
Journal of Humanistic Mathematics Journal of Humanistic Mathematics 

Volume 9 | Issue 2 July 2019 

Finding Beauty: A Case Study in Insights from Teaching Finding Beauty: A Case Study in Insights from Teaching 

Developmental Mathematics Developmental Mathematics 

Victor Piercey 
Ferris State University 

Geillan Aly 
University of Hartford 

Follow this and additional works at: https://scholarship.claremont.edu/jhm 

 Part of the Arts and Humanities Commons, and the Mathematics Commons 

Recommended Citation Recommended Citation 
Victor Piercey & Geillan Aly, "Finding Beauty: A Case Study in Insights from Teaching Developmental 
Mathematics," Journal of Humanistic Mathematics, Volume 9 Issue 2 (July 2019), pages 130-148. DOI: 
10.5642/jhummath.201902.09. Available at: https://scholarship.claremont.edu/jhm/vol9/iss2/9 

©2019 by the authors. This work is licensed under a Creative Commons License. 
JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and 
published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ 

The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds 
professional ethical guidelines. However the views and opinions expressed in each published manuscript belong 
exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for 
them. See https://scholarship.claremont.edu/jhm/policies.html for more information. 

https://scholarship.claremont.edu/jhm
https://scholarship.claremont.edu/jhm/vol9
https://scholarship.claremont.edu/jhm/vol9/iss2
https://scholarship.claremont.edu/jhm/vol9/iss2
https://scholarship.claremont.edu/jhm/vol9/iss2/9
https://scholarship.claremont.edu/jhm/vol9/iss2/9
https://scholarship.claremont.edu/jhm?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol9%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/438?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol9%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarship.claremont.edu%2Fjhm%2Fvol9%2Fiss2%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.claremont.edu/jhm/policies.html


Finding Beauty: A Case Study in Insights from Teaching Developmental Finding Beauty: A Case Study in Insights from Teaching Developmental 
Mathematics Mathematics 

Cover Page Footnote Cover Page Footnote 
The authors thank Anil Venkatesh, whose idea it was to consider Lie groups and algebras as a setting to 
generalize exponents. The authors would also like to thank Gizem Karaali and the referees for their 
thoughtful comments, encouragement, and discussion. 

This work is available in Journal of Humanistic Mathematics: https://scholarship.claremont.edu/jhm/vol9/iss2/9 

https://scholarship.claremont.edu/jhm/vol9/iss2/9


Finding Beauty: A Case Study
in Insights from Teaching Developmental Mathematics

Victor Piercey

Department of Mathematics, Ferris State University, Michigan, USA
VictorPiercey@ferris.edu

Geillan Aly

Hillyer College, University of Hartford, Connecticut, USA
ALY@hartford.edu

Synopsis

As mathematicians, we often fail to appreciate the opportunities open to us
when we teach developmental mathematics. One such opportunity is that we
may deepen our understanding of mathematics that we have taken for granted.
This paper contains a brief case study concerning what we have learned about
operations, inverses, and exponents in the process of teaching beginning algebra.
Our inquiry takes us from student questions about signed numbers, through the
category of rings, to the world of Lie groups and Lie algebras.

Suppose you just finished your Ph.D. in pure mathematics and landed a
tenure-track job. You are assigned to teach one section of Complex Analysis
(your favorite undergraduate course!) and two sections of developmental
Beginning Algebra. Wait, algebra? Not abstract algebra with groups and
rings and other fun things, but basic high school algebra?

Unless you teach at an elite institution, it is very likely that you will be
teaching developmental or lower-level mathematics courses. Due to
the changing demands of the 21st century workforce, more faculty are
teaching developmental mathematics. Sixty-five percent of jobs in the United
States by 2020 will require some education beyond high school [3].

Journal of Humanistic Mathematics Volume 9 Number 2 (July 2019)

http://scholarship.claremont.edu/jhm/


Victor Piercey and Geillan Aly 131

Many college students are not appropriately prepared for college-level work;
as of 2009, studies estimated that approximately 40% of students in col-
lege require developmental courses [2], a figure which rises to around 60%
if we look only at community colleges [1]. There is no indication that these
findings have changed since. Eliminating developmental courses and requir-
ing co-requisite supplemental classes or the completion of computer-assisted
modules are other trends in supporting under-prepared students (see, e.g.,
[14], [17]). Even if such courses are eliminated, it is left to the mathematics
professor to prepare students who are not yet ready for college-level classes
so they can advance and earn their undergraduate degrees.

