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KNOTTED AND LINKED PRODUCTS OF RECOMBINATION

ON T (2, n)#T (2,m) SUBSTRATES

Erica Flapan, Jeremy Grevet, Qi Li, Chen Daisy Sun, and Helen Wong

Abstract. We develop a topological model of site-specific recombination

that applies to substrates which are the connected sum of two torus links
of the form T (2, n)#T (2,m). Then we use our model to prove that all

knots and links that can be produced by site-specific recombination on
such substrates are contained in one of two families, which we illustrate.

1. Introduction

Knots and links can occur in the axis of DNA molecules as the result of
replication, recombination, and enzyme actions. Such knots and links have
been used to better understand the mechanism of how topoisomerase enzymes
change the topology of DNA during site-specific recombination. The difficulty
in understanding this mechanism is that there is no way to observe the details
of an enzyme action while it’s taking place, and hence the mechanism cannot
be studied directly. To solve this problem, molecular biologists allow a topoiso-
merase enzyme to act on a closed circular DNA substrate. They then use elec-
tron microscopy or gel electrophoresis to try to identify the knotted and linked
products of recombination mediated by the enzyme, and finally use topology
to try to deduce the mechanism of the enzyme that could have produced such
products from the known knot or link type of the substrate. However, neither
identifying the knots and links nor using topology to explain the mechanism is
easy.

Major progress on the topological aspect of this problem was made when
Ernst and Sumners [12] developed the tangle model of recombination to explain
how the enzyme Tn3 resolvase acted processively on an unknotted substrate to
sequentially produce a Hopf link, then a figure eight knot, then a Whitehead
link, and finally a 62 knot. Since then, the tangle model has been further
developed and used to explain the actions of a number of other enzymes (see for
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example [4, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18]). For enzymes whose knotted and
linked products have been identified, this approach has been quite successful
at explaining the mechanism of the enzyme action.

However, identifying the knotted and linked products of a enzyme action has
its own challenges. To begin with, molecular biologists need to have a large
quantity of knotted and linked products, which can be quite difficult to obtain.
The products are then coated with a substance known as RecA to make them
visible with an electron microscope. But even so, it is often hard to see which
strand goes over and which strand goes under at each crossing. If even one
crossing is misclassified, the knot or link may be incorrectly identified. Using
gel electrophoresis rather than electron microscopy has the advantage that it
does not require a large number of knotted or linked products. However, gel
electrophoresis does not enable scientists to visualize the products. Rather,
it separates the knotted and linked molecules according to their compactness,
which is then correlated with their minimal crossing numbers. Unfortunately,
in general, gel electrophoresis cannot completely identify the particular knots or
links from among all those in the tables with a given minimal crossing number.

In contrast with the tangle model which was developed to explain the mech-
anism of particular enzyme actions, Buck and Flapan [3] developed a model to
make it easier for molecular biologists to identify the knotted or linked products
of recombination. In particular, they showed that all knots and links that could
be produced by site-specific recombination with substrates that were (possibly
trivial) T (2, n) torus links were in a single family (illustrated in Figure 1).
Knowing that only this family of knots and links could be produced from such
substrates, helps molecular biologists to identify products of site specific re-
combination on these substrates based solely on the information they obtain
from gel electrophoresis. The approach introduced in [3] was extended to apply
to substrates that are twist knots in [5].

Figure 1. The family of products predicted for T (2, n) substrates.

In the current paper, we seek to clarify the model developed in [3, 5], and
extend the results further to apply to substrates that are non-trivial connected
sums of torus links of the form T (2, n) and T (2,m) (see Figure 2).
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Figure 2. We consider substrates of the form T (2,m)#T (2, n).

To date, all known knotted and linked products of site-specific recombination
on closed circular DNA substrates mediated by serine or tyrosine recombinases
are torus links of the form T (2, n), twist knots, and connected sums of the
form T (2, n)#T (2,m) (see [3] for a list of such products). Such knotted and
linked products can be used by molecular biologists as substrates for future
experiments. By characterizing all knots and links that can be produced by
site-specific recombination on these substrates, we make the task of identifying
the future products of such experiments easier for molecular biologists.

