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Abstract

Suppose that we wish to estimate a vector x ∈ Cn from a small number of noisy linear
measurements of the form y = Ax+z, where z represents measurement noise. When the vector
x is sparse, meaning that it has only s nonzeros with s ≪ n, one can obtain a significantly more
accurate estimate of x by adaptively selecting the rows ofA based on the previous measurements
provided that the signal-to-noise ratio (SNR) is sufficiently large. In this paper we consider
the case where we wish to realize the potential of adaptivity but where the rows of A are
subject to physical constraints. In particular, we examine the case where the rows of A are
constrained to belong to a finite set of allowable measurement vectors. We demonstrate both
the limitations and advantages of adaptive sensing in this constrained setting. We prove that
for certain measurement ensembles, the benefits offered by adaptive designs fall far short of the
improvements that are possible in the unconstrained adaptive setting. On the other hand, we
also provide both theoretical and empirical evidence that in some scenarios adaptivity does still
result in substantial improvements even in the constrained setting. To illustrate these potential
gains, we propose practical algorithms for constrained adaptive sensing by exploiting connections
to the theory of optimal experimental design and show that these algorithms exhibit promising
performance in some representative applications.

1 Introduction

Suppose that we wish to estimate a sparse vector from a small number of noisy linear measurements.
In the setting where the measurements are selected in advance (independently of the signal) we now
have a rich understanding of both practical algorithms and the theoretical limits on the performance
of these algorithms. A typical result from this literature states that for a suitable measurement
design, one can estimate a sparse vector with an accuracy that matches the minimax lower bound up
to a constant factor [7]. Such results have had a tremendous impact in a variety of practical settings.
In particular, they provide the mathematical foundation for “compressive sensing,” a paradigm for
efficient sampling that has inspired a range of new sensor designs over the last decade.

M. A. Davenport and A. K. Massimino are with the School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA, 30332 USA (e-mail: mdav@gatech.edu, massimino@gatech.edu).

D. Needell is with the Department of Mathematical Sciences, Claremont McKenna College, Claremont, CA,
91711 USA (e-mail: dneedell@cmc.edu).

T. Woolf is with the Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA, 91711
USA (e-mail: tina.woolf@cgu.edu).

The work of M. A. Davenport and A. K. Massimino was supported by grants NRL N00173-14-2-C001, AFOSR
FA9550-14-1-0342, NSF CCF-1409406 and CCF-1350616, and gifts from LexisNexis Risk Solutions and Lockheed
Martin. The work of D. Needell and T. Woolf was partially supported by NSF Career DMS-1348721 and the Alfred
P. Sloan Foundation.

1

http://arxiv.org/abs/1506.05889v2


A distinguishing feature of the standard compressive sensing paradigm is that the measurements
are nonadaptive, meaning that a fixed set of measurements are designed and acquired without
allowing for any possibility of adapting as the measurements begin to reveal the structure of the
signal. While this can be attractive in the sense that it enables simpler hardware design, in the
context of sparse estimation this also leads to some clear drawbacks. In particular, this would mean
that even once the acquired measurements show us that portions of the signal are very likely to be
zero, we may still expend significant effort in “measuring” these zeros! In such a case, by adaptively
choosing the measurements, dramatic improvements may be possible.

Inspired by this potential, recent investigations have shown that we can often acquire a sparse
(or compressible) signal via far fewer measurements or far more accurately if we choose them adap-
tively (e.g., see [15, 21, 22, 26]). This body of work, which will be discussed in greater detail in
Section 1.2, demonstrates that adaptive sensing indeed offers the potential for dramatic improve-
ments over nonadaptive sensing in many settings. However, the existing approaches to adaptive
sensing, which rely on being able to acquire arbitrary linear measurements, cannot be applied in
most real-world applications where the measurements must respect certain physical constraints. In
this paper, our focus is on constrained adaptive sensing, where our measurements are restricted to
be chosen from a particular set of allowable measurements. We will see that new algorithms are re-
quired and explore the theoretical limits within this more restrictive setting. Before describing the
constrained adaptive setting in more detail, we first provide a brief review of existing approaches
to nonadaptive and adaptive sensing of sparse signals.

1.1 Nonadaptive sensing

In the standard nonadaptive compressive sensing framework [6, 8, 16, 17], we acquire a signal x
via the linear measurements y = Ax + z, where A is an m × n matrix representing the sensing
system and z represents measurement noise. The goal is to design A so that m is smaller than n
by exploiting the fact that x is sparse (or nearly sparse). Given a basis Ψ, we say that a signal
x ∈ C

n is s-sparse if it can be represented by a linear combination of just s elements from Ψ, i.e.,
we can write x = Ψα, with ‖α‖0 ≤ s, where ‖α‖0 := |supp(α)| denotes the number of nonzeros in
α. We will typically be interested in the case where s ≪ n.

There is now a rich literature that describes a wide range of techniques for designing an ap-
propriate A and efficient algorithms for recovering x. In much of this literature, the matrix A is
chosen via randomized constructions that are known to satisfy certain desirable properties such
as the so-called restricted isometry property (RIP).1 Under the assumption that A satisfies the
RIP (or that AΨ satisfies the RIP in the case where Ψ 6= I), if each entry of z is independent
white Gaussian noise with variance σ2 then one can show that techniques based on ℓ1-minimization
produce an approximation x̂ satisfying

E‖x̂− x‖22 ≤ C
n log n

‖A‖2F
sσ2, (1)

where C > 1 is a fixed constant (e.g., see [16, pp. 35]). Note that this bound holds for any x,
and hence any SNR (even the worst-case). It is possible to obtain improved bounds that eliminate

1See Section 2 for a more detailed discussion of the RIP and its implications in the context of adaptive sensing.
Note that the RIP is typically stated to require ‖Ax‖2 ≈ ‖x‖2 for all s-sparse x, which implies a fixed scaling for
the matrix A where ‖A‖2F ≈ n. To ease the comparison with results that arise in contexts with alternative scalings,
in the result stated in (1) we make no assumption on the scaling of A and merely require ‖Ax‖2 ≈ β‖x‖2 for some
β > 0.
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the log n factor when one assumes that the SNR is sufficiently large to ensure that the support is
exactly recovered.

One can show that this result is essentially optimal in the sense that there is no alternative
method to choose A or perform the reconstruction that can do better than this (up to the precise
value of the constant C) [7]. In the event that the signal x is not exactly s-sparse, it is also possible
to extend these results by introducing an additional term in the error bound that measures the
error incurred by approximating x as s-sparse. See [16] and references therein for further details.

1.2 Adaptive sensing

A defining feature of the approach described above is that it is completely nonadaptive. When
we consider the effect of noise, this nonadaptive approach might draw some severe skepticism. To
see why, note that in the nonadaptive scenario, most of the “sensing energy” is used to measure
the signal at locations where there is no information, i.e., where the signal vanishes. Specifically,
one consequence of using the randomized constructions for A typically considered in the literature,
or alternatively, any matrix satisfying the RIP, is that the available sensing energy (i.e., ‖A‖2F ) is
evenly distributed across all possible indices. This is natural since a priori we do not know where
the nonzeros may lie, however, since most of the coordinates xj are zero, it also means that the
vast majority of the sensing energy is seemingly wasted. In other words, by design, the sensing
vectors are approximately orthogonal to the signal, yielding a poor signal-to-noise ratio (SNR).

