 2011; Singh, Chang & Dika, 

2010). 

According to Krapp and Prenzel (2011), the concept of interest as it relates to educational 

pursuits in was first expounded by John Dewey (1913). Dewey was the first to describe interest 

as an integrative process that resulted from the interaction on an individual and the environment. 

The concept interest as a focus of psychological research lost favor to behaviorist notions of 

motivation in the early 20th century; however, its utility in vocational psychology as a 

motivational construct is still in use today. The Holland scale describes broad level career interest 

according to 5 domains, namely, Realistic, Investigative, Artistic, Social, Enterprising and 

Conventional (RIASEC). This Holland scale has been used for decades to match individuals with 

careers that are well aligned with RIASEC interest patterns. For instance, students with an 

interest profile that favors Investigative and Social domains might be well suited for a career as a 

science teacher; on the other hand, someone who prefers realistic and artistic domains might be 

better suited for a career in industrial design. Another important feature of the Holland scale is 

that is that interest profiles are believed to be relatively stable over time giving them a ‘trait’ 

quality.  

Efforts to explain learning and differences in educational attainment led to a resurrection 

of the interest construct from its ‘Dewinian’ roots. According to Dewey, interest was neither a 

personal trait nor a quality of the object, rather interest emerged from the interaction between the 
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individual and the object of interest. This is often referred to as the content specificity of interest

—that is, interest is always directed at something whether it be an object whether it be real or 

abstract (Krapp & Prenzel, 2011). Interest is also generally divided into two forms, namely 

individual and situational.

Individual interest is characterized by a relatively stable and enduring tendency or 

predisposition to engage with the object of interest. An example of this might be a child who 

spends hours practicing basketball can be said to have a well-developed and enduring personal 

interest. In addition to the tendency to engage, individual interest is also associated with positive 

experiential states such as enjoyment, competence, self-regulation, efficacy, and personal 

meaning.

Situational interest on the other hand is a fleeting and unstable but and mostly externally 

mediated. Situational interest can thus be triggered by unique novelty, discrepancy, affect, 

personal value, or emotion. Situational interest is also associated with improved attention and 

recall (Krapp & Prenzel, 2011; Hidi & Renninger, 2006).  Furthermore, Krapp and Prenzel 

(2011) argue that interest has an intrinsic character that results when individuals are able to 

integrate the interest-related goal with their preferred values and ideals. This is particularly 

relevant in formal learning as individual’s engaged in high-interest activities will have a 

heightened readiness to acquire and regulate new knowledge in the interest domain which leads 

to improved learning (Hidi, 1990). While the intrinsic quality makes interest a strong driver of 

learning, some argue interest to be a worthwhile educational outcome in and of itself, especially 

given its association with other adaptive qualities such as personal meaning and value. These 

affective domains are stronger predictors of future engagement in STEM domains thus interest 
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should be thought of as a goal not just a mediator of increased achievement (Bybee & McCrae, 

2011).

While there are many different ways that researchers define and operationalized interest 

(Potvin & Hasni, 2014; Krapp & Prenzel, 2011; Bybee & McCrae, 2011), there is ample 

evidence that shows that the critical time for student to develop interest in math and science is 

between 8 and 12 years of age and that interest in STEM shows a steady decline across K-12 

schooling (Alexander, Johnson, & Kelley, 2012; Carlone, Scott, & Lowder, 2014). The sharpest 

decline has been found to occur between the transition from elementary to middle school and the 

highest gender gap in interest also occurring at this time. In a meta-analysis conducted by Hoff et 

al. (2008), declines in interest are found to be better explained by normative developmental 

changes rather than due to differences in ability and or achievement. This is consistent with 

international studies that have shown science and mathematics achievement to be poor predictors 

in interest in science (Awan, Sarwar, Naz, & Noreen, 2011). Another significant pattern found 

found both in the U.S. and across countries is the gender differences in subject interest with 

females favoring biological sciences over males and males preferring the physical sciences 

(Baram-Tsabari & Yarden, 2011). The consistency of these general patterns suggests that the 

simplistic view of declining interest may be more reflective of socio-developmental processes 

rather than reflective of a societal deterioration of values or ability. Therefore, understanding 

how to trigger, sustain and develop interest in STEM is a major area of research. As described 

earlier, interest in STEM domains can be described broadly such as someone who is an avid 

reader of science magazines and books. However, broad interest in science does not always 

translate to interest in STEM pursuits (higher education or career in STEM). There is ample 



36

research that show positive outcomes for both situational and individual interest but one line of 

inquiry that is of particular relevance in STEM education is identifying how interest in STEM 

pursuits develops over time, especially given the fact that interest in STEM tends to declines as 

students get farther along in their education.

Reframing REM STEM

The preceding review of literature identified several factors that have been shown to both 

impede and promote the success of REM students in STEM. Accordingly, the REM STEM 

model summarizes these factors into educational inequities (school funding, low teacher quality, 

low teacher expectations) and those that promote success, namely culturally responsive teaching 

practices and early exposure to STEM careers. These inputs are shown to influence K-12 

outcomes related to early dispositions (i.e., interest, self-efficacy, aspirations and expectations) as 

well as academic preparedness in STEM and entry into STEM majors in college. As mentioned 

earlier, the REM STEM model advances the the field of STEM education research by 

incorporating a more comprehensive set of features that more accurately reflect the educational 

experiences of REM students. Nevertheless, the REM model is limited in its lack of theoretical 

coherence that make it possible to hypothesize or explain the processes by which the educational 

inputs result in the outcomes. Despite this, it serves as a useful framework in that it identifies the 

factors that have been found to be important for the success of REM students in STEM.

In the next Chapter, I will discuss a refined version of the REM STEM model to include 

theoretical perspectives that provide both conceptual and operational clarity, that is, one that 

reflects the hierarchical, social, cultural and psychological relationships between constructs. This 
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revised model will form the basis for the specification of the statistical models used to 

interrogate the research questions posed in Chapter 1.
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Chapter 3. Research design, methods and data

Objectives, research questions and hypothesis

The preceding literature review offers a range of perspectives for explaining disparities in 

educational outcomes in STEM. At the individual level, several psychological, cognitive and 

personal characteristics have been shown to be associated with STEM educational outcomes 

including demographic, self-perceptions, knowledge, abilities and attitudes. Individual 

characteristics are in turn shaped by a variety of contextual factors including family, educational 

inequities, curricula, exposure to STEM careers, opportunities and access to STEM specific 

support programs, parental expectations and involvement. The Racial and Ethnic Minorities 

(REM) in STEM model has been proposed by Museus et al., to illustrate the various factors that 

exist among the various variables that contribute to the educational outcomes of REM students. 

Appendix I. 

This study investigates the nature of the relationship between Mathematics Teacher Self-

Efficacy on the Mathematics Achievement of REM students. While there is some evidence to 

support the hypothesis that Teacher Quality is positively associated with mathematics 

achievement, large-scale empirical studies on the effects of Teacher beliefs on Mathematics 

Achievement of REM students have not been conducted. Moreover, empirical studies into 

teacher quality have focused solely on traditional variables such as level of education, 

certification and teacher experience (Hanushek 2011). Lastly, while many studies report positive 

effects, very few report actual effect size of teacher quality. These limitations are important to 

address as policy-makers seek to make informed decisions about how to improve the educational 

outcomes of REM students in STEM. This study will address these shortcomings by using Multi-
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Level Modeling (MLM) to investigate the impact of Mathematics Teacher Self-Efficacy—

broadly defined as Teacher’s beliefs about their ability to bring about the academic success of 

their students—on Mathematics Achievement. The analysis will also examine how contextual 

factors promote and/or undermine this relationship within schools and in particular for REM 

students. Data from the High School Longitudinal Study of 2009 (HSLS:09) is used to answer 

the following research questions:

1. Does the variation of Mathematics Achievement of REM students within and between 

schools differ from that of the general student population?

2. Are higher levels of Teacher Self-Efficacy generally associated with higher levels of 

Mathematics Achievement among REM students?

3. To what extent is the Mathematics Achievement of REM students attributable to 

differences in Mathematics Teacher’s Self-Efficacy after controlling for Student 

Characteristics?

4. To what extent is the Mathematics Achievement of REM students attributable to 

differences in Mathematics Teacher’s Self-Efficacy after controlling for both Student 

Characteristics and Teacher Quality?

5. Does the nature of the relationship between Mathematics Teacher Self-Efficacy and the 

Mathematics Achievement of REM students vary across schools?

6. Does the School Context influence the relationship between Mathematics Teacher Self-

Efficacy and the Mathematics Achievement of REM students?

7. How does the nature of the relationship between Mathematics Teacher Self-Efficacy, 

Mathematics Achievement and School Context vary across REM subgroups?
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Theoretical Framework

The design of this study is informed by the Racial and Ethnic Minorities in STEM (REM 

STEM) Model (see Appendix I) proposed by Museus et al. (2011). The REM STEM model 

provides a rich set of factors that have been found in the literature to influence educational 

outcomes at different levels of analysis and in various educational contexts. It situates STEM 

outcomes within a system that more accurately reflects the various opportunity contexts that lead 

to disparities in STEM outcomes. As discussed in the preceding literature review, school funding, 

teacher quality, teacher expectations, and academic tracks result in structural inequities of REM 

students. These inequities in turn influence individual student dispositions, academic preparation 

and ultimately choices about pursuing STEM. In addition, school factors related to culturally 

relevant curricula and culturally responsive pedagogy have an influence on the success of REM 

students in STEM. Using the REM STEM Model as an organizing framework, this study seeks 

to examine the relationship between Teacher beliefs and Mathematics achievement while 

controlling for some of the important factors that have been shown to influence STEM 

educational outcomes. 

While the REM STEM model provides a useful framework to that relates school inputs to 

outcomes related to STEM Education; it lacks the theoretical coherence needed to hypothesize 

about why certain inputs may result or influence certain outcomes (Good & Wenstein, 1986). 

This is typical of black-box models and studies that identify effects but cannot provide 

theoretically sound explanations for why or how school features effect cognitive outcomes. Van 

Houtte & Van Maele, (2011) lay out the theoretical basis for using teacher culture as school 

feature to reveal the impact of teacher practices on individual student outcomes. This approach 
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relies on the assumption that teachers within a school context form (sub)cultures based on shared 

experiences and responses to problems within the school context. It also draws a clear distinction 

between the concepts of school climate and school culture which are often conflated in the 

school effectiveness research. While there are conceptualizations and taxonomies of school 

climate, Anderson (1982) argues that Tagiuri’s (1968) taxonomy is the most conceptually 

coherent as it provides a useful framework to theorize about socially mediated processes within a 

school context. Tagiuri’s (1968) taxonomy comprises four broad subcategories of school climate 

including: ecology; milieu; social system; and culture. The ecology refers to the physical 

material features of a school such as its building characteristics, age of building, size and other 

qualities related to the decor or physical space. The social milieu refers to the composition of a 

school both in terms of the students and teachers at the school. Examples of this would be the 

Socioeconomic, ethnic or gender composition of the students and/or teachers. Other 

compositional characteristics could be teacher experience aggregated at the school level. The 

social system is concerned with the patterned relationships of persons and/or groups. The 

features of a school relate to both formal and informal patterns or rules of operating or 

interacting at the school. The social system can be conceived as operating at both the individual 

and school levels. For instance, the administrative organization or instructional program of a 

school (i.e., tracking or ability grouping) can be characterized as a school feature that influences 

teacher-student, teacher-teacher or even teacher-parent relationships. Lastly, culture within the 

this framework is include variables that reflect shared norms, belief systems, values, cognitive 

structures, and meanings of persons within the school. Examples of culture variables can include 

teacher expectations, teacher approach to discipline or student belonging. While Tagiuri’s (1968) 
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school climate model provided both an intuitive and theoretically sound taxonomy, it presented 

analytic challenges related to the limitations of the statistical techniques available at that time. 

Given the nested nature of school contexts (students nested in classrooms nested in schools), the 

methods did not yet exist to deal with the violation of assumptions needed for OLS regression 

models. More recently, researchers have rediscovered Tagiuri’s School Climate Model and have 

used it to hypothesize and test the role of socially mediated processes that have historically 

confounded large scale, empirical studies of school effects (Van Houtte, 2005). Van Houtte 

(2005) suggests this breakthrough will help bridge the divide between large-scale empirical 

school effect studies that while generalizable, often lack explanatory power. That is, they may 

detect an effect but have little to say about the underlying mechanism that results in the effect. 

Taking direction from Van Houtte (2011), Figure 1  below shows a reconceptualization of the 

REM STEM model to reflect the hierarchical nature of the school context and organized into 

Tagiuri’s School Climate taxonomy.

Figure 1.

Two-level REM STEM Model adapted according to school climate taxonomy.
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The central relationship examined in this study is that of Mathematics Teacher Self-Efficacy 

and Mathematics Achievement. While the positive correlation between Teacher Self-Efficacy and 

Mathematics Achievement has been established in the literature, less clear is whether traditional 

teacher qualifications as defined in the literature (e.g., in field degree, certification and 

experience) actually benefit REM students. Furthermore, there is growing body of research that 

suggest teaching practices and teacher beliefs are perhaps more important in promoting the 

academic achievement compared to traditional measures (Czerniak & Chiarelott, 1990; Guskey, 

1988; Stipek, Givvin, Salmon, & MacGyvers, 2001). However, the relative importance of 

teacher practices and beliefs compared to traditional teacher quality measures as they relate to 

mathematics achievement is unclear. In addition, this study will include various contextual 

factors that have direct associations with mathematics achievement but are not always addressed 
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in non-empirical studies. In this conceptualization, Teacher Sellf-Efficacy is shown at the student 

level to represent part of the student’s learning context not the particular teacher effects on the 

student outcomes. Therefore, in the aggregate, Teacher Self-Efficacy represents, on average, 

students’ prior experience with teachers of varying levels of self-efficacy beliefs.

Participants

The population in this study comprises students who participated in the High School 

Longitudinal Study of 2009 (Ingels & Dalton, 2013). The HSLS surveyed a nationally 

representative sample of 9th grade high school students in 2009 and again in 2012 when they 

were in 11th grade and 2 years post graduation. The primary focus to the HSLS is on Science, 

Technology, Engineering and Mathematics (STEM) career trajectories. The restricted data file 

was obtained from the National Center for Educational Statistics (NCES) (Ingels et al. 2011). 

The REM subsample includes students who identified as American Indian/Alaskan Native, 

Black/African American, Hispanic, or Pacific Islander on in the 2009 questionnaire, and whose 

self-reported racial identity matched their school records.

Research Design

Data Collection

The HSLS:09 data was collected using a two-stage random sample design. In the first stage, 

schools were randomly selected from the universe of schools in the United States. In the second 

stage, students were randomly selected from the sampled schools. The sample of schools in the 

base year included public (including charter schools) and private schools from all 50 states as 

well as Washington D.C.. A total of 944 of 1,889 schools participated in the base year.
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A total of 26,305 students were randomly sampled from the 944 participating schools in Fall 

2009. Approximately 4.2% of the sampled students were excluded from the data collection due 

to study ineligibility resulting in 25,206 study-eligible students. Study-eligible students 

completed an in-school survey and a mathematics assessment. Additional information describing 

the student’s school and home environment were collected via parent, administrator, counselor 

and teacher questionnaires. Teacher and parent questionnaires were linked to student survey.

The first follow-up took place in Spring of 2012 and included 25,184 of the 25,206 eligible 

base-year sample students. The students questionnaire included questions related to various 

aspects of their high school experience including course-taking, college choice preferences, 

admission tests and family background. A random sampling of parents of study-eligible students 

were selected to complete the parent questionnaire. Administrators and counselors were also 

surveyed in the second follow-up; however, only administrators were surveyed from both base-

year school and the schools that students transferred to. Counsellors were only surveyed from the 

base-schools.

In 2013, an update survey was administered to 25,167 of the 25,168 students that were 

eligible in the first follow-up in 2012. Of these, 1,767  were not fielded for the 2013 update 

because they were non-respondents for both the base-year and first follow-up. Some additional 

sample-eligible students dropped out of the study yielding a total student sample of 23,318. 

Surveys were administered to either the student or the parent to obtain data on high-school 

completion status as well as post-secondary education and work-related experiences. Transcripts 

for students were also obtained from all the schools the student had attended.



46

 Of the 23,318 study participants who participated in the 2013 update survey, 23,316 were 

interviewed between March 2016 and January of 2017. The data collection consisted of an 

interview administered by various modes (Web, computer, computer-assisted). The interview 

included questions related to four broad areas including High School, Post Secondary Education, 

Employment and Family and community.

Measures

Table 1 below includes descriptions of the Student (Level 1),  Teacher (Level 1) and School 

(Level 2) variables used in the analysis. It’s important to note that Teachers were only surveyed if 

they had a study participant as their student; therefore, teacher respondents are not representative 

of mathematics teachers at the school. For this reason the teacher variables are aggregated at the 

student level for all descriptive statistics and entered at the first level in the multi-level analysis. 

Schools were sampled in the first step of HSLS sampling scheme and thus are representative of 

secondary schools in the United States in 2009. Thus, the levels of analysis for this study include 

student and teacher variables at level 1 and school variables at level 2.

Table 1 

Study Variables

Student Variables
 (Level 1)

Description Values

STU_ID Student identifier assigned for all base year eligible students 
(including respondents, nonrespondents, and questionnaire ineligible

IDs randomly 
assigned from 
10001 to 35206 
across all students.

X1SEX Sex of the sample member, taken from the base year student 
questionnaire, parent questionnaire, and/or school-provided sampling 
roster.

1=male, 2=female
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X1RACE X1RACE characterizes the sample member’s race/ethnicity by 
summarizing the following six dichotomous race/ethnicity composites.
1=American Indian/Alaskan Native, non-Hispanic; 2=Asian, non-
Hispanic; 3=Black/African American, non-Hispanic; 4=Hispanic, no 
race specified; 5=Hispanic, race specified; 6=More than one race, 
non Hispanic; 7=Native Hawaiian/Pacific Islander, non Hispanic; 
8=White, non Hispanic

1 - 8 (categorical)

X1TXMTSCOR The math standardized T score provides a norm-referenced 
measurement of achievement, that is, an estimate of achievement 
relative to the population (fall 2009 9th graders) as a whole. It 
provides information on status compared to peers. The standardized 
T score is a transformation of the IRT theta (ability) estimate, rescaled 
to a mean of 50 and standard deviation of 10. 

24.018 - 82.2

X2TXMTSCOR The math standardized T score provides a norm-referenced 
measurement of achievement, that is, an estimate of achievement 
relative to the population (spring 2011 11th graders) as a whole. It 
provides information on status compared to peers. The standardized 
T score is a transformation of the IRT theta (ability) estimate, rescaled 
to a mean of 50 and standard deviation of 10. 

22.2 - 84.9

X1SES This composite variable is used to measure a construct for 
socioeconomic status. X1SES is calculated using parent/guardians’ 
education, occupation, and family income and locale (urbanicity). 
Variable was standardized to a mean of 0 and standard deviation of 1. 

-2.45 - 4.08

X1MTHEFF This variable is a scale of the sample member's math self-efficacy; 
higher X1MTHEFF values represent higher math self-efficacy. 
Variable was created through principal components factor analysis 
and standardized to a mean of 0 and standard deviation of 1. 

-2.92 - 1.62

X1MTHID This variable is a scale of the sample member's math identity. Sample 
members who tend to agree with the statements "You see yourself as 
a math person" and/or "Others see me as a math person" will have 
higher values for X1MTHID. This variable was created through 
principal components factor analysis (weighted by W1STUDENT) and 
standardized to a mean of 0 and standard deviation of 1.

-1.73 - 1.76

Teacher Variables
(Level 1)

Description Values

X1TMEFF This variable is a scale of the base year math teacher's self-efficacy; 
higher values represent greater self-efficacy. Variable was created 
through principal components factor analysis (weighted by 
W1MATHTCH) and standardized to a mean of 0 and standard 
deviation of 1.