2. The assumptions of our model

Our model relies on three basic assumptions, which taken together corre-
spond to the three assumptions in [3, 5]. However, we have tried to state our
assumptions in a more explicit and self-contained way than in [3, 5], and hence
our wording is somewhat different. The biological justifications for the three
assumptions are given in [2, 6].

The first two assumptions concern how the topoisomerase enzyme and the
substrate sit together in space. In particular, the first assumption is about
the configuration of the substrate near the enzyme, and the second assumption
is about the configuration of the substrate away from the enzyme. The third
assumption describes the possible ways that a serine or tyrosine enzyme can
alter the strands of the DNA.

2.1. Configuration of the substrate near the enzyme

Assumption 1. The substrate-enzyme complex can be modeled by a ball B
intersecting the substrate J in two short arcs. Furthermore, B has a properly
embedded disk D containing the four points of J∩∂B such that some projection
of J ∩ B onto D has at most one crossing between the two arcs of J and no
crossings within a single arc of J .

We now assume that Assumption 1 holds for our substrate-enzyme complex,
and hence the projection of J∩B onto the diskD has one of the forms illustrated
in Figure 3. We now fix the ball B and the disk D so that we can refer to these
sets throughout the remainder of the paper. Furthermore, we shall refer to
B ∪ J as the substrate-enzyme complex and to D as the projection disk.
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Figure 3. Possible projections of J ∩B onto D.

2.2. Configuration of the substrate away from the enzyme

Before we can state our second assumption, we need to introduce some
terminology. Consider a surface with boundary S embedded in a sphere P ⊆
R3. By a slight abuse of language we will refer to the surface S as a planar
surface.

Now suppose that the planar surface S is decorated with finitely many arcs
αi whose boundaries are in ∂S. For each i, let N(αi) denote a tubular neigh-
borhood of αi in R3 such that N(αi) meets S in a neighborhood of αi. We say
that the decorated surface S represents a surface R in R3, if R can be obtained
from S by replacing each N(αi)∩S by a half-twisted band contained in N(αi).
We may further annotate the decorating arcs with + or − signs to distinguish
between the two directions of the twisting. However, we will generally suppress
such designations for the sake of simplicity. Note that by suppressing this in-
formation, a given decorated surface S can represent more than one surface R.
Figure 4 illustrates an example of a decorated planar surface S representing a
surface R in R3.

R

Figure 4. The decorated planar S represents the surface R.

In Assumption 2, we will refer to the number of groups of parallel arcs on
a decorated planar surface S. For example, the decorated surface in Figure 4
has seven groups of parallel arcs.

Assumption 2. Let J be a connected sum of non-trivial torus links T (2, n) and
T (2,m), and suppose that J ∪B is a substrate-enzyme complex with projection
disk D satisfying Assumption 1. Then, after an ambient isotopy of J pointwise
fixing the ball B, there is a surface R with boundary J satisfying the following
conditions:

(1) R is represented by a decorated 2-holed disk S contained in a sphere P
such that P ∩B = D;
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(2) ∂B is disjoint from the neighborhoods N(αi) of the decorating arcs of
S;

(3) S has a minimum number of decorating arcs and a minimum number of
groups of parallel arcs among all decorated planar surfaces S satisfying
the above conditions.

Observe that since J = T (2, n)#T (2,m), even without Assumption 2 we
would know that J bounds a Seifert surface which is represented by a deco-
rated 2-holed disk contained in a sphere. However, conditions (1) and (2) of
Assumption 2 are making the stronger statement that the surface R can be
chosen to have a nice relationship to the substrate-enzyme complex B ∪ J . In
particular, these conditions prevent B ∪ R from having one of the forms il-
lustrated in Figure 5. Biological arguments are given in [2, 6] explaining why
these types of configurations are unlikely to occur.

B B

B

R
R

R

Figure 5. Configurations of R ∪ B that are disallowed by As-
sumption 2

Condition (3) of Assumption 2 is included so that the decorating arcs on the
surface S are as simple as possible. In particular, condition (3) does not add
any additional restrictions on the topology of the substrate-enzyme complex
J ∪B.

We now assume that Assumption 2 holds for our substrate-enzyme complex,
and fix the surface R and sphere P , as well as the representation of R by the
decorated planar surface S ⊆ P satisfying the conditions in Assumption 2.