Now suppose you have been teaching at the same institution for 25 years. You
have taught thousands of students, mostly in developmental mathematics.
The students seem to be getting worse, and you have lost touch with the
love of mathematics that inspired you to go to graduate school many years
ago. You dread the beginning of the semester because teaching such classes
pulls you away from the work you find more interesting and engaging.

Even if these scenarios do not resonate with you, perhaps these vignettes re-
mind you of a colleague, former professor, or acquaintance. It is not unusual
to find faculty who seem bored or frustrated teaching lower-level mathe-
matics classes. How can such faculty, who see these courses as mundane,
spark curiosity and wonder in students? These perspectives may be why Uri
Treisman has called developmental mathematics “the burial ground for the
aspirations of students” [13].

There are many faculty who care deeply about the mission of developmen-
tal mathematics and developmental students. For example, we approach
teaching developmental mathematics as an opportunity to eliminate barriers
by making mathematics accessible to a hitherto marginalized population of
learners. For us, this is a social justice mission and reflects our perspective on
teaching and learning (see, e.g., [15]). We are far from unique in this respect.
A group of faculty at Westfield State University have created the Discover-
ing the Art of Mathematics series for precisely this purpose [8]. Faculty at
Augsburg University, led by Su Doreé, have created a course entitled Just
Enough Algebra with the same goal in mind [7]. Reform efforts and quanti-
tative literacy movements have sprung up across the country (see, e.g., [5],
[4], [9], [16]). Despite pockets of growth, the predominant attitude we have
encountered toward teaching developmental mathematics seems negative.
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We suggest that one of many ways to find excitement in teaching developmen-
tal mathematics is to use student questions as opportunities to look deeper
into basic algebra and make connections with more sophisticated mathemat-
ics. The story we outline below provides an example of what this kind of
inquiry looked like for us, starting from students’ questions about signed
numbers and ending in the world of Lie groups and Lie algebras. While the
original student questions themselves may be considered “trivial” for anyone
teaching mathematics at the college level, they frustrated our students for
being a part of the seemingly endless set of random and arbitrary rules in
mathematics [12]. In our quest to find accessible answers that could be under-
stood by and satisfy our students, we also discovered something unexpected:
we learned new things about mathematics.

Even if you work at an elite institution, or have a course-load where you
are not teaching developmental mathematics, you will likely instruct math-
ematics majors, preservice teachers, and other students who will eventually
enter teaching. The vignette we offer below could help such students con-
nect content in their graduate or undergraduate mathematics courses with
the more elementary content they will teach. Building bridges between de-
velopmental and more sophisticated content helps bring a deeper richness to
the discussion for struggling learners, while motivating the more advanced
student.

We expect that the following ideas are not new. However, they have never
been articulated to us. We suppose we may have understood what follows
implicitly, but now we are making them explicit. In this paper, we share some
of these thoughts. We do not claim to be breaking any new mathematical
ground. Rather, we are describing an intellectual journey that started in
teaching developmental algebra. We hope the reader finds something exciting
and maybe even inspiring. If we dare dream, by looking at Beginning Algebra
with an inquisitive perspective, we can start finding beauty in developmental
mathematics.

1. Reflections, translations, and negative numbers

There are two questions for which we have searched for simple, “elevator-
speech” responses:



Victor Piercey and Geillan Aly 133

1. Why is it that when we multiply or divide both sides of an inequality
by a negative number, the direction of the inequality flips, but this does
not happen with addition or subtraction?

2. Why is the product of two negative numbers positive?

To address the first question, an instructor can use an example or an algebraic
explanation. But we feel that a geometric explanation is richer. Such a
geometric approach also provides a simple reason for the rules behind the
multiplication of signed numbers that comes up in the second question.