The idea behind adaptive sensing is that we should focus our sensing energy on locations where
the signal is nonzero in order to increase the SNR, or equivalently, not waste sensing energy. In
other words, one should try to learn as much as possible about the signal while acquiring it in
order to design more effective subsequent measurements. Roughly speaking, one would like to
(i) detect those entries which are nonzero or significant, (ii) progressively concentrate the sensing
vectors on those entries, and (iii) estimate the signal from such localized linear functionals. Such a
strategy is employed by the compressive binary search and compressive adaptive sense and search
strategies of [15] and [26]. These algorithms operate by examining successively smaller pieces of the
signal to accurately determine the locations of signal energy. These techniques can yield dramatic
improvements in recovery accuracy.

To quantify the potential benefits of an adaptive scheme, suppose that we observe

yi = 〈ai,x〉+ zi (2)

where the zi are independent and identically distributed (i.i.d.) N (0, σ2) entries and the ai are
allowed to depend on the measurement history ((y1,a1), · · · , (yi−1,ai−1)), with the only constraint
being that

∑
i ‖ai‖22 = ‖A‖2F is fixed. Consider a simple procedure that uses half of the sensing

energy in a nonadaptive way to identify the support of an s-sparse vector x and then adapts to use
the remaining half of the sensing energy to estimate the values of the nonzeros. If such a scheme
identifies the correct support, then it is easy to show that this procedure can yield an estimate
satisfying

E‖x̂− x‖22 =
2s

‖A‖2F
sσ2. (3)

If we contrast this result to that in (1), which represents the best possible performance in the
nonadaptive setting, we see that this simple adaptive scheme can potentially improve upon the
nonadaptive scheme by a factor of roughly (n/s) log n, which represents a dramatic improvement
in the typical scenario where s ≪ n. Of course, this is predicated on the assumption that the first
stage of support identification succeeds, which is not always the case.

3



A fundamental question is thus: in practice, how much lower can the mean squared error (MSE)
be when we are allowed to sense the signal adaptively? The answer is a subtle one. In [1], it is
shown that there is a fixed constant C > 0 such that

inf
x̂

sup
‖x‖0≤s

E‖x̂− x‖22 ≥ C
n

‖A‖2F
sσ2. (4)

In other words, for even the best possible adaptive scheme there are s-sparse vectors for which
our recovery error is bounded below by (4). This lower bound improves upon the nonadaptive
performance (1) by only a factor of log n, coming far short of the improvement that (3) indicates
might be possible. Similar results are also obtained in [10]. These results are established by
considering vectors that are so difficult to estimate that it is impossible to obtain a reliable estimate
of their support, and so adaptive algorithms offer limited room for improvement over nonadaptive
ones.

The result (4) does not say that adaptive sensing never helps. In fact, in practice it almost
always does help. For example, when some or most of the nonzero entries in x are only slightly
larger than the worst-case amplitude identified in [1], we can detect them sufficiently reliably to
enable the dramatic improvements predicted in (3). More concretely, provided that σ2 is not too
large2 relative to the nonzero entries of x, a well-designed adaptive scheme, where the ai are chosen
sequentially as in [15,26], can achieve

E‖x̂− x‖22 ≤ C ′ s

‖A‖2F
sσ2 (5)

for a fixed constant C ′, which represents an enormous improvement when s ≪ n, and demonstrates
that the potential benefits suggested in (3) can be realized in certain regimes.

We briefly note that these results are somewhat reminiscent of classical results from the field
of information based complexity [2, 17,30,37] as well as more recent results in active learning [12].
Although this literature considers different observation models (e.g., noise-free observations of non-
sparse signals), the general theme is that adaptivity is beneficial only in certain regimes (e.g.,
see [22]). In another direction, we also note that several authors have previously suggested Bayesian
approaches to adaptive sensing that are highly relevant to the problems we study in this paper,
but which currently lack much in the way of theoretical justification or understanding [11,23,29].

1.3 Constrained sensing

Up to this point, we have discussed results in which we essentially have complete freedom to design
both the adaptive and nonadaptive measurements in an optimal fashion (that is, up to a constraint
on ‖A‖F ). However, there are many applications where such freedom does not exist, and there are
significant constraints on the kind of measurements that we can actually acquire. Such constraints
arise in various hardware devices inspired by compressive sensing. For example, the single-pixel
camera [18] acquires samples of an image by computing inner products with binary patterns. In
this application we could still utilize adaptive measurements, but they must be binary. In other
applications, we may be restricted to obtaining point samples of the signal of interest. For example,
in standard sampling systems we are restricted to individually measuring each signal coefficient over
time or space. Finally, in tomography and magnetic resonance imaging (MRI), as well as other

2For example, the compressive binary search procedure proposed in [15] succeeds in finding the location of the
smallest nonzero entry of amplitude µ with probability 1− δ when µ2/σ2 > 16n log( 1

2δ
+1)/‖A‖2F . The result for the

procedure in [26] is similar.
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Figure 1: (Left) The median squared error versus the signal dimension n for nonadaptive recovery with
uniformly random selected measurements (red) and oracle adaptive recovery (black). (Right) The ratio
(green) of the nonadaptive median squared recovery error to the oracle adaptive median squared recovery
error versus the signal dimension n, with logn (solid magenta) and n/s (dashed magenta) included for
reference.

medical imaging settings, we cannot acquire inner products with arbitrary linear functionals—we
are limited to Fourier measurements.

In all of these settings, the measurements are constrained ; we still have the flexibility to design
measurements adaptively, but we can only select measurements from a fixed ensemble of prede-
termined measurements. Thus, the constrained setting will typically preclude the use of any of
the adaptive sensing algorithms referenced above, and a new approach is required. Specifically, if
we let M ⊂ C

n denote the set of candidate measurement vectors, then the constrained adaptive
sensing problem becomes one of sequentially selecting the rows ai of our sensing matrix from the
set M. In this work, we assume the multiplicity of a particular measurement from M is allowed to
be greater than one; that is, repeated measurements are permitted. For the methods discussed in
this paper, we will restrict our attention to the case where M is a finite set. For a majority of our
discussion and examples, we will focus on the setting where M = {f1, f2, . . . , fn} consists of rows
from the Discrete Fourier Transform (DFT) matrix. We stress, however, that we need not require
|M| = n in general.

With the restriction that the measurements be chosen from the DFT ensemble, Figure 1 illus-
trates the large potential difference between a completely nonadaptive sensing scheme, where the
measurements are selected uniformly at random, and an “oracle” adaptive sensing scheme which
uses a priori knowledge of the true locations of the nonzeros in a signal to carefully adapt the
choice of measurement vectors to minimize the expected recovery error using the strategy outlined
in Section 3. In both cases, the Compressive Sampling Matching Pursuit (CoSaMP) [27] algorithm
is used for the signal recovery. The median3 squared error over 200 trials is displayed against the
signal dimension n. Here, the signal is chosen to have a sparse Haar wavelet decomposition that
is supported on a tree. The choice of a tree-sparse signal is motivated by the observation that
natural images typically have a structured sparsity pattern in a wavelet domain due to correlations
between scales. In these simulations, the noise level σ2 = 10−4 is held constant while the nonzero
coefficients scale as

√
n so that the per-measurement SNR is fixed. The number of measurements

3 Note that the median and mean curves exhibit the same overall behavior; however, we display the median error
across all trials rather than the mean error throughout because the median, being a more robust measure, resulted
in smoother curves with clearer trends between the methods.
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taken is set to be m = 0.6n (rounding when necessary). See Section 4.1 for further details regarding
these simulations.