-3.26 - 3.01

M1MTHYRS912 Years Math teacher has taught high school math 1-31
X1TMCERT Math teacher’s math teaching certification 1=Yes, 0=No
M1BAMAJ2 BA in Mathematics or Mathematics intensive major (i.e., Physics, 

Engineering, Computer Science, Statistics) 
1=Yes, 0=No

M1SEX Math teachers sex. 1=Male, 2=Female
X1TMRACE Math teacher’s race-ethnicity composite. 1=American Indian/Alaskan 

Native, non-Hispanic; 2=Asian, non-Hispanic; 3=Black/African 
American, non-Hispanic; 4=Hispanic, no race specified; 5=Hispanic, 
race specified; 6=More than one race, non Hispanic; 7=Native 
Hawaiian/Pacific Islander, non Hispanic; 8=White, non Hispanic

1 - 8

School Variables
 (Level 2)

Description Values

SCH_ID School identifier assigned for the base year sample high school. IDs randomly 
assigned from 
1001 to 1944 
across all high 
schools.
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SCHSES The School’s Compositional Socio-Economic Status (School SES) is 
derived from the Student Socio-Economic Status (Student SES) 
aggregated at the school level. The mean School SES for HSLS:09 
schools (N=944) is estimated to be -.01 with a standard error of .02 
and a standard deviation of .43.

-.44 - .42

X1SCHOOLCLI This variable is a scale of the administrator's assessment of his/her 
school's climate. Higher values represent more positive assessments 
of the school's climate (i.e. fewer problems are indicated). Variable 
was created through principal components factor analysis (weighted 
by W1SCHOOL) and standardized to a mean of 0 and standard 
deviation of 1.

-4.22 - 1.97

A1FREELUNCH Percent of student body receiving free or reduced-priced lunch 0 - 100
A1HISPSTU Percent of student body of Hispanic/Latino/Latina origin 0 - 100
A1WHITESTU Percent of student body that is White 0 - 100
A1BLACKSTU Percent of student body that is Black or African American 0 - 100
A1ASIANSTU Percent of student body that is Asian or Pacific Islander 0 - 100
A1AMINDIANSTU Percent of student body that is American Indian or Native Alaskan 0 - 100
A1SCHTYPE School type. 1=regular school (not including magnet or charter), 

2=charter school, 3=special program school or magnet school, 
4=vocational or technical school, 5=alternative school

1-5

X1SCHCONTROL School control 1=public, 2=private
X1LOCALE School local (urbanicity). 1=city, 2=suburban, 3=town, 4=rural 1 - 4 (categorical)

Method

The analysis consists of four parts: 1) a descriptive analysis of all the student, teacher and 

school variables listed in Table 1; 2) an analysis of all the first order correlations of the Level 1 

and Level 2 variables respectively; 3) an analysis using Multi-level Modeling (MLM) to examine 

the variation in Mathematics Achievement within and between U.S. High Schools with particular 

focus on the relationship between Teacher Self-Efficacy and the Mathematics Achievement ; and 

4) a comparison of the final multi-level analysis across REM subgroups. The first three parts of 

the analysis were conducted using a subsample of REM HSLS:09 respondents (N=6,006). In the 

final analysis (Part 4), the multilevel models were re-run using subsample all of the REM 

subgroups (American Indian/Alaskan Native, Black/African American, Hispanic, or Pacific 

Islander) as well as White and Asian subpopulations for comparison. 

Multi-Level Modeling (MLM) is a regression-based approach that is favored over OLS when 

the structure of the data is nested (students within schools) as is the case here. The advantage of 
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using MLM over OLS is that it corrects for the underestimation of standard error and variance 

parameters by partitioning the variance into within and between cluster components (i.e., 

schools). Furthermore, MLM makes it possible to examine the sources of variation across levels 

which allows researchers to interrogate questions not possible through OLS (Rabe-Hesketh & 

Skrondal, 2012). Five successive models predicting math achievement were specified as shown 

below and estimates were obtained using the “Mixed” function in Stata with maximum 

likelihood estimation. The school identifier (SCH_ID) was used as the grouping variable for the 

analysis with appropriate sampling weights. Model comparisons were done using -2 Log 

Likelihood estimates to conduct Chi-square difference tests. Within and between group variance 

reduction for successive models was also calculated and analyzed for each model. For all 

models, Student and Teacher variables are treated as Level 1 variables and School variables are 

treated as Level 2.  What follows are descriptions, model specifications and associated research 

questions for each of the models in this analysis.

Null Model

RQ1: Does the variation of Mathematics Achievement of REM students within and between 

schools differ from that of the general student population?

The null model is the simplest multilevel model which allows for school effects on 

Mathematics Achievement, but without explanatory variables. The null model in this analysis is 

specified as:

Null model: X 2TXMTSCORij = β0 + uj + eij  
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where X 2TXMTSCORij is the 11th grade algebraic reasoning score for the i th individual in school 

j , β0  is the overall mean of X 2TXMTSCOR  (across schools), uj  is the school-level (Level 2) 

residual, also called the school random effects, and eij  denotes the individual residuals (Level 1). 

Accordingly, the variance can be partitioned into the between school (Level 2) variance σ u
2  and 

the within school (Level 1) variance σ e
2  which are used used to calculate the Interclass 

Correlation Coefficient (ICC). The ICC is a measure of the amount of variance that is 

attributable to the clustered nature of the data. The ICC is calculated by dividing the between 

school variance by the total variance:

ICC = 
σ u
2

σ u
2 +σ e

2  

Typical ICC values for educational attainment range from .5 to .25 and can be interpreted as the 

correlation of between two randomly selected individuals within a group (i.e, school). Therefore, 

higher ICC values can signal the presence of school factors that are influencing outcomes and is 

often used to justify the use of MLM versus OLS.  As mentioned earlier, this model is run using 

data from the entire population of HSLS:09 high school student respondents. The null model can 

also be specified by level as:

Level 1: X 2TXMTSCORij = β0 + eij

Level 2: β0 j = β0 + uj

To answer the RQ1, parameter estimates for the null model were first calculated using the entire 

population of students (N=21,444). Next the null model parameter estimates were calculated 
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using the subpopulation of REM student respondents (N=6,006). The nature of the level 2 

(school) variation was examined by plotting the school residuals along with standard errors to 

draw comparisons between the general population and the REM subpopulation respectively.

Model 1

RQ2: Are higher levels of Teacher Self-Efficacy generally associated with higher levels of 

Mathematics Achievement among REM students?

Model 1 extends the school effects model (Model 0) by adding Mathematics Teacher Self-

Efficacy ( X1TMEFF ) as an explanatory variable. It’s important to mention once again that 

because teachers are not a unit of analysis, X1TMEFF  is a student level variable that can be 

characterized as a feature of the student’s learning context. As such, Model 1 is specified as:

Model 1: X 2TXMTSCORij = β0 + β1X1TMEFFij + uj + eij  

where X 2TXMTSCORij  is the algebraic reasoning score in 11th grade for the ith student in school 

j , and where the overall relationship between X 2TXMTSCOR  and X1TMEFF  is represented 

by a straight line with intercept β0  and slope β1 . Moreover, the intercept for a given group j  

can be expressed as β0 j = β0 + uj  where the intercept for a given group β0 j  will differ from the 

overall intercept β0  by an amount of uj and where uj  is a school effect (level 2) or residual that 

is assumed to follow a normal distribution with a mean of 0 and a variance σ u
2 . Model 1 can also 

be specified by level as:

Level 1: X 2TXMTSCORij = β0 j + β1X1TMEFFij + eij  
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Level 2: β0 j = β0 + uj

To answer the research RQ2, Model 1 parameter estimates were calculated using the REM 

student subpopulation (N = 6,006).

Model 2

RQ3:To what extent is the Mathematics Achievement of REM students attributable to differences 

in Mathematics Teacher’s Self-Efficacy after controlling for Student Characteristics?

Model 2 adds student level (Level 1) controls to estimate the extent to which Mathematics 

Achievement is attributable to Teacher Self-Efficacy after controlling for differences in student 

characteristics. The controls included are Socio-Economic Status ( X1SES ), prior Mathematics 

Achievement ( X1TXMTSCOR ), Student’s Mathematics Self-Ffficacy ( X1MTHEFF ), 

Mathematics Identity ( X1MTHID ), and Student Gender ( X1SEX ). With the exception of the 

outcome variable ( X 2TXMTSCOR ) all of the other variables are from the first wave of data-

collection which occurred when students were in 9th grade. While this is a limitation of the study 

design (student and teacher attitude data was only collected in first wave), it does not pose any 

major methodological concerns. That is this is a predictive model of early high-school 

experiences and context (9th grade) on future outcomes (11th grade). As such, Model 2 is 

specified as follows:

Model 2: X 2TXMTSCORij = β0 + β1X1TMEFFij +α STUDENT + uj + eij

where the overall relationship between X 2TXMTSCORij  and X1TMEFFij is conditioned on 

student control variable matrices and coefficient vectors represented as α STUDENT . The 
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student control variables are standardized to a mean of 0 and standard deviation of 1 therefore, 

β0  represents the mean of X 2TXMTSCOR  conditioned on mean values (0) across all control 

control variables. Moreover, given the control variables are standardized to a mean of 0 and 

standard deviation of 1, betas for these models can be interpreted as standardized betas. Model 2 

can also be specified by level as:

Level 1: X 2TXMTSCORij = β0 + β1X1TMEFFij +α STUDENT + eij

Level 2:β0 j = β0 + uj

To answer the RQ3, Model 2 parameter estimates were calculated using the REM student 

subpopulation (N = 6,006).

Model 3

RQ4: To what extent is the Mathematics Achievement of REM students attributable to differences 

in Mathematics Teacher’s Self-Efficacy after controlling for both Student Characteristics and 

Teacher Quality?

Model 3 adds teacher (Level 1) controls to estimate the extent to which Mathematics 

Achievement is attributable to Teacher Self-Efficacy after controlling for differences in student 

and teacher characteristics. The teacher control variables include: Mathematics Certification 

( X1TMCERT ), Years Teaching Experience ( M1MTHYRS912 ) and Mathematics Bachelor’s 

Degree ( M1BAMAJ2 ). As previously mentioned, the teacher variables included at Level 1 

because teachers are not representative of the teacher population at the school. Only mathematics 

teachers with HSLS:09 student participants were surveyed; therefore, teacher characteristics can 

only be interpreted as part of the student’s learning context. Furthermore, teacher responses to 
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the Teacher Questionairre occurred in the first wave of data collection when the students were in 

9th grade. As is the case with the previous model, this is a limitation of the study and data but is 

not a methodological concern so long as results are interpreted as such. Model 3 is specified as 

follows:

Model 3: X 2TXMTSCORij = β0 + β1X1TMEFFij +α STUDENT + δTEACHER + uj + eij  

where the linear relationship between X1TMEFF  and X 2TXMTSCOR  is conditioned on the set 

of student control variables included in Model 2 (α STUDENT ) as well as the 3 teacher quality 

control variable matrices and coefficient vectors represented as δTEACHER . Teacher 

Certification ( X1TMCERT ) is a dichotomous variable that is equal to 1 of the student’s 

mathematics teacher is fully certified to teach secondary mathematics. Years of teaching 

experience ( M1MTHYRS912 ) is the number of years the teacher has taught secondary 

mathematics and is mean centered. Lastly, ( M1BAMAJ2 ) is a dichotomous variable indicating 

whether or not the mathematics teacher has a bachelor’s degree in a mathematics or mathematics 

intensive field. The M1BAMAJ2  and X1TMCERT variables are reverse coded so that 0 = BA in 

Mathematics and Certified to Teach Mathematics, respectively. Thus, in model 3, the intercept 

β0  should be interpreted as the overall mean of X 2TXMTSCOR  conditioned on average (mean = 

0) student characteristics and whose teachers have the average number of years experience, hold 

a Bachelor’s Degree in Mathematics or related field, and are fully certified to teach secondary 

mathematics. Model 3 can also be represented by level as:

Level 1: X 2TXMTSCORij = β0 + β1X1TMEFFij +α STUDENT + δTEACHER + eij  

Level 2: β0 j = β0 + uj
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To answer the RQ4, Model 3 parameter estimates were calculated using the REM student 

subpopulation (N = 6,006).

Model 4

RQ5: Does the nature of the relationship between Mathematics Teacher Self-Efficacy and the 

Mathematics Achievement of REM students vary across schools?

Model 4 relaxes the fixed slope constraint of β1MTEFFij  and allows it to vary randomly 

across schools. As such, Model 4 is specified as: 

Level 1: X 2TXMTSCORij = β0 j + β1 j X1TMEFFij +α STUDENT + δTEACHER + eij

Level 2: β0 j = β0 + u0 j  (random intercept of X 2TXMTSCOR )

Level 2: β1 j = β1 + u1 j  (random slope of X1TMEFF )

where σ u1
2  is the variance of the school’s mean slope β1 j  and σ u01  is the covariance between the 

school’s intercept β0 j  and slope β1 j . To answer the RQ5, Model 4 parameter estimates were 

calculated using the REM student subpopulation (N = 6,006).

Model 5

RQ6: Does the School Context influence the relationship between Mathematics Teacher Self-

Efficacy and the Mathematics Achievement of REM students?

Model 5 adds two school contextual factors namely School Climate, School Size and an 

interaction term between School Climate and Mathematics Teacher Efficacy. It is notable that 

School Type (Public vs Private), Percent of Students on Free and Reduced Lunch, School SES, as 
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well as School Locale, were not included in the model due to co-linearity with student level SES. 

SES is a composite variable that is derived with locale (urbanicity), therefore School Locale (e.g., 

city, suburban, town, rural) was also omitted from Model 5. As such, Model 5 is specified as: 

Level 1: X 2TXMTSCORij = β0 j + β1 j X1TMEFFij +α STUDENT + δTEACHER+

     β10SCHCLIMATEj + β11CLIxMTEFF + β12SCHSIZE + eij

Level 2:β0 j = β0 + u0 j (random intercept of X 2TXMTSCOR )

Level 2:β1 j = β1 + u1 j (random slope of X1TMEFF )

where SCHCLIMATE  is a scale of the administrator's assessment of his/her school's climate. 

Higher values represent more positive assessments of the school's climate. SCHSIZE is a proxy 

variable that is derived from the number of full-time mathematics teachers at the school. Higher 

number of teachers are assumed to be needed for larger student populations and by extension 

represent larger schools. This variable was added to the analysis to address convergence issues 

with the model. By centering the SCHSIZE  variable around the grand mean for all schools, the 

coefficients for Model 5 can be interpreted as being conditioned on average School Size. An 

interaction term between School Climate and Mathematics Teacher Self-Efficacy (CLIxMTEFF ) 

is included to test the hypothesis that the Mathematics Teacher Efficacy effect is moderated by 

the conditions at the school, namely School Climate. To answer the RQ6, Model 5 parameter 

estimates were calculated using the REM student subpopulation (N = 6,006). 

RQ7: How does the nature of the relationship between Mathematics Teacher Self-Efficacy, 

Mathematics Achievement and School Context vary across REM subgroups?



57

To answer RQ7, all 6 models (including the null) were specified as detailed above and 

estimated for each racial subgroup, A full analysis using the entire student population 

(N=21,444) was also conducted for comparison.

Limitations

The limitations of this study are common among survey research. The first is the issue of 

construct validity, that is, we can never be certain whether what we seek to measure is what is 

being measured. While the measures in this study were carefully constructed and validated, the 

coefficients of reliability for most of the composite variables was .65 which is marginally 

reliable. Another limitation to this approach is that it positions mathematics achievement as the 

ultimate outcome. While mathematics is an important outcome of education within the STEM 

context, it is certainly not the only outcome. Other outcomes include choice and persistence in 

additional mathematics courses, improvement or perhaps even interest in mathematics. Some 

argue that focusing solely on achievement perpetuates the notion that the only certain students 

are set out to be successful in mathematics. In so far as this study helps to show that success can 

be nurtured through good teaching and supportive school environments then achievement can be 

measure of a healthy mathematical ecology not individual ability or product. 

Lastly, as already mentioned, the teacher data supply contextual information for students, 

who in turn constitute the unit of analysis. The teacher sample is not representative of teachers in 

the school. The design of this component does not provide a standalone analysis sample of 

teachers, but instead permits specific teacher characteristics and practices to be related directly to 

the learning context and educational outcomes of sampled students.
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Protection of Human Subjects

This study will used a restricted dataset from the National Center of Education Statistics. All 

analysis followed proper protocols for protection of participant identity and will go through IRB 

review. It is expected that this study will be declared exempt as it only reports non-identifyable 

aggregate data.

Statement about researcher positionality

I have been in the field of education for nearly 20 years, first as a Teacher and now as 

Director of a Teacher Education Program at a graduate university. As a first generation college 

graduate who aspired to enter the medical field, my trajectory into teaching was preceded by 

varying degrees of success as a STEM student. While I was not terrible at mathematics, it was 

not my strongest subject and I was not adequately prepared to be successful at a prestigious 

undergraduate research institution. I failed calculus the first time I took it and the best I was able 

to do was earn a C+ which to me was a big accomplishment. I eventually moved away from the 

sciences much in the same way the research describes. I questioned my ability, my belonging and 

my goals. Later, after becoming a teacher, I began to see this same questioning in my students 

and I did my best to encourage and help them understand that it was not a question of ability but 

a matter of having the right attitude (this was before mindset was in fad). When I look at the 

research on achievement, we don’t see the full story. We don’t see the difference that teachers 

make in the lives of students who through their experiences in the classroom, gain confidence in 

their abilities and are inspired to get better. As a teacher educator, I see the impact teachers make 

every day, but this story is not always evident in the data. I would like to contribute to this in a 
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small way by trying to find that story in a manner that is most compelling to policy makers, 

rigorous research.
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Chapter 4. Results

Descriptive Analysis

The results of this study are organized into three sections. The first section includes 

univariate summary statistics for all of the variables included in the analysis as well as well as 

select cross tabulations to examine variation in the independent and dependent variables, namely, 

Mathematics Achievement and Mathematics Teacher Self-Efficacy. The second section presents 

first-order correlations for all school-level and student level variables respectively. The final 

section provides the results and analysis of the five successive multi-level models specified in the 

previous chapter.

Student Characteristics.

Table 2 shows summary statistics and frequencies for all student level variables in this 

study. It includes summary statistics for Mathematics Achievement, Socio-economic Status and 

Motivation variables. Frequencies for categorical variables including Gender and Student Race 

are also summarized. With the exception of the Standardized Mathematics Score for 11th Grade, 

all of the remaining variables were collected during the base-year of HSLS:09. Sampling weights 

were used to estimate population means for all of the continuous variables in Table 2. The 

frequencies of categorical variables are unweighted therefore they do not represent population 

estimates. For instance, Asians were oversampled in HSLS:09 therefore the percentage of Asian 

students in the HSLS:09 sample is 7.8% , a much higher percentage than the actual percentage in 

the U.S. population. The oversampling assures that Asian students are not underrepresented in 

the sample. All subsequent analyses utilize the appropriate sampling weights to account for the 

complex stratified sampling design of HSLS:09.
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Table 2. 

Summary Statistics of Student Characteristics

% M (SE) SD Cronbach's ! n
Mathematics Standardized Score 9th Grade 50.00 (0.19) 10.00 24,658   
Mathematics Standardized Score 11th Grade 50.00 (0.19) 10.00 24,955   
Mathematics Gain (difference between grade 9 & 11) 0.11 (0.10) 7.20 24,725   
Student Mathematics Self-Efficacy 0.01 (0.01) 1.00 0.90 21,802   
Socio-Economic Status -0.08 (0.01) 0.75 25,205   
Sex

Female 49.23 10,557   
Male 50.77 10,887   
Total 100 21,444   

Student Race/Ethnicity
Amer. Indian/Alaska Native, non-Hispanic 0.76 163        
Asian, non-Hispanic 7.80 1,672     
Black/African-American, non-Hispanic 10.34 2,218     
Hispanic, no race specified 0.95 204        
Hispanic, race specified 15.44 3,311     
More than one race, non-Hispanic 8.92 1,912     
Native Hawaiian/Pacific Islander, non-Hispanic 0.51 110        
White, non-Hispanic 55.28 11,854   

Total 100.00 21,444   

Note. Mean, standard error, standard deviation and number of observations for continuous 

variables were estimated using student-level data and analytic weights to account for complex 

sampling design of HSLS:09. Tabulations for categorical variables represent unweighted 

frequencies of base-year study eligible, questionnaire capable respondents (n = 21,444). n = 

analytic sample size.