2.3. Possible ways the enzyme can alter the strands

To further simplify our drawings, we will depict a row of k half-twists be-
tween two strands of a link as a rectangle where crossings go between the two
short sides of the rectangle, as in Figure 6. Positive and negative values of k
correspond to positive and negative half-twists between the two strands respec-
tively. In situations where k can be any integer, we generally omit it from our
pictures.

Our third assumption concerns the serine and tyrosine families of recombi-
nases. To describe their action on the substrate, we use the projection of J ∩B
onto the disk D ⊆ B which was fixed in Assumption 1.
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…

k k

Figure 6. A row of half-twists is depicted as a rectangle.

Assumption 3. The recombinase only alters the substrate J within the ball B,
changing the topological configuration of the two arcs in J ∩B in the following
ways.

(1) A serine recombinase cuts the arcs of J ∩ B, adds a crossing to the
projection of J ∩B onto D, and then reseals the arcs. Each subsequent
round of processive recombination cuts the same arcs, adds an identi-
cal crossing between the arcs, and reseals the arcs in exactly the same
manner as the first round. In particular, after |k| rounds of processive
recombination the arcs of J∩B are replaced by a row of k identical half-
twists as illustrated in Figure 7 with n = k + 1 if k > 0 and n = k − 1
if k < 0.

(2) A tyrosine recombinase replaces the arcs of J ∩B with arcs which have
a projection onto D with at most 2 crossings, as illustrated in Figure 8
with |k| ≤ 2.

k

k

n

n

{

Figure 7. The effect on J ∩B of |k| rounds of processive recom-
bination mediated by a serine recombinase.

3. Lemmas derived from our assumptions

For the remainder of the paper we will assume that our substrate and enzyme
satisfy Assumptions 1, 2, and 3. To characterize the possible knotted and linked
products of recombination, we first use Assumptions 1 and 2 to reduce our
analysis to a small number of possible configurations of the substrate-enzyme
complex prior to recombination. Then we apply Assumption 3 to alter the
strands within the enzyme ball and identify the resulting products.

More specifically, it follows from Assumption 1 that there is a disk D prop-
erly embedded in the enzyme ball B such that a projection of J ∩B onto D has
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k

k}
Figure 8. The effect on J ∩B of recombination mediated by a
tyrosine recombinase.

one of the forms illustrated in Figure 3. Then it follows from Assumption 2 that
after an ambient isotopy pointwise fixing B, the substrate J bounds a surface
R represented by a decorated surface S contained in a sphere P satisfying the
three conditions of Assumption 2. Thus prior to recombination, the substrate-
enzyme complex can be understood from the planar diagram S ∪ D ⊆ P .
Finally, by Assumption 3, the action of the enzyme on the substrate J can be
seen as a change in the projection of the arcs of J ∩ B onto D as illustrated
in Figures 7 and 8. Together these three assumptions allow us to characterize
the knotted and linked products by focusing on the planar diagram S ∪D ⊆ P
prior to recombination, rather than having to work with the configuration of
the substrate-enzyme complex J ∪B in R3.

Before stating and proving our characterization theorem, we use the three
assumptions to prove a number of lemmas that will simplify our analysis.

Lemma 1. The possible forms of S ∩D are illustrated in Figure 9. Further-
more, if D intersects more than one component of ∂S, then S∩D only has one
component.

Figure 9. Possible forms of S ∩D.

Note we will refer to S ∩D in the first and second configurations as a strip
and refer to S ∩D in the third configuration as two disks.
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Proof. By Assumption 1, J ∩B consists of precisely two arcs whose four end-
points lie on the circle ∂D ⊆ ∂B. Since R is bounded by J , ∂R ∩ B consists
of these same two arcs. Also, it follows from Assumption 1 that S has at most
one decorating arc in B, and by condition (2) of Assumption 2 a neighborhood
of any such arc must be disjoint from ∂B. Thus regardless of whether R ∩ B
is precisely S ∩B, or R ∩B is obtained from S ∩B by replacing one arc with
a half-twisted band, ∂S ∩B consists of two arcs with endpoints in ∂B.