It is well-known that the DFT and Haar wavelet transforms are not incoherent, which implies
that AΨ should not satisfy the RIP; hence, we would not expect blind nonadaptive sensing to do
well in this setting. However, Figure 1 does illustrate the large potential for improvement over
nonadaptive sensing. In this case, the adaptive algorithm can potentially improve the recovery
error over nonadaptive sensing by roughly a factor of n/s, which represents a substantial gain when
s ≪ n. While we will see below that there are also nonadaptive strategies to address the coherence
of Fourier and Haar which somewhat reduce the gap between adaptive and nonadaptive sensing
in this case, we believe that this clearly illustrates the potential for adaptive sensing, even in the
constrained setting.

1.4 Organization

The remainder of the paper is organized as follows. In Section 2, we show a simple lower bound
on the adaptive performance of systems limited to DFT measurements. We then generalize this
result to the larger class of measurements satisfying the RIP. In both cases, the signal is assumed
to be sparse in the canonical basis. In Section 3, we give a method for measurement selection based
on optimal experimental design. In Section 4, we provide simulations in a more realistic setting
and display numerical results when Fourier measurements are used and the signal is assumed to
be sparse in the Haar wavelet basis, for both synthetic and realistic signals. We also present
some analytical justification using 1-sparse signals in this constrained adaptive setting. Finally, we
conclude in Section 5 with a brief discussion.

2 Lower bounds on adaptive performance

The main result of this section shows that adaptive sensing cannot offer substantial improvements
over the nonadaptive scheme when the measurements are restricted to certain specific classes of
ensembles and the signal is sparse in the canonical basis (i.e., Ψ = I). We first consider the Fourier
ensemble, where the sensing vectors are chosen from the rows of the DFT matrix F ∈ C

n×n, where
F has entries

fjk =
1√
n
exp(−2π

√
−1jk/n) (6)

for j, k = 0, 1, . . . , n − 1. In this constrained setting we have the following lower bound.

Theorem 1. Under the adaptive measurement model of (2), where the ai are chosen (potentially
adaptively and allowing repeated measurements) by selecting rows from the DFT matrix (6), we
have that

inf
x̂

sup
‖x‖0≤s
‖x‖2≥R

E‖x̂− x‖22 ≥ n

m
sσ2 (7)

for any R ≥ 0.

This shows that even using an optimal choice of sensing vectors, the recovery error is still
proportional to n

msσ2, even if we exclude the low-SNR setting (by setting R to be large relative to
σ). This is somewhat reminiscent of the main results of [1] and [10], which (in an unconstrained
setting) establish minimax bounds of the form given in (4). However, a key difference is that in
the unconstrained setting the worst-case error which defines the minimax rate is determined by
the performance at a certain range of worst-case SNRs. Specifically, these bounds are obtained by
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constructing a “least favorable prior” where the nonzeros of x are near a specific level,4 and thus if
we were to exclude these challenging x via the restriction that ‖x‖2 ≥ R as in (7), the bound in (4)
would be dramatically lower – in particular, the gains shown in (5) could be realized [15,26]. Thus,
in a sense Theorem 1 is far more pessimistic than these results since it applies no matter how large
the SNR – although given the incoherence of the DFT and the canonical bases, perhaps this is not
that surprising. Finally, we note that for certain values of R it may be possible to obtain a slightly
stronger version of Theorem 1 (by a log n/ log log n factor) using the techniques in [20, Thm 6.1].
We do not pursue these refinements here.

Proof of Theorem 1. For any adaptive procedure x̂, we let F′ be the m×n sensing matrix consisting
of the m adaptively chosen vectors from the rows of F, and let F′

Λ denote the m× s submatrix of
F′ whose column indices correspond to the indices of the support Λ of x. Using the rows of F′ to
acquire the measurements as in (2), we obtain y = F′x+ z = F′

ΛxΛ + z. It is not difficult to show
(e.g., see the Appendix of [7]) that

inf
x̂

sup
‖x‖0≤s
‖x‖2≥R

E‖x̂− x‖22 ≥ inf
x̂

sup
x′∈Rs

‖x′‖2≥R

E‖x̂(F′
Λx

′ + z)− x′‖22,

where x̂(·) takes values in R
s.

To establish the bound in (7) we consider a sequence of least favorable prior distributions on
x′. The minimax risk is always larger than the Bayes risk under any prior, so this will establish a
lower bound on the minimax risk. Towards this end, consider the prior on x′ where x′ ∼ N (0, ρ2I),
but where the distribution is truncated to be zero for ‖x′‖2 ≤ R and re-scaled appropriately. Note
that in the absence of this truncation, the Bayes risk would be given by

σ2
s∑

i=1

(
σi(F

′
Λ)

σ2
i (F

′
Λ) +

σ2

ρ2

)2

, (8)

where σi(F
′
Λ) denotes the ith singular value of F′

Λ. This follows from the fact that the Bayes
estimator is given by

E[x|y] = (F′
Λ
T
F′
Λ + σ2

ρ2
I)−1F′

Λ
T
y.

The result in (8) follows from the fact that for this estimator the expected squared error is given
by

σ2‖(F′
Λ
T
F′
Λ + σ2

ρ2
I)−1F′

Λ
T ‖2F

which reduces to (8) via the application of standard properties of the singular value decomposition.
We now note that for any R ≥ 0, as ρ2 → ∞, the Bayes risk for the truncated prior will converge
to that of (8), namely,

σ2‖(F′
Λ
T
F′
Λ)

−1F′
Λ
T ‖2F = σ2

s∑

i=1

1

σ2
i (F

′
Λ)

Putting this all together, we have that

inf
x̂

sup
‖x‖0≤s
‖x‖2≥R

E‖x̂− x‖22 ≥ σ2
s∑

i=1

1

σ2
i (F

′
Λ)

4This threshold is around (mini x
2
i )/σ

2 ≈ (n/m) log s.
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≥ σ2 s2∑s
i=1 σ

2
i (F

′
Λ)

= σ2 s2

‖F′
Λ‖2F

where the second inequality follows from Jensen’s inequality. Since ‖F′
Λ‖2F = sm

n , this completes
the proof.

Our next result generalizes this type of lower bound to any ensemble whose submatrices satisfy
the RIP with overwhelming probability. This statement is significant because it suggests that in
some constrained situations, specifically many commonly studied in compressive sensing, there is
little benefit from adaptivity. Formally, we define an RIP ensemble as follows.

