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Toeplitz determinants with perturbations

in the corners

Albrecht Böttcher, Lenny Fukshansky,
Stephan Ramon Garcia, Hiren Maharaj

The paper is devoted to exact and asymptotic formulas for the determinants of Toeplitz
matrices with perturbations by blocks of fixed size in the four corners. If the norms
of the inverses of the unperturbed matrices remain bounded as the matrix dimension
goes to infinity, then standard perturbation theory yields asymptotic expressions for
the perturbed determinants. This premise is not satisfied for matrices generated by so-
called Fisher-Hartwig symbols. In that case we establish formulas for pure single Fisher-
Hartwig singularities and for Hermitian matrices induced by general Fisher-Hartwig
symbols.

1 Introduction

This paper was prompted by a problem from lattices associated with finite Abelian
groups. This problem, which will be described in Section 2, led to the computation of
the determinant of the n× n analogue An of the matrix

A6 =




6 −4 1 0 0 1
−4 6 −4 1 0 0
1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 6 −4
1 0 0 1 −4 6




. (1)

It turns out that detAn = (n + 1)3. What makes the matter captivating is that the
determinant of the n× n version Tn of

T6 =




6 −4 1 0 0 0
−4 6 −4 1 0 0
1 −4 6 −4 1 0
0 1 −4 6 −4 1
0 0 1 −4 6 −4
0 0 0 1 −4 6




(2)

is a so-called pure Fisher-Hartwig determinant. The latter determinant is known to be

(n+ 1)(n+ 2)2(n+ 3)

12
. (3)
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This formula was established in [3]. See also [5, Theorem 10.59] or [6]. We were
intrigued by the question why the perturbations in the corners lower the growth from
n4 to n3.

The general context is as follows. Every complex-valued function a ∈ L1 on the unit
circle T has well-defined Fourier coefficients

ak =
1

2π

∫ π

−π

a(eiθ)e−ikθ dθ, k ∈ Z,

and generates the infinite Toeplitz matrix T (a) = (aj−k)
∞
j,k=1. The principal n × n

truncation of this matrix is denoted by Tn(a). Thus, Tn(a) = (aj−k)
n
j,k=1. The function

a is usually referred to as the symbol of the infinite matrix T (a) and of the sequence
{Tn(a)}

∞
n=1. For example, matrix (2) is just T6(a) with

a(t) = t−2 − 4t−1 + 6− 4t+ t2 =

(
1−

1

t

)2

(1− t)2 = |1− t|4, (4)

where here and in the following t = eiθ. The function a(t) = |1 − t|4 has a zero
on the unit circle and therefore the classical Szegő limit theorem cannot be used to
compute det Tn(a) asymptotically. Fortunately, a(t) = |1− t|4 is a special pure Fisher-
Hartwig symbol, and for such symbols the determinants are known both exactly and
asymptotically.

In Section 3 we consider the determinants of perturbations of Tn(a) under the assump-
tion that the norms of the inverses of Tn(a) remain bounded as n → ∞. In that case,
under mild additional conditions, the determinants of the unperturbed matrices are
asymptotically given by Szegő’s strong limit theorem.

The (standard) techniques of Section 3 do not work for so-called Fisher-Hartwig sym-
bols. This class of symbols was introduced by Fisher and Hartwig in [10] in connection
with several problems of statistical physics. Paper [7] contains a very readable exposi-
tion of the entire story up to the recent developments. See also the books [4] and [5].
A pure Fisher-Hartwig symbol is of the form a(t) = (1 − t)γ(1 − 1/t)δ. In particular,
symbol (4) is of this form with γ = δ = 2. Determinants of perturbed Toeplitz matrices
with pure Fisher-Hartwig symbols are studied in Section 4. Among other things, we
there give an explanation of the growth drop from n4 to n3 when replacing (2) by (1).

In Section 5 we consider the very general case of symbols a ∈ L1 which are nonnegative
a.e. on the unit circle and whose logarithm log a is also in L1. We there show that the
quotient of the perturbed and unperturbed determinants approaches a limit as n → ∞
and we determine this limit. The class of symbols treated in Section 5 includes the
general positive Fisher-Hartwig symbols a(t) = |t1− t|2α1 · · · |tr − t|2αrb(t) where the tj
are distinct points on T, the αj are real numbers in (−1/2, 1/2), and b is a sufficiently
smooth and strictly positive function on T.
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2 The lattice of a cyclic group

The idea behind paper [11] is to associate a lattice with an elliptic curve and then
to connect arithmetic properties of the curve with geometric properties of the lattice.
The lattices obtained in this way are generated by finite Abelian (additively written)
groups G = {0, P1, . . . , Pn} and are of the form

{(x1, . . . , xn,−x1 − · · · − xn) ∈ Zn+1 : x1P1 + · · ·+ xnPn = 0}. (5)

One may think of these lattices as full rank sublattices of the well-known family of root
lattices

An := {(x1, . . . , xn,−x1 − · · · − xn) ∈ Zn+1 : x1, . . . , xn ∈ Z}.

A fundamental quantity of every lattice is its determinant (i.e., the volume of a funda-
mental domain). Papers [1] and [19] contain a simple, purely group-theoretic argument
which shows that the determinant of the lattice (5) equals (n + 1)3/2. In particular,
the determinant depends only on the order of the group. As shown in [1], this result
can also be derived in a completely elementary fashion via the computation of (usual)
determinants. Here is this computation in the simple case where G is the cyclic group
of order n+ 1. The corresponding lattice is

Ln := {(x1, . . . , xn,−x1 · · · − xn) ∈ Zn+1 : x1 + 2x2 + · · ·+ nxn = 0 modulo n + 1}.