Geometrically, multiplying any real number by −1 results in a reflection
over the origin on the number line. Reflections flip the relative positions
of points on the number line and are order-reversing. Inequalities, which
indicate relative order, must be reversed. On the other hand, adding any
real number (positive, zero, or negative) results in a translation which is
an order-preserving transformation. This explains why the direction of an
inequality remains the same when we add or subtract a number whereas the
direction changes when we multiply or divide by a negative number.

We can use this response to the first question to answer the second ques-
tion on why the product of two negative numbers is positive. Start with
(−1)× (−1). If we consider our initial position on the number line to be +1,
then this multiplication is the composition of two reflections: first we reflect
from the positive side of the number line, over the origin, to the negative
side. Then we reflect from the negative side of the number line back to the
positive side. Hence the resulting product is +1, a positive number. In other
words, multiplying two negatives is the same as reflecting from one side of the
number line to the other, and then back again. The same reasoning applies
to a product such as (−3) × (−4), where we also apply a dilation / scaling
along the number line resulting from multiplying 3× 4.

These explanations provide students with a visual understanding of how to
manipulate signed numbers, and they emphasize reason over arbitrary rules
in the developmental classroom. Students can further appreciate these expla-
nations because they are familiar with a direct application: shifting (translat-
ing) or reflecting parts of an image using photo manipulating software. This
analogy is readily understood by anyone who is familiar with social media
and smart phone cameras.
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On the other hand, for a mathematician, viewing multiplication with signed
numbers as reflection and dilation is exactly how multiplication is described
in the complex plane: a dilation by the product of the magnitudes and a
rotation by the sum of the arguments.

That could have been the end of the story. We have answers for students that
are simple and can be demonstrated visually. However, as mathematicians,
we wanted to continue to look deeper. We noticed that while a number
like −3 is an additive inverse element, it can be obtained by a reflection
of 3 over the origin. This sounds like our description of multiplication of
signed numbers. Is there a pattern here? Could this pattern be extended
to exponents? We wanted to further understand these questions by looking
closer, untangling the role of operations and inverse elements.

2. Inverses, operations, and −1

To untangle the role of operations and inverse elements and expand our ini-
tial explanations behind multiplying signed numbers, we start by comparing
operations. Consider addition, multiplication, and exponentiation on natural
numbers as a hierarchy of operations, which comes from thinking of them in
the following way: multiplication is repeated addition and exponentiation is
repeated multiplication.1 This hierarchy is displayed in Figure 1.

Given x ∈ R, its inverse element under addition is obtained by multiplying
it by −1. In other words, we apply the next operation in the hierarchy,
multiplication, to our number and −1. The result on the number line is a
reflection over the additive identity 0. This is depicted in Figure 2.

Now suppose x 6= 0 and consider its inverse under multiplication. This is
obtained by raising x to the power of -1.2 In other words, we apply the
next operation in the hierarchy, exponentiation, to our number and −1.

1 Later in our story, we explain how we realized that this is a problematic way of
thinking about exponentiation. Also see a list of links to a long thread of blog posts by
Keith Devlin on the nature of multiplication here: [6].

2 While it is true that x−1 = 1/x is how we define negative exponents, this defi-
nition is not arbitrary. If we look at whole-number exponents as designating repeated
multiplication, this definition is forced on us. In order to increase the exponent n on
xn by 1, we have to multiply by x. Hence in order to decrease the exponent by 1, we
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Exponentiation

Multiplication

Repetition

OO

Addition

Repetition

OO

Figure 1: A tentative hierarchy of operations.

The resulting transformation on the number line is also a type of reflection.
This time we have a reflection over the multiplicative identity +1. See
Figure 3. This is a reflection exactly in the sense of reflecting over the unit
circle in the complex plane. In fact, these constructions of the additive and
multiplicative inverses are often generalized to the complex plane using linear
fractional transformations.

As mathematicians, we were hard-pressed to see this repetition as a coinci-
dence. We explored the possibility that there exists a deeper framework for
understanding inverse elements from an algebraic perspective. This is a sim-
ple idea: to obtain the inverse of a mathematical object under an operation,
apply the “next operation” (whatever that may mean) to our original object
and −1. The geometric result will be a reflection over an “identity” of some
sort. We call this a “general inversion framework”, see Figure 4.

have to multiply by 1/x. It follows that x0 = x1 · 1/x = 1 and x−1 = x0 · 1/x =
1/x. Does this mean we are describing something intrinsic to the expression x−1?
As the reader will see below, fitting exponentiation into our framework gave us more
trouble than we expected and some skepticism is warranted.
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−1

Reflect over 0

##

x

Multiply

;;

−x

Figure 2: Inverting under addition.