Definition 1. Let m be fixed. We say that an n × n matrix A with unit-norm rows is an RIP
ensemble if for any m′ ≥ m a random m′ × n submatrix Ã, whose rows are uniformly chosen
without replacement, satisfies

0.5
m′

n
‖u‖22 ≤ ‖Ãu‖22 ≤ 1.5

m′

n
‖u‖22, (9)

for all s-sparse u with probability 1− exp(−cn) (where c is such that exp(−cn) < 1/2n).

Theorem 2 makes rigorous the claim that selecting rows intelligently from such a matrix yields
no substantial improvement over a nonadaptive scheme.

Theorem 2. Under the adaptive measurement model of (2), where the ai are chosen (potentially
adaptively and allowing repeated measurements) by selecting rows from an RIP ensemble as defined
above, we have that

inf
x̂

sup
‖x‖0≤s
‖x‖2≥R

E‖x̂− x‖22 ≥
sn

3m2
sσ2 (10)

for any R ≥ 0.

We note that one usually anticipates m to be on the order of s log n, in which case this bound
becomes

E‖x̂− x‖22 ≥ sn

3ms log n
sσ2 =

n

3m log n
sσ2,

which is roughly a factor of log2 n lower than the upper bound in (1). This result shows that the
recovery error with any adaptive measurements selected from some standard RIP ensemble again
falls short of the possible gains shown in (3).

We also note here that the bound in Theorem 2 is worse by a factor of m/s than Theorem 1.
However, we believe this is necessary due to the fact that the only assumption we place on A is
that (9) holds with overwhelming probability; this is a much weaker requirement than insisting on
DFT measurements as in Theorem 1. As a motivating example, fix some subset Λ ⊂ {1, . . . , n} of
size s. Construct a matrix A by setting it to the DFT basis F, with its first row modified in the
following way: on Λ, multiply each entry by a factor of C where C2 = m/8s and off of Λ multiply
each entry by a factor c =

√
(n− sC2)/(n − s). This yields a matrix A whose rows still have unit

norm. In addition, one can show that for this new matrix A, the property (9) still holds with the
same probability for δ = 5/8 for any (m+ 1)× n submatrix Ã. Construct an (m + 1) × n matrix
A′ with the first row of A repeated m− s+2 times (since at least s rows need to be unique). Then
one computes that ‖A′

Λ‖2F = s
n(s− 1 + m

8s(m− s+ 2)) & m2/n. On the other hand, any matrix of
the same size adaptively constructed from the DFT basis F has a squared Frobenius norm equal
to s(m+ 1)/n. Thus we may indeed lose an m/s factor because of this weakened assumption.

8



Proof of Theorem 2. Let A′ be the m×n matrix of the adaptively selected rows as in the theorem.
Fix a support set Λ of size at most s. Let A′

Λ be the restriction of A′ to the support set Λ. We
will prove the result by showing a bound on the norm of the rows of A′

Λ which we obtain via an
argument of contradiction. To that end, let a⋆ be the row of A corresponding to the row of A′

Λ

with the greatest Euclidean norm. Now consider drawing a random (m + 1) × n submatrix Ã of
A that contains a⋆ as a row. Then one can compute that any such submatrix Ã satisfies (9) (with
m′ = m+ 1) with probability at least 1 − exp(−cn)n/(m + 1) > 1− exp(−cn)n. Indeed, one sees
formally that

P(Ã does not satisfy (9) | a⋆ is a row of Ã)

=
P(Ã does not satisfy (9) and a⋆ is a row of Ã)

P(a⋆ is a row of Ã)

≤ P(Ã does not satisfy (9))

P(a⋆ is a row of Ã)

≤ exp(−cn)

(m+ 1)/n
.

Now let Ãc be the remainder of the matrix, i.e., all rows of Ã except row a⋆. Similarly, one
computes that any such matrix Ãc satisfies (9) (with m′ = m) with probability at least 1 −
exp(−cn)n/(n −m) > 1 − exp(−cn)n. Thus both of these matrices satisfy (9) with probability at
least 1− 2 exp(−cn)n > 0. For the sake of a contradiction, suppose that ‖a⋆Λ‖22 > 3m/n. Observe
that the signal x ∈ R

n where xΛ = a⋆Λ and padded with zeros off of the support Λ is an s-sparse
signal. Then since both matrices satisfy (9), we must have that

‖Ãx‖22 = ‖Ãcx‖22 + |〈a⋆Λ,x〉|22
≥ 0.5

m

n
‖x‖22 + ‖x‖42

>

(
0.5

m

n
+

3m

n

)
‖x‖22 ≥ 3.5m

n
‖x‖22.

On the other hand, we must also have that

‖Ãx‖22 ≤ 1.5
m+ 1

n
‖x‖22.

Combining these means that 3.5m
n ≤ 1.5m+1

n ≤ 3m
n , which is a contradiction. Thus, it must be that

‖a⋆Λ‖22 ≤ 3m/n. Since a⋆Λ is the largest row of A′
Λ, we then have that

‖A′
Λ‖2F ≤ m‖a⋆Λ‖22 ≤

3m2

n
.

Following the same argument as in the proof of Theorem 1, we thus have that

inf
x̂

sup
‖x‖0≤s
‖x‖2≥R

E‖x̂− x‖22 ≥
s2

‖A′
Λ‖2F

σ2 ≥ sn

3m2
sσ2,

which completes the proof.
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3 Adaptivity through optimal experimental design

Although there are some settings where constrained adaptive sensing does not offer substantial
improvement over the nonadaptive scheme, one can of course ask if there are other settings where
notable gains are still possible. In order to address this question, we consider the simplified con-
strained adaptive sensing problem where we assume the support Λ of the signal x (with respect to
the sparsity basis Ψ) is known, or some estimate of the support is provided. How would we choose
the measurements to best make use of this information, while still respecting that the measurements
are constrained to be from the measurement ensemble M?

Let {ai}mi=1 denote a sequence of length m with elements ai ∈ M corresponding to the mea-
surements of M that are chosen.5 Then, denote by A′ the m × n matrix (recall M ⊂ C

n) whose
ith row is ai. If Λ = supp(x), then it can be shown by following the arguments in the proof of
Theorem 1 that the optimal MSE satisfies

E‖x̂− x‖22 = ‖(A′ΨΛ)
†‖2Fσ2

= tr
(
((A′ΨΛ)

∗A′ΨΛ)
−1
)
σ2,

(11)

where (A′ΨΛ)
† denotes the Moore-Penrose pseudoinverse of A′ΨΛ, σ

2 is the variance of the noise
term as in (2), ΨΛ is the submatrix of Ψ restricted to the columns indexed by Λ, and A′ΨΛ is
assumed to have full (column) rank. Our goal is to find a length-m measurement sequence {ai}mi=1

that minimizes (11), which is equivalent to solving

{âi}mi=1 = argmin
{{ai}mi=1

| ai∈M}
tr
(
((A′ΨΛ)

∗A′ΨΛ)
−1
)
, (12)

where A′ = A′({ai}mi=1) is constructed as described above. Note that an essentially equivalent way
to state (12) (up to a permutation of the measurements) is via the discrete optimization problem

Ŝ = argmin
diagonal matrices S�0

sii∈Z+

tr
(
((AΨΛ)