* p<0.05, ** p<0.01, *** p<0.001 (remove if not applicable)

Mathematics Achievement. The Mathematic Standardized Score for both 9th and 11th 

grade are based on the results of the Algebraic reasoning exam administered to students in both 

9th and 11th grade. Eleventh grade exam scores are centered to a mean of 50 and a standard 

deviation of 10. For comparison purposes with other predictor variables, 9th grade exam scores 

were standardized to a mean 0 and standard deviation of 1. While not every student took the 
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exam in both years, the table shows weighted population estimates that account for student non-

response rates in 9th and 11th grade respectively.

Mathematics Self Efficacy. Student Mathematics Efficacy is a measure of how well 

students think they can do well in their mathematics class. It is derived from student answers to 

questions about how much they agree/disagree with the following statements about their 

mathematics course: 1) You are confident that you can do an excellent job on tests in this course; 

2) You are certain that you can understand the most difficult material presented in the textbook 

used in this course; 3) You are certain that you can master the skills being taught in this course; 

and 4) You are confident that you can do an excellent job on assignments in this course. The 

mean of Student Mathematics Efficacy is standardized to  a mean of 0 and a standard deviation of 

1. The coefficient of reliability (alpha) is 0.90 suggesting moderate internal consistency.

Socio-Economic Status. Student Socio-Economic Status is a composite measure 

comprising parent/guardian’s education, occupation, and family income and locale (urbanicity). 

The mean Socio-Economic Status was standardized to a mean of o and a standard deviation of 1.

Gender. The unweighted proportion of female students in the HSLS:09 sample is 49.23% 

versus 50.77% male. The slight difference from expected proportions in the general population is 

adjusted for by using appropriate sampling weights in all subsequent analyses.

Race. As mentioned above, the Student Race/Ethnicity percentages shown in Table 2 

represent sample frequencies not population estimates. Some racial/ethnic groups were 

oversampled to make sure they were adequately represented in the sample. The largest 

proportion of students in the sample are white, who comprise 55.28% of the sample. The second 

largest group was Hispanic students followed by Black and Asian each comprising 16.39, 10.34 
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and 7.80 percent respectively. Approximately 8.92 percent of the student sample identified as 

more than one race. Lastly, American Indian/Alaskan Natives and Native Hawaiian/Pacific 

Islander made up the smallest segments of the student sample comprising 0.76 and 0.51 percent 

respectively.

Mathematics Teacher Characteristics.

Table 3 shows summary statistics and frequencies for student’s mathematics teacher 

variables used in this study. It includes summary statistics for Mathematics Teacher Self-

Efficacy, Years of Experience, Certification, Education, and Race. Frequencies for categorical 

variables include mathematics teacher’s Sex and Race. All of the Teacher variables were 

collected during the base-year of HSLS:09 from student respondents who were enrolled in a 

mathematics score. Accordingly, appropriate sample weights and survey design parameters were 

used to estimate population means of each respective continuous variable. In contrast, categorical 

variables represent unweighted frequencies therefore should not be interpreted as population 

estimates. It also important to note that teachers are not the unit of study therefore means, totals 

and frequencies of teacher variables are not generalizable to all mathematics teacher but rather 

represent features of the student’s learning context.

Table 3

Summary Statistics of Mathematics Teacher Characteristics
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% M (SE) SD Cronbach's ! n
Mathematics Teacher Self Efficacy 0.00 (0.04) 1.00 0.71 23,197   
Years of Experience 9.63 (0.20) 8.36 25,159   
Regular state cert/adv prof certificate 

Yes 79.75 12,769   
No 20.25 3,242     

100.00 16,011   
Mathematics or Related Degree*

Yes 37.88 6064
No 62.12 9943
Total 100.00 16,007   

Sex
Female 60.36 9,679     
Male 39.64 6,356     
Total 100.00 16,035   

Mathematics Teacher's Race/Ethnicity
American Indian/Alaska Native, non-Hispanic 0.18 163        
Asian, non-Hispanic 2.41 1,672     
Black/African-American, non-Hispanic 3.42 2,218     
Hispanic, no race specified 0.36 204        
Hispanic, race specified 3.31 3,311     
More than one race, non-Hispanic 1.42 1,912     
Native Hawaiian/Pacific Islander, non-Hispanic 0.04 110        
White, non-Hispanic 88.86 11,854   
Total 100.00 21,444   

Note. Means for continuous variables represent population estimates calculated using student-

level data and appropriate sampling weights to account for complex sampling design of HSLS:

09. Tabulations for categorical variables represent frequencies base-year respondents 

mathematics teachers. Only Students that were enrolled in a mathematics class and whose 

mathematics teacher responded to the teacher questionnaire are included. n = analytic sample 

size.

* Includes Mathematics, Statistics, Engineering, Physics and Computer Science

Teacher Self-Efficacy. Mathematics Teacher Self-Efficacy is a scale of student’s base 

year mathematics teacher’s self-efficacy; higher values represent greater self-efficacy. It is 

derived from teacher answers to questions about how much they agree/disagree with the 

following statements: 1) The amount a student can learn is primarily related to family 
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background; 2) If students are not disciplined at home, they are not likely to accept any 

discipline at school; 3) You are very limited in what you can achieve because a student's home 

environment is a large influence on their achievement; 4) If parents would do more for their 

children, you could do more for your students; 5) If a student did not remember information you 

gave in a previous lesson, you would know how to increase their retention in the next lesson; 6) 

If a student in your class becomes disruptive and noisy, you feel assured that you know some 

techniques to redirect them quickly; 7) If you really try hard, you can get through to even the 

most difficult or unmotivated students; and 8) When it comes right down to it, you really can not 

do much because most of a student's motivation and performance depends on their home 

environment. Mathematics Teacher Self-Efficacy is standardized to a mean of 0 and a standard 

deviation of 1. The coefficient of reliability (alpha) is 0.71 suggesting moderate internal 

consistency. According to Bandura (1997), all items in self efficacy scales should be phrased as 

“can do” statements, so that they are a measure of personal ability and competence, not just a 

reflection of personal beliefs and thoughts. However, not all of the statements designed to assess 

Teacher Efficacy in the HSLS:09 scale conform to this dictate. This could explain why the 

coefficient of reliability is lower than is typically found for self-efficacy scales (i.e., the student 

self-efficacy scale conforms to Bandura’s dictate and has a reliability coefficient of .90).

Years of Experience. The mean years of experience of HSLS:09 student’s mathematics 

teacher is 9.63 years with a standard error of .20 and a standard deviation of 8.36. This suggests 

that there is a large amount of variation with a majority of teachers ranging between 1 - 18 years 

of mathematics teaching experience.
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Certification. The proportion of students with teachers holding mathematics teaching 

certification is estimated to be .79 with a standard error of 0.01 and a standard deviation of .41. 

This includes teachers who have either a regular or advanced teaching certification from their 

state. It does not include teachers with temporary, partial or those that are currently in progres.

Mathematics Degree. The proportion of HSLS:09 student respondents who were taught 

by mathematics teachers with at least a Bachelor’s degree in mathematics or related field is 

37.88% versus 62.12% who were not. This includes teachers with a Bachelor’s degree in 

Mathematics, Statistics, Engineering, Physics or Computer Science.

Gender. The proportion of HSLS:09 study respondent with female mathematics teachers 

is 60.36% versus 39.64% male teachers.

Race. As mentioned earlier, the Race/Ethnicity percentages shown in 3 represent sample 

frequencies of student HSLS:09 respondents. The largest proportion of study students had white 

teachers, comprising 88.86% of the sample. The second largest group was Hispanic students 

followed by Black and Asian each comprising 3.67, 3.42 & 2.41 percent respectively. 

Approximately 1.42 percent of the student respondents had mathematics teachers who identified 

with more than one race. Lastly, American Indian/Alaskan Natives and Native Hawaiian/Pacific 

Islander made up the smallest segments of the students mathematics teachers comprising 0.18 

and 0.04 percent respectively.

School Characteristics.

Table 4 shows summary statistics and frequencies for school characteristics variables 

used in this study. It includes summary statistics for Mathematics Teacher Self-Efficacy, Years of 

Experience, Certification, Education, and Race. Frequencies for categorical variables include 
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mathematics teacher’s Sex and Race. All of the Teacher variables were collected during the base-

year of HSLS:09 from student respondents who were enrolled in a mathematics course. 

Accordingly, appropriate sample weights and survey design parameters were used to estimate 

population means of each respective continuous variable. In contrast, categorical variables 

represent unweighted frequencies therefore should not be interpreted as population estimates. It 

also important to note that teachers are not the unit of study therefore means, totals, and 

frequencies of teacher variables are not generalizable to all mathematics teacher but rather 

represent features of the student’s learning context.

Table 4

Summary Statistics of School Characteristics

% M (SE) SD Cronbach's ! n
School Compositional SES -0.01 (0.02) 0.43 944
School Climate 0.00 (0.06) 1.00 0.89 738
Free and reduced lunch (%) 35.92 (1.56) 26.85 860
Student Body Ethnic Composition (%)

American Indian/Alaskan Native 1.74 (0.54) 8.39 861
Asian or Pacific Islander 2.86 (0.31) 6.38 864
Black or African American 11.72 (1.19) 20.10 865
Hispanic/Latino/Latina 11.87 (0.96) 19.63 866
White 70.83 (1.97) 30.43 865

School Type
Regular school not incl magnet/charter 93.35 828
Charter school 1.92 17
Special program school or magnet school 3.49 31
Vocational or technical school 0.45 4
Alternative school 0.79 7
Total 100.00 887

School Control
Public 80.63 716
Private 19.37 172
Total 100.00 888

School Locale
City 28.81 272
Suburb 35.49 335
Town 12.39 117
Rural 23.31 220
Total 100.00 944
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Note. Mean, standard error, standard deviation and total valid observations for continuous 

variables were estimated using school-level data and sampling weights to account for complex 

sample design of HSLS:09. Percentages were tabulated from the total number of base year 

schools ( n = 944). Crombach's alpha values for composite variables were obtained from HSLS:

09 documentation. n = analytic sample size.

School Compositonal SES. The School’s Compositional Socio-Economic Status (School 

SES) is derived from the Student Socio-Economic Status (Student SES) aggregated at the school 

level. The mean School SES for HSLS:09 schools (N=944) is estimated to be -.01 with a standard 

error of .02 and a standard deviation of .43. This is very similar to the mean of individual student 

socio-economic status; however, there is less variation between schools than between 

individuals. This is expected because we expect students within a school to be more similar than 

individuals picked at random from the population. Nevertheless, School SES can be interpreted 

as the average socio-economic status of the students within a given school. Higher values 

represent higher levels of the parent’s/guardian’s educational attainment, household income and 

occupational prestigue.

School Climate. Schol Climate is a scale of administrator's assessment of problems at the 

school. It is derived from responses to questions about the frequency of a variety of incidents 

including: 1) physical conflicts at the school; 2) robbery or theft; 3) vandalism; 4) illegal drug 

usage; 5) alcohol usage; 6) drug selling on or near school grounds; 7) student position of 

weapons; 8) physical abuse of teachers; 9) student racial tensions; 10) student bullying; 11) 

student verbal abuse of teachers; 12) student in-class misbehavior; 13) student acts of disrespect 

for teachers; and 14) student gang activities. The scale of School Climate is centered to a mean of 
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0 and a standard deviation of 1. The coefficient of reliability (alpha) is 0.65 suggesting moderate 

internal consistency.

Free and Reduced Lunch. The average proportion of students the receive free and 

reduced lunch across schools is estimated to be 39.92% with a standard error of 1.56 and a 

standard deviation of 26.85. This suggests that there is a large amount a variability across schools 

with respect to the proportion of the student population who qualify for free and reduced lunch 

services. It is important to note that this estimate includes all types of schools including private 

and parochial schools therefore it is any analysis should include controls to control for 

differences between public and private schools. For instance, the mean proportion of receiving 

free and reduced lunch services in public schools is 44.90% with a standard deviation of 23.56, a 

significant difference both practically and statistically. Subsequent analysis thus include both 

estimates of Free and reduced lunch while controlling for School Type (Traditional/Non-

Traditional) and School Control (Private vs Public).

Student Body Ethnic Composition. The Racial/Ethnic Student Composition is the 

average proportion of various racial groups across U.S. schools. The highest proportion of 

students across schools is White students who on average comprise 70.83% of the students in 

U.S. schools. The next highest are Hispanic and Black students each comprising 11.87% and 

11.72% respectively. American Indian/Alaskan Native and Asian or Pacific Islander make up the 

lowest proportion on average comprising 1.74% and 2.86% respectively. It is important to note 

that the compositional data was derived from the school administrator survey, not from student 

level respondents. Therefore these estimates represent population estimates for U.S. schools in 

2009.
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School Type. Five different school types are represented in the schools sampled in HSLS:

09 with 93.35% being regular or “traditional” public schools. Other types included Charter 

Schools which comprised 1.92% of schools as well as Magnet, Vocational/Technical, and 

Alternative Schools each comprising 3.49%, 0.45% and 0.79% respectively. It is important to 

note that Charter Schools as well as Vocational/Technical schools are also considered public. For 

this reason, subsequent analysis uses both School Type and School Control (public/private) as 

control variables.

School Control. The proportion of schools in the HSLS:09 sample under public control is 

80.63% compared to 19.37%of  that are private. Generally speaking, private schools tend to be 

associated with her Socio-Economic status therefore all subsequent analysis include school type 

as a control variable to mitigate confounding school effects with SES effects.

School Locale. The four distinct school locales include City, Suburban, Town and Rural. 

The proportion of schools in each of these were derived from data from the Common Core of 

Data and the Private School Survey. The locale with the highest proportion of schools was 

Suburb followed by City with 35.49% and 28.81% respectively. Approximately 23.31% of 

schools are in rural areas and 12.39% are in towns.

Patterns of Achievement and Teacher Self Efficacy.

This section contains a closer examination of the dependent and the independent 

variables in this study namely Mathematics Achievement and Mathematics Teacher Self-

Efficacy. Each of these variables are examined across Race, Gender, Socio-Economic Status and 

School Characteristics to reveal variation across these various groups and provide some initial 

insight into patterns of variation across various groupings.
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Table 5

Mathematics Achievement by Race
(1) (2) (2-1)

Amer. Indian/Alaska Native, non-Hispanic
-6.92 (2.13)**
10.67
163

-4.56 (1.31)***
9.32
126

1.44 (1.09)
7.71
124

Asian, non-Hispanic
7.81 (0.64)***
15.32
1,672

7.99 (0.69)***
15.02
1,705

0.69 (0.32)*
9.20
1,467

Black/African-American, non-Hispanic
-4.88 (0.42)***
7.94
2,218

-4.68 (0.36)***
6.91
2,123

0.51 (0.32)
5.79
1,897

Hispanic, no race specified
-4.98 (1.36)***
7.23
204

-3.86 (0.85)***
6.38
346

0.41 (0.81)
3.82
153

Hispanic, race specified
-1.87 (0.32)***
7.79
3,311

-1.90 (0.30)***
7.26
2,860

0.03 (0.20)
5.76
2,805

More than one race, non-Hispanic
-0.22 (0.39)
9.91
1,912

-0.02 (0.40)
9.63
1,676

0.28 (0.30)
7.29
1,647

Native Hawaiian/Pacific Islander, non-Hispanic
-2.92 (2.01)
9.88
110

-0.72 (2.19)
8.96
89

1.33 (2.65)
8.78
89

White, non-Hispanic
1.81 (0.19)***
9.74
11,854

1.75 (0.19)***
9.86
10,663

-0.06 (0.11)
6.93
10,441

Note. Mean (standard error), standard deviation & number of observations for student's 

standardized mathematics achievement score in baseyear (1), first follow up (2) and difference 

(2-1). Subpopulation estimates were calculated using student-level data and sampling weights to 

account for complex sampling design of HSLS:09. For each column, the Wald significance test 

tests the hypothesis that the difference between the subgroup mean and the population mean (see 

Table 2) is equal to zero.

* p<0.05, ** p<0.01, *** p<0.001

Mathematics Achievement by Race
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Table 19 shows subpopulation estimates of mathematics achievement in students 9th, 11th 

grade and the change between their achievement between 9th and 11th grade across racial 

subgroups. Mathematics scores for both 9th and 11th grade were mean centered therefore 

estimates represent the differences between the subpopulation mean and the overall population 

mean. The results for the base year (1) indicate that there are significant differences along racial 

lines. This is consistent with the well-documented patterns of “achievement gaps” across racial 

groups. Overall, Asian students outperform all other subgroups outscoring other students by an 

average of 7.81 points. This difference is both statistically significant and practically significant 

as an effect size of roughly .75 is rather large in educational contexts. Similarly, White students 

on average outperform the general population by 1.81 points which translates into an effect size 

of .18. All other racial groups show either no difference from the mean or score lower compared 

to the entire student population. American Indian/Alaskan Native on average score 6.92 points 

below the mean and have the highest variation with a standard deviation of 2.13. Black and 

Hispanic students also score lower on average with the subpopulation of Hispanic with no racial 

identity scoring 4.98 points lower on average than the entire student population and with a 

standard deviation of 1.36. Similarly, Black students on average scored 4.88 points lower than 

the national average while Hispanic students who specified a race scored 1.87 points lower. The 

differences for Black and Hispanic students compared to the national average were both 

statistically significant at the .001 level, signaling that the difference is extremely unlikely to be a 

chance occurrence. Native Hawaiian/Pacific Islander students also scored lower than the 

National average; however, that difference was not statistically significant, in part due to the 
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small sample size and large standard deviation. Overall, the patterns match longstanding trends 

in educational inequity in mathematics education. 

The mean achievement scores for the first follow up (2) follow similar trends to those in 

the base year. With the exception on Asian students all other subgroups there was no difference 

between their relative performance in the base year (1) versus the first follow up (2). That is to 

say that every subgroups performance stayed the same relative to the National Average. This is 

reflected in the Math Gain column (2-1) which shows Asian students gaining 0.69 points 

between 9th and 11th grade. This was statistically significant at the .05 level. No other group made 

gains (or losses) that were statistically significantly different than their base-year outcomes. This 

does not mean that these groups did not improve their achievement, it just means that the relative 

achievement gap for the various racial groups did not change.

Table 6

Mathematics Achievement Gain by Group
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(1) (2) (2-1)
School Control

Private
4.50 (0.51)***
13.20
3,933

5.64 (0.52)***
13.29
3,749

1.27 (0.22)***
9.49
3,459

Public
-0.35 (0.20)
9.26
17,511

-0.43 (0.20)*
9.15
16,845

0.02 (0.10)
6.59
15,164

Locale

City
-0.21 (0.41)
9.26
6,067

-0.19 (0.41)
9.12
5,852

0.25 (0.17)
6.01
5,259

Suburban
0.87 (0.29)**
9.91
7,636

0.99 (0.32)**
9.75
7,378

0.21 (0.16)
6.64
6,577

Town
-1.83 (0.55)**
9.00
2,580

-1.77 (0.36)***
8.75
2,447

0.08 (0.32)
6.61
2,247

Rural
-0.05 (0.30)
9.28
5,161

-0.28 (0.32)
9.04
4,917

-0.20 (0.18)
6.86
4,540

Gender

Male
-0.10 (0.25)
10.10
10,887

0.04 (0.24)
9.94
10,382

0.32 (0.12)*
6.83
9,349

Female
0.10 (0.25)
9.17
10,557

-0.03 (0.24)
9.07
10,206

-0.09 (0.13)
6.53
9,274

Socio-Economic Status (SES)

Low SES
-5.21 (0.33)***
8.22
3,434

-4.84 (0.34)***
7.26
2,918

0.34 (0.20)
6.15
2,833

Middle SES
-0.55 (0.17)**
9.16
12,491

-0.64 (0.17)***
8.85
10,909

0.00 (0.12)
6.84
10,762

High SES
6.67 (0.22)***
10.30
5,519

7.00 (0.24)***
10.39
5,039

0.26 (0.16)
7.69
5,028

Note. Mean (standard error), standard deviation, & number of observations for student's 

standardized mathematics achievement score in baseyear (1), first follow-up (2), and difference 

(2-1). Subpopulation estimates were calculated using student-level data and sampling weights to 

account for complex sampling design of HSLS:09. For each column, the Wald significance test 

tests the hypothesis that the difference between the subgroup mean and the population mean (see 

Table 2) is equal to zero.