Our next question was whether we can generalize our framework further.
Since we are dealing with operations, we thought that the appropriate set-
ting for generalization was rings. Let R be a ring with a unit 1. The ring
of integers Z is an initial object in the category of rings, which means that
there is a unique ring homomorphism ϕ : Z → R. The ring homomorphism
definition forces ϕ(0) = 0, ϕ(1) = 1, and ϕ(−1) = −1. Then we find for
n > 0, ϕ(n) = 1+1+ · · ·+1, while n < 0 yields ϕ(n) = −1+−1+ · · ·+−1.
This defines an action of Z on R given by “multiplication", where n ∈ Z is
identified with ϕ(n) in R. Then for any x ∈ R, nx = (1 + 1 + · · · + 1)x =
x + x + · · ·x. Hence we recover multiplication by n as repeated addition.

−1

Reflect over 1

##

x

Exponentiate

;;

1/x

Figure 3: Inverting under multiplication.
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−1

Reflect over “original identity”

$$

“Object”

“Next Operation”

::

“Inverse”

Figure 4: General Inversion Framework

The inverse of x is −x, which is −1 · x, a fact verified in abstract algebra
courses.3

Multiplication is part of the structure of a ring; we just checked that the mul-
tiplicative structure was consistent with repeated addition when restricted to
appropriate elements. So what about exponentiation? For exponentiation,
we would have to reverse this process: start with repeated multiplication and
extend to other pairs of elements.

In a ring R, we can define xn to be x multiplied by itself n times, where n ∈ Z
and n > 0. We can also define x0 = 1. If x ∈ R×, we can define negative
exponents using the multiplicative inverse. In this case, the multiplicative
inverse is denoted x−1.4

As we thought about extending repeated multiplication in a ring, we started
to doubt whether we were in the right category for this question. For example
in the ring k[x], where k is a field, there is no element bx (where b ∈ k).

3 Note that while we have recovered most of the structure we identified above, we have
not addressed the reflection. In order to address the question of reflections, we would
have to consider the meaning of reflection in an arbitrary ring. The typical topology
associated with a ring comes from the prime spectrum Spec(R) with its usual Zariski
topology. See Chapter II, Section 2 of [11]. We haven’t looked into this yet, as questions
about exponentiation more urgently demanded our attention.

4 As remarked in a footnote above, the same argument can be used to explain why this
definition of x−1 makes sense, but we continue to question whether this is truly something
structural.
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Even in R, we noticed some anomalies. First of all, it is obvious that expo-
nentiation is noncommutative. After all, 23 6= 32. This isn’t terribly concern-
ing; matrix multiplication is also noncommutative. More anomalous is that
exponentiation is not associative, for example (23)4 6= 2(3

4).

Another issue with exponentiation in R has to do with identities. Due to the
lack of commutativity and associativity, it’s not surprising that there might
be a left identity and a right identity that are different. The right identity is
a value x so that bx = b for all b. That is simple enough: the right identity
is 1. A left identity is trickier. We need a base b for which bx = x for all
possible x. There is no such value. If we choose x = 1, we would have b = 1.
But then b2 6= 2.

There are other issues as well. Working in R, unlike multiplication and
addition, we cannot apply exponentiation to any pair of real numbers. For
example, we cannot have b = −1 and x = 1/2 without including complex
numbers. Within the complex numbers, we would have to deal with multi-
valued functions and branching. This is quite different from multiplication
and addition, where we can grab any two real (or complex) numbers, apply
the operation, and uniquely obtain another real number.

All of these observations made us question whether or not exponentiation
really is a binary operation: a map of sets S × S → S. It seems tempting to
treat exponentiation as a binary operation, however restricted, as we can take
any positive base b and any real exponent x and produce a real number bx.
However, the problems we noticed made us skeptical, leading us to question
whether our “general inversion framework” was valid.