∗SAΨΛ)
−1
)

subject to tr(S) ≤ m,

(13)

where A is the |M| × n matrix containing all possible measurement vectors from M and sii ∈ Z
+

forces each diagonal entry of S to be a non-negative integer (reflecting the multiplicity of each ai).
Both (12) and (13) reflect the optimization problem that we would ideally like to solve. Unfor-
tunately they are computationally demanding discrete optimization problems; hence, we instead
consider the relaxation of (13)

Ŝ = argmin
diagonal matrices S�0

tr
(
((AΨΛ)

∗SAΨΛ)
−1
)

subject to tr(S) ≤ m,

(14)

where the constraint tr(S) ≤ m ensures that the resulting “weighted” sensing matrix
√
SA satisfies

the “sensing energy” constraint ‖
√
SA‖2F ≤ m when the rows of A are normalized. Note that

5We use a sequence of elements from {1, . . . , |M|} rather than a subset to emphasize that the m measurements from
M need not be distinct. Note that in the general adaptive setting the order of the measurements is also important;
however, in the context of this section there is only one batch of adaptive measurements and thus the order within
this batch has no impact.

10



this is equivalent to the continuous design for the A-optimality criterion studied in the optimal
experimental design literature [32].

Fortunately, (14) is a convex problem [5] and can be efficiently solved by a number of methods.
Whereas the problem in (12) would tell us which measurements and how many of each to use
from M, (14) instead tells us, through the diagonal matrix Ŝ of weights, “how much” of each
measurement to use. We simply weight each ai by

√
ŝii, where ŝii denotes the ith element on the

diagonal of Ŝ.
If, on the other hand, we use the measurement model where we must choose m unweighted

measurements from M, the practical use of Ŝ from (14) is less obvious. We experimented with
several different (though likely sub-optimal) approaches to using the weights in Ŝ, and the fol-
lowing method empirically seemed to produce the best results. In this work, we use a simple
sampling scheme to obtain a discrete design. Specifically, we draw exactly m measurements, with
replacement, according to the probability mass function

pi =
ŝii
m

. (15)

We guarantee that the resulting matrix A′ is at least rank s by rejecting any construction for which
this constraint is not satisfied. These m measurements then form the rows of the sensing matrix
A′.

4 Case study: Fourier measurements of Wavelet sparse signals

The results of Section 2 demonstrate that adaptive sensing cannot offer substantial improvements
over nonadaptive sensing for certain classes of measurement ensembles when the signal is sparse in
the canonical basis. We next explore the case when Ψ is instead a wavelet basis and we acquire
DFT measurements (this is indeed the setting of Figure 1, which suggests dramatic potential im-
provements from constrained adaptive sensing). This setting serves as a somewhat idealized model
for a number of applications in tomography and other medical imaging since physical limitations
would entail that we can only acquire DFT measurements, and realistic images are generally sparse
with respect to wavelet bases [14]. In this setting we might receive one DFT measurement at a
time, and from those, we can (potentially in real time) request the next DFT coefficient to be
measured.

For our first two sets of experiments, we will assume the sparsity basis Ψ is the Haar wavelet
basis. We will denote the n × n discrete Haar wavelet transform by H, with entries hjk for j, k =
0, 1, . . . , n− 1 and n is assumed to be some power of 2. When j = 0, we have

h0k =
1√
n
. (16)

For indices j > 0, we write j = 2p + q − 1, where p = ⌊log2 j⌋ and q are nonnegative integers, and
define

hjk =
1√
n





2p/2 (q−1)n
2p ≤ k < (q−0.5)n

2p

−2p/2 (q−0.5)n
2p ≤ k < qn

2p

0 otherwise.

(17)

Since, however, the Haar wavelet basis H is a sparsifying transformation, for a signal (or image) x
we have that Hx = α, with ‖α‖0 ≤ s. This means x = H∗

α, where H∗ denotes the adjoint of H,
for which H∗ = H−1 since H is unitary.
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Figure 2: (Large measurement regime) The median squared error versus the number of measurements m
when the nonzero locations of α are selected on a sparse tree (left) or uniformly at random (right). The
nonadaptive (red) and adaptive (blue) recovery is shown when either VDS or uniform sampling is used for
the nonadaptive measurements, and CoSaMP (top) or ℓ1-minimization (bottom) is used; the oracle adaptive
(black) recovery is also included for comparison.

With this notation in hand and recalling that F is the n× n DFT, (11) becomes

E‖x̂− x‖22 = ‖(F′H∗
Λ)

†‖2Fσ2, (18)

where F′ is the m×n sensing matrix consisting of the m adaptively chosen vectors from F and H∗
Λ

is the n×s submatrix of H∗ restricted to the columns indexed by Λ = supp(α) = supp(Hx). Thus,
we see that the optimal MSE depends on the correlations of the DFT and Haar basis elements. In
a similar manner, in our last experiment, where the signal is an MRI image, we will assume the
sparsity basis Ψ is the Daubechies wavelet with 3 vanishing moments (D6).

We now present a suite of numerical simulations in these settings that employ the relaxation (14)
followed by the sampling scheme described in Section 3 to select a sequence of m DFT measurement
vectors. We then follow with a short analysis for the simple case of 1-sparse signals.

4.1 Simulations

Here we present a practical implementation of adaptive sensing obtained via the relaxation (14)
which we then compare with the results of traditional nonadaptive sensing. To implement (14), we
use the Templates for First-Order Conic Solvers (TFOCS) software package [3, 4].
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Figure 3: (Small measurement regime) The median squared error versus the number of measurements m
when the nonzero locations of α are selected on a sparse tree (left) or uniformly at random (right). The
nonadaptive (red) and adaptive (blue) recovery is shown when either VDS or uniform sampling is used for
the nonadaptive measurements, and CoSaMP is used; the oracle adaptive (black) recovery is also included
for comparison.

For our first two sets of experiments, we set M to be the ensemble of n measurements from the
n×n DFT matrix F. We define x to be a 10-sparse signal in the Haar wavelet basis (i.e., Ψ = H⋆)
with the values on the support of α distributed i.i.d as N (

√
n, 1) and the measurement noise z

is distributed as i.i.d. N (0, 10−4).6 Unless otherwise stated, the signal is of dimension n = 1024.
We consider signals whose support is chosen uniformly at random, and also those whose support
obeys a tree structure. Briefly, in the latter case the support is organized on a binary tree, plus
an extra node at the top. The first scaling (or lowest frequency) coefficient has just one child;
the second and further wavelet coefficients have two children each. This model is characteristic
of natural images which tend to have inter-scale correlations (see [13, 19] for similar wavelet-tree
constructions). An s-sparse support is filled by choosing the first scaling location, and then in
each of the s − 1 remaining rounds, choosing one node randomly among the unfilled nodes which
currently have a chosen parent.

Nonadaptive sensing. Due to the lack of incoherence between the DFT and Haar bases, it has
been observed (and recently theoretically shown [24,25]) that so-called Variable-Density Sampling
(VDS) is often preferable to standard uniform random selection of DFT measurements. In VDS7,
sampling can be concentrated on the lower frequencies, producing superior recovery results. We
test recovery using either ℓ1-minimization [9, 35,36] or the greedy pursuit CoSaMP [27].