75

* p<0.05, ** p<0.01, *** p<0.001

Mathamatics Gain by Group

Table 20 above shows mean mathematics achievement for various groupings of students 

including: School Control, Locale, Gender, and Socio-Economic Status (SES). Students in 

private schools showed the biggest gains in Mathematics Achievement increasing by 1.27 points 

from the base year to the first follow-up. In contrast, students in public schools showed no gains 

in mathematics achievement during the same time period. In fact, students in public schools 

scored .35 and .43 points lower than the National average in 9th (1) and 11th (2) grades 

respectively; however, the difference was only statistically significant in 11th grade. 

Student’s mathematics achievement also varied by Locale with students from suburban 

locales outperforming students from the other 3 locales. Suburban students on average scored 

0.87  and 0.99 points higher than the National average in the 9th and 11th grade respectively. This 

difference was statistically significant at the .01 level. In contrast, students from Town locales on 

average scored lower by 1.83 and 1.77 points in 9th and 11th grade respectively. On average, 

students from rural and city locales did not differ from the National mean in either 9th or 11th 

grade. 

There were no differences between male and female students mathematics achievement 

relative to the National average. Both performed similarly in both 9th and 11th grade with male 

students showing a slight gain 0.32 between assessments. This difference was statistically 

significant at the .05 level. So while female students show a slightly downward trend, there is not 

enough evidence to conclude that they perform any different than the national average.
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Lastly, mean mathematics achievement was tabulated across low, middle and high SES 

groups. As expected, students in the highest SES group performed above the National average by 

6.67 and 7.00 points in 9th and 11th grade respectively. In contrast, students in the lowest SES 

group scored 5.21 and 4.84 points below the National average across the same time periods. 

Students in the middle SES group also scored lower compared to the National average, with 

means of -0.55 and -0.64 respectively in 9th and 11th grade. All the differences in base year and 

first follow up mathematics achievement means were statistically significant at the .01 level or 

lower. None of the SES groups showed significant gains or losses relative to the National 

averages. That is, each group performed consistently across 9th and 11th grade.

Table 7

Mathematics Achievement Gain by Race and SES

Low Middle High Low Middle High Low Middle High

Amer. Indian/Alaska 
Native, non-Hispanic

-14.59 (1.48)***
6.39
38

-6.29 (1.39)***
9.08
97

7.03 (2.27)**
9.25
28

-11.61 (2.53)***
7.82
27

-4.07 (1.07)***
7.42
75

6.69 (1.84)**
7.75
24

0.83 (3.54)
8.54
26

2.35 (1.51)
6.94
74

-1.08 (1.39)
6.69
24

Asian, non-Hispanic
-0.44 (1.74)
16.20
183

6.17 (0.52)***
12.96
786

12.79 (0.73)***
14.08
703

2.35 (1.43)
12.70
173

5.90 (0.59)***
13.21
723

12.98 (1.01)***
15.41
639

2.90 (0.92)**
9.87
154

0.24 (0.50)
7.94
677

0.64 (0.59)
10.33
636

Black/African-
American, non-
Hispanic

-7.70 (0.61)***
6.87
496

-4.72 (0.47)***
7.48
1,367

1.79 (0.92)
9.89
355

-7.16 (0.65)***
5.82
427

-4.29 (0.43)***
6.52
1,174

1.49 (0.79)
8.86
327

0.82 (0.55)
5.01
412

0.49 (0.40)
5.65
1,158

-0.29 (0.66)
7.76
327

Hispanic, no race 
specified

-7.37 (1.16)***
6.18
110

-2.19 (2.17)
7.65
92

0.97 (0.85)
2.61
2

-6.33 (1.08)***
5.26
104

-2.09 (1.99)
6.66
82

1.22 (0.00)***
0.00
1

0.72 (0.98)
3.92
80

0.08 (1.18)
3.62
72

-2.11 (0.00)***
0.00
1

Hispanic, race 
specified

-4.56 (0.49)***
6.78
1,187

-0.80 (0.37)*
7.64
1,727

5.15 (0.69)***
9.15
397

-4.18 (0.47)***
6.17
999

-0.97 (0.40)*
7.13
1,469

4.44 (0.99)***
10.19
362

0.20 (0.38)
5.28
985

0.00 (0.30)
5.64
1,458

-0.64 (0.85)
8.52
362

More than one race, 
non-Hispanic

-3.50 (0.79)***
9.23
254

-1.41 (0.45)**
8.86
1,225

6.50 (0.69)***
10.94
433

-1.34 (0.47)**
8.55
1,066

7.22 (0.81)***
10.67
385

-0.35 (0.75)
7.21
201

0.30 (0.36)
6.94
1,062

0.64 (0.73)
8.48
384

Native 
Hawaiian/Pacific 
Islander, non-Hispanic

-1.11 (1.38)
7.61
21

-4.80 (2.25)*
8.95
72

8.09 (2.08)**
8.26
17

-9.16 (4.18)*
8.95
14

-1.43 (1.67)
6.57
59

11.68 (4.17)*
12.85
16

-7.89 (4.08)
8.74
14

2.18 (3.11)
8.11
59

3.93 (2.03)
6.46
16

White, non-Hispanic
-4.53 (0.39)***
9.55
1,145

0.58 (0.20)**
8.90
7,125

6.76 (0.21)***
9.27
3,584

-4.54 (0.46)***
8.50
971

0.28 (0.18)
8.87
6,261

7.22 (0.23)***
9.42
3,285

0.13 (0.29)
7.01
961

-0.26 (0.14)
6.70
6,202

0.32 (0.16)*
6.84
3,278

(1) (2) (2-1)
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Note. Mean (standard error), standard deviation, & number of observations for student's 

standardized mathematics achievement score in baseyear (1), first follow-up (2), and difference 

(2-1). Subpopulation estimates were calculated using student-level data and sampling weights to 

account for complex sampling design of HSLS:09. For each column, the Wald significance test 

tests the hypothesis that the difference between the subgroup mean and the population mean (see 

Table 2) is equal to zero..

* p<0.05, ** p<0.01, *** p<0.001

Mathematics Gain by Race and SES

Table 7 above shows patterns of mathematics performance across Race and SES groups. 

With few exceptions, achievement patterns are consistent across racial groups with performance 

increasing according to SES grouping. That is, students in higher SES groups within the same 

racial group tend to outperform those in the lower SES groups. A notable exception seems to be 

middle SES Native Hawaiian/Pacific Islander students who were the lowest performing group in 

the base year mathematics assessment. However, it is likely that the low number of students in 

these groups make scores more susceptible to outliers. Overall, the pattern of SES is clear and 

consistent; increases in SES tranlate to increases in achievement for all students. With respect to 

Mathematics Gain, only Asian students in the low SES group showed significant increases in 

relative achievement (compared to National average) increasing 2.90 points. The tabulation 

across this many groups while helpful to see broad patterns is not ideal for any substantive 

analysis due to the low frequencies in many of the groupings. It does however confirm the 

importance of SES across racial groups as well as highlights the fact that SES alone cannot make 

up for where students start off.
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Table 8

Teacher Quality Characteristics by Student Race

SELF 
EFFICACY

YRS
EXPERIENCE

MATH
CERTIFICATION

B.A.
MATHEMATICS

Amer. Indian/Alaska Native, non-Hispanic
-0.46 (0.38)
0.89
95

-2.19 (1.48)
7.22
115

-0.26 (0.12)*
0.44
115

-0.20 (0.08)*
0.33
115

Asian, non-Hispanic
0.07 (0.10)
1.32
1,077

0.51 (0.64)
10.05
1,250

-0.02 (0.03)
0.53
1,252

0.10 (0.03)**
0.63
1,252

Black/African-American, non-Hispanic
0.08 (0.07)
0.76
1,336

-0.92 (0.47)*
6.05
1,524

-0.06 (0.03)
0.32
1,526

-0.02 (0.03)
0.35
1,523

Hispanic, no race specified
-0.32 (0.14)*
0.71
174

-2.28 (1.28)
5.04
194

-0.09 (0.05)
0.30
194

0.07 (0.06)
0.32
194

Hispanic, race specified
-0.11 (0.08)
0.79
2,130

-0.53 (0.34)
5.67
2,434

-0.05 (0.03)
0.32
2,446

0.01 (0.03)
0.36
2,441

More than one race, non-Hispanic
-0.05 (0.07)
0.90
1,266

-0.26 (0.39)
7.13
1,414

0.02 (0.02)
0.35
1,422

0.03 (0.02)
0.44
1,416

Native Hawaiian/Pacific Islander, non-Hispanic
-0.37 (0.17)*
0.93
69

-0.13 (1.34)
7.75
83

0.03 (0.06)
0.36
83

0.10 (0.10)
0.47
82

White, non-Hispanic
0.05 (0.03)
0.88
8,070

0.55 (0.24)*
8.07
9,165

0.03 (0.01)**
0.35
9,188

0.00 (0.02)
0.45
9,175

Note. Mean (standard error), standard deviation, & number of observations for Teacher Quality 

characteristics are reported. Student Race subpopulation estimates were calculated using student-

level data and sampling weights to account for complex sampling design of HSLS:09. For each 

column, the Wald significance test tests the hypothesis that the difference between the subgroup 

mean and the population mean (see Table 3) is equal to zero.

* p<0.05, ** p<0.01, *** p<0.001

Teacher Quality by Student Race
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Table 8 above shows mean estimates for Teacher Quality characteristics across student 

Race including Teacher’s Self Efficacy, Years of Experience, Mathematics Certification and 

Mathematics Degree. Means were calculated from student level data based on student’s 

mathematics teacher responses to the teacher questionnaire in HSLS:09. Since teachers are not a 

unit of analysis, the Teacher Quality Characteristics can only be interpreted as features of the 

student’s learning context and are not representative of any teacher population either at the 

school or at large. All of the Teacher Quality variables included in Table 8  were mean centered 

so estimates reflect differences from the population mean. Population mean estimates for Teacher 

Quality characteristics are presented in Table 3. Wald significance test were performed to test the 

hypothesis that the difference between the subpopulation mean and the overall population mean 

is equal to 0. There is some evidence that Teacher Quality indicators vary across student race. 

With respect to Mathematics Teacher Self-Efficacy, both Hispanic students with no race 

specified, and Native Hawaiian/Pacific Islander on average have mathematics teacher’s with 

lower Self-Efficacy. The mathematics teachers of these groups have mean self-efficacy scores of 

-0.32 (0.14) and -0.37 (0.17) respectively. These differences are significant at the .05 level. 

Given that mean Mathematics Teacher Self-Efficacy is   centered to 0 and a standard deviation of 

1, these differences roughly correspond to effect sizes. There is no theoretical or intuitive basis to 

offer any explanations about why such differences might exists. However, despite being 

statistically significant, the relatively small sample sizes of the subpopulations is a reminder that 

these estimates are more susceptible to outliers or influenced by chance variation.

With respect to Years of Experience, Black students on average are taught mathematics 

by teachers with less years of experience. Their teachers have on average 0.92 less years of 
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experience compared to the population mean. In contrast, White students on average are taught 

mathematics by teachers with 0.55 more years of experience. Both of these differences are 

significant at the .05 level. This pattern is consistent with Black students being 

disproportionately tracked to lower mathematics classes and the fact that these classes are more 

often than not taught by less experienced teachers (citation needed). 

With the exception of American Indian/Alaskan Native students, Teacher Certification is 

fairly even across racial groups. American Indian/Alaska Native students are on average taught 

by a lower proportion of certified teachers. The difference is .26 lower which means that just 

over half (0.79 -0.26 = 0.53) of American Indian/Alaskan Native students in HSLS:09 were 

taught by teachers that were fully certified to teach high school mathematics. In addition, only 

18%, roughly 1 in 5,  American Indian/Alaskan Native students in HSLS:09 were taught by 

mathematics teachers with a Bachelor’s degree in a mathematics or mathematics related field. 

The shortage of minimally qualified mathematics teachers for this population is particularly 

stark. In contrast, the proportion of White students that are taught by fully certified mathematics 

teachers is 3% higher compared to the national average. Lastly the proportion of Asian students 

that are taught by teachers with a Bachelor’s degree in Mathematics or mathematics related field 

is 10% higher than the national average. This translates to more than half of Asian students in 

HSLS:09 were being taught by teachers with a Bachelor’s degree in mathematics or related field. 

Overall the pattern in Teacher Quality characteristics seem to fall along the extremes of the 

achievement continuum with Black and American Indian/Alaskan Native students being 

disproportionately taught by teachers with less teaching qualifications compared to White and 

Asian students.
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Table 9

Teacher Quality Characteristics by Group

SELF EFFICACY
YRS

EXPERIENCE
MATH

CERTIFICATION
B.A.

MATHEMATICS

School Control

Private
0.43 (0.07)***
1.08
2,708

3.40 (0.74)
14.29
3,176

-0.24 (0.04)
0.67
3,176

24.57 (1.08)
17.07
3,174

Public
-0.03 (0.04)
0.89
11,509

-0.27 (0.21)
7.24
13,003

0.02 (0.01)
0.35
13,050

23.64 (0.39)
11.51
13,024

Locale

City
-0.11 (0.09)
0.80
4,009

-0.10 (0.39)
6.43
4,494

-0.03 (0.03)
0.34
4,495

25.08 (0.72)
10.42
4,495

Suburban
0.09 (0.05)*
0.88
4,895

-0.45 (0.27)
7.20
5,597

0.00 (0.02)
0.36
5,621

23.94 (0.56)
11.49
5,608

Town
-0.01 (0.10)
0.84
1,779

0.13 (0.56)
6.73
2,105

0.00 (0.03)
0.36
2,106

22.41 (1.61)
11.32
2,091

Rural
0.03 (0.06)
0.83
3,534

0.75 (0.48)
7.91
3,983

0.04 (0.02)
0.33
4,004

22.05 (0.58)
10.11
4,004

Gender

Male
-0.01 (0.03)
0.88
7,200

-0.20 (0.22)
7.39
8,181

0.00 (0.02)
0.36
8,206

23.69 (0.42)
11.49
8,188

Female
0.01 (0.05)
0.88
7,017

0.21 (0.24)
7.41
7,998

-0.01 (0.01)
0.36
8,020

23.72 (0.40)
11.29
8,010

Socio-Economic Status (SES)

Low SES
-0.13 (0.06)*
0.82
2,266

-1.26 (0.36)
5.94
2,567

-0.05 (0.02)
0.35
2,570

24.21 (0.67)
10.83
2,566

Middle SES
-0.01 (0.04)
0.92
8,250

-0.06 (0.21)
7.62
9,377

0.01 (0.01)
0.37
9,413

23.70 (0.40)
11.83
9,393

High SES
0.17 (0.04)***
0.91
3,701

1.35 (0.31)
9.06
4,235

0.01 (0.02)
0.40
4,243

23.26 (0.51)
12.03
4,239

Teacher Quality by Group
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Note. Mean (standard error), standard deviation, & number of observations for Teacher Quality 

characteristics are reported. Student Group subpopulation estimates were calculated using 

student-level data and sampling weights to account for complex sampling design of HSLS:09. 

For each column, the Wald significance test tests the hypothesis that the difference between the 

subgroup mean and the population mean (see Table 3) is equal to zero.

* p<0.05, ** p<0.01, *** p<0.001

With the exception of Teacher Self-Efficacy, Teacher Quality characteristics showed little 

variation across School Control, Locale, Gender and Socio-Economic Status. Subpopulation 

estimates were not statistically significantly different across any of these groups. However, 

students in Private Schools, Suburban Locales, and student with high Socio-Economic Status 

tended to be taught by mathematics teachers with higher degrees of Teacher Self-efficacy. The 

highest group was students in Private schools whose Mathematics Teacher Self-Efficacy is 0.43 

higher than the national average. Since Mathematics Teacher Self-Efficacy is mean centered to 0 

and has a standard deviation of 1, this roughly translates to an effect size of 0.43. Students 

attending schools in suburban locale’s were taught by teachers that on average had 0.09 higher 

Self-Efficacy than the national average. Lastly, the Mathematics Teacher Self-Efficacy tracked 

along student’s Socio-Economic Status with students in lower Socio-Economic Status groups on 

average being taught by mathematics teachers with lower Self-efficacy. Given the strong 

relationship between Socio-Economic Status and Mathematics Achievement demonstrated in 

Table 20 , the relationship between Mathematics Teacher Self-Efficacy, Mathematics 

Achievement and Socio-Economic Status will need to considered carefully to determine how 
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Mathematics Teacher Self-Efficacy interacts with Socio-Economic Status in relation to 

Mathematics Achievement.

First Order Correlations

This section contains first order correlation matrices for both Student and School Level 

variables respectively. Pairwise correlations were estimated and two-tailed significance tests are 

reported. For readability and ease of interpretation, only significant correlations that are greater 

in absolute magnitude of .10 are included in  Tables. See Appendix J and K for complete 

correlation matrix tables.

Table 10

Correlations of Level 1 Variables

1 2 3 4 5 6 7 8 9 10 11

Student Variables

1. Grade 9 Algabraic Reasoning Score 1.00

2. Grade 11 Algabraic Reasoning Score 0.75* 1.00

3. Mathematics Gain (11th-9th) -0.34* 0.37* 1.00

4. Mathematics Self-Efficacy 0.31* 0.31* 1.00

5. Mathematics Identity 0.40* 0.39* 0.58* 1.00

6. Socio-Economic Status 0.44* 0.44* 0.15* 0.14* 1.00

7. Sex -0.10* 1.00

8. Teacher Self-Efficacy 0.11* 1.00

9. Teaching Experience (Yrs.) 0.13* 0.13* 0.13* 1.00

10. Certification 0.20* 1.00

11. Bachelor's Degree 1.00

Measure

Note. Coefficients represent correlations of level 1 variables. Sex: 1=Female, 0=Male; 

Certification: 1=Certified to teach Mathematics, 0=No Certification; Bachelor's Degree: 

1=Bachelor’s degree in Mathematics or related field, 0=other. Non significant correlations were 

omitted.
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* correlation at 0.05 (2-tailed)

Stiudent Level Correlations

Correlations were computed for the 11 student level variables used in the subsequent 

multi-level models. The results shown in 10 suggest that 38 of the 55 correlations were 

statistically significant. As might be expected, the correlation between the 9th and 11th grade 

Algebraic Reasoning Scores was the highest, r(18,621) = +.75, p<.05. It has not only been 

empirically shown but intuitive that past performance is the strongest predictor of future 

performance, especially within the same domain as was the case with the Algebraic Reasoning 

exam. Socio-economic status was the next highest correlate with both 9th and 11th grade 

Algebraic Reasoning Scores, r(21,441) = +.44, p<.05 and r(18,863) = +.44, p<.05 respectively. 

The correlation between Socio-Economic Status and Academic Achievement is an enduring 

phenomena has been studied exhaustively since educational data has been collected and analyzed 

(citation). that The psychological constructs of Student’s Mathematics Self-Efficacy and 

Mathematics Identity were strongly correlated r(1,426) = +.58, p<.05. with each other and also 

moderately correlated with both 9th and 11th grade Algebraic Reasoning Scores, with coefficients 

ranging between +.30 and +.40. Neither Mathematics Self-Efficacy nor Mathematics Identity 

were correlated with Mathematics Gain. Of the teacher characteristics, the variables with the 

highest correlation coefficients were Years of Teaching Experience and Algebraic Reasoning 

Scores in both 9th and 11th grade, r(15,986) = +.13, p<.05 and r(15,047) = +.13, p<.05 

respectively. Teacher Self-Efficacy was only weakly correlated with Algebraic Reasoning Scores 

in 9th and 11th grade, r(14,054) = +.08, p<.05, and r(13,273) = +.09, p<.05, respectively. In 

general, the results suggests that students with higher levels of  9th Grade Algebraic Reasoning 



85

(prior performance), Socio-Economic Status, Mathematics Self-efficacy, and Mathematics 

Identity were correlated with higher 11th Grade Algebraic Reasoning Scores. However, only 

student’s Socio-Economic Status was correlated with Mathematics Gain, although not very 

strongly, r(1,8622) = +.02, p<.05. Over all, the correlation patterns observed in Table 10 follow 

known patterns of association between personal characteristics and mathematics achievement. 