3. A Clearer Picture of Exponents: Lie Groups and Lie Algebras

In order to further examine the validity of our proposed “general inversion
framework,” we needed to better understand exponentiation and subject the
claim that exponentiation is a binary operation to further scrutiny. First
we had to figure out the right category for generalizing exponentiation. It
turns out a more natural, abstract setting to discuss exponentiation is in
the category of Lie groups and algebras.5 This setting is also appropriate

5This section is inspired by conversations with Anil Venkatesh (Adelphi University)
who reminded us of the role exponentiation plays in Lie groups and algebras.
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as we are looking for a “larger” mathematical space in which to answer our
question, similar to how mathematicians are typically introduced to groups,
then rings, then integral domains, and then fields in the classroom in order
to solve different types of algebraic “equations”.

For the reader unfamiliar with Lie theory, a few basic facts and examples both
serve as background and help us show more clearly why this is a more natural
setting for exponentiation. Hall [10] provides a very readable introduction to
Lie groups and algebras. The properties below can be found in Chapters 1
and 2, and while Hall is limiting himself to matrix groups, the facts can be
generalized.

1. A Lie group G is a group that is also a smooth manifold. As part of
the definition, the operation · in G is a smooth map · : G × G → G
and inversion is a smooth map G → G given by x 7→ x−1, where x−1
denotes the inverse element of x under the operation · in G.

Some examples include R \ {0} with multiplication, the unit circle S1

with rotation, and the general linear group of n by n matrices over a
field k (denoted GL(n, k)) with multiplication.

2. Given a Lie group G, there is a corresponding Lie algebra g, which is
the tangent space to G at the identity I (g = TIG). As with smooth
manifolds, the topological manifold structure of G is modeled on a field
k and the Lie algebra is a vector space over k (the same field).6

For R \ {0}, the Lie algebra is R as a vector space over itself. For
GL(n, k), the Lie algebra is the set of all n×n matrices over k (denoted
M(n, k)) which is isomorphic to k(n2) as a vector space.

3. There is a map called exp : g→ G. This is defined in multiple ways, the
simplest is probably using vector fields. Given an element v ∈ g, there
is a smooth curve γ : k → G generating a one-parameter subgroup of
G such that γ(0) = I and γ′(0) = v. Then exp(v) = γ(1). Part of
this definition includes a proof that this is well-defined. It can also be
shown that exp(0) = I by setting γ to be the constant map γ(t) = I
for all t ∈ k.

6 If k 6= R and k 6= C, algebraic geometry may be required to define continuity and
smoothness. See Chapter III, section 10 of [11]
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For matrix groups such as GL(n, k), the map exp is given by the power
series expansion. Specifically, for any matrix A ∈ M(n, k) (the Lie
algebra for GL(n, k)):

exp(A) =
∞∑
n=0

An

n!
,

where the exponents in the expansion denote repeated matrix multipli-
cation. In R \ {0}, which is GL(1,R), for any x ∈ R (the Lie algebra),
we recover exp(x) = ex.

4. The map exp : g→ G can be shown to satisfy the property

exp((s+ t)v) = exp(sv) · exp(tv),

where s, t ∈ k and v ∈ g.

This needs a little unpacking. On the left side, s + t is addition in
the field k. Then multiplication by v is scalar multiplication in g as a
vector space over k. This produces an element (s + t)v ∈ g that we
can apply exp to and obtain an element downstairs in G. On the right,
sv and tv are scalar multiplication in g and the multiplication of their
respective images in G under the exp map is the operation in G.
This can be expressed with a commutative diagram:

g× k × k
(v,s,t)7→(v,s+t) //

(v,s,t)7→(sv,tv)

��

g× k
(v,s+t)7→(s+t)v // g

(s+t)v 7→exp((s+t)v)

��
g× g

(sv,tv) 7→(exp(sv),exp(tv))
// G×G

(exp(sv),exp(tv)) 7→exp(sv)·exp(tv)
// G

Note that for v, w ∈ g, it is not generally the case that exp(v + w) =
exp(v)·exp(w) (an additional hypothesis in v and w is required to make
this true). But note the difference between exp(v+w) and exp((s+t)v):
in the first expression, addition is in g while in the second expression
the addition is in k.
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5. The map exp : g→ G can be shown to satisfy the property

exp(−v) = (exp(v))−1 ,

where the inverse on the right side is the inverse element of exp(v)
under the operation in G.
This can also be expressed with a commutative diagram:

g
v 7→−v //

v 7→exp(v)