The rank of the lattice Ln ⊂ An is n, and in [1] it is proved that the columns of the
(n+ 1)× n matrix

Bn =




−2 1 0 . . . 0 0
1 −2 1 . . . 0 0

0 1 −2
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0
. . . −2 1

0 0 0 . . . 1 −2
1 0 0 . . . 0 1




form a basis of the lattice Ln. The determinant of Ln is known to be
√

det(B⊤
n Bn), and

B⊤
n Bn is just the matrix An we encountered in the introduction. Thus, the calculation

of the determinant of the lattice Ln is equivalent to the computation of the determinant
of the matrix An.

Applying the Cauchy-Binet formula, we may write

detAn = det(B⊤
n Bn) = (detC1)

2 + (detC2)
2 + · · ·+ (detCn+1)

2,

where Cj results from Bn by deleting the jth row. Expanding detCj along the last
row and using the fact that the determinant of the k × k tridiagonal Toeplitz matrix
with −2 on the main diagonal and 1 on the two neighboring diagonals is (−1)k(k+1),
it follows that each detCj equals ±(n+ 1). Consequently,

detAn = (n + 1) · (n + 1)2 = (n+ 1)3,

as desired.
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3 The tame case

We now turn to Toeplitz determinants and their perturbations. Suppose the symbol a
is a piecewise continuous function, that is, the one-sided limits a(t ± 0) exist for each
t ∈ T. Let a♯ be the continuous curve in the plane that results from the range of a
by filling in the line segments [a(t − 0), a(t + 0)] for each t where a makes a jump. A
famous theorem of Gohberg [12] (see also [4, Corollary 2.19] or [13, Theorem IV.4.1])
says that if the curve a♯ does not pass through the origin and has winding number
zero about the origin, then the infinite matrix T (a) generates a bounded and invertible
operator on ℓ2, the truncations Tn(a) are invertible for all sufficiently large n, and the
inverses T−1

n (a) := [Tn(a)]
−1 converge strongly to the inverse T−1(a) := [T (a)]−1. To

be more precise,

T−1
n (a)Pnx converges in ℓ2 to T−1(a)x for every x ∈ ℓ2, (6)

where Pn is the projection Pn : {x1, x2, x3, . . .} 7→ {x1, . . . , xn, 0, . . .}.

Let E11, E12, E21, E22 be four m0 ×m0 matrices. For n ≥ 2m0, we denote by En the
n× n matrix with the matrices Ejk in the corners and zeros elsewhere,

En =




E11 0 E12

0 0 0
E21 0 E22


 .

If T (a) is invertible, then the operator T−1(a) is given by an infinite matrix in the
natural fashion. We denote the entries of T−1(a) by cjk and let S11 = (cjk)

m0

j,k=1 stand
for the upper-left m0 ×m0 block of T−1(a),

T−1(a) =




c11 . . . c1,m0
. . .

. . . . . . . . .
cm0,1 . . . cm0,m0

. . .
. . . . . . . . . . . .


 =

(
S11 ∗
∗ ∗

)
.

Let Wm be the m ×m counter-identity matrix, that is, Wm has ones on the counter-
diagonal and zeros elsewhere. Given an m×m matrix B, we denote by B̃ the matrix
WmBWm. Recall that B⊤ stands for the transposed matrix. Toeplitz matrices enjoy
the property that [Tn(a)]˜ = [Tn(a)]

⊤ = Tn(ã), where ã is the function defined by
ã(t) = a(1/t), t ∈ T.

Theorem 3.1 Let a be piecewise continuous and suppose a♯ does not contain the origin

and has winding number zero about the origin. Then

lim
n→∞

det(Tn(a) + En)

det Tn(a)
= det

[(
I 0
0 I

)
+

(
S11 0

0 S̃⊤
11

)(
E11 E12

E21 E22

)]
. (7)

Proof. We know that Tn(a) is invertible for sufficiently large n, in which case

det(Tn(a) + En) = det Tn(a) det(I + T−1
n (a)En). (8)
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We write T−1
n (a) as

T−1
n (a) =




S
(n)
11 ∗ S

(n)
12

∗ ∗ ∗

S
(n)
21 ∗ S

(n)
22


 (9)

with m0×m0 matrices S
(n)
jk . From (6) we infer that if I is the m0×m0 identity matrix,

then 


S
(n)
11

∗

S
(n)
21



 = T−1
n (a)




I
0
0



→ T−1(a)

(
I
0

)
=

(
S11

∗

)
.

This implies that S
(n)
11 → S11 and S

(n)
21 → 0. (Here we are dealing with convergence of

m0 ×m0 matrices, which may be understood entry-wise.) We further have

T−1
n (ã) = WnT

−1
n (a)Wn =




S̃
(n)
22 ∗ S̃

(n)
21

∗ ∗ ∗

S̃
(n)
12 ∗ S̃

(n)
11




and

[T−1
n (a)]⊤ =




[S

(n)
11 ]⊤ ∗ [S

(n)
21 ]⊤

∗ ∗ ∗

[S
(n)
12 ]⊤ ∗ [S

(n)
22 ]⊤



 .

Since T−1
n (ã) = [T−1

n (a)]⊤, we see that S̃
(n)
22 = [S

(n)
11 ]⊤ and S̃

(n)
12 = [S

(n)
21 ]⊤. From what

was already proved we therefore obtain that S
(n)
12 → 0 and S

(n)
22 = [S̃

(n)
11 ]⊤ → S̃⊤

11. The
matrix I + T−1

n (a)En equals




I + S

(n)
11 E11 + S

(n)
12 E21 0 S

(n)
11 E12 + S

(n)
12 E22

0 I 0

S
(n)
21 E11 + S

(n)
22 E21 0 I + S

(n)
21 E12 + S

(n)
22 E22





and hence det(I + T−1
n (a)En) is equal to

det

(
I + S

(n)
11 E11 + S

(n)
12 E21 S

(n)
11 E12 + S

(n)
12 E22

S
(n)
21 E11 + S

(n)
22 E21 I + S

(n)
21 E12 + S

(n)
22 E22

)
. (10)

This goes to the limit

det

(
I + S11E11 S11E12

S̃⊤
11E21 I + S̃⊤

11E22

)
= det

[(
I 0
0 I

)
+

(
S11 0

0 S̃⊤
11

)(
E11 E12

E21 E22

)]
.