These results confirm the need to include these variables in any analysis seeking to examine the 

nature of the relationship between teacher efficacy and mathematics achievement.

Table 11

Correlations of Level 2 Variables

1 2 3 4 5 6 7 8 9 10 11 12 13 14

School Variables

1. School SES 1.00

2. School Climate 0.37* 1.00

3. FRPL (%) -0.79* -0.38* 1.00

4. Am. Ind./Alaskan Native 0.12* 1.00

5. Asian/Pacific Islander 0.19* 1.00

6. Black or African American -0.29* -0.15* 0.42* 1.00

7. Hispanic/Latino/Latina -0.28* -0.16* 0.34* 0.11* 1.00

8. White 0.35* 0.20* -0.50* -0.12* -0.29* -0.60* -0.69* 1.00

9. Private 0.55* 0.55* -0.54* 0.11* -0.13* 0.10* 1.00

10. Regular 0.11* -0.19* -0.21* 0.22* 0.11* 1.00

11. City 0.11* 0.18* 0.10* 0.17* -0.22* 0.20* -0.15* 1.00

12. Suburban 0.11* -0.14* -0.47* 1.00

13. Town -0.11* 0.12* -0.11* -0.11* 0.14* -0.24* -0.28* 1.00

14. Rural -0.15* -0.14* 0.15* -0.18* -0.35* -0.41* -0.21* 1.00

Measure

Note. Coefficients represent correlations of level 2 variables. FRPL = % of students at school 

eligible for free or reduced priced lunch program; Private: 1 = private, 0 = non-private; Regular: 

1 = regular public school, 0 = charter, magnet or atternative school; City, Suburban, Town and 
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Rural: 1 = yes, 0 = no. Non significant correlations and correlations with coefficients of less 

than .10 are omitted. Coefficients of .35 or greater are shown in bold.

* correlation at 0.05 (2-tailed)

School Level Correlations

Correlations were computed for the 14 School level variables used in this analysis. Of the 

91 correlations, 67 were statistically significant at the .05 level. Of the 67 correlations that were 

statistically significant, 13 had correlation coefficients of less than +/- .10 and were thus omitted 

in 11. Predictably, the strongest correlations were those associated with School Compositional 

SES. School Compositional SES showed strong correlations with School Climate, Free and 

Reduced Priced Lunch and Private School r(737) = +.37; p<.05, r(859) = -.79, p<.05; and 

r(944), = .55, p<.05, respectively. Schools with higher levels of Compositional SES have greater 

proportions of highly educated households with higher income and high occupational prestige 

therefore it is not surprising that these schools also are positively associated with School Climate. 

Schools with higher levels of School Climate report less problems with student misbehavior 

including, gang activity, violence as well as mental health issues such as drug and substance 

abuse among students. The positive correlation between School Compositional SES and School 

Climate is expected given the stressors students and schools face as a result of economic 

disenfranchisement, lack of resources and school funding models that draw on local property 

taxes. Lastly, the very strong correlation between Compositional SES and Free and Reduced 

Priced Lunch (FRPL) is likely an autocorrelation. Despite this, FRPL is more strongly associated 

with the racial makeup of a school suggesting some unique variation between Compositional 

SES & FRPL.  
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School Compositional SES is also negatively associated with the racial composition of 

schools, such that schools with higher Compositional SES were associated with lower 

proportions of Black and Hispanic students r(864) = +.29, p<.05; r(665) = +.28, p<.05 

respectively. In contrast, schools with higher Compositional SES were associated with higher 

proportions of White and Asian/Pacific Islander students r(863) = +.19, p<.05; r(864) = +.35, 

p<.05 respectively. In addition, schools with higher proportions of White and Asian students 

were associated with lower proportions of Black and Hispanic students, r(863) = -.60, p<.05; 

r(864) = -.69, p<.05 respectively. Overall, the results of school level correlations suggests that 

higher levels of School Compositional SES are associated closely with indicators of School 

Climate as well as the racial make-up of the school, such that schools with higher Compositional 

SES show higher levels of School Climate and lower proportions of Black and Hispanic students.

Mutilevel Analysis

What follows are the results of a multi-level analysis used to answer the central research 

questions of this study. Five successive models predicting math achievement were specified 

using the “Mixed” function in Stata with maximum likelihood estimation. A school identifier 

( SCH _ ID ) was used as the grouping variable for the analysis with appropriate sampling 

weights. Model comparisons were done using -2 Log Likelihood estimates to conduct Chi-square 

difference tests. Within and between group variance reduction for successive models was also 

calculated and analyzed.

Null Model.
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The overall mean of Mathematics Achievement (β0 ) across all schools is 50.06. The between 

school variance in  Mathematics Achievement is 20.08 compared to a within school variance of 

75.65. The null model indicates an ICC of .21 which signals the presence of school level factors 

associated with algebraic reasoning scores. Put differently, an ICC of .21 indicates that 21% of 

the variation in algebraic reasoning scores is attributable to school groupings and therefore a 

multi-level analysis is not only warranted but preferable to standard regression analysis. The 

estimate for the Log likelihood of the null model is -1,629,481. The Log likelihood is a measure 

of how well the data fits the model and will be used to assess whether or not subsequent models 

show improvements over prior models. 

Figure 2 shows the range of school residuals and 95% confidence intervals for a random 

sample of schools (25%) in the dataset. While school residuals can also be referred as school 

effects, it is important to note that the null model does not take into account prior mathematics 

achievement and other factors important to school outcomes; therefore, these results cannot be 

interpreted as “school effects” in the value added sense. The “caterpillar plot” in Figure 2 shows 

that the variation in school residuals is wide with most schools falling within the center band that 

are statistically no different than zero. The hashed lines represent the lower and upper thresholds 

of school effects, that is, those that fall below and and above zero respectively. We would thus 

expect that the schools ranked at or below 125 have school residuals that are statistically 

significantly less than zero and those ranked above 800 to be greater than zero.

Figure 2.

School residuals in rank order with 95% confidence intervals.
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Note. School-level residuals were estimated and ranked from lowest to highest. The 95% 

confidence intervals around the residual estimates were standardized to the robust standard error 

of 2.16. For ease of visualization, only a random subset (25%) of schools are shown.

RQ1. Does the variation of Mathematics Achievement of REM students within and 

between schools differ from that of the general student population?

Table 12

Coefficients, Variance and Model Fit Comparison between REM and General Population
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All REM
Mathematics Achievement (cons) 50.06 (0.28) 48.05 (0.32)***
level 1 variance 75.65 69.43
level 2 variance 20.08 18.14
ICC 0.21 0.21
Log likelihood -1,629,481 -609,667

!!"
!#"
!!

Note. Coefficients, standard errors and significance test for REM subsample of students includes 

American Indian/Alaskan Native, Black/African American, Hispanic, Native Hawaiian/Pacific 

Islander (N=4,897). Significance for intercept tests the null hypothesis β0= 50. 

* p<0.05, ** p<0.01, *** p<0.001

Table 12 shows null model parameter estimates obtained for the entire population of HSLS:

09 respondents as well as the REM subpopulation. Overall, the mean of Mathematics 

Achievement for REM students across all schools is about 2 points lower  than that of the 

general population . The between school variance  for REM students (level 2) in Mathematics 

Achievement is 18.14 compared to 20.08 for the general population. Similiarly, within school 

between-student variance  for REM students in Mathematics Achievement is  69.43 compared to 

75.65 for the general population. The ICC for both the general population and the REM 

subpopulation remained at approximately .21. These results indicate, that while there is less 

variation in mathematics achievement among REM students, the proportion of variation that is 

attributable to schools is the same, namely 21%.

Figure 3 shows the residual “caterpillar plot” for the REM student subsample. This plot 

confirms the residual pattern holds for REM students albeit with a lower bottom threshold 

residuals that are statistically less than zero. This suggests that a large majority of schools (those 

ranked above 60) have residuals that are statistically equal or greater than zero.
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These findings suggest that mathematics achievement indeed varies both between and within 

schools for REM students. The overall pattern in school variation is similar to that of the entire 

population as a whole reinforcing the need for a multi-level analysis. The subsequent models will 

examine the nature of this variation for the REM subsample of students

Figure 3.

School residuals in rank order with 95% confidence intervals for REM Student Subpopulation.

Note. School-level residuals were estimated for the subpopulation of REM students (N=8,226) 

and ranked from lowest to highest. The 95% confidence intervals around the residual estimates 

were standardized to the robust standard error of 2.35. For ease of visualization, only a random 

subset (25%) of schools are shown.



92

Model 1.

Table 13 below shows coefficients, variance and Log likelihood for Model 1 specified above. 

For any school, an increase of 1 standard deviation in Mathematics Teacher Self-Efficacy 

(X1TMEFF) is associated with a 1.12 increase in Mathematics Achievement (X2TXMTSCOR). 

The intercept represents the average achievement across schools with average X1TMEFF and is 

estimated as β0  = 47.96(0.37), p< .001. This intercept is statistically no different than the 

intercept for Model 0 but statistically significantly different from the population mean of 50. The 

ICC for Model 1 increased from .21 to .24 which suggests that the distribution of teacher 

efficacy is not uniform across schools.  That is, schools with higher than average mathematics 

achievement will tend to have higher levels of teacher efficacy and visa versa, hence more 

variation between schools. The overall fit of Model 1 was a significant improvement over the 

null model, χdiff
2 (1) = 253,078 , p<.001.

Table 13

Null Model vs Model 1 Coefficients, Variance and Model Fit Comparisons

null model Model 1
Mathematics Achievement (cons) 48.05 (0.32)*** 47.96 (0.37***
Teacher Self-Efficacy 1.12 (0.30)***
level 1 variance 69.43 65.55
level 2 variance 18.14 20.44
ICC 0.21 0.24
Log likelihood -609,667 -356,588
Chi Squared Difference 253,078***

!!"
!#"

!!
!"



93

Note. Coefficients, standard errors and significance test for REM subsample of students 

including American Indian/Alaskan Native, Black/African American, Hispanic, Native 

Hawaiian/Pacific Islander (N=4,897). Significance for intercept test the null hypothesis β0= 50. 

* p<0.05, ** p<0.01, *** p<0.001

RQ2. Are higher levels of Teacher Self-Efficacy generally associated with higher levels 

of Mathematics Achievement among REM students? Model 1 confirms that there is a positive 

association between levels of Mathematics Teachers Self-Efficacy and Mathematics Achievement 

amont REM students such that an increase in one standard deviation in Mathematics Teacher’s 

Self Efficacy predicts a increase in Mathematics Achievement of 1.12. This association is 

statistically significant at the .001 level. Furthermore, the model also revealed additional 

variation at the school level which suggests that Mathematics Teacher’s Self Efficacy is not 

evenly distributed across schools. Still, these results do not take into account other factors that 

are known to be important to Mathematics Achievement such as prior achievement, socio-

economic status and other student characteristics. In Model 2, these additional student level 

factors will be added to condition the effect of Mathematic’s Teacher Self-Efficacy on individual 

student characteristics.

Model 2

Table 14 below shows coefficients, variance and Log likelihood for Model 2 specified 

above. The intercept β0  for Mathematics Achievement increased from 47.96 to 49.10. Given that 

all of the student level variables are either standardized or mean centered, this indicates that 

while REM students still preform below the population mean, the gap is much narrower once 
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individual characteristics are taken into account. The overall association between Mathematics 

Teacher Self-Efficacy and Mathematics Achievement remained statistically significant at the .05 

level but decreased in magnitude from β1= 1.12(0.30), p< .001 to β1= 0.48, p<.05. Thus, for any 

student, an increase in their Mathematics Teacher’s Self-Efficacy is associated with an increase of 

0.48 in their Mathematics Achievement scores (X2TXMTSCOR). This translates to a modest 

effect size of approximately 5% after controlling for student’s Socio-Economic Status, and other 

personal characteristics. 

As expected, the strongest predictor of Mathematics Achievement was prior mathematics 

achievement (X1TXMTSCOR) β3= 5.63(0.20), p < .001 . Because prior achievement was 

standardized to a mean of 0 and a standard deviation of 1, β3 can be interpreted as an increase in 

1 stadard deviation in 9th grade Mathematics Achievement predicts an increase of 5.63 points on 

the 11th grade Mathematics Achievement of REM stuedents. The next strongest predictor of 

Mathematics Achievement for REM students was Mathematics Identity (X1MTHID) with a 

coefficient of β5= 1.14 (0.25),  p<.001 followed by Socio-Economic Status (X1SES) with a 

coefficient of β2= 0.99 (0.22),  p<.001. Mathematics Teacher Self-Efficacy (X1TMEFF) 

remained a statistically significant predictor of mathematics achievement with a coefficient of β1  

= 0.49 (0.25), p < .05. Neither Gender nor Mathematics Self-Efficacy were statistically 

significant predictors of mathematics achievement in Model 2. 

The overall fit of Model 2 was a significant improvement over Model 1, 

χdiff
2 (5) = 109,164 , p < .001. Model 2 resulted in a moderate reduction in level 1 variance from 

65.55 to 40.36.  In contrast, the level 2 variance decreased sharply from 20.44 to 4.01. 
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Accordingly the ICC for model 2 decreased from .24 to .09 signaling that the associations 

between student’s individual characteristics and mathematics achievement in are relatively 

consistent across schools for REM students.

Table 14

Model 1 vs Model 2 Coefficients, Variance and Model Fit Comparisons

Model 1 Model 2
Mathematics Achievement (cons) 47.96(0.37)*** 48.97(0.42)*
Teacher Self-Efficacy 1.12(0.30)*** 0.49(0.25)*
SES with Locale (Urbanicity) 0.99(0.22)***
Prior Mathematics Achievement 5.63(0.20)***
Student Mathematics Self Efficacy 0.47(0.30)
Student Mathematics Identity 1.14(0.25)***
Gender 0.68(0.54)
level 1 variance 65.55 40.40
level 2 variance 20.44 4.11
ICC 0.24 0.09
Log likelihood -356,588 -247,514
Chi Squared Difference 253,078*** 109,074***
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Note. Coefficients, variance and model fit parameter estimates for subpopulation of REM 

students including American Indian/Alaskan Native, Black/African American, Hispanic, Native 

Hawaiian/Pacific Islander (N = 3,672). Significance for intercept test the null hypothesis β0= 50. 

X1SES = Socio-Economic Status, X1TXMTSCOR  = 9th grade algebraic reasoning score, 

X1MTHEFF = Student Mathematics Self Efficacy, X1MTHID = Student Mathematics Identity, 

and X1SEX = 1 if student is Female. X1SES is derived with locale (urbanicity). All continous 

predictor variables are standardized to mean of 0 and standard deviation of 1.

* p<0.05, ** p<0.01, *** p<0.001 * p<0.05, ** p<0.01, *** p<0.001
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RQ3. To what extent is the Mathematics Achievement of REM students attributable to 

differences in Mathematics Teacher’s Self-Efficacy after controlling for Student 

Characteristics? Model 2 supports the general hypothesis that Mathematics Teacher Self-

Efficacy plays an important role for the academic success of REM students even after 

conditioning the relationship on student characteristics. Overall, the mean Mathematics 

Achievement across schools was β0 = 49.07(0.42), p < .05  a difference of 0.93 from general 

population mean of 50 indicating a persistent achievement gap even after controlling for Socio-

Economic Status, prior Mathematics Achievement. However, the presence of a Teacher Self-

Efficacy effect is an encouraging sign that teachers may contribute to narrowing this gap. To 

further test this hypothesis, the next model adds traditional measures of teacher qualifications 

such as Certification, Bachelor’s Degree, and Years Experience.

Model 3.

Table 15 below shows coefficients, variance and Log likelihood for Model 3 as specified 

above. Overall, the mean of Mathematics Achievement ( X 2TXMTSCOR ) across schools 

increased slightly to β0  =  49.66(0.58), ns. This is not statistically different than the general 

population mean of 50.00 which signals that REM students score about the same as the general 

population once individual and teacher quality factors are taken into account. The addition of the 

teacher variables had only a marginal impact on the variance parameters therefore the ICC 

remained at .09. The coefficients for X1TMCERT , M1MTHTYRS912 , M1BAMAJ2  were β7  

= .02(.02), ns; β8  = -.21(0.54) ns; and β9  = -.85(0.51), ns respectively, indicating that these 

traditional measures of teacher quality are not statistically associated with the Mathematics 
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Achievement of REM students. Moreover, the linear relationship between Mathematics Teacher 

Self-Efficacy ( MTEFF ) and Mathematics Achievement decreased from β1  = 0.49(0.25), p<.05 in 

Model 1 to β1  = 0.39(0.23), p<.ns which suggests that Mathematics Teacher Self-Efficacy does 

not contribute to the Mathematics Achievement of REM students beyond what would be expected 

by chance. The Chi Square Difference test is χdiff
2 (3) = 2,075, p < .001  which is strong evidence 

that Model 3 is a statistical improvement over Model 2. However, because the Interclass 

Correlation Coefficient (ICC) remained steady, it suggests that there is still unexplained variation 

that can be attributed to School level or contextual factors. Furthermore, Model 3 assumes that 

the mean Mathematics Teacher Self-Efficacy effect is the same across schools.

Table 15

Model 2 vs Model 3 Coefficients, Variance and Model Fit Comparisons

Model 2 Model 3
Mathematics Achievement (cons) 48.97(0.42)* 49.56(0.57)
Teacher Self-Efficacy 0.49(0.25)* 0.39(0.23)
SES with Locale (Urbanicity) 0.99(0.22)*** 1.00(0.22)***
Prior Mathematics Achievement 5.63(0.20)*** 5.57(0.20)***
Student Mathematics Self Efficacy 0.47(0.30) 0.50(0.30)
Student Mathematics Identity 1.14(0.25)*** 1.12(0.25)***
Gender 0.68(0.54) 0.67(0.53)
Teacher Certification 0.02(0.02)
Teacher Experience (YRS) -0.21(0.54)
Teacher Degree -0.85(0.51)
level 1 variance 40.40 40.36
level 2 variance 4.11 4.22
ICC 0.09 0.09
Log likelihood -247,514 -245,439
Chi Squared Difference 109,074*** 2,075***
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Note. Coefficients, variance and model fit parameter estimates for subpopulation of REM 

students including American Indian/Alaskan Native, Black/African American, Hispanic, Native 

Hawaiian/Pacific Islander (N = 3,654). Significance for intercept test the null hypothesis β0= 50. 

SES = Socio-Economic Status, X1TXMTSCOR  = 9th grade algebraic reasoning score, 

X1MTHEFF = Student's Mathematics Self-Efficacy, X1MTHID= Student's Mathematics 

Identity, and X1SEX = 1 if student is Female, X1TMCERT is reverse coded so that 1 = no 

certification and 0 = fully certified to teach secondary mathematics, M1MTHYR912 is the 

number of years teaching secondary mathematics, and M1BAMAJ2  is reverse coded so that 1 = 

other and 0 = Bachelor’s degree in mathematics or related field. All non-dichotomous predicotr 

variables are standardized to mean of 0 and standard deviation of 1.

* p<0.05, ** p<0.01, *** p<0.001

RQ4. To what extent is the Mathematics Achievement of REM students attributable to 

differences in Mathematics Teacher’s Self-Efficacy after controlling for both Student 

Characteristics and Teacher Quality? The importance of Mathematics Teacher Self Efficacy on 

the Mathematics Achievement was not supported by Model 3. In fact, the linear relationship 

between Mathematics Teacher Self-Efficacy ( X1TMEFF ) and Mathematics Achievement 

( X 2TXMTSCOR ) was reduced to a level that is statistically indistinguishable from 0.  Moreover, 

none of the teacher quality variables that were added to the model had a statistically significant 

associations with Mathematics Achievement in REM student subsample. However, it is important 

to note, that Model 3 assumes that the slope of the linear relationship (β1 ) is fixed and therefore 

the same for all schools. This defies the literature which suggests that school contextual factors 

play an important role in shaping the student-teacher-achievement relationship. Put differently, 
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by restricting β1  to be equal across schools, Model 3 may be masking significance and strength 

of the relationship between Mathematics Teacher Self Efficacy and Mathematics Achievement 

across different school contexts. Model 4 will address this by including school contextual factors 

that are known to influence how students and teachers experience school and also impact student 

achievement. Model 4 will also allow β1  to vary across schools to determine whether or not the 

relationship between Mathematics Teacher Self Efficacy and Mathematics Achievement in Model 

3 is indeed being masked.