��

g

−v 7→exp(−v)

��
G
exp(v) 7→(exp(v))−1

// G

6. There is an open subgroup G∗ ≤ G for which the map exp : g → G is
invertible with inverse map ln : G∗ → g. Since exp(0) = I, it follows
that ln(I) = 0. For G = R \ {0} we have G∗ = (0,∞), as we would
expect.

The image in Figure 5 illustrates the relationship between a Lie group, its
Lie algebra, and the exponentiation map. The Lie group in the figure is the
circle S1 with rotation as the operation, choosing for the identity the point
(1, 0) (using the usual embedding S1 ↪→ R2). The Lie algebra in this case
can be viewed as a copy of R embedded into R2 as tangent to the circle at
our identity point. The exp map is exp(x) = eix and the ln map is a branch
of the argument.

Within the setting of Lie groups and Lie algebras, let us try to do what we
couldn’t do in the category of rings: extend repeated “multiplication”. Here,
multiplication refers to the operation · in G. Since · is associative, we can
simply examine b ·b · · · · ·b, where we perform the operation n times.7 We can
denote this as bn. Let us call the result of repeated multiplication a power,
so we can use our usual description of bn as the nth power of b (and for
simplicity call n the exponent). We will restrict the term exponentiation
to the use of the exp map.

7 Note that the underlying ring structure of k means n ∈ k and satisfies n = 1+1+· · ·+1.
Note also that not every element in the field k has this form.



142 Insights from Teaching Developmental Mathematics

Figure 5: A Lie group, its Lie algebra, the exp map, and the ln map.

If we want to extend repeated multiplication to something resembling ex-
ponentiation or some other “operation”, we should ask whether there is a
relationship between powers and the exp map that can extend the definition
of bn.

We start with relating powers to exponents. Since exp requires elements in
g, let us restrict attention to b ∈ G∗. This means we have ln b ∈ g and we
can use exp. Note that b = exp(ln b). Observe that:

bn = b · b · · · · · b = exp(ln b) · exp(ln b) · · · · · exp(ln b).
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To further simplify, we note that for s, t ∈ k and v ∈ g:

exp(n ln b) = exp(ln b+ ln b+ · · ·+ ln b)

= exp((1 + 1 + · · ·+ 1) ln b)

= exp(ln b) · exp(ln b) · · · · · exp(ln b)

since exp((s + t)v) = exp(sv) · exp(tv) (and by associativity we can extend
this to any sum of scalars in k). It now follows that

bn = exp(n ln b),

giving us a connection between powers (as repeated multiplication) and ex-
ponentiation.

The relationship we identified can be described by saying that powers (of
elements in G∗) factor through exponentiation. Notice that the exponents in
powers come from the field k. This means that we can extend bn, repeated
multiplication, to any exponent x ∈ k. Thus, powers are maps G∗ × k → G
defined by bx = exp(x ln b). This can be made into a diagram:

G∗ × k(b,x)7→xln(b) // g
xln(b)7→exp(xln(b))// G

Given these observations, we can say that neither powers nor exponentiation
should be considered a binary operation. As we have seen, power is a map
G∗ × k → G while exponentiation is a map g → G. Powers can’t be binary
operations since G∗, k, and G are all different. Exponentiation can’t be a bi-
nary operation since g and G aren’t the same and the domain doesn’t consist
of pairs. Thus, questions about identities, commutativity, and associativity
do not make sense. For example, we mentioned above that we could not
define a left identity, a base b for which bx = x for all x. That makes sense
now, since bx lives in G while x lives in k, hence they cannot be equal. The
reason it is so tempting to want to view powers or exponentiation as binary
operations is because for the Lie group G = R \ {0}, the field k is also R,
and the Lie algebra g ∼= R, so it is easy to confuse the field on which our Lie
group is modeled (and over which our Lie algebra is a vector space) with the
underlying Lie group itself.