Adaptive sensing. In the more realistic setting, we employ a simple strategy which uses m/2
nonadaptive measurements (using either VDS or uniform sampling) to construct an estimate of
Λ. This is done by executing either ℓ1-minimization (followed by thresholding) or CoSaMP. We
then solve the relaxation (14) using this estimated support, and the remaining m/2 measurements
are selected adaptively8 using the distribution given by (15). To recover the signal, either ℓ1-

6We have found the adaptive procedure to be robust to the noise level, and compare similarly to the corresponding
nonadaptive procedure even for larger noise levels.

7Following the experiments in [25], we also do not apply any preconditioning to the sensing matrix.
8Note that these m/2 adaptively selected measurements are only adapted to the first m/2 measurements, but

are nonadaptive with respect to each other. That is, only one instance of adaptive measurement selection is being
performed. Although in a different context, a similar two-stage approach is also taken in [12].
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Figure 4: The ratio (green) of the nonadaptive median squared recovery error to the adaptive median
squared recovery error versus the signal dimension n when the support locations of α are selected on a sparse
tree (left) or uniformly at random (right). The ratio is shown when either VDS or uniform sampling is used
for the nonadaptive measurements, and CoSaMP (solid line) or ℓ1-minimization (dashed line) is used. The
curves for log n (solid magenta) and n/s (dashed magenta) are included for comparison.

minimization or CoSaMP is again used to obtain an updated estimate Λ̂ using all mmeasurements.9

The final signal coefficient estimate is calculated as α̂Λ̂ = (F′H∗
Λ̂
)†y, where y is the m-dimensional

vector of measurements, F′ is the m × n vector of DFT measurements selected, and H∗
Λ̂

is the

n × 10 submatrix of H∗ restricted to the columns indexed by Λ̂. One could alternatively use the
signal estimate returned directly from the recovery algorithm, which we have observed to perform
similarly to (or only slightly worse than) our implemented method.

Oracle adaptive sensing. For sake of comparison, we also consider the case where the true
support Λ of the signal is known a priori, and the measurements are selected as in the adaptive
sensing case using this Λ. Recovery is then performed simply by applying the pseudoinverse:
α̂Λ = (F′H∗

Λ)
†y.

Figure 2 compares recovery results over 1000 trials for nonadaptive, adaptive, and oracle adap-
tive sensing versus the number of measurements m, where m ranges between 100 and 1000. We
see that when the signal is supported on a tree, uniform sampling performs poorly for both non-
adaptive and adaptive sensing, as might be expected. The performance of the uniform sampling
methods can be understood via the empirical observation that in this case we require roughly 500
measurements before we can reliably estimate the support. When using the CoSaMP algorithm, the
sudden improvement at m ≈ 500 for uniform nonadaptive and at m ≈ 1000 for uniform adaptive
(which uses m ≈ 500 measurements for support identification) corresponds to the threshold where
more than half of the trials resulted in a correct support recovery. In contrast, sampling with VDS
offers dramatic improvements for both nonadaptive and adaptive sensing with either reconstruction
algorithm, with adaptive sensing performing almost as well as the oracle. In this case, VDS is al-
ready capturing much of the potential improvement offered by adaptivity because the energy of the
signal is heavily biased towards the lower frequencies, although adaptivity still results in somewhat
improved performance. In contrast to the tree-sparse case, when the signal support is selected
randomly, uniform nonadaptive sampling actually performs better than VDS, whereas adaptive
sensing performs similarly regardless of the type of nonadaptive measurements taken. Thus if one

9Using dependent measurements is of course not justified theoretically, but we found unsurprisingly that using all
m measurements gave better empirical results.

14



is not sure of the signal structure in general, adaptive sensing can offer improvements in either case.
This flexibility represents one of the main advantages of adaptive sensing.

Figure 3 studies the same setting as Figure 2 when using CoSaMP for recovery, but focuses
on the small measurement regime. These results illustrate that there are regions, however narrow,
where the nonadaptive method can succeed while the adaptive method fails. This is expected due
to the nature of the adaptive scheme, where only m/2 measurements are utilized to identify a
support estimate. At some point, the support can be sufficiently estimated with m, but not m/2,
measurements. For tree-sparse signals, nonadaptive sensing with VDS measurements outperforms
adaptive sensing with VDS nonadaptive measurements when m ≈ 50. For uniformly sparse signals,
we see this behavior even more clearly for both VDS and uniform sampling.

The results of our second simulation are shown in Figure 4, where we compare the ratio of
nonadaptive to adaptive sensing recovery over 200 trials against the dimension n of the signal
x; the number of measurements used is always m = 0.6n (rounding when necessary). We note
that since the norms of α and z both scale with n, the SNR remains roughly the same for all
signal dimensions n. We observe similar results as Figure 2, demonstrating the behavior holds as
a function of dimension.

In our last experiment, we evaluate our adaptive approach on real images. This scenario differs
from previous experiments in two key aspects. First, the signal of interest is a two-dimensional (2D)
image, not a one-dimensional vector, and thus we use 2D DFT measurements and a 2D discrete
wavelet transform as the sparsity basis. Second, the image is not exactly sparse in any wavelet
basis. Hence, when estimating the sparse support we introduce an additional (non-Gaussian) source
of error, the contribution of the off-support wavelet coefficients. We note that the choice of the
parameter s, which we have not attempted to optimize, can have an impact on signal reconstruction.

The image we use, brain.mat10, is rescaled to be 64× 64, and is shown in Figure 5. We use the
Daubechies wavelet with 3 vanishing moments (D6) in a full 2D decomposition (i.e., log2 64 = 6
levels). We set the parameter s = 1000, which we again note was not tuned nor optimized.
Additionally, we introduce white Gaussian noise at the level of σ = 0.01 to each measurement.

The experiment proceeds as follows: in the nonadaptive case, mmeasurements are taken accord-
ing to VDS. The set of recovered wavelet coefficients are obtained using ℓ1-minimization and the
image is reconstructed using the inverse wavelet transform. Note that the output of ℓ1-minimization
is not necessarily exactly s-sparse. The assumed sparsity s guides our choice of the ℓ2 error term
constraint, but we did no thresholding afterwards. We evaluate performance by the median peak
signal-to-noise ratio (PSNR) in dB over 50 trials.

In the adaptive case, m/2 VDS measurements are taken as in the previous nonadaptive case.
Then, via the ℓ1-minimization reconstruction, we determine the estimated top s wavelet coefficients
in each of 50 trials. We choose the trial with accuracy (in terms of the number of correctly identified
top s wavelet coefficients) closest to the median accuracy. Utilizing the size s support estimate
identified, we solve the relaxation (14) and select the remaining m/2 measurements adaptively.
Finally, we recover the signal via ℓ1-minimization, and, as before, reconstruct the final wavelet
coefficients using the pseudoinverse. Again, we evaluate performance by the median PSNR over 50
trials of the adaptive measurement selection.