Now since S and ∂B are surfaces, S ∩ ∂B must contain two arcs between
the endpoints of the arcs in ∂S ∩ B. Also, by condition (1) of Assumption 2,
S ⊆ P and P ∩ B = D. Hence S ∩ B ⊆ D. In addition, by Assumption 1, D
is properly embedded in B. Hence S ∩ ∂B can have no circle components. It
follows that S ∩ ∂B consists solely of the two arcs joining the endpoints of the
two arcs of ∂S ∩B. Thus the surface S ∩B is bounded by two arcs in ∂B and
two arcs properly embedded in B.

Since, as we saw above, S ∩ B ⊆ D, we must have S ∩ B ⊆ S ∩D. On the
other hand, since D ⊆ B, we have S ∩D ⊆ S ∩B, and hence S ∩D = S ∩B.
Thus S ∩D is bounded by two arcs in ∂D and two arcs properly embedded in
D. If these four arcs together bound a single surface in D, then S∩D is a strip.
If the two pairs of arcs with shared endpoints each bound a surface in D, then
S∩D is two disks. Also, if there is a decorating arc in S∩D, it is disjoint from
∂D. It now follows that S ∩D must have one of the forms illustrated Figure 9.

Finally suppose that D intersects more than one component of ∂S. Since
each component of ∂S separates the sphere P , some component of S ∩ D
intersects more than one component of ∂S. Now it follows from Figure 9 that
S ∩D is a strip. �

Lemma 2. No decorating arc on S −D separates S ∪D.

Figure 10 illustrates examples of decorating arcs which are excluded by
Lemma 2.

D

Figure 10. Each of these decorating arcs separates S ∪D.

Proof. Suppose there exists a decorating arc α which separates S ∪ D. Then
there is an ambient isotopy of J pointwise fixing B that removes the half-twist
of R represented by α. After this isotopy, J bounds a surface that is represented
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by a decorated 2-holed disk with one less decorating arc which still satisfies the
conditions of Assumption 2. But this implies that the number of decorating
arcs on our original surface S was not minimal, contradicting condition (3) of
Assumption 2. �

Lemma 3. Any two decorating arcs on S − D that together separate S ∪ D
must belong to a single group of parallel arcs.

Figure 11 illustrates a pair of decorating arcs which are excluded by Lemma
3.

D

Figure 11. This pair of decorating arcs together separates S ∪D.

Proof. Suppose that α1 and α2 are arcs on S −D belonging to distinct groups
of parallel arcs such that S ∪ D − (α1 ∪ α2) has more than one component.
One of the components of S ∪D − (N(α1) ∪N(α2)) is disjoint from D. Thus
some component Y of R ∪ B − (N(α1) ∪ N(α2)) is disjoint from B. Now we
can “flip Y over” while pointwise fixing B, and then we can simplify to remove
the half-twist represented by α1 from R, while causing an additional half-twist
represented by an arc parallel to α2 to be added to R (see Figure 12)

Continue this process, each time reducing the number of arcs on S that are
parallel to α1 by one, while increasing the number of arcs that are parallel to
α2 by one. In this way, we eventually eliminate the entire group of arcs parallel
to α1. However, this contradicts the minimality of the number of groups of
parallel arcs required by condition (3) of Assumption 2. �

Before stating the next lemma, we need to introduce some additional termi-
nology. Given two distinct components of ∂S, we define the algebraic twisting
number of the collection of all decorating arcs S between these two components
to be the number of these arcs representing positive half-twists of R minus the
number of these arcs representing negative half-twists of R. Note that not all
of the arcs in such a collection are necessarily parallel, since there may be arcs
from one of the components to itself in the middle of the collection.

Observe that since S is a 2-holed disk contained in the sphere P , the three
components of P − S are all disks. However, for any point x in P − S, the
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D D

D
D

Y

Y

α
1

α
2

Flip Y over

Figure 12. We flip Y over to remove α1 and add an arc parallel to α2.

set P − {x} is a plane and hence only two of the components of P − {x} − S
are disks. In this case, we refer to the components of ∂S which bound disks in
P − {x} − S as inner components of ∂S in P − {x}.

Lemma 4. There is a point x in P − (S ∪D) such that the algebraic twisting
number of the collection of arcs between the two inner components of ∂S in the
plane P − {x} is zero.