Model 4.

In Model 3, the linear relationship between Mathematics Teacher Self Efficacy and 

Mathematics Achievement was specified such that the intercept of the regression of Mathematics 

Achievement on Mathematics Teacher Self-Efficacy was allowed to vary randomly across schools 

while the slope of the regression line was assumed to be fixed. The results indicated that overall, 

the mean Mathematics Achievement of REM students was statistically no different than the mean 

of the general student population when conditioned on student and teacher characteristics. The 

coefficient β1  of the regression line was not statistically significant; therefore, Model 3 does not 

support the central hypothesis of this study regarding the importance of Mathematics Teacher 

Self-Efficacy in influencing the Mathematics Achievement of REM students. This finding could 

be in part be due to the assumption that the relationship between Mathematics Teacher Self-

Efficacy and Mathematics Achievement (β1 ) is the same across schools; an assumption that the 

literature review in this study suggests is unlikely. Moreover, given the patterns in Mathematics 

Achievement and Mathematics Teacher Self-Efficacy shown in Tables 20  and 9, it is reasonable 
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to expect that the relationship between Mathematics Teacher Self-Efficacy and Mathematics 

Achievement is not uniform across schools.

Table 16 below shows the model comparisons for Model 3 and Model 4.

The results in Table 16 indicate that when the slope of MTEFF (β1 ) is allowed to vary 

across schools, Model 4 is a better fit, χdiff
2 (2) = 158, p < .001 . Moreover, loosening the fixed-

slope constraint revealed a modest but statistically significant relationship between Mathematics 

Teacher Self-Efficacy ( X1TMEFF ) and Mathematics Achievement ( X 2TXMTSCOR ), 

β1 = 0.53(0.25), p < .05 . This means that for the average school, a 1 point increase in 

Mathematics Teacher Self-Efficacy ( X1TMEFF ) is associated with a .53 point increase in the 

school’s average Mathematics Achievement ( X 2TXMSCOR ) after controlling for  student 

characteristics and other traditional measures of teacher quality. The effect of X1TMEFF  for 

school j  can be estimated as 0.53 + û1 j , and the between school variance of the slopes is 1.97. 

Therefore, the 95% coverage interval for the school slopes is estimated as 0.53±1.96 1.97 . 

Thus, assuming a normal distribution, we would expect the middle 95% of schools to have a 

slope between -2.22 and 3.28. The intercept variance (σ u0
2 ) of 3.25 is the between school 

variance when the school mean of X1TMEFF  = 0, put differently, it is the variance of 

Mathematics Achievement conditioned on Mathematics Teacher Efficacy.

The positive covariance estimate of 1.05 suggests that schools with high intercept (above 

average Mathematics Achievement) tend to have a steeper average slope (above average 

X1TMEFF  effect). The intercept-slope correlation ( ρ01 ) is 0.42 which indicates a moderately 

strong correlation between the intercept and the slope.
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Table 16

Comparison of Random Intercept (3) and Random Slope (4) Models

Model 3 Model 4

Mathematics Achievement (cons) 49.56(0.57) 49.62(0.58)

Teacher Self-Efficacy 0.39(0.23) 0.53(0.25)*

SES with Locale (Urbanicity) 1.00(0.22)*** 0.95(0.22)***

Prior Mathematics Achievement 5.57(0.20)*** 5.53(0.20)***

Student Mathematics Self Efficacy 0.50(0.30) 0.48(0.30)

Student Mathematics Identity 1.12(0.25)*** 1.20(0.24)***

Gender 0.67(0.53) 0.70(0.52)

Teacher Certification 0.02(0.02) 0.01(0.02)

Teacher Experience (YRS) -0.21(0.54) -0.20(0.53)

Teacher Degree -0.85(0.51) -0.80(0.51)

level 1 variance 40.36 39.44

Intercept variance 4.22 3.25

slope variance 1.97

intercept/slope covariance 1.05

ICC 0.09 0.08

Log likelihood -245,439 -245,281

Chi Squared Difference 2,075*** 158***
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Note. Table shows coefficient comparisons of random intercept (3) and random slope (4) models. 

Significance test for the intercept tests the null hypothesis that β0  = 50. Significance tests for all 

other coefficients (β1 − β9 ) tests the null hypothesis β = 0 . Chi-square significance test for the 

model comparison is on 2 degrees of freedom to account for the addition of the σ u1
2  and σ u01

variance and covariance parameters.

* p<0.05, ** p<0.01, *** p<0.001
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To aid in visualizing this relationship, Figure 4 shows a plot of the intercept ( û0 j ) and 

slope ( û1 j ) residuals for all schools. The residuals represent the school effects on both the mean 

Mathematics Achievement and the mean X1TMEFF  effect.

Figure 4.

Plot of the intercept and slope residuals for schools.
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Note. Best Linear Unbiased Predictions (BLUPs) for school intercept (u0 j ) and slope (u1 j ) 

residuals were estimated using Stata’s predict post-estimation command.

From the plot in Figure 4 it is possible to identify schools with lower than average 

Mathematics Achievement but stronger than average X1TMEFF  effects. Schools in the upper 

left quadrant are such schools while schools on the lower left represent schools with lower than 
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average Mathematics Achievement and weaker than average X1TMEFF  effects. The moderately 

strong correlation ( ρ = .42 ) between the school residuals of X1TMEFF and X 2TXMTSCOR  

signals the presence of school contextual factors that may be influencing this relationship. 

However, this does not help shed light into how this relationship might differ for REM students 

or how the school context may influence the X1TMEFF  for REM students. The next two 

models will examine the school contextual factors that may may be influencing this relationship 

followed by an analysis how these patterns differ across REM subgroups.

RQ5. Does the nature of the relationship between Mathematics Teacher Self-Efficacy 

and the Mathematics Achievement of REM students vary across schools? The results of the 

Model 3 and Model 4 comparison χdiff
2 (2) = 158, p < .001  , support the hypothesis that the 

relationship between Mathematics Teacher Efficacy and REM student's Mathematics 

Achievement varies across schools. Allowing the slope of the linear relationship between 

Mathematics Teacher Self-Efficacy and Mathematics Achievement to vary across schools 

revealed the presence of a statistically significant Mathematics Teacher Efficacy effect 

β1 = 0.53(0.25), p < .05  that was not present in Model 3. Moreover, this relationship was shown 

to vary across schools such that schools with higher Mathematics Achievement on average have 

higher levels of Mathematics Teacher Self-Efficacy. The slope/intercept covariance correlation 

coefficient of .42 also supports the hypothesis that the relationship between Mathematics Teacher 

Self-Efficacy and Mathematics Achievement vary across schools. The final model will include 

school contextual factors to determine how they impact this relationship as well as how these 

relationships might vary across REM subgroups.
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Model 5.

In Model 4, the addition of the random slope parameter for the X1TMEFF  effect 

revealed both a statistically significant association between X1TMEFF  and X 2TXMTSCOR  at 

the student level as well wide variation in this relationship across schools. Model 5 adds school 

contextual factors such as School Climate, School Size as an interaction term between School 

Climate and Mathematics Teacher Self-Efficacy to examine weather or not School Climate has a 

moderating effect on the X1TMEFF X 2TXMTSCOR  relationship. Table 17 below compares 

coefficients, parameters and model fit statistics for Model 4 and 5.

Table 17

Model 4 vs Model 5 Coefficients, Variance and Model Fit Comparisons

Model 4 Model 5

Mathematics Achievement (cons) 49.62(0.58) 49.85(0.59)

Teacher Self-Efficacy 0.53(0.25)* 1.06(0.29)***

SES with Locale (Urbanicity) 0.95(0.22)*** 0.95(0.28)***

Prior Mathematics Achievement 5.53(0.20)*** 5.27(0.22)***

Student Mathematics Self Efficacy 0.48(0.30) 0.33(0.39)

Student Mathematics Identity 1.20(0.24)*** 1.19(0.28)***

Gender 0.70(0.52) 0.44(0.52)

Teacher Certification 0.01(0.02) 0.01(0.03)

Teacher Experience (YRS) -0.20(0.53) -0.27(0.53)

Teacher Degree -0.80(0.51) -0.77(0.55)

School Climate - 0.95(0.29)**

School Climate x Teacher Efficacy (Interaction) - 0.85(0.27)**

School Size - 0.01(0.01)*

level 1 variance 39.44 39.83

intercept variance 3.25 2.69

slope variance 1.97 0.94

intercept/slope covariance 1.05 0.95

ICC 0.08 0.06

Log likelihood -245,281 -180,793

Chi Squared Difference 158*** 64,488***
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Note. Model 4 and 5 estimates for REM student subsample (n = 2,690). Significance test for the 

intercept tests the null hypothesis that β0 j  = 50. Significance tests for all other coefficient tests 

the null hypothesis βn = 0 . Chi-square significance test for the model comparison is on 3 degrees 

of freedom to account for the addition of the 3 school level variables.

* p<0.05, ** p<0.01, *** p<0.001

The addition of the school contextual factors and interaction term resulted in an increase 

in  the Mathematics Teacher Self-Efficacy coefficient from β1 j = 0.53(0.25), p < .05  to 

β1 j = 1.06(0.29), p < .001 . This means that conditioned on school climate and size, an increase of 

Mathematics Teacher Self-Efficacy is associated with a 1.06 point increase in Mathematics 

Achievement. The effect size of this can be estimated by dividing 1.06 by the standard deviation 

of the population mean which is 10, which is equal to approximately 11% making Mathematics 

Teacher Self-Efficacy among the strongest predictors of Mathematics Achievement of all the 

Models. The addition of school contextual factors had little influence on the coefficients of the 

student-level predictors of Mathematics Achievement. The differences in coefficients β2−9  were 

all within the margin of standard errors. The estimate of the School Climate effect on 

Mathematics Achievement is β10 j = 0.95(0.29), p < 01  which translates to an effect size of 

approximately 10%. Thus, an increase in average School Climate is associated with a 

corresponding increase in Mathematics Achievement. Furthermore, Model 5 revealed that School 

Climate moderates the relationship between Mathematics Teacher Self-Efficacy and Mathematics 

Achievement β11 j = 0.85(.27), p < .05  such that a 1 point increase in School Climate would 
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translate to an .85 increase in the effect of Mathematics Teacher Self Efficacy on Mathematics 

Achievement, β1 j . Recalling that School Climate is an index variable centered with a mean of 0 

and standard deviation of 1, most schools (95%) would fall within -2 and +2 on the School 

Climate scale. Put differently, schools in the lower end of the School Climate scale (-1) would in 

effect wipe out the Mathematics Teacher Efficacy effect. This underscores the particular 

importance of School Climate for REM students. The Chi-square difference test comparing 

Model 4 to Model 5 was χdiff
2 (3) = 64,488, p < .001 indicating strong evidence that Model 5 is a 

better fit for the data. The level 1 variance showed only a marginal increase of 0.39, however; the 

ICC decreased from .08 to .06 which signals that the addition of the contextual variables 

explained an additional 2% of the between school variation in Mathematics Achievement. The 

addition of the contextual factors resulted in a decrease in slope variance of MTEFF (σ u1
2 )  from 

1.97 to 0.36. The 95% coverage interval for Mathematics Teacher Self-Efficacy effects (β1 j ), that 

is, the range in which we would expect 95% of schools to lie is estimated as 

1.06 ± (1.96× 0.36) = −0.12− 2.34 . Given that this variance is conditioned on all the student 

and contextual variables, it signals the presence of schools with particularly high Mathematics 

Teacher Self-Efficacy effects that sizes of .23.

RQ6. Does the School Context influence the relationship between Mathematics 

Teacher Self-Efficacy and the Mathematics Achievement of REM students? The results of 

Model 5 support the hypothesis that contextual school factors, namely School Climate have a 

moderating effect on the relationship between Mathematics Teacher Self-Efficacy and the 

Mathematics Achievement of REM students. Overall the model showed Mathematics Teacher 
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Self-Efficacy was a strong predictor of Mathematics Achievement even after conditioning on 

individual student characteristics, prior achievement, teacher qualifications, and school climate. 

This relationship was found to not only be statistically significant but also of practical 

significance, translating into an effect size ranging from 10-20%. While these findings are 

encouraging, they are limited in that they do not account for differences among racial groups. In 

the final analysis, Model 5 will be tested to determine whether or not these patterns hold for 

Native American/Alaskan Natives, Black, Hispanic and Hawaiian and Pacific Islander sub 

groups.

RQ7. How does the nature of the relationship between Mathematics Teacher Self-

Efficacy, Mathematics Achievement and School Context vary across REM subgroups? Model 

5 confirmed the presence of a Mathematics Teacher Self-Efficacy effect on Mathematics 

Achievement for REM students. Furthermore, it confirmed the presence of an interaction effect 

between School Climate and the strength of this relationship. The analysis of the 95% coverage 

interval for the Mathematics Teacher Self-Efficacy effect indicated that the range of effect sizes 

would fall between 10-20%. In the final analysis, Model 5 was run for each REM subgroup to 

identify whether or not these patterns are consistent across groups. Table 18 below shows 

coefficient and parameter estimates by subgroup including the White and Asian students for 

comparison.

Table 18

Model 5 Coefficient, Variance and Model Fit comparisons by Subgroup
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ALL REM ASIAN AMINDIAN BLACK HISPANIC PACISLE WHITE
Mathematics Achievement (cons) 50.19(0.37) 49.85(0.59) 53.41(1.39)* 49.49(0.77) 48.22(0.86)* 50.05(0.73) 51.88(1.10) 50.21(0.36)
Teacher Self-Efficacy 0.34(0.20) 1.06(0.29)*** -0.03(0.38) 1.79(0.39)*** 0.73(0.35)* 1.97(0.60)*** 0.23(0.69) 0.46(0.24)
SES with Locale (Urbanicity) 1.25(0.14)*** 0.95(0.28)*** 1.19(0.25)*** 1.75(0.71)* 1.27(0.40)** 0.61(0.35) 1.18(0.61) 1.19(0.15)***
Prior Mathematics Achievement 5.79(0.13)*** 5.27(0.22)*** 5.72(0.44)*** 5.32(0.44)*** 4.71(0.43)*** 4.99(0.25)*** 5.64(0.62)*** 5.81(0.17)***
Student Mathematics Self Efficacy 0.64(0.21)** 0.33(0.39) 0.64(0.73) 0.74(0.39) 0.19(0.68) 0.48(0.41) 1.23(0.65) 0.85(0.19)***
Student Mathematics Identity 0.96(0.16)*** 1.19(0.28)*** 1.47(0.41)*** 0.94(0.43)* 0.63(0.42) 1.42(0.34)*** 0.35(0.57) 0.92(0.18)***
Gender 0.42(0.32) 0.44(0.52) -0.82(0.81) -0.31(0.77) 0.99(0.83) 0.51(0.68) -1.17(1.06) 0.37(0.35)
Teacher Certification 0.02(0.02) 0.01(0.03) -0.02(0.04) 0.01(0.06) 0.00(0.04) 0.03(0.04) 0.04(0.06) 0.03(0.02)
Teacher Experience (YRS) -0.34(0.43) -0.27(0.53) -0.07(0.66) 1.48(0.94) -1.00(0.70) -0.49(0.71) 0.50(1.29) 0.03(0.46)
Teacher Degree -0.23(0.35) -0.77(0.55) -0.90(0.93) 0.34(0.84) -0.20(0.77) -0.46(0.65) -2.10(1.05)* -0.12(0.38)
School Climate 0.78(0.22)*** 0.95(0.29)** 0.01(0.01) 0.01(0.01) 0.01(0.01) 0.78(0.34)* -0.13(0.51) 0.79(0.22)***
Interaction 0.47(0.15)** 0.85(0.27)** 1.10(0.47)* 0.56(0.44) 0.48(0.41) 1.09(0.48)* -0.03(0.49) 0.52(0.18)**
School Size 0.01(0.00) 0.01(0.01)* -0.40(0.33) 1.18(0.42)** 0.89(0.31)** 0.01(0.01) 0.01(0.01) 0.01(0.00)
level 1 variance 38.47 39.83 33.23 32.24 40.34 39.85 29.75 38.31
intercept variance 3.08 2.69 4.48 5.08 1.75 1.08 0.33 2.60
slope variance 0.64 0.94 0.06 0.01 0.14 3.88 0.73 0.95
intercept/slope covariance 0.36 0.95 -0.53 0.26 0.49 1.50 -0.49 0.05
ICC 0.07 0.06 0.12 0.14 0.04 0.03 0.01 0.06
Log likelihood -578,717 -180,793 -45,187 -48,551 -78,409 -78,389 -16,319 -475,759
Chi Squared Difference 181,413*** 64,488*** 8,390*** 8,998*** 12,099*** 27,088*** 4,941*** 137,221***
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Note. Model 5 coefficient, variance and model fit estimates by racial group. Significance test for 

the intercept tests the null hypothesis that β0 j  = 50. Significance tests for all other coefficient 

tests the null hypothesis βn = 0 . Chi-square significance test compares goodness of for for 

Model 4 and Model 5 for each respective subgroup.

* p<0.05, ** p<0.01, *** p<0.001

The central hypothesis of this study, namely the importance of Mathematics Teacher Self-

Efficacy on Mathematics Achievement for REM students is supported for all REM subgroups 

except for Hawaiian Native and Pacific Islander students. The Mathematics Teacher Self-

Efficacy effect is strongest for Hispanic students  β1 j = 1.97(0.60), p < .001 followed by 

American Indian/Alaskan Native students β1 j = 1.79(0.39), p < .001  which translates to effect 

sizes of approximately .20 and .18 respectively. The central hypothesis was also supported for 

Black students although to a less degree β1 j = 0.73(0.35), p < .001 . In contrast, no Mathematics 

Teacher Self-Efficacy effect was detected for White or Asian students, suggesting this 
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phenomenon is particularly important for American Indian/Alaskan Native, Hispanic, and Black 

students. Moreover, this relationship appears to be moderated by School Climate across racial 

groups although the moderation effect was not statistically significant for Asian or Hawaiian/

Pacific Islander subgroups. Prior Mathematics Achievement and Socio-Economic Status are the 

most consistent covariate predictors of Mathematics Achievement across groups. On the other 

hand student’s Mathematics Self-Efficacy was only significant for White students. The findings 

also showed that students Mathematics Identity effect was found to be statistically significant for 

all subgroups save Black and Pacific Islander. Lastly, with the exception of the Mathematics 

Degree effect on Mathematics Achievement for Pacific Islander students, the importance of 

traditional measures of Teacher Qualifications on student Mathematics Achievement was not 

supported. While these findings support the general hypothesis of this study, they also underscore 

the importance of not conflating REM students into one group. Overall, this study suggests that 

Teacher, Student and School Context relationship is particularly important for REM students but 

these patterns play out in unique ways that must be considered and analyzed separately. In the 

final chapter, I will discuss these findings in relation to the theoretical considerations as well as 

implications for policy and practice.
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Chapter 5. Summary, Conclusion and Future Research

Practical Implications

This study examined the relationship between Teacher Self-Efficacy and the Mathematics 

Achievement of Racial and Ethnic Minority (REM) high school students. The results showed that 

Teacher Self-Efficacy was strongly associated with the Mathematics Achievement of REM 

students, even after controlling for prior achievement, student individual characteristics, and 

teacher quality measures such as teaching certification, subject-matter expertise, and years of 

teaching experience. Furthermore, School Climate was found to moderate the relationship 

between Teacher Self-Efficacy and the Mathematics Achievement thereby underscoring the 

particular importance of both teacher beliefs and school context for REM students. The final 

model detected no Mathematics Achievement gap between the REM student subgroup and the 

general student population. However, Asian and Black students performed statistically 

significantly above and below the national average respectively. Finally, model comparisons 

revealed notable differences in the relative influence of individual, teacher, and school factors on 

the Mathematics Achievement of American Indian, Black/African American, Hispanic, and 

Hawaiian/Pacific Islander student subgroups. These differences point to important implications 

for future research, policy, and practice. 