The assertion is now straightforward from (8). �

The curve a♯ has a natural orientation. Under the assumption of Theorem 3.1, we may
associate an argument to each point of a♯ such that this argument changes continuously
as the point moves along the curve. The restriction of this argument to the points in
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the range of a defines an argument and thus a logarithm log a of a. Note that if a itself
is continuous, then log a is also a continuous function on the unit circle. Let (log a)k
denote the kth Fourier coefficient of log a. The geometric mean of a is defined by

G(a) = exp(log a)0 = exp

(
1

2π

∫ π

−π

log a(eiθ) dθ

)
. (11)

It is well known that the (1, 1) entry of T−1(a) is just 1/G(a); see, e.g., [5, Prop.
10.6(b)].

Example 3.2 Suppose m0 = 1, that is, suppose Tn(a) has at most perturbations by

four scalars Ejk in its four corners. Then S11 = S̃⊤
11 = c11 = 1/G(a) and the right-hand

side of (7) becomes

det

[(
1 0
0 1

)
+

1

G(a)

(
E11 E12

E21 E22

)]
. (12)

For (
E11 E12

E21 E22

)
=

(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
1 1

)
,

this is (
1 +

1

G(a)

)2

, 1−
1

G(a)2
,

2

G(a)
+

1

G(a)2
,

respectively. The limit (7) is zero if and only if G(a) is an eigenvalue of the 2×2 matrix

−

(
E11 E12

E21 E22

)
. �

If the symbol a is continuous, then the curve a♯ is simply the range a(T). Now suppose
that a is sufficiently smooth, say

∞∑

k=−∞

kλ|ak| < ∞, (13)

for some λ > 0. The set of all a satisfying (13) is a weighted Wiener algebra and will be
denoted by W λ. If λ > 1/2 and if a has no zeros on the unit circle and winding number
zero about the origin, then the asymptotic behavior of the determinants det Tn(a) is
described by Szegő’s strong limit theorem. This theorem says that

det Tn(a) = G(a)nE(a)(1 + o(1)) (14)

where G(a) is given by (11) and E(a) is defined by

E(a) = exp

∞∑

k=1

k(log a)−k(log a)k.

6



Formula (14) may also be written in the form

lim
n→∞

det Tn

(
a

G(a)

)
= E(a).

In other words, after appropriate normalization the determinants approach a finite and
nonzero limit as their order increases to infinity. In [5, Corollary 10.38] it is shown that
the o(1) in (14) is o(1/n2λ−1).

The following result is a refinement of Theorem 3.1 for smooth symbols.

Theorem 3.3 Let a ∈ W λ with λ > 1/2 and suppose a has no zeros on the unit circle

and winding number zero about the origin. Then

det(Tn(a) + En)

det Tn(a)
= det

[(
I 0
0 I

)
+

(
S11 0

0 S̃⊤
11

)(
E11 E12

E21 E22

)]
+O

(
1

nλ

)
.

Proof. We adopt the notations of the proof of Theorem 3.1. From Theorem 2.15 of
[4] we see that S

(n)
11 = S11 + O(1/nλ) (entry-wise). It follows that S

(n)
22 = [S̃

(n)
11 ]⊤ =

S⊤
11 +O(1/nλ). Let ℓ2λ be the weighted ℓ2 space of all sequences x satisfying

‖x‖2,λ :=

(
∞∑

n=1

n2λ|xn|
2

)1/2

< ∞.

Theorem 7.25 of [5] implies that if x ∈ ℓ2λ, then T−1(a)x ∈ ℓ2λ and

‖T−1
n (a)Pnx− T−1(a)x‖2,λ → 0. (15)

Let T−1
n (a) = (c

(n)
jk )

n
j,k=1. The kth column of S

(n)
12 is (c

(n)
n−m0+1,k, . . . , c

(n)
n,k)

⊤, while the
last m0 components of the kth column of T−1(a) are cn−m0+1,k, . . . , cn,k.

Let ek be the sequence which has 1 in position k and zeros elsewhere. The convergence
result (15) with x = ek shows that

m0∑

j=1

(n−m0 + j)2λ|c
(n)
n−m0+j,k − cn−m0+j,k|

2 → 0.

This implies that (n−m0 + j)2λ|c
(n)
n−m0+j,k − cn−m0+j,k|

2 → 0 and hence

c
(n)
n−m0+j,k = cn−m0+j,k + o(1/nλ).

Since T−1(a)ek ∈ ℓ2λ, we also have
∑∞

n=1 n
2λ|cn,k|

2 < ∞, which yields

cn−m0+j,k = o(1/nλ).