Proof. Consider the collections of decorating arcs on S that have endpoints on
distinct boundary components of ∂S, ignoring any arcs with endpoints on the
same component of ∂S. Let r1, r2, and r3 be the algebraic twisting numbers
of these three collections (see Figure 13). If none of r1, r2, or r3 is zero, then
J is the pretzel link P (r1, r2, r3) with three non-trivial vertical rows of twists.
However, it follows from [16, 19, 20] or [1] that all such pretzel links are prime.
But this is impossible since according to Assumption 2, J is a connected sum
of non-trivial torus links. Thus for some i, we must have ri = 0.

Let X denote the collection of arcs with algebraic twisting number ri = 0.
The arcs in X all run between the same two components of ∂S. So let Z
denote the component of P − S which does not intersect any of the arcs in
X. If Z were entirely contained in D, then the component of ∂S bounding Z
would be entirely contained in D. But this is impossible since S ∩D has one
of the forms illustrated in Figure 9. Thus we can choose a point x ∈ Z − D.
Now x ∈ P − (S ∪ D) and X is the collection of arcs between the two inner
components of ∂S in the plane P − {x}. Since ri = 0, we are done. �
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r
1

r
2

r
3

Figure 13. r1, r2 and r3 are the algebraic twisting numbers of
the collections of parallel arcs between distinct components of
∂S.

From now on, we fix the point x as given by Lemma 4 and draw all subse-
quent diagrams of S ∪D in the plane P − {x}. In particular, by Lemma 4, S
looks like Figure 13 with r2 = 0.

Lemma 5. Suppose that S contains a decorating arc in the collection of arcs
X between the two inner components of ∂S in the plane P − {x}. Then S has
exactly two such arcs, one of which is contained in D, and the sign of the arc
not in D is opposite the sign of the arc in D.

Proof. By Lemma 4, the algebraic twisting number of the arcs in X is zero.
Thus every arc in X must be paired up with another arc in X of opposite sign.
If neither arc in such a pair is contained in D, then there would be an ambient
isotopy of J pointwise fixing B which would reduce the number of decorating
arcs of S. Since this contradicts the minimality of the number of arcs given in
condition (3) of Assumption 2, every arc in X must be paired up with an arc
of opposite sign in D. However, by Assumption 1, S ∩D contains at most one
decorating arc. So X contains exactly two arcs, one of which is contained in
D, and the sign of the arc not in D is opposite the sign of the arc in D. �

Lemma 6. S ∪D is depicted in the plane P − {x} by one of the illustrations
in Figure 14.

Note that when two cases are identical except the two inner components of
∂S have been switched, we depict only one of the cases in Figure 14. Also in
the figure some of the groups of arcs that are illustrated might actually contain
zero arcs.

Proof. We begin with some general observations that will apply to all cases.
First by Lemma 1, S ∩D is either two disks or a strip containing at most one
decorating arc. Also, by Lemma 2, no decorating arc on S−D separates S∪D.
Furthermore, by Lemmas 4 and 5, if there are any arcs between the two inner
components of ∂S in the plane P −{x}, then there are precisely two such arcs
with opposite signs and one of these arcs is contained in D.

Now we consider the cases, one at a time. First suppose that S ∩D is two
disks. Then it follows from the second part of Lemma 1 that D intersects only
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(a) (b)

(c)

(d) (e)

(f)

+/-

-/+

(g)

Figure 14. These are all possible forms of S ∪ D in the plane
P − {x}.

one component of ∂S. Hence S∪D looks like the one of the illustrations to the
left of an arrow in Figure 15. However, by Lemma 3, we can remove some arcs
to get the illustrations to the right of the arrows in Figure 15. Hence S ∪ D
has one of the forms depicted in Figure 14a or 14b.

Figure 15. Cases when S ∩D is two disks.

Next suppose that S∩D is a strip intersecting only one component of ∂S. If
B does not split apart the connected summands of J = T (2, n)#T (2,m), then
S∪D looks like one of the illustrations in Figure 16. Hence again by Lemma 3,
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the illustrations in the figure can be simplified to get those to the right of the
arrows. Hence S ∪ D has one of the forms illustrated in either Figure 14c or
Figure 14d according to whether or not B splits apart the connected summands
of J = T (2, n)#T (2,m).