The adaptive and nonadaptive recovered images of the single trial with the closest to median
PSNR performance using a total of m = 3000 measurements are given in Figure 5. Notice that the
PSNR of the adaptive strategy is 28.02 dB, which exceeds the PSNR of 25.03 dB of the nonadaptive
strategy. Visually, the adaptive strategy more closely resembles the original image. The median
PSNR as the number of measurements is varied is shown in Figure 6. The plot shows that as the

10Obtained from http://www.eecs.berkeley.edu/~mlustig/CS.html.
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Figure 5: (Top) The 64 × 64 brain.mat image used in our medical imaging experiments. Recon-
structed images with the closest to median PSNR among the 50 trials of nonadaptive (bottom left)
and adaptive (bottom right) sensing with m = 3000 measurements.

number of measurements reaches a certain level (roughly above 2000 measurements), the two-stage
adaptive approach begins to exceed the method which is purely nonadaptive. Hence, as long as
enough nonadaptive measurements are taken to obtain a sufficient support estimate, the adaptive
procedure can improve image reconstruction quality.

We note that adaptive approaches to medical imaging have also been studied using an alternative
Bayesian model for sampling optimization [28, 33, 34]. The work [33] studies the optimization of
sequential sampling over stacks of neighboring image slices. In future work, it would be interesting
to extend our proposed adaptive sampling scheme to this setting. Our method, however, is a
framework for general adaptive sensing, not tuned specifically for medical imaging.

4.2 Analysis of the 1-sparse case

We now provide some analytical justification explaining why adaptive sensing can achieve a lower
MSE than nonadaptive sensing for the Haar wavelet basis with DFT measurements, but show
that the largest gains are realized for a small fraction of the possible signal support sets. We
consider the simple case when s = 1 and the support is eventually known (either by oracle or by
utilizing some method for estimation, as in the above experiments), and use this toy problem as
motivational justification for the general setting. If we denote the s singular values of F′H∗

Λ by
σ1 ≥ σ2 ≥ · · · ≥ σs > 0, then in general we want to minimize

‖(F′H∗
Λ)

†‖2F =
s∑

i=1

1

σ2
i

. (19)

When s = 1, (19) becomes ‖(F′H∗
Λ)

†‖2F = 1
σ2
1

. However, minimizing this quantity is the same as

maximizing ‖F′H∗
Λ‖2F = σ2

1. It is easy to see that ‖F′H∗
Λ‖2F is maximized when a measurement of

F that is most correlated with H∗
Λ is chosen for every measurement in F′. That is, if such a row

16



1500 2000 2500 3000 3500 4000
10

15

20

25

30

Number of Measurements

M
ed

ia
n 

P
S

N
R

 

 

VDS Nonadaptive
VDS Adaptive

Figure 6: The median PSNR versus the number of measurements m over 50 trials of nonadaptive
and adaptive sensing of the 64× 64 brain.mat image.

can be identified, the best way to sense 1-sparse signals adaptively once the support is known is
to simply repeat that measurement until the number of allotted measurements has been reached.
Note that F′H∗

Λ is m× 1 in this case, and is still full rank when selecting the measurements in this
way; thus, the theory leading to (18) still holds. In this setting, we can determine explicitly what
the MSE looks like, and provide bounds on the MSE that depend on the support location of the
1-sparse signal. The result assuming a known support is provided in Theorem 3. The result in the
more realistic context of adaptive sensing, where the first half of the measurements are selected
nonadaptively, immediately follows and is provided in Corollary 1.

Theorem 3. Denote by x = H∗
α the signal of interest, and suppose x becomes 1-sparse after

applying the Haar wavelet transformation H (that is, Hx = α and ‖α‖0 = 1). Let supp(α) = Λ,
and suppose the support Λ is completely known. Suppose we measure repeatedly with a particular
measurement from the n × n DFT F defined in (6); denote this measurement by fj , where j ∈
{0, 1, . . . , n − 1} is some row index. Then, our observations are of the form

yi = 〈fj,H∗
ΛαΛ〉+ zi, (20)

for i = 1, . . . ,m, where the noise zi are i.i.d. N(0, σ2). Then the MSE is given by

E‖x̂− x‖22 =
1/m

|
〈
fj ,H

∗
Λ

〉
|2σ

2, (21)

and is bounded by
σ2

m
≤ E‖x̂− x‖22 ≤ nσ2

2m
, (22)

where the expectation is taken with respect to z.

Note that in standard compressive sensing when we rely on the RIP, the DFT matrix F is
normalized by 1√

m
rather than 1√

n
. If we make this normalization, the bound in (22) becomes

σ2

n
≤ E‖x̂− x‖22 ≤

σ2

2
.

Including pre-conditioning and other scalings of course yields an analogous bound.
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The proof of Theorem 3 relies on three lemmas that provide bounds for the term | 〈fj ,H∗
Λ〉 |

appearing in the MSE in (21). Specifically, one term of interest is

min
Λ∈{0,...,n−1}

max
j∈{0,...,n−1}

| 〈fj ,H∗
Λ〉 |. (23)

The maximization over j corresponds to selecting the best DFT measurement fj, and the mini-
mization accounts for the worst case signal (i.e., the worst case support Λ). On the other hand, we
also want to obtain a value that represents the best case signal so we are also interested in

max
Λ∈{0,...,n−1}

max
j∈{0,...,n−1}

| 〈fj ,H∗
Λ〉 |. (24)

Before proving Theorem 3, let us set some notation. The Haar wavelet transform matrix
H, defined in (16) and (17) consists of blocks of consecutive rows with the same nonzero entry
magnitudes. Let 1 ≤ a ≤ log2 n denote the block of H, where a = 1 corresponds to the n

2 rows
indexed by j = n

2 , . . . , n−1 (i.e., the “bottom” half of H), a = 2 corresponds to the n
4 rows indexed

by j = n
2 − n

4 , . . . ,
n
2 − 1, and so on. Similarly, for H∗, instead of blocks of rows, we have blocks of

columns; the block corresponding to a = log2 n represents the lowest frequency wavelets, and the
block corresponding to a = 1 represents the highest frequency wavelets.

Proof of Theorem 3. This proof requires the following three lemmas. Lemmas 1 and 2 are used to
prove Lemma 3, and Lemma 3 is used to complete the proof of Theorem 3. The lemmas can be
derived using elementary trigonometric bounds, and we omit the proofs here.

Lemma 1. Fix j ∈ Z where 1 ≤ j ≤ n−1 and let a = 1, . . . , log2 n. Choose k ∈ Z, 0 ≤ k ≤ n− 2a

2 .
Then

∣∣∣∣∣∣∣

k+ 2a

2
−1∑

q=k

e−2πijq/n

∣∣∣∣∣∣∣
=

√√√√1− cos(2
aπj
n )

1− cos(2πjn )
. (25)

Lemma 2. Let fj, j ∈ {0, . . . , n − 1}, be row j from the n × n DFT and let H∗
Λ be the inverse

discrete Haar wavelet transform restricted to the column indexed by Λ. Let a = 1, . . . , log2 n denote
the block of H∗ and let Λ ∈ {1, 2, . . . , n− 1}, |Λ| = 1, be a column in the set corresponding to block
a. Then,

| 〈fj,H∗
Λ〉 | =

1√
n2a−1

1− cos(2
aπj
n )√

1− cos(2πjn )
, (26)

where j = 1, . . . , n− 1. When j = 0,

| 〈f0,H∗
Λ〉 | =

{
1 Λ = 0

0 Λ ∈ {1, . . . , n− 1}.