Consequently, c
(n)
n−m0+j,k = o(1/nλ) and thus S

(n)
12 = O(1/nλ). This in turn tells us that

S
(n)
21 = [S̃

(n)
12 ]⊤ = o(1/nλ). In summary, the determinant (10) is

det

[(
I 0
0 I

)
+

(
S11 0

0 S̃⊤
11

)(
E11 E12

E21 E22

)]
+O

(
1

nλ

)
,

which completes the proof. �
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Example 3.4 Let a(t) = (1 − µt)(1 − ν/t) with |µ| < 1, |ν| < 1. The n × n versions
of the matrices



1 + µν −ν 0 0
−µ 1 + µν −ν 0
0 −µ 1 + µν −ν
0 0 −µ 1 + µν


 ,




1 + µν −ν 0 1
−µ 1 + µν −ν 0
0 −µ 1 + µν −ν
1 0 −µ 1 + µν


 ,

are Tn(a) and Tn(a)+En. We have G(a) = 1 and E(a) = 1/(1−µν), and hence Szegő’s
strong limit theorem tells us that det Tn(a) has the limit 1/(1−µν). Theorem 3.3 may
be applied with arbitrarily large λ. Since G(a) = 1 is an eigenvalue of

−

(
E11 E12

E21 E22

)
=

(
0 −1

−1 0

)
,

Example 3.2 and Theorem 3.3 predict that det(Tn(a) + En)/ det Tn(a) goes to zero
faster than an arbitrary power of 1/n. In fact it is easy to compute the determinants
exactly. We have

det Tn(a) =
1− (µν)n+1

1− µν
,

det(Tn(a) + En) = (1 + µν)2(µν)n−1 + µn−1 + νn−1.

This shows that the quotient det(Tn(a) +En)/ det Tn(a) actually decays exponentially
fast to zero. �

4 The pure Fisher-Hartwig singulaity

The symbol a(t) = (1−t)γ(1−1/t)δ is referred to as the pure Fisher-Hartwig singularity.
Here δ and γ are complex numbers. We define

ξδ(t) := (1− 1/t)δ :=
∞∑

k=0

(−1)k
(
δ

k

)
t−k,

ηγ(t) := (1− t)γ :=
∞∑

k=0

(−1)k
(
γ

k

)
tk

and may then write a = ξδηγ . Throughout what follows we assume that the real parts
of δ, γ, and δ + γ are greater than −1. This guarantees that ξδ, ηγ, and ξδηγ are in
L1. Note that the symbol (4), which belongs to the n×n versions of matrix (2), is the
pure Fisher-Hartwig singularity a = ξ2η2.

As shown in [5, Lemma 6.18], the kth Fourier coefficient of ξδηγ is

(−1)k
Γ(1 + δ + γ)

Γ(δ + n+ 1)Γ(γ − n+ 1)
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in case neither δ + n + 1 nor γ − n + 1 is a nonpositive integer and is equal to zero if
δ+n+1 or γ−n+1 is a nonpositive integer. The determinants of Tn(ξδηγ) are known
both exactly and asymptotically. Section 10.58 and Theorem 10.59 of [5] tell us that

detTn(ξδηγ) =
G(1 + δ)G(1 + γ)

G(1 + δ + γ)

G(n+ 1)G(n+ 1 + δ + γ)

G(n+ 1 + δ)G(n+ 1 + γ)
(16)

=
G(1 + δ)G(1 + γ)

G(1 + δ + γ)
nδγ (1 + o(1)), (17)

where G(z) is the Barnes function. We see in particular that Tn(ξδηγ) is invertible for

every n ≥ 1. We write T−1
n (ξδηγ) = (c

(n)
jk (ξδηγ))

n
j,k=1.

Theorem 4.1 For each fixed j,

c
(n)
jn (ξδηγ) =

Γ(j + γ)

Γ(δ)Γ(j)
nδ−γ−1

(
1 +

pj(ξδηγ)

2n
+O

(
1

n2

))
(18)

with

pj(ξδηγ) = (δ − j)(δ − j − 1) + δ(δ − 1)− (δ + γ)(δ + γ − 1)− j(j − 1)

and

c
(n)
n−j,n(ξδηγ) =

Γ(j + δ)

Γ(δ)Γ(j + 1)

(
1 +

qj(ξδηγ)

2n
++O

(
1

n2

))
(19)

with

qj(ξδηγ) = (γ − j)(γ − j − 1) + δ(δ − 1)− (δ + γ)(δ + γ − 1)− (j + 1)j.

Furthermore, again for each fixed j,

c
(n)
j1 (ξδηγ) = c

(n)
n−j+1,n(ξγηδ), c

(n)
n−j,1(ξδηγ) = c

(n)
j+1,n(ξγηδ). (20)

Proof. The key is the Duduchava-Roch formula, which can be found as Theorem 6.20
in [5]; see also equalities (7.87) and (7.88) of [5].§ This formula says that

T−1
n (ξδηγ) = Γδ,γMγTn(ξ−δ)M

−1
γ+δTn(η−γ)Mδ, (21)

where Γδ,γ = Γ(1 + δ)Γ(1 + γ)/Γ(1 + δ + γ), Mα stands for the diagonal matrix

Mα = diag(µ1(α), . . . , µn(α)), µk(α) =
Γ(k + α)

Γ(1 + α)Γ(k)
,

Tn(ξδ) is the upper-triangular Toeplitz matrix whose first row is

((ξ−δ)0, . . . , (ξ−δ)n−1) with (ξ−δ)k =
Γ(k + δ)

Γ(δ)Γ(k + 1)
,

§The formula was obtained by Duduchava in the case γ + δ = 0 in his 1974 paper [9]. In 1984,
Steffen Roch established the formula in the general case. With Roch’s permission, it was published
in [3] for the first time. See [5, pp. 320–321] for more on the story.
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and Tn(ηγ) is the lower-triangular Toeplitz matrix with the first column

((η−γ)0, . . . , (η−γ)n−1)
⊤ with (η−γ)k =

Γ(k + γ)

Γ(γ)Γ(k + 1)
.

Let en = (0, . . . , 0, 1)⊤. Using (21) it is easily seen that the jth component of the
column T−1

n (ξδηγ)en is

c
(n)
jn (ξδηγ) = Γδ,γ(ξ−δ)n−j(η−γ)0

µj(γ)µn(δ)

µn(δ + γ)
.