Figure 16. Cases when S ∩ D is a strip intersecting only one
component of ∂S and B does not split J = T (2, n)#T (2,m).

Now suppose that S ∩D is a strip intersecting an inner component and the
outer component of ∂S in the plane P −{x}. Then S ∪D looks like the one of
the illustrations in Figure 17, which can again be simplified by Lemma 3 to get
the illustrations to the right of the arrows. Thus S ∪ D has one of the forms
illustrated in Figure 14e.

Figure 17. Cases when S ∩ D is a strip intersecting an inner
and outer component of ∂S.

Finally, suppose that S ∩ D is a strip intersecting both inner components
of ∂S in the plane P − {x}. Then by Lemma 5, S ∪ D has one of the forms
illustrated in Figure 14f or 14g. �

4. Classification theorem

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold for a particular ser-
ine or tyrosine substrate-enzyme complex with substrate J = T (2, n)#T (2,m).
Then every product of site-specific recombination is in one of the two families
illustrated in Figure 18.

Note that in the proof we distinguish the products mediated by a serine
recombinase from those mediated by a tyrosine recombinase.
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Family 1 Family 2

Figure 18. Under the hypotheses of the theorem, every knotted
or linked product is in one of these families.

Proof. By Lemma 6, we can assume that S∪D has one of the configurations in
the plane P − {x} illustrated in Figure 14. Since these configurations describe
all possibilities for the substrate-enzyme complex J ∪ B, we can do our anal-
ysis entirely based on these illustrations. In what follows, we go through the
configurations one at a time, applying Assumption 3 in each case to determine
all possible knotted or linked products. Note that if a rectangle contains no
number or letter, then it is understood that there are no restrictions on the
number of twists in the box. However, crossings always go between the two
short sides of the rectangle.

For the configuration of S∪D illustrated in Figure 14a, the possible products
are illustrated in Figure 19. If the recombination is mediated by a serine
recombinase, then we obtain links in Family 1 with no restrictions on k. If the
recombination is mediated by a tyrosine recombinase, then |k| ≤ 2.

k

Family 1

Figure 19. Products when S ∪D has the form of Figure 14a.

For the configurations of S ∪D illustrated in Figure 14b, the middle illus-
trations in Figure 20 describe the possible products. However, after an isotopy
we get the links on the far right. If the recombination is mediated by a serine
recombinase, then there are no restrictions on k. If the recombination is me-
diated by a tyrosine recombinase, then |k| ≤ 2. Observe that in the first case
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we get links in Family 1, though the left and right sides of the illustration are
reversed from what they are in Figure 18; and in the second case we get links
in Family 2, though the top and bottom of the illustration are reversed from
what they are in Figure 18.

k

0

k

k
k

Family 1

Family 2

Figure 20. Products when S ∪D has the form of Figure 14b.

Next, consider the two configurations of S ∪ D in Figure 14c. First sup-
pose there is no decorating arc in S ∩D (illustrated on the top left and right
of Figure 21). Each round of processive recombination mediated by a serine
recombinase inserts a nugatory crossing which can be removed by an isotopy.
Hence the products are the same as the substrate J = T (2, n)#T (2,m). We
can see the links T (2, n)#T (2,m) in the central illustration of Figure 21 by
letting k = ±1. Now suppose there is a decorating arc in S ∩ D (illustrated
on the bottom left and right of Figure 21). Then multiple rounds of processive
recombination mediated by a serine recombinase replaces J ∩B with a row of
crossings. Since S ∩D contains a decorating arc, we see from the illustration
on the right in Figure 7 that this row can either be horizontal or vertical. If
the row of crossings is vertical, then the crossings are nugatory and we obtain
the central illustration with k = ±1 as above. If the row is horizontal, then we
obtain a link again as in the central illustration of Figure 21, and there are no
restrictions on k. Finally, suppose the recombination is mediated by a tyrosine
recombinase. Then J ∩D is replaced by at most two consecutive crossings in
either direction, and hence |k| ≤ 2.