The implications of these results point to important shifts in how researchers and policy 

makers should think about teacher quality and STEM educational outcomes. In the past 30 years, 

efforts to improve quality have focused on providing REM students with access to teachers who 

have STEM degrees and teaching certification. While basic qualifications are important, the 

results of this study suggest that they are of little consequence for REM students unless highly-
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qualified teachers also believe in their ability to bring about the academic success of their REM 

students and do so within a healthy school climate. Thus, measures of teacher quality must shift 

from a strict focus on content knowledge, degrees or certification to one that measures the degree 

to which REM students have access to healthy school ecologies and teachers that believe in their 

ability to be successful. This shift also necessitates a shift to accountability systems that place 

healthy school ecologies at the center of the solution rather than merely targeting individual 

teachers. That is not to say that traditional qualifications are not important but rather they are not 

direct drivers of mathematics achievement for REM students. As such, policy efforts that focus 

on improving the work conditions and teacher’s Self-Efficacy around teaching REM students are 

warranted.

One such approach is Culturally Responsive Teaching (CRT). Culturally Responsive 

Teaching is an approach that seeks to reverse and disrupt systemic inequities by honoring and 

viewing students cultural, linguistic knowledge and experiences as assets that can be used to 

promote critical thinking, engagement and ultimately achievement. Thus, Culturally Responsive 

Teaching seeks to change how teachers view students by shifting the narrative from a deficit 

perspective to one that recognizes students’ experiences and culture as a valuable source of 

knowledge and an asset in their learning.

Hammond (2014) argues that teachers who recognize students culture, language and 

experiences, hold higher expectations, are less likely to resort to punitive discipline practices and 

more likely to practice culturally responsive teaching practices. Furthermore the research on 

teacher beliefs suggests that teachers who hold high expectations have a positive influence on 

student self perceptions which in turn positively influence goal-setting, effort, persistence and 
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academic achievement (Cherry, 1987). Thus, Culturally Responsive Teaching practices are a 

promising approach to not only change how Teachers see and teach REM students but also how 

students see themselves in relation to the content. Considering the results of this study in relation 

to the research on Culturally Responsive Teaching provides some direction for how policy-

makers can support healthy school ecologies that promote the academic success of REM students 

in STEM.

Theoretical Implications

The research into improving participation and achievement among REM students in 

STEM has predominantly centered on input/output models that are based on a human capital 

view of education. Human Capital theory suggests that the amount of knowledge and skills that 

an individual acquires determines their effectiveness, efficiency, and thereby value in the job 

market. When applied to Teachers, this suggests that higher levels of education, training will 

result in better outcomes. As mentioned before, there is sparse evidence to support this 

hypothesis. On the student side, Cultural Capital theory has been the predominant theoretical 

framework used to explain disparities in educational outcomes month REM students. Cultural 

Capital Theory asserts that differences in educational outcomes reflect differences in students 

access and acquisition of social connections that support their ability to succeed in schools 

(Kingston, 2001). As such, students with high-levels of social connections do better than those 

who do not have access the such connections. This theoretical framework positions students, 

households and communities as lacking or not having the ability to access capital necessary to 

help them be successful in schools. As such, Cultural Capital theory frames disparities in 

educational outcomes and rooted in student deficits that schools have little to no influence over. 



113

The results of this study are inconsistent with either of these two theoretical perspectives. Human 

Capital theory predicts that level of education, certification and years of experience might be the 

the data did not support this hypothesis. On the other hand, Cultural Capital Theory would 

predict that those student characteristics most closely tied to cultural capital, namely SES would 

be the strongest predictor of student outcomes. While SES was indeed one of the strongest 

predictors, for REM students, Teacher Efficacy was about as strong across REM students. Thus 

neither Human Capital nor Cultural Capital Theories were supported by this study.

Directions for Future Research

The REM STEM model is a conceptual improvement over that offered by the leaky 

pipeline metaphor that has been used to describe the attrition of underrepresented groups in 

pursuing STEM degrees. It offers a research-based heuristic that tracks STEM outcomes as being 

influenced by various structural and individual factors that have been found to impact individual 

preparedness in STEM and entrance into STEM Majors. In this study, the REM STEM model 

was adapted to better reflect the hierarchical nature of the school context and organized around 

Tagiuri’s School Climate Taxonomy. The results of this study indeed revealed that inputs such as 

school and individual student features known to influence educational outcomes were heavily 

mediated by social processes related to teacher beliefs in this case Teacher Self-Efficacy. Self-

Efficacy Theory predicts that teachers who believe in their ability to bring about the academic 

success of their students would be more likely to be successful in doing so. Furthermore, the 

more success they experience as effective teachers, the stronger the effect is especially when 

these beliefs are shared by groups of teachers. The results of this study are consistent with the 

pattern predicted with Self-Efficacy Theory and also lead to further questions about how teacher 
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beliefs such as Teacher Self-efficacy might bring about academic success and how the context 

might influence and support Teacher Self-Efficacy of REM Students. In the following section, I 

propose an ecological perspective rooted in Culturally Responsive and Critical perspectives to 

theorize about how Teacher Preparation can be designed to support the educational success of 

REM Students.

Critical Social Justice Framework

Empirical studies including this one are heavily reliant on input/output frameworks that 

can often obfuscate the social context and relationships that produce the outcome. This study 

utilized an adaptation of the REM STEM model and despite the results supporting the 

predictions of the conceptual model the implications for policy and practice are left open. If 

Teacher Self-Efficacy is as important as the most powerful predictors of academic success for 

REM students then how can Teacher Preparation Programs support the development of Teacher 

Self-Efficacy and what practices can be help foster Teachers sense of Self-Efficacy when it 

comes to bringing about the academic success of REM students in STEM.

The Critical Social Justice (CSJ) Teaching Framework depicted in Figure 5 below was 

co-developed by the author and colleagues at Claremont Graduate University’s Teacher 

Education Program (Partida, Bermúdez & Hatkoff, 2019).

Figure 5

Critical Social Justice Teaching Model
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The CSJ Teaching Model represents an ecological view of teaching that is characterized 

by various inter and intra personal relationships that shape the classroom ecology and are also 

influenced by society and culture at large. The term Critical Social Justice is adapted from the 

work of Sensoy & DiAngelo (2017) and comprises the follow core tenants:

1. Recognize society is stratified along social group lines, inequality is deeply and 

structurally embedded, and those inequalities are reproduced within schooling.

2. Actively seek & make change that disrupts inhumane, unjust, and inequitable patterns 

and practices.

3. Affirm & Empower students (households, communities, colleagues, & yourself) to 

harness the resources needed to navigate an unjust world with empathy, savvy, and 

agency.

4. Dismantle systems and practices of oppression & reimagine love-soaked, empowering 

ecologies.

Thus, the CSJ Framework is a tool that is used to organize the knowledge, skills and 

habits mind that help teachers enact and reflect on their teaching practice through an ecological 

perspective and with the aim of disrupting systemic inequities present in classroom, schools and 

society at large. Within this framework, each triangle represents a set of relationships that is 

unpacked through a Critical Social Justice lens and contributes to the overall classroom ecology 

and ultimately the school experience of the students within the classroom. The CSJ Teaching 

competencies included in Appendix L provide detailed descriptions of teacher practices aimed at 

disrupting systemic inequities in schools and classrooms. This framework and competencies 

supports the development of teachers sense of self-efficacy by explicitly and openly 
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acknowledging the various factors that contribute to health of their classroom ecology and 

provides various points of entry for making improvements. While not all factors are within a 

teacher’s sphere of influence, they can nevertheless become aware of how these factors relate to 

and shape the relationships that are namely their relationships with students, their curriculum and 

the students relationship with each other.

The CSJ Framework is not specific to any content area; however, the results of this study 

support the idea that teacher beliefs, especially with regard to their ability to bring about the 

success of REM students matter. When Teachers believe that they have the ability to bring about 

the academic success of their students they are more likely to hold high expectations and 

encourage students by communicating belief in students abitiy and supporting their academic 

success accordingly. Lisa Delpit characterizes teachers that embody an ethic of high expectations 

and care as “Warm Demanders” Delpit (2013). Warm demanders are teachers who get to know 

and build relationships with students and in turn create classroom ecologies that promote critical 

thinking, high academic standards and a strong relationships between students and the teacher as 

well as students with each other. According to Delpit (2013), warm demanders “expect a great 

deal of their students, convince them of their own brilliance, and help them to reach their 

potential in a disciplined and structured environment.” This approach is particularly important 

for REM students who are negatively impacted by lack of access to high quality rigorous 

curriculum, low expectations due to racial and cultural stereotypes, as internalized stereotypes 

about their ability to be successful in rigorous mathematics or science classrooms. Thus the 

warm demander can be further characterized as a teacher presence or disposition with 1) a high 

level of personal warmth: care, rapport, trust, and 2) a high level of active demandingness: 
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personal concern for the student as a foundation for excellence and academic effort (Delpit, 

2012). Given the strength in the relationship between Teacher Efficacy and Mathematics 

Achievement that was found in this study, further studies could examine the degree to which 

teaching dispositions vary in relation to teacher Self-Efficacy. Connecting the beliefs of teachers 

to their practices in the classroom would offer additional evidence and direction to broaden 

participation and improve educational outcomes in STEM education.

Culturally Responsive Teacher Efficacy

Disparities in educational outcomes in STEM have been identified for as long as 

educational statistics have been collected. Various explanations have been proposed ranging from 

deficit perspectives about REM student ability, culture, and access to high quality teachers and 

curriculum. Ecological perspectives opens the door for policy and interventions that target school 

s and more specifically school culture. A focus on school culture requires schools to first 

recognize the ways that REM students can be harmed by school policies and practices that 

reproduce inequities through what Valenzuela (1999) refers to as subtractive schooling. 

According to Valenzuela (1999) subtractive schooling divests youth of important social and 

cultural resources, leaving them progressively more vulnerable to academic failure and alienation 

from schools. Furthermore, the ways that schools perpetuate this harm are not always explicitly 

stated but reflected in the unwritten, unvoiced, unofficial (and often unintended) lessons students 

learn in school about the knowledge, behaviors, values, and perspectives that are or are not valid 

and privileged, typically as determined by dominant, hegemonic culture. (Delpit 2006; McLaren, 

2006). According to Tye (2000), subtractive schooling practices reflect the “deep structure” of 

schooling or societies set of assumptions about what schools are for and how education should 
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properly be conducted, whether those assumptions support or undermine students and 

communities. These assumptions are particularly harmful to REM students when they serve to 

reinforce harmful stereotypes and deficit perspectives that in turn influence the policies, practices 

that shape the school and classroom ecologies. 

Critical perspectives can help advance the stated goals of current policy efforts through a 

transformational approach to teacher and school culture. Instead of focusing on individual 

teacher quality measures that have only a loose association with student achievement, a critical 

perspective looks at systems of inequity that shape how teachers view and support REM students 

through an ethic of care, rigor and compassion. The research about the impact that Culturally 

Relevant Pedagogy has on the educational outcomes of REM students is piling (Hammond, 

2015). There is also a growing consensus that collective Teacher Efficacy among the strongest 

predictor of student achievement above and beyond individual and external factors such as 

ability and socio-economic status (Donohoo, Hattie & Eells, 2018). Thus, what is emerging from 

these two lines of research is what I am calling is Culturally Responsive Teacher Efficacy and by 

extension Collective Culturally Responsive Teacher Efficacy. As such Culturally Responsive 

Teaching can be characterized at the individual and school-level. At the individual level, it 

includes a Teacher’s self-beliefs about their ability to promote the academic success of culturally 

and linguistically diverse students. At the school level, it is a function of the both the explicit and 

implicit social structures within the school that influence, shape teacher’s collective beliefs. 

Lastly, this combination opens up several lines of inquiry for examination of how schools can 

build and sustain healthy school ecologies that promote the academic success of REM students in 

general and more specifically in STEM. 
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Broadening participation in STEM for historically underrepresented groups will require a 

shift in the standard pipeline model of STEM education. The factors that have led to persistent 

inequities in STEM educational outcomes can be traced back to harmful practices and policies 

still present in schools and classrooms today (Sensoy & DiAngelo, 2017). Shifting the narrative 

from one that places sole responsibility on teachers to be “more effective” to a more holistic 

perspective that reckons with the structural and systemic symptoms of persistent inequity. By 

recognizing the ways that schools perpetuate inequities and actively seeking to disrupt this, 

schools can be places where teachers are part of healthy school and classroom ecologies 

designed to bring about the academic success of REM students. Thus the focus of further studies 

and interventions should be  to find better ways of nurturing and sustain Collective Culturally 

Responsive Teacher Self-Efficacy.



121

Bibliography

Adelman, C. (2006). The Toolbox Revisited: Paths to Degree Completion From High School 

Through College. U.S. Department of Education.

Alexander, J. M., Johnson, K. E., & Kelley, K. (2012). Longitudinal Analysis of the Relations 

between Opportunities to Learn about Science and the Development of Interests Related 

to Science. Science Education, 96(5), 763–786.

Anderson, B. J. (1990). Minorities and mathematics: The new frontier and challenge of the 

nineties. The Journal of Negro Education, 59(3), 260–272.

Anderson, C. S. (1982). The search for school climate: A review of the research. Review of 

Educational Research, 52(3), 368–420. https://doi.org/10.2307/1170423

Austin, C. Y. (2010). Perceived Factors that Influence Career Decision Self-efficacy and 

Engineering Related Goal Intentions of African American High School Students. Career 

& Technical Education Research, 35(3), 119–135. https://doi.org/10.5328/cter35.310

Awan, R.-U.-N., Sarwar, M., Naz, A., & Noreen, G. (2011). Attitudes toward science among 

school students of different nations: A review study. Journal of College Teaching & 

Learning (TLC), 8(2).

Bandura, A. (1986). The explanatory and predictive scope of self-efficacy theory. Journal of 

Social and Clinical Psychology, 4(3), 359–373.

Baram-Tsabari, A., & Yarden, A. (2011). Quantifying the Gender Gap in Science Interests. 

International Journal of Science and Mathematics Education, 9(3), 523–550.

Bettinger, E. (2010). 2. To Be or Not to Be. In American universities in a global market (pp. 69–

98). University of Chicago Press.



122

Bissell, J. (2000). Changing the face of science and engineering: Good beginnings for the 

twenty-first century. In Access denied: Race, ethnicity, and scientific enterprise (pp. 61–

77). Oxford University Press.

Bonous-Hammarth, M. (2006). Promoting Student Participation Science Technology 

Engineering and Mathematics Careers. In Higher Education in a Global Society: 

Achieving Diversity, Equity and Excellence. JAI Press Inc.

Boonen, T., Van Damme, J., & Onghena, P. (2014). Teacher effects on student achievement in 

first grade: Which aspects matter most? School Effectiveness and School Improvement, 

25(1), 126–152. https://doi.org/10.1080/09243453.2013.778297

Bromberg, M., & Theokas, C. (2016). Meandering Toward Graduation: Transcript Outcomes of 

High School Graduates. The Education Trust.

Bybee, R., & McCrae, B. (2011). Scientific Literacy and Student Attitudes: Perspectives from 

PISA 2006 science. International Journal of Science Education, 33(1), 7–26. https://

doi.org/10.1080/09500693.2010.518644

Bybee, R. W. (2007, February). BSCS at 50 Years: Anniversary Reflections. American Biology 

Teacher (National Association of Biology Teachers), 72–73.

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities.

Carlone, H. B., Scott, C. M., & Lowder, C. (2014). Becoming (Less) Scientific: A Longitudinal 

Study of Students’ Identity Work from Elementary to Middle School Science. Journal of 

Research in Science Teaching, 51(7), 836–869.



123

Cheema, J. R., & Galluzzo, G. (2013). Analyzing the Gender Gap in Math Achievement: 

Evidence from a Large-Scale US Sample. Research in Education, 90(1), 98–112. https://

doi.org/10.7227/RIE.90.1.7

Chen, X. (2009). Students Who Study Science, Technology, Engineering, and Mathematics 

(STEM) in Postsecondary Education. Stats in Brief. NCES 2009-161. National Center for 

Education Statistics.

Chen, X. (2013). STEM Attrition: College Students’ Paths Into and Out of STEM Fields (NCES 

2014-001). National Center for Education Statistics, Institute of Education Sciences, U.S. 

Department of Education.

Clewell, B. C. (1992). Breaking the Barriers: Helping Female and Minority Students Succeed in 

Mathematics and Science. Jossey-Bass Education Series. ERIC.

Colbeck, C. L., Cabrera, A. F., & Terenzini, P. T. (2001). Learning professional confidence: 

Linking teaching practices, students’ self-perceptions, and gender. The Review of Higher 

Education, 24(2), 173–191.

Coleman, J. S., United States, Office of Education, & National Center for Education Statistics. 

(1966). Equality of educational opportunity. U.S. Dept. of Health, Education, and 

Welfare, Office of Education : [For sale by the Superintendent of Documents, U.S. Govt. 

Print. Off.

Collins, M. (1992). Ordinary children, extraordinary teachers. Hampton Roads Publishing.

Dalton, B., Ingels, S. J., & Fritch, L. (2016). High School Longitudinal Study of 2009 (HSLS:09) 

2013 Update and High School Transcript Study: A First Look at Fall 2009 Ninth-Graders 



124

in 2013 (NCES 2015-037rev). U.S. Department of Education. National Center for 

Education Statistics. http://nces.ed.gov/pubsearch

Darling-Hammond, L. (2000). How Teacher Education Matters. Journal of Teacher Education, 

51(3), 166–173. https://doi.org/10.1177/0022487100051003002

Darling-Hammond, L., Amrein-Beardsley, A., Haertel, E., & Rothstein, J. (2012). Evaluating 

Teacher Evaluation. Phi Delta Kappan, 93(6), 8–15. https://doi.org/

10.1177/003172171209300603

Dee, T. S., & Jacob, B. A. (2010). The Impact of No Child Left Behind on Students, Teachers, 

and Schools. Brookings Papers on Economic Activity, 2010(2), 149–194. https://doi.org/

10.1353/eca.2010.0014

Delpit, L. (2006). Other people’s children: Cultural conflict in the classroom. The New Press.

Delpit, L. D. (2012). “ Multiplication is for white people”: Raising expectations for other 

people’s children. the new press.

Denson, C. D., Avery, Z. K., & Schell, J. W. (2010). Critical inquiry into urban African-American 

students’ perceptions of engineering. Journal of African American Studies, 14(1), 61–74.

Dewey, J. (1913). Interest and effort in education (Vol. 1–1 online resource (xvi, 101 pages)). 

Southern Illinois University Press. http://public.eblib.com/choice/publicfullrecord.aspx?

p=4414620

Donohoo, J., Hattie, J., & Eelles, R. (2018). The power of collective efficacy. Educational 

Leadership, 75(6), 40–44.



125

Fergus, E. (2009). Understanding Latino students’ schooling experiences: The relevance of skin 

color among Mexican and Puerto Rican high school students. Teachers College Record, 

111(2), 339–375.

Flores, A. (2007). Examining Disparities in Mathematics Education: Achievement Gap or 

Opportunity Gap? High School Journal, 91(1), 29–42. Academic Search Premier.

Gamoran, A., Porter, A. C., Smithson, J., & White, P. A. (1997). Upgrading High School 

Mathematics Instruction: Improving Learning Opportunities for Low-Achieving, Low-

Income Youth. Educational Evaluation and Policy Analysis, 19(4), 325–338. https://

doi.org/10.3102/01623737019004325

Gándara, P. (2006). Strengthening the Academic Pipeline Leading to Careers in Math, Science, 

and Technology for Latino Students. Journal of Hispanic Higher Education, 5(3), 222–

237. https://doi.org/10.1177/1538192706288820

Ganley, D. D., Partida, E., & Mills, J. (2019). Improving STEM Teacher Preparation Through 

Transferable STEM Skills. American Education Research Association Conference, 

Toronto, Canada.

Goldhaber, D. D., & Brewer, D. J. (2000). Does Teacher Certification Matter? High School 

Teacher Certification Status and Student Achievement. Educational Evaluation and 

Policy Analysis, 22(2), 129–145. https://doi.org/10.3102/01623737022002129

Good, T., & Weinstein, R. (n.d.). Teacher expectations: A framework for exploring classrooms. In 

Improving teaching (pp. 63–85). Association for Supervision and Curriculum 

Development.