Inserting the above expressions for the pieces on the right we obtain

c
(n)
jn (ξδηγ) =

Γ(j + γ)

Γ(δ)Γ(j)

Γ(n− j + δ)Γ(n+ δ)

Γ(n− j + 1)Γ(n+ δ + γ)
. (22)

Stirling’s formula gives

Γ(n + α)

Γ(n)
= nα

(
1 +

α(α− 1)

2n
+O

(
1

n2

))
(23)

for every complex number α. Fixing j in (22), dividing numerator and denominator of
(22) by Γ(n)2, and using (23) we arrive at (18). Replacing j by n− j in (22) we get

c
(n)
n−j,n =

Γ(j + δ)

Γ(δ)Γ(j + 1)

Γ(n− j + γ)Γ(n+ δ)

Γ(n− j)Γ(n+ δ + γ)
.

Making again use of (23), we obtain (19) for each fixed j.

The numbers (18) and (19) are the upper and lower components of the last column
of Tn(ξδηγ), that is, of the column x given by Tn(ξδηγ)x = en. The entries in the
first column of Tn(ξδηγ) are the entries of the column y defined by Tn(ξδηγ)y = e1 :=
(1, 0, . . . , 0)⊤. With the counter-identity Wn we therefore have WnTn(ξδηγ)WnWny =
Wne1 = en, and since WnTn(ξδηγ)Wn = Tn(ξγηδ), it follows that Tn(ξγηδ)Wny = en.
This proves (20). �

Example 4.2 The proof of Theorem 3.1 shows that if the symbol a is as in this
theorem, then the lower-left and upper-right entries of T−1

n (a) always approach zero
as n → ∞. In Section 5 we will see that this also happens if a ∈ L1, a ≥ 0 almost
everywhere on the unit circle, and log a ∈ L1. However, Theorem 4.1 reveals that in
general the lower-left and upper-right entries of T−1

n (a) need not to converge to zero.
Indeed, from (18) we infer that the upper-right entries of T−1

n (ξδηγ) decay to zero only
if Re δ − Re γ < 1, and combining (18) and (20) we see that the lower-left entries of
T−1
n (ξδηγ) go to zero only if Re γ−Re δ < 1. Thus, both the lower-left and upper-right

entries converge to zero only if |Re γ − Re δ| < 1. Pure Fisher-Hartwig symbol are a
nice tool to get a first feeling for several phenomena concerning Toeplitz matrices and
in particular for disproving conjectures on such matrices! �
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Theorem 4.1 is all we need to tackle the case m0 = 1, that is, the case where Tn(ξδηγ)
has at most four scalar perturbations in the corners. From (8) and (10) we infer that
if the Ejk are scalars, then

det(Tn(ξδηγ) + En)

det Tn(ξδηγ)
= det

[(
1 0
0 1

)
+

(
c
(n)
11 (ξδηγ) c

(n)
1n (ξδηγ)

c
(n)
n1 (ξδηγ) c

(n)
nn (ξδηγ)

)(
E11 E12

E21 E22

)]
. (24)

Example 4.3 Suppose (
E11 E12

E21 E22

)
=

(
0 1
1 0

)
.

Then

det(Tn(ξδηγ) + En)

det Tn(ξδηγ)
= det

[(
1 0
0 1

)
+

(
c
(n)
11 (ξδηγ) c

(n)
1n (ξδηγ)

c
(n)
n1 (ξδηγ) c

(n)
nn (ξδηγ)

)(
0 1
1 0

)]

= det

(
1 + c

(n)
1n (ξδηγ) c

(n)
11 (ξδηγ)

c
(n)
nn (ξδηγ) 1 + c

(n)
n1 (ξδηγ)

)
,

and by virtue of (20), this equals

det

(
1 + c

(n)
1n (ξδηγ) c

(n)
nn (ξγηδ)

c
(n)
nn (ξδηγ) 1 + c

(n)
1n (ξγηδ)

)
. (25)

We take only the main term of (18) for j = 1, and we take (19) for j = 0, in which
case q0(ξδηγ) = q0(ξγηδ) = −2δγ. Then (25) becomes

det

(
1 + Γ(1+γ)

Γ(δ)
nδ−γ−1 +O(nRe δ−Re γ−2) 1− δγ

n
+O

(
1
n2

)

1− δγ
n
+O

(
1
n2

)
1 + Γ(1+δ)

Γ(γ)
nγ−δ−1 +O(nRe γ−Re δ−2)

)
. (26)

This is
Γ(1 + γ)

Γ(δ)
nδ−γ−1 +O(nRe δ−Re γ−2) for Re δ ≥ Re γ + 1

and
Γ(1 + γ)

Γ(δ)
nδ−γ−1 +O

(
1

n

)
for Re γ + 1 > Re δ > Re γ.

We know that det Tn(ξδηγ) is asymptotically a constant times nδγ . It follows that
det(Tn(ξδηγ) + En) is asymptotically a constant times

nδγnδ−γ−1 = n(δ−1)(γ+1)

provided Re δ > Re γ. In the case where Re δ < Re γ, we may pass to transposed
matrices, which does not change determinants but changes the roles of γ and δ and
therefore shows that then det(Tn(ξδηγ) + En) is asymptotically a constant times

nδγnγ−δ−1 = n(γ−1)(δ+1).