The analysis for the configurations of S∪D illustrated in Figure 14d is similar
to Figure 14c. When there is no decorating arc in S∩D, each round of processive
recombination mediated by a serine recombinase inserts a nugatory crossing
which can be removed by an isotopy. Hence the products again have the form
T (2, n)#T (2,m), which we can see in the central illustration of Figure 22 by
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0

0

k

Family 2

Figure 21. Products when S ∪D has the form of Figure 14c.

letting k = ±1. When there is a decorating arc in S ∩D, then multiple rounds
of processive recombination mediated by a serine recombinase replaces J ∩ B
with either a row of nugatory crossings or a row of vertical crossings. We
can see the latter in the central illustration of Figure 22 with |k| > 1. If the
recombination is mediated by a tyrosine recombinase, then J ∩ D is replaced
by at most two consecutive crossings in either direction. Hence in this case,
|k| ≤ 2.

k 0 k

1

mn

m

n+1

Family 2

Figure 22. Products when S ∪D has the form of Figure 14d.

Note that in Figure 22, n and m have the same values as they did in the
substrate T (2, n)#T (2,m). Also observe that a single crossing of +1 in a
horizontal box is the same as a single crossing of −1 if the crossing were in a
vertical box. Thus the row of n+ 1 vertical crossings together with the single
+1 horizontal crossing is equivalent to a row of n vertical crossings.

For the configurations of S ∪ D illustrated in Figure 14e, the illustrations
in Figure 23 describe the possible products. When there is no decorating
arc in S ∩ D, each round of processive recombination mediated by a serine
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recombinase inserts a row of crossings which can be combined with the row of
m crossings in J − B to get a row of p crossings. Thus the product is of the
form T (2, n)#T (2, p). We can see this in the central illustration of Figure 23
by letting k = −1, since a −1 in the center box becomes a +1 when it’s joined
with the vertical box with p − 1 crossings. When there is a decorating arc in
S ∩ D, then there are no restrictions on the value of k. If recombination is
mediated by a tyrosine recombinase, then |k| ≤ 2.

k

0 1

0

n p-1

n k

Family 1

p

k

n p-1

Figure 23. Products when S ∪D has the form of Figure 14e.

Note that in Figure 23, if k 6= −1, then p − 1 = m from the substrate
T (2, n)#T (2,m). Also in the figure, we have highlighted some of the arcs with
dotted lines to make it easier to see how to isotop the central illustration to
obtain the illustration on the bottom which is in Family 1. Finally, observe that
in the illustration on the bottom the vertical box with +1 crossing becomes a
−1 crossing when combined with the p vertical crossings, thus giving us the
box with p− 1 vertical crossings in the center illustration.

For the configuration of S ∪ D in Figure 14f, the illustration in Figure 24
describes the possible products. For recombination mediated by a serine recom-
binase, the products are illustrated on the right with k = ±1 and no restrictions
on the value of j. For recombination mediated by a tyrosine recombinase, the
products either have j = 0 and |k| ≤ 2, or have |j ± 1| ≤ 2 and k = ±1 so that
|j − k| ≤ 2.

Finally, for the configuration of S ∪ D in Figure 14g, the illustration in
Figure 25 describes the possible products. This is similar to the case illustrated
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j

k

Family 2

Figure 24. Products when S ∪D has the form of Figure 14f.

+/-

-/+

j

k

Family 2

Figure 25. Products when S ∪D has the form of Figure 14g.

in Figure 24. As above, for recombination mediated by a serine recombinase,
the products are illustrated on the right with k = ±1 and no restrictions on
the value of j. For recombination mediated by a tyrosine recombinase, one box
comes from the decorating arc outside of D and hence is ±1. The other box
is brought about by recombination mediated by a tyrosine recombinase and
hence has absolute value no larger that 2. However, there is no restriction on
which box is which. �

Remark. For the configurations of S∪D illustrated in Figures 14b, 14c, 14d, and
14e, the ball B lies on one side of a sphere which separates the two connected
summands of J = T (2,m)#T (2, n). Buck and Flapan show in [3] that under
three assumptions which are analogous to ours, if the substrate is a (possibly
trivial) torus link T (2, n), then the products must belong to a particular family
depicted in Figure 1. The products that we obtain in Figures 14b, 14c, 14d,
and 14e can be obtained as connected sums of a T (2,m) with one of the links in
the family illustrated in Figure 1. Thus our results in these cases are consistent
with those of Buck and Flapan.
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