When Λ = {0},

| 〈fj,H∗
0〉 | =

{
1 j = 0

0 j = 1, 2, . . . , n− 1.
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Lemma 3. Let fj , j ∈ {0, . . . , n − 1}, be a row from the n × n DFT matrix F and let H∗
Λ

be the inverse discrete Haar wavelet transform restricted to the column indexed by Λ. Let Λ ∈
{0, 1, . . . , n − 1} so that |Λ| = 1. Then

min
Λ∈{0,...,n−1}

max
j∈{0,...,n−1}

| 〈fj ,H∗
Λ〉 | =

√
2

n
(27)

and
max

Λ∈{0,...,n−1}
max

j∈{0,...,n−1}
| 〈fj ,H∗

Λ〉 | = 1. (28)

Since |Λ| = 1, αΛ is just a scalar, so that the measurements (20) can be written as

yi = 〈fj,H∗
Λ〉αΛ + zi. (29)

This can be concisely written as

y = AαΛ + z, (30)

where A is the m-dimensional column vector with each entry equal to 〈fj,H∗
Λ〉. To estimate αΛ, we

apply A† to y. In this case, A† is an m-dimensional row vector, with each entry equal to 1
m〈fj ,H∗

Λ〉 .
Therefore,

α̂Λ = A†y = A†(AαΛ + z)

=
[

1
m〈fj ,H∗

Λ〉 · · · 1
m〈fj ,H∗

Λ〉
]





〈fj ,H∗

Λ〉
...

〈fj ,H∗
Λ〉


αΛ + z




=
1

m

m∑

i=1

(
αΛ +

zi〈
fj,H∗

Λ

〉
)

= αΛ +
1

m

m∑

i=1

zi〈
fj ,H∗

Λ

〉 .

Using this, and since
∑m

i=1 zi ∼ N (0,mσ2), we find

E‖x̂− x‖22 = E‖H∗(α̂−α)‖22
= E‖α̂−α‖22 = E|α̂Λ −αΛ|2

= E

∣∣∣∣∣αΛ −
(
αΛ +

1

m

m∑

i=1

zi〈
fj,H∗

Λ

〉
)∣∣∣∣∣

2

= E

∣∣∣∣∣
1

m

m∑

i=1

zi〈
fj,H∗

Λ

〉
∣∣∣∣∣

2

=

(
1/m

|
〈
fj,H∗

Λ

〉
|

)2

E

∣∣∣∣∣

m∑

i=1

zi

∣∣∣∣∣

2

=

(
1/m

|
〈
fj,H∗

Λ

〉
|

)2

mσ2 =
1/m

|
〈
fj,H∗

Λ

〉
|2σ

2. (31)

Applying the bounds from Lemma 3 to (31), we arrive at

σ2

m
≤ E‖x̂− x‖22 ≤ nσ2

2m
,

as desired.
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Corollary 1. Suppose x = H⋆
α is 1-sparse. Suppose after m

2 nonadaptive DFT measurements, the
support Λ is correctly identified. For the remaining m

2 DFT measurements, we measure repeatedly
with a particular measurement from the n × n DFT F; denote this measurement by fj , where j ∈
{0, 1, . . . , n−1} is some row index. Then our observations are of the form (20) for i = m

2 +1, . . . ,m,
where the noise zi are i.i.d. N(0, σ2). Then the MSE is given by

E‖x̂− x‖22 =
2/m

|
〈
fj ,H∗

Λ

〉
|2σ

2, (32)

and is bounded by
2σ2

m
≤ E‖x̂− x‖22 ≤

nσ2

m
, (33)

where the expectation is taken with respect to z.

The upper bound on E‖x̂−x‖22 in Corollary 1 is precisely the lower bound from Theorem 1 when
s = 1. This means that there is indeed some room for improvement with adaptive sensing when
the sparsity basis is the Haar wavelet transform rather than the canonical basis. Corollary 1 shows
that the performance of adaptive sensing, in terms of the MSE, depends on the support location of
1-sparse signals. The best adaptive recovery is possible when the support is located on the lowest
wavelet frequency (Λ = {0}, or the first Haar wavelet coefficient) while the worst recovery occurs
when the support is located on any of the higher wavelet frequencies in block a = 1 (the latter half
of the Haar wavelet coefficients). This of course matches the intuition based on the correlations in
these two bases. This suggests that structured signals such as those that are tree-sparse will benefit
more from adaptivity than signals that have a uniformly distributed support.

In light of the discrepancy between (27) and (28), one wishes to know in some sense, what frac-
tion of signals allow for recovery more like one versus the other. Figure 7 shows how maxj∈{0,...,n−1} | 〈fj,H∗

Λ〉 |
varies by maximizing maxj∈{0,...,n−1} | 〈fj ,H∗

Λ〉 | over Λ while successively removing blocks from H∗.
Using our notation for blocks, the blocks of H∗ are removed in the following (top-down) order:
log2(n), log2(n) − 1, . . . , 1. Then, we plot the value of maxj∈{0,...,n−1} | 〈fj ,H∗

Λ〉 | for the remaining
submatrix of H∗. Hence, we see that the MSE is higher for signals supported on higher wavelet fre-
quencies, and the upper bound of (33) is achieved by exactly half of the possible signal support sets,
whereas the lower bound of (33) is achieved by exactly one of the possible signal supports sets (i.e.,
Λ = {0}). Fortunately, the support of natural images tends to be concentrated on lower-frequency
wavelet coefficients [31].

5 Discussion

Adaptive sensing has tremendous potential to improve the accuracy of sparse recovery in a variety of
settings. However, in many practical applications one does not have the freedom to choose arbitrary
measurement vectors, but instead must choose from a specified pool of measurements. One example
of particular interest is the setting where measurements must be taken from the Fourier ensemble,
as is the case in many medical imaging applications. In this paper we established fundamental
limitations on the improvements offered by adaptivity in this setting for certain sparsity bases. On
the other hand, we argued that for other sparsity bases (such as the Haar wavelet basis) the role
of adaptivity in the constrained setting is much less straightforward. We developed a sampling
scheme which uses a simple optimization procedure to select measurements adapted to the signal
support. This scheme results in significant improvements once an accurate estimate of the support
is obtained, which in practice can be achieved by first dedicating a portion of the measurements
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Figure 7: The value of maxj∈{0,...,n−1} | 〈fj,H∗
Λ〉 | is displayed against the (log of the) signal dimen-

sion n = 2p. The solid magenta curve shows the optimization when minimizing over all possible
supports Λ ∈ {0, . . . , n − 1}, given by (27). The solid red curve shows the opposite optimization
when maximizing over all possible supports Λ ∈ {0, . . . , n − 1}, given by (28). The remaining
dashed curves show the optimization when maximizing over all supports Λ except those in the
blocks indicated.

to support estimation. Though this approach is not necessarily provably optimal, it nonetheless
demonstrates the potential of adaptive sensing in the constrained setting. We believe future work
in this area can further the understanding of both the limitations of this approach as well as the
potential benefits.
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