In summary, if δ, γ are positive real numbers, in which case det Tn(ξδηγ) grows with n,
then

11



• det(Tn(ξδηγ) + En) grows faster than det Tn(ξδηγ) if δ > γ + 1 or δ < γ − 1,

• det(Tn(ξδηγ) + En) grows slower than det Tn(ξδηγ) if γ − 1 < δ < γ + 1,

• det(Tn(ξδηγ) + En) decays to zero if γ < 1 and δ < 1. �

The case δ = γ is especially nice and therefore deserves a separate treatment by the
following corollary. We have ξα(t)ηα(t) = |1− t|2α. Recall that we require Reα > −1/2
and that for α = 2 we get the symbol (4). For a square matrix A, we abbreviate detA
to |A|.

Corollary 4.4 If the Ejk are scalars, then det(Tn(ξαηα) + En)/ detTn(ξαηα) is

∣∣∣∣
1 + E11 E12

E21 1 + E22

∣∣∣∣+
α

n

(
E12 + E21 − α(E11 + E22)− 2α

∣∣∣∣
E11 E12

E21 E22

∣∣∣∣
)
+O

(
1

n2

)
.

If in particular (
E11 E12

E21 E22

)
=

(
0 1
1 0

)
, (27)

then
det(Tn(ξαηα) + En)

det Tn(ξαηα)
=

2α(α+ 1)

n
+O

(
1

n2

)
. (28)

Proof. From Theorem 4.1 we deduce that

c
(n)
1n (ξαηα) = c

(n)
n1 (ξαηα) =

α

n
+O

(
1

n2

)
(29)

and

c
(n)
11 (ξαηα) = c(n)nn (ξαηα) = 1−

α2

n
+O

(
1

n2

)
. (30)

Thus, (24) equals

∣∣∣∣
(

1 0
0 1

)
+

(
1− α2

n
+O

(
1
n2

)
α
n
+O

(
1
n2

)
α
n
+O

(
1
n2

)
1− α2

n
+O

(
1
n2

)
)(

E11 E12

E21 E22

)∣∣∣∣ ,

which can be simplified to the asserted expression. �

When restricted to the present context, Theorem 5 of [18] says that

c
(n)
1n (ξαηα) =

α

n
(1 + o(1)), c

(n)
11 (ξαηα) =

(
1−

α2

n

)
(1 + o(1)).

The second formula is probably misstated in [18] and should correctly read

c
(n)
11 (ξαηα) = 1−

α2

n
(1 + o(1)).

Clearly, these formulas are close to but nevertheless weaker than (29) and (30).
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Example 4.5 We write an ∼ bn if an/bn → 1. Combining (17) and the corollary we
see that the two corner perturbations given by (27) lead to

det(Tn(ξαηα) + En) ∼
G(1 + α)2

G(1 + 2α)
2α(α+ 1)nα2−1.

Thus, the exponent α2 is indeed lowered by 1. If k is a positive integer then G(k) =
(k − 2)! . . . 2!1! with G(2) = G(1) = 1. We so obtain in particular

det Tn(ξ1η1) ∼ n, det(Tn(ξ1η1) + En) ∼ 4,

det Tn(ξ2η2) ∼
n4

12
, det(Tn(ξ2η2) + En) ∼ n3,

det Tn(ξ3η3) ∼
n9

8640
, det(Tn(ξ3η3) + En) ∼

n8

360
.

We can of course also compute the determinants exactly. Formula (22) provides us

with an exact expression for c
(n)
jn (ξδηγ). It implies that

c
(n)
1n (ξαηα) = α

Γ(n− 1 + α)Γ(n+ α)

Γ(n)Γ(n+ 2α)
, c(n)nn (ξαηα) =

1

Γ(α)

Γ(n+ α)Γ(n+ α)

Γ(n)Γ(n+ 2α)
.

For α = 1, this gives

c
(n)
1n (ξ1η1) =

n

n+ 1
, c(n)nn (ξ1η1) =

1

n + 1
,

and inserting this in (25) we obtain

∣∣∣∣
1 + 1

n+1
n

n+1
n

n+1
1 + 1

n+1

∣∣∣∣ =
4

n + 1
.

Since det Tn(ξ1η1) = n + 1 due to (16), it follows that det(Tn(ξ1η1) + En) = 4 for all
n ≥ 2. Analogously, for α = 2 we have

c
(n)
1n (ξ2η2) =

2n

(n+ 2)(n + 3)
, c(n)nn (ξ2η2) =

n(n + 1)

(n+ 2)(n+ 3)

and hence the determinant (25) equals

∣∣∣∣∣
1 + 2n

(n+2)(n+3)
n(n+1)

(n+2)(n+3)
n(n+1)

(n+2)(n+3)
1 + 2n

(n+2)(n+3)

∣∣∣∣∣ =
12(n+ 1)2

(n+ 2)2(n + 3)
.

The determinant det Tn(ξ2η2) is (3) by virtue of (16). Consequently,

det(Tn(ξ2η2) + En) =
(n+ 1)(n+ 2)2(n + 3)

12
·

12(n+ 1)2

(n + 2)2(n+ 3)
= (n+ 1)3
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for n ≥ 2. Similarly,

det Tn(ξ3η3) =
(n+ 1)(n+ 2)2(n+ 3)3(n+ 4)2(n+ 5)

8640

for n ≥ 1 and

det(Tn(ξ3η3) + En) =
(n+ 1)(n+ 2)2(n + 3)[(n+ 2)2 + 1][(n+ 2)2 + 2]

360

for n ≥ 2. �

To treat the case m0 ≥ 2, we need the matrices S
(n)
jk in (9). Theorem 4.1 provides

us with the first and last entries of the first and last columns of T−1
n (a). The entries

in the four corners S
(n)
jk of T−1

n (a) can therefore be computed with the help of the
Gohberg-Sementsul-Trench formula [14], [21]. This formula says that if




x1
...
xn


 =




c
(n)
11
...

c
(n)
n1


 ,




y1
...
yn


 =




c
(n)
1n
...

c
(n)
nn


 (31)

are the first and last columns of T−1
n (a) and x1 6= 0, then

T−1
n (a) =

1

x1




x1
...