126

Guiton, G., & Oakes, J. (1995). Opportunity to Learn and Conceptions of Educational Equality. 

Educational Evaluation and Policy Analysis, 17(3), 323–336. https://doi.org/

10.3102/01623737017003323

Hammond, Z. (2015). Culturally responsive teaching and the brain: Promoting authentic 

engagement and rigor among culturally and linguistically diverse students. Corwin Press.

Hanushek, E. A. (2011). The economic value of higher teacher quality. Economics of Education 

Review, 30(3), 466–479. Academic Search Premier.

Hanushek, E. A., & Rivkin, S. G. (2006). Chapter 18 Teacher Quality. In E. Hanushek & F. 

Welch (Eds.), Handbook of the Economics of Education (Vol. 2, pp. 1051–1078). 

Elsevier. https://doi.org/10.1016/S1574-0692(06)02018-6

Harris, D., & Sass, T. R. (2011). Teacher training, teacher quality and student achievement. 

Journal of Public Economics, 95(7–8), 798–812.

Hattie, J. A. C. (2009). Visible Learning: A synthesis of over 800 meta-analysis relating to 

achievement. Routledge/Taylor & Francis Group.

Hidi, S. (1990). Interest and its contribution as a mental resource for learning. Review of 

Educational Research, 60(4), 549–571.

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational 

Psychologist, 41(2), 111–127.

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of Teachers’ Mathematical Knowledge for 

Teaching on Student                Achievement. American Educational Research Journal, 

42(2), 371–406. https://doi.org/10.3102/00028312042002371



127

Hoff, K. A., Briley, D. A., Wee, C. J., & Rounds, J. (2018). Normative changes in interests from 

adolescence to adulthood: A meta-analysis of longitudinal studies. Psychological 

Bulletin, 144(4), 426.

Holt, J. K. (2006). How Do We Measure Up? Capturing the Complexities of Educational 

Growth. Mid-Western Educational Researcher, 19(1).

Jackson, C. K., Rockoff, J. E., & Staiger, D. O. (2014). Teacher Effects and Teacher-Related 

Policies. Annual Review of Economics, 6(1), 801–825. https://doi.org/10.1146/annurev-

economics-080213-040845

Kena, G., Hussar, W., McFarland, J., de Brey, C., Musu-Gilette, L., Wang, X., Zhang, J., 

Rathbun, A., Wilkinson-Flicker, S., Diliberti, M., Barmer, A., Bullock Mann, F., Dunlop 

Velez, E., & Nachazel, T. (2016). The Condition of Education 2016 (NCES 2016-144). 

U.S. Department of Education, National Center for Education Statistics. http://

nces.ed.gov/pubsearch

Kiang, P. (2002). Stories and structures of persistence: Ethnographic learning through. 

Ethnography and Schools: Qualitative Approaches to the Study of Education, 223.

King, B. (2015). Changing College Majors: Does it Happen More in STEM and Do Grades 

Matter? Journal of College Science Teaching, 44(3), 44–51. https://doi.org/10.2505/4/

jcst15_044_03_44

Kingston, P. W. (2001). The unfulfilled promise of cultural capital theory. Sociology of 

Education, 88–99.

Koretz, D. M. (2017). The testing charade: Pretending to make schools better.



128

Krapp, A., & Prenzel, M. (2011). Research on Interest in Science: Theories, methods, and 

findings. International Journal of Science Education, 33(1), 27–50. https://doi.org/

10.1080/09500693.2010.518645

Ladson-Billings, G. (1997). It Doesn’t Add Up: African American Students’ Mathematics 

Achievement. Journal for Research in Mathematics Education, 28(6), 697–708.

Leslie, L. L., McClure, G. T., & Oaxaca, R. L. (1998). Women and minorities in science and 

engineering: A life sequence analysis. The Journal of Higher Education, 69(3), 239–276.

Lowell, B. L., Salzman, H., & Bernstein, H. (2009). Steady as She Goes? Three Generations of 

Students through the Science and Engineering Pipeline. https://doi.org/10.7282/

T31R6S4K

Mary Poplin & Claudia Bermudez. (2019). Highly Effective Teachers of Vulnerable Students. 

Peter Lang. https://doi.org/10.3726/b11762

Marzano, R. J. (2003). What works in schools: Translating research into action (Vol. 1–1 online 

resource (219 pages) : illustrations.). Association for Supervision and Curriculum 

Development; WorldCat.org. http://0-find.galegroup.com.lib.rivier.edu/gvrl/infomark.do?

type=aboutBook&prodId=GVRL&eisbn=9781416601340&version=1.0&userGroupNam

e=nash91631&source=gale

May, G. S., & Chubin, D. E. (2003). A Retrospective on Undergraduate Engineering Success for 

Underrepresented Minority Students. Journal of Engineering Education, 92(1), 27–39. 

Academic Search Premier.

McLaren, P. (2006). Rage+ hope: Interviews with Peter McLaren on war, imperialism,+ critical 

pedagogy (Vol. 295). Peter Lang.



129

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: 

Using a qualitative approach to connect homes and classrooms. Theory into Practice, 

31(2), 132–141.

Moore, J. (2000). Counseling African American men back to health. In African American 

brothers of the academy: Up and coming Black scholars earning our way in higher 

education (pp. 249–261). Stylus.

Moses, R. Parris., & Cobb, C. E. Jr. (2001). Radical equations: Math literacy and civil rights. 

Beacon Press; WorldCat.org. http://catdir.loc.gov/catdir/enhancements/fy0737/00010364-

b.html

Museus, S. D., Palmer, R. T., Davis, R. J., & Maramba, D. C. (2011). Special Issue: Racial and 

Ethnic Minority Students’ Success in STEM Education. ASHE Higher Education Report, 

36(6), 1–140.

National Academy of Engineering. Committee on Integrated STEM Education. & National 

Research Council (U.S.). (2014). STEM integration in K-12 education: Status, prospects, 

and an agenda for research. The National Academies Press; WorldCat.org. http://

site.ebrary.com/id/10863912

National Center of Education Statistics (NCES). (2019). Status and Trends in the Education of 

Racial and Ethnic Groups (Indicator 26: STEM Degrees). https://nces.ed.gov/programs/

raceindicators/indicator_reg.asp

National Research Council. (2011). Successful K-12 STEM Education: Identifying Effective 

Approaches in Science, Technology, Engineering, and Mathematics.



130

National Science Board (NSB). (2018). Science and Engineering Indicators 2018 Digest 

(NSB-2018-2). https://www.nsf.gov/statistics/digest/

Navarro, R. L., Flores, L. Y., & Worthington, R. L. (2007). Mexican American middle school 

students’ goal intentions in mathematics and science: A test of social cognitive career 

theory. Journal of Counseling Psychology, 54(3), 320–335. https://doi.org/

10.1037/0022-0167.54.3.320

Nelson-Barber, S., & Estrin, E. T. (1995). Bringing Native American perspectives to mathematics 

and science teaching. Theory into Practice, 34(3), 174–185.

Oakes, J., Gamoran, A., & Page, R. N. (1992). Curriculum Differentiation: Opportunities, 

Outcomes, and Meanings. In Handbook of research on curriculum: A project of the 

american educational research association. Macmillan Pub. Co.

Oakes, J., & Lipton, M. (1990). Tracking and ability grouping: A structural barrier to access and 

achievement. In Access to knowledge: An agenda for our nation’s schools. (pp. 187–204). 

College Entrance Examination Board.

Ochoa, G. L. (2013). Academic profiling: Latinos, Asian Americans, and the achievement gap. U 

of Minnesota Press.

Olsen, R. V., & Lie, S. (2011). Profiles of Students’ Interest in Science Issues around the World: 

Analysis of data from PISA 2006. International Journal of Science Education, 33(1), 97–

120. https://doi.org/10.1080/09500693.2010.518638

Paul, H. A. (2012). Kalyanpur, M., & Harry, B.(2012). Cultural Reciprocity in Special 

Education: Building Family–Professional Relationships. Baltimore, MD: Paul H. Brooks, 

xiv+ 199 pp., $34.95 (paperback).



131

Pollock, Mica. (2017). Schooltalk: Rethinking What We Say About and To Students Every Day. 

(Vol. 1–1 online resource (417 pages)). The New Press; WorldCat.org. https://

public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=4771617

Potvin, P., & Hasni, A. (2014a). Interest, Motivation and Attitude towards Science and 

Technology at K-12 Levels: A Systematic Review of 12?Years of Educational Research. 

Studies in Science Education, 50(1), 85–129.

Potvin, P., & Hasni, A. (2014b). Analysis of the Decline in Interest Towards School Science and 

Technology from Grades 5 through 11. Journal of Science Education and Technology, 

23(6), 784–802.

President’s Council of Advisors on Science and Technology (PCAST). (2010). Prepare and 

inspire: K-12 education in science, technology, engineering, and math (STEM) for 

America’s future. White House Office of Science and Technology Policy. https://nsf.gov/

attachments/117803/public/2a--Prepare_and_Inspire--PCAST.pdf

Provasnik, S., Malley, L., Stephens, M., Landeros, K., Perkins, R., & Tang, J. H. (2016). 

Highlights From TIMSS and TIMSS Advanced 2015: Mathematics and Science 

Achievement of U.S. Students in Grades 4 and 8 and in Advanced Courses at the End of 

High School in an International Context (NCES 2017-002). U.S. Department of 

Education, National Center for Education Statistics.

Rabe-Hesketh, S., & Skrondal, A. (2012). Multilevel and Longitudinal Modeling Using Stata, 

3rd Edition. StataCorp LP. https://EconPapers.repec.org/RePEc:tsj:spbook:mimus2

Ream, R. K., Ryan, S. M., & Espinoza, J. A. (2012). Reframing the Ecology of Achievement 

Gaps: Why “No Excuses” Reforms Have Failed to Narrow Student Group Differences in 



132

Educational Outcomes. In T. B. Timar & J. Maxwell-Jolly (Eds.), Narrowing the 

Achievement Gap: Proespectives and Strategies for Challenging Times (pp. 35–56). 

Harvard Education Press. http://facultyprofiles.ucr.edu/gsoe_dept/faculty/Robert_Ream/

Ream%20et%20al._Reframing%20Achievement%20Gaps.pdf

Schiefele, U. (1991). Interest, Learning, and Motivation. Educational Psychologist, 26(3–4), 

299–323. https://doi.org/10.1080/00461520.1991.9653136

Sensoy, Ö., & DiAngelo, R. 1956-. (2017). Is everyone really equal? : An introduction to key 

concepts in social justice education (Second edition.). Teachers College Press; 

WorldCat.org.

Seymour, Elaine., & Hewitt, N. M. (1997). Talking about leaving: Why undergraduates leave the 

sciences. Westview Press. http://bvbr.bib-bvb.de:8991/F?

func=service&doc_library=BVB01&local_base=BVB01&doc_number=007819909&line

_number=0001&func_code=DB_RECORDS&service_type=MEDIA

Singh, K., Chang, M., & Dika, S. (2010). Ethnicity, self-concept, and school belonging: Effects 

on school engagement. Educational Research for Policy and Practice, 9(3), 159–175.

Singh, K., Granville, M., & Dika, S. (2002). Mathematics and Science Achievement: Effects of 

Motivation, Interest, and Academic Engagement. The Journal of Educational Research, 

95(6), 323–332. https://doi.org/10.1080/00220670209596607

Stronge, J. H., Ward, T. J., & Grant, L. W. (2011). What Makes Good Teachers Good? A Cross-

Case Analysis of the Connection Between Teacher Effectiveness and Student 

Achievement. Journal of Teacher Education, 62(4), 339–355. https://doi.org/

10.1177/0022487111404241



133

Tagiuri, R. (1968). The concept of organizational climate. In Organizational Climate: 

Explorations of a Concept. Harvard University Press.

Tate, W. F. (1994). Race, retrenchment, and the reform of school mathematics. The Phi Delta 

Kappan, 75(6), 477–484.

Tate, W. F. (1995). Returning to the root: A culturally relevant approach to mathematics 

pedagogy. Theory into Practice, 34(3), 166–173.

Tatum, B. (2009). Teaching White students about racism: The search for White allies and the 

restoration of hope. In Foundations of Critical Race Theory in Education (Vol. 95, pp. 

462–476). Routledge.

Thompson, G. L., Warren, S., & Carter, L. (2004). It’s not my fault: Predicting high school 

teachers who blame parents and students for students’ low achievement. The High School 

Journal, 87(3), 5–14.

Turner, S. L., Steward, J. C., & Lapan, R. T. (2004). Family Factors Associated With Sixth-Grade 

Adolescents’ Math and Science Career Interests. The Career Development Quarterly, 

53(1), 41–52.

Tye, B. B. 1942-. (2000). Hard truths: Uncovering the deep structure of schooling (Vol. 1–1 

online resource (xi, 204 pages)). Teachers College Press; WorldCat.org. http://

search.ebscohost.com/login.aspx?

direct=true&scope=site&db=nlebk&db=nlabk&AN=34536

Tyson, W., Lee, R., Borman, K. M., & Hanson, M. A. (2007). Science, Technology, Engineering, 

and Mathematics (STEM) Pathways: High School Science and Math Coursework and 



134

Postsecondary Degree Attainment. Journal of Education for Students Placed at Risk 

(JESPAR), 12(3), 243–270. https://doi.org/10.1080/10824660701601266

United States. National Commission on Excellence in Education. (1983). A nation at risk: The 

imperative for educational reform. The National Commission on Excellence in 

Education; WorldCat.org. https://purl.fdlp.gov/GPO/LPS3244

Urban, W. J. (2010). More than science and Sputnik: The National Defense Education Act of 

1958 (Vol. 1–1 online resource (xiv, 247 pages) : illustrations). University of Alabama 

Press. http://search.ebscohost.com/login.aspx?

direct=true&scope=site&db=nlebk&db=nlabk&AN=1057968

U.S. Bureau of Labor Statistics. (2017). STEM Occupations: Past, Present and Future (Spotlight 

on Statistics). U.S. Bureau of Labor Statistics.

U.S. Department of Commerce. (2011a). Education Supports Racial and Ethnic Equality in 

STEM.

U.S. Department of Commerce. (2011b). Women in STEM: A Gender Gap to Innovation.

Valenzuela, A. (2005). Subtractive schooling, caring relations, and social capital in the schooling 

of US-Mexican youth. Beyond Silenced Voices: Class, Race, and Gender in United States 

Schools, 83–94.

van Houtte, M. (2005). Climate or Culture? A Plea for Conceptual Clarity in School 

Effectiveness Research. School Effectiveness & School Improvement, 16(1), 71–89. 

https://doi.org/10.1080/09243450500113977



135

Van Houtte, M., & Van Maele, D. (2011). The black box revelation: In search of conceptual 

clarity regarding climate and culture in school effectiveness research. Oxford Review of 

Education, 37(4), 505–524. https://doi.org/10.1080/03054985.2011.595552

Walberg, H. (2006). Improving Educational Productivity: An assessment of extant research. In 

The Scientific Basis of Education Productivity. Information Age Publishing.

Wang, M.-T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual 

and gender differences in choice of careers in science, technology, engineering, and 

mathematics. Psychological Science, 24(5), 770–775. https://doi.org/

10.1177/0956797612458937

Wenglinsky, H. (1997). How Money Matters: The Effect of School District Spending on 

Academic Achievement. Sociology of Education, 70(3), 221–237. Academic Search 

Premier.

Zambon, K. (2011). Noyce Scholars Strive to Make a Difference in High-Needs Schools. https://

www.aaas.org/news/noyce-scholars-strive-make-difference-high-needs-schools

Zumeta, W., & Raveling, J. S. (2002). Attracting the Best and the Brightest. Issues in Science & 

Technology, 19(2), 36. Academic Search Premier.



136

Appendix



137

Appendix A
A. Average NAEP mathematics scores of students in grades 4 and 8: 1990–2015

Source: National Science Board. (2018). [Figure 1-1]. Science and Engineering Indicators 2018.  
NSB-2018-1. Alexandria, VA: National Science Foundation. Available at https://www.nsf.gov/statistics/
indicators/data/figures.
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Appendix B
B. Students in grades 4, 8, and 12 scoring at or above the main NAEP's proficient level in 

mathematics for their grade, by student grade and characteristics: 1990–2015

Source: National Science Board. (2018). [Table 1-2]. Science and Engineering Indicators 2018.  
NSB-2018-1. Alexandria, VA: National Science Foundation. Available at https://www.nsf.gov/statistics/
indicators/data/tables.
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Appendix C
C. Average scores of students in grades 4, 8, and 12 on the main NAEP science assessment, by 

socioeconomic status and sex within race or ethnicity: 2015

Source: National Science Board. (2018). [Table 1-3]. Science and Engineering Indicators 2018.  
NSB-2018-1. Alexandria, VA: National Science Foundation. Available at https://www.nsf.gov/statistics/
indicators/data/tables.
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Appendix D
M. Highest-level mathematics course enrollment of high school completers, by socioeconomic 

status within race or ethnicity: 2013

Source: National Science Board. (2018). [Table 1-14]. Science and Engineering Indicators 2018. 
NSB-2018-1. Alexandria, VA: National Science Foundation. Available at https://www.nsf.gov/statistics/
indicators/data/tables.
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Appendix E
E. Science course enrollement of high school completers, by student and family characteristics: 

2013

Source: National Science Board. (2018). [Table 1-16]. Science and Engineering Indicators 2018. 
NSB-2018-1. Alexandria, VA: National Science Foundation. Available at https://www.nsf.gov/statistics/
indicators/data/tables.
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Appendix F
F. Percentage of fall 2009 ninth-graders who were pursuing or planning to pursue selected 

postsecondary degree, among those who were taking or planning to take postsecondary classes, 
by student, family, and school characteristics: 2013

Source: Dalton, B., Ingels, S.J., and Fritch, L. (2016). [Table 11]. High School Longitudinal Study of 
2009 (HSLS:09) 2013 Update and High School Transcript Study: A First Look at Fall 2009 Ninth-
Graders in 2013 (NCES 2015-037rev). U.S. Department of Education. Washington, DC: National 
Center for Education Statistics. Retrieved [09/2019] from http://nces.ed.gov/pubsearch.
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Appendix G
G. Percentage of fall 2009 ninth-graders considering a science, technology, engineering, or math 
(STEM) major (among those with an identified major), by level of program and student, family, 

and school characteristics: 2013

Source: Dalton, B., Ingels, S.J., and Fritch, L. (2016). [Table 12]. High School Longitudinal Study of 
2009 (HSLS:09) 2013 Update and High School Transcript Study: A First Look at Fall 2009 Ninth-
Graders in 2013 (NCES 2015-037rev). U.S. Department of Education. Washington, DC: National 
Center for Education Statistics. Retrieved [09/2019] from http://nces.ed.gov/pubsearch.
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Appendix H
H. Percentage of 2003−04 beginning bachelor’s and associate’s degree students who entered but 

subsequently left STEM fields, by demographic, precollege academic, and postsecondary 
enrollment characteristics: 2003−2009

1 of 2
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2 of 2

Source: Chen, X. (2013). [Table 2] STEM Attrition: College Students’ Paths Into and Out of STEM 
Fields (NCES 2014-001). National Center for Education Statistics, Institute of Education Sciences, 
U.S. Department of Education. Washington, DC.
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Appendix I
N. Number and percentage distribution of teachers in public and private elementary and 
secondary schools, by selected teacher characteristics: Selected years, 1987–88 through

2015–16

Source: Snyder, T.D., de Brey, C., and Dillow, S.A. (2019). [Table 209.10] Digest of Education 
Statistics 2017  (NCES 2018-070). National Center for Education Statistics, Institute of Education 
Sciences, U.S. Department of Education. Washington, DC
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Appendix J
I. Racial and Ethnic Minorities in STEM Model

Source: Museus, S. D., Palmer, R. T., Davis, R. J., & Maramba, D. C. (2011). [Figure 12]. Special 
Issue: Racial and Ethnic Minority Students’ Success in STEM Education. ASHE Higher Education 
Report, 36(6), 1–140.
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Appendix K
L. Critical Social Justice Teaching Competencies
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