After all of this, what we have learned is that exponentiation is a more
subtle process than we thought. In particular, it isn’t a binary opera-
tion at all, so it is qualitatively different from addition and multiplication.
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Indeed, it wasn’t lost on us that once we passed from rings to Lie groups,
we only had one operation (which we called multiplication). Our “general
inversion framework” was more or less lost at that point.

Although we did not succeed in our quest to generalize the relationship be-
tween objects and inverses using our hypothesized “general inversion frame-
work”, we gained a deeper insight concerning intrinsic properties of exponents
using Lie groups and algebras. In our exploration, we generalized repeated
multiplication in a way we found to be quite beautiful. However, as Devlin
notes in his posts, (c.f. [6]), we also saw that this can sometimes be a limited
and limiting metaphor in certain ways.

4. Concluding thoughts

Our students typically think of algebra as a bunch of unrelated procedures
and rules that they have to memorize and use to solve problems on an exam.
Some mathematicians may think of algebra and developmental mathematics
as so basic that there is no value in exploring it deeply.

When we learned algebra ourselves, of course, we were not sufficiently sophis-
ticated in our mathematical thinking to explore these fundamental concepts
in depth. By the time we have sufficient sophistication, many of us lack the
motivation to go back and explore these foundational issues, or perhaps it
does not occur to us to do so. However, as well-trained mathematicians teach-
ing developmental mathematics courses, we took the opportunity to revisit
such “basic” topics to provide a better learning experience for our students.
In exploring areas where students are often confused, have questions, or have
made consistent errors, we have helped support our students’ learning and
found areas that have stimulated our own intellect and kept us engaged and
interested in these foundation topics (beyond our intrinsic commitment to
developmental students).

We started our intellectual journey with some simple questions about
signed numbers. Our geometrically-inspired response led us to observe
a pattern relating operations, inverses, and −1 within a framework of a hier-
archy of operations. In attempting to generalize this pattern to the category
of rings, we found some problems with exponentiation. These
problems led us to examine a new category: Lie groups and Lie algebras.
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Our investigation in this new context led us to conclude that exponentia-
tion should not be considered a binary operation at all. The reason it was
tempting to think about exponentiation as a binary operation was due to the
specific example of the Lie group R \ {0} whose Lie algebra is identified with
R.

As with any line of inquiry, there were other directions we could have gone.
One concrete example we looked at without much progress was functions (of
a real variable). For functions, we have the operation of composition with
identity element f(x) = x. For one-to-one functions, the inverse function
under composition has a graph that is a reflection over the graph of the
identify function.

There are also other student questions that are related to our investigation
here which we didn’t address. For example, students may ask why, when we
solve an equation involving an exponential function, do we use a root to solve
for the base but a logarithm to solve for the exponent. Roots and logarithms
appear vastly different to students in developmental mathematics. We expect
this has to do with the distinction made between powers and exponents in
the discussion above. In the case of real numbers, this relationship can be
observed by noting that any base b ∈ (0,∞) can be written as b = er for
suitable r, and therefore bx = erx. Hence solving for the base means solving
for r and solving for the exponent is solving for x. We had trouble describing
this in the context of inverses and as such it didn’t fit into the discussion of
our inquiry.

One impact that our work has had on us is that we have become more
empathetic teachers. For one thing, we have learned to identify our own
basic assumptions. In this case, we had always assumed exponentiation was
a binary operation. What underlying assumptions persist in our teaching?
What do we assume about our students? About ourselves as instructors?
By identifying and scrutinizing our assumptions, we can learn about our
students’ struggles and how they vary from one individual to another. We
have also learned more about failure. The “negative result” which we arrived
at is actually instructive, and the same happens when our students learn.
Finally, and more specifically, we have learned that exponentiation is very
subtle, which helps us understand why developmental students struggle with
exponents, roots, and logarithms.
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The value of this paper is the proposition that we should be motivated to
look beneath the hood of developmental mathematics. Kicking the tires and
investigating basic algebra with a more sophisticated eye uncovers deeper
structures waiting to be explored. The ideas described above serve as an
example of how we can be intellectually engaged in teaching this subject
while developing lessons based on students’ curiosities. For instructors and
mathematicians, we have found beauty in the mundane.
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