. . .

xn . . . x1







yn . . . y1
. . .

...
y1




−
1

x1




y0
...

. . .

yn−1 . . . y0







xn+1 . . . x2

. . .
...

xn+1


 , (32)

where xn+1 := 0 and y0 := 0. A full proof is also in [15, p. 21]. If S
(n)
jk has a limit Sjk,

then (10) implies that

lim
n→∞

det(Tn(a) + En)

det Tn(a)
= det

[(
I 0
0 I

)
+

(
S11 S12

S21 S22

)(
E11 E12

E21 E22

)]
. (33)

Example 4.6 Theorem 4.1 applied to a = ξαηα shows that, for fixed j,

c
(n)
j1 (ξαηα) = c

(n)
n−j+1,n(ξαηα) → cj :=

(
α + j − 2

j − 1

)
, (34)

c
(n)
jn (ξαηα) = c

(n)
n−j+1,1(ξαηα) → 0. (35)

It follows that S
(n)
12 and S

(n)
21 converge to zero, and formula (32) implies that S

(n)
11 goes

to

S11 =
1

c1




c1
...

. . .

cm0
. . . c1







c1 . . . cm0

. . .
...
c1


 .
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Since Tn(ξαηα) is symmetric, we see that S
(n)
22 → S̃11. Thus, formula (33) becomes

lim
n→∞

det(Tn(ξαηα) + En)

det Tn(ξαηα)
= det

[(
I 0
0 I

)
+

(
S11 0

0 S̃11

)(
E11 E12

E21 E22

)]
. (36)

If m0 = 1, then S11 = (1), and for the matrix (27) we get

lim
n→∞

det(Tn(ξαηα) + En)

det Tn(ξαηα)
= det

[(
1 0
0 1

)
+

(
1 0
0 1

)(
0 1
1 0

)]
= 0.

This is correct but weaker than (28). Notice that here we used only limits, whereas in
order to establish (28) we worked with finer asymptotics. In the case m0 = 2 we have

S11 =

(
1 α
α 1 + α2

)
, S̃11 =

(
1 + α2 α

α 1

)
.

Theorem 4.1 provides us with error terms in (34) and (35) and thus with finer results
in the case where the right-hand side of (36) is zero. However, we will not embark on
this issue here. �

5 General Hermitian Fisher-Hartwig determinants

We first embark on the general case where a ∈ L1, a ≥ 0 almost everywhere on T, and
log a ∈ L1. Fisher-Hartwig symbols are a special case and will be considered in the
examples at the end of this section. The constant G(a) defined by (11) is a finite and
strictly positive real number. Let

log a(t) =

∞∑

k=−∞

(log a)kt
k, t ∈ T.

For |z| < 1, we define

a+(z) = exp
∞∑

k=1

(log a)kz
k

and

a−1
+ (z) = exp

(
−

∞∑

k=1

(log a)kz
k

)
=

∞∑

k=0

(a−1
+ )kz

k.

Simon [20, p. 144] defines the Szegő function associated with a as

D(z) = exp

(
1

4π

∫ π

−π

eiθ + z

eiθ − z
log a(eiθ) dθ

)
= exp

(
(log a)0

2
+

∞∑

k=1

(log a)kz
k

)
.

Note that this is just the outer function whose modulus on T is |a|1/2. Clearly, a+(z) =
G(a)−1/2D(z). Our assumptions imply that Tn(a) is a positive definite (Hermitian)

matrix for every n ≥ 1. We put T−1
n (a) = (c

(n)
jk )

n
j,k=1 and abbreviate c

(n)
j1 to c

(n)
j . Thus,

(c
(n)
1 , . . . , c

(n)
n )⊤ is the first column of T−1

n (a).
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Theorem 5.1 For each fixed j ≥ 1,

lim
n→∞

c
(n)
j =

1

G(a)
(a−1

+ )j−1, lim
n→∞

c
(n)
n−j+1 = 0. (37)

Proof. The polynomial

Φn−1(z) =
1

c
(n)
1

(c(n)n + · · ·+ c
(n)
2 zn−2 + c

(n)
1 zn−1)

is known as the predictor polynomial of a. By virtue of [20, Theorem 1.5.12], it is the
n − 1st monic orthogonal polynomial on the unit circle z = eiθ associated with the
measure dµ(θ) = log a(eiθ) dθ/(2π). Let ‖Φn−1‖ be its norm in L2(T, dµ) and put

ϕn−1(z) =
1

‖Φn−1‖
Φn−1(z) = κn−1z

n−1 + lower order powers.

Thus, ϕn−1(z) = κn−1Φn−1(z). By [20, Theorem 1.5.11(b)], we have

κ2
n−1 =

n−2∏

j=0

1

1− |αj|2
=

det Tn−1(a)

det Tn(a)
= c

(n)
1 ,

where α0, α1, . . . are the Verblunsky coefficients, and Szegő’s theorem [20, Theorem
2.3.1] says that

∞∏

j=0

(1− |αj|
2) = G(a).

It follows that κn−1 → G(a)−1/2 and c
(n)
1 → 1/G(a). By [20, Theorem 2.4.1(iv)], the

polynomials

ϕ∗
n−1(z) = zn−1ϕn−1(1/z) =

κn−1

c
(n)
1

(c
(n)
1 + · · ·+ c(n)n zn−1)

converge uniformly on compact subsets of the unit disk |z| < 1 to the functionD(z)−1 =
G(a)−1/2a−1

+ (z). This implies that the coefficient of zj−1 in ϕ∗
n−1(z) converges to the

coefficient of zj−1 in D(z)−1 = G(a)−1/2a−1
+ (z), that is,

κn−1c
(n)
j

c
(n)
1

→
1

G(a)1/2
(a−1

+ )j−1.

Taking into account that κn−1 → G(a)−1/2 and c
(n)
1 → 1/G(a), we conclude that

c
(n)
j → (a−1

+ )j−1/G(a).

To prove the second equality of (37), we employ the Szegő recursion

Φn(z) = zΦn−1(z)− αn−1Φ
∗
n−1(z);
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see [20, Theorem 1.5.2]. Written out this reads

1

c
(n+1)
1

(c
(n+1)
n+1 + · · ·+ c

(n+1)
1 zn)

=
z

c
(n)
1

(c(n)n + · · ·+ c
(n)
1 zn−1)−

αn−1

c
(n)
1

(c
(n)
1 + · · ·+ c(n)n zn−1)

Comparing the coefficients of z0 we obtain

c
(n+1)
n+1

c
(n+1)
1

= −αn−1,

and since c
(n+1)
1 → 1/G(a) and αn−1 → 0, we see that c

(n+1)
n+1 → 0. Comparison of the

coefficients of z gives

c(n+1)
n

c
(n+1)
1

=
c(n)n

c
(n)
1

− αn−1
c
(n)
2

c
(n)
1

,

and as c
(n)
1 → 1/G(a), c

(n)
2 → (a−1

+ )1/G(a), αn−1 → 0, and, by what was just proved,

c
(n)
n → 0, we arrive at the conclusion that c

(n+1)
n → 0. Proceeding in this way we

successively see that c
(n+1)
n−1 → 0, c

(n+1)
n−2 → 0, etc. This proves the second assertion in

(37). �

Corollary 5.2 Put

S11 =
1

c1




c1
...

. . .

cm0
. . . c1







c1 . . . cm0

. . .
...

c1


 with cj =

1

G(a)
(a−1

+ )j−1.

Then

lim
n→∞

det(Tn(a) + En)

det Tn(a)
= det

[(
I 0
0 I

)
+

(
S11 0

0 S̃⊤
11

)(
E11 E12

E21 E22

)]
.

Proof. Since Tn(a) is Hermitian, the columns (31) are




x1
...
xn


 =




c
(n)
1
...

c
(n)
n


 ,




y1
...
yn


 =




c(n)n
...

c
(n)
1


 .

Combining Theorem 5.1 and formula (32) we see that

[S
(n)
11 → S11, S

(n)
12 → 0, S

(n)
21 → 0, S

(n)
22 = [S̃

(n)
11 ]⊤ → S̃⊤

11. (38)

The assertion is therefore immediate from (33). �
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In [8, p. 690] and [16, Lemma 3.2] it is shown that if a is a (real-valued and nonnegative)

trigonometric polynomial, then the norms of S
(n)
11 , S

(n)
12 , S

(n)
21 , S

(n)
22 remain bounded as

n → ∞. From (38) we see that, under the sole assumption that a ∈ L1, a ≥ 0 almost
everywhere on T, and log a ∈ L1, these matrices even converge to limits.

The following two examples concern perturbations of Hermitian Fisher-Hartwig matri-
ces.

Example 5.3 Let a(t) = ξα(t)ηα(t)b(t) = |1 − t|2αb(t) where α > −1/2 is a real
number and b is a twice continuously differentiable and strictly positive function on
the unit circle. Then

det Tn(a) ∼ G(b)nnα2

E∗(a)

with some nonzero constant E∗(a); see [2, Lemma 6.47] and [4, Theorem 5.44]. In this
case Corollary 5.2 is applicable. We have cj = (η−αb

−1
+ )j−1/G(b) and hence

c1 = 1,

c2 = (b−1
+ )1 + α,

c3 = (b−1
+ )2 + (b−1

+ )1α + α(α+ 1)/2,

and so forth.

For the pure singularity, i.e., when b(t) is identically 1, we get

c1 = 1, c2 = α, c3 = α(α + 1)/2,

and S11 takes the same form as in Example 4.6. �

Example 5.4 Now suppose

a(t) = |t1 − t|2α1 · · · |tr − t|2αrb(t)

where tj are distinct points on T, αj are real numbers in (−1/2, 1/2), and b is a twice
continuously differentiable and strictly positive function on T. This time

det Tn(a) = G(b)nnα2

1
+···+α2

rE∗∗(a)

with some nonzero constant E∗∗(a); see [4, Theorem 5.47]. Corollary 5.2 is again
applicable. If, for example, a(t) = |t1 − t|2α1 |t2 − t|2α2 , then

c1 = 1,

c2 =
α1

t1
+

α2

t2
,

c3 =
α1(α1 + 1)

2t21
+

α1α2

t1t2
+

α2(α2 + 1)

2t22
. �

The values for cj given in Example 5.3 can also be derived from [18, Lemma 1].
Moreover, Theorem 5 of [18], with the surmised correction mentioned above after

Corollary 4.4, gives the second term in the asymptotics of c
(n)
j for symbols as in

Example 5.3. In the case of two singularities with the same exponent, that is, for
a(t) = |t1 − t|2α|t2 − t|2αb(t) with −1/2 < α < 1/2, which is a special case of Exam-

ple 5.4, Theorem 7 of [17] says that c
(n)
j = (a−1

+ )j−1/G(a) + O(1/n), which is stronger

than our result c
(n)
j = (a−1

+ )j−1/G(a) + o(1).
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A. Böttcher, Fakultät für Mathematik, TU Chemnitz, 09107 Chemnitz, Germany
aboettch@mathematik.tu-chemnitz.de

L. Fukshansky, Department of Mathematics, Claremont McKenna College,
850 Columbia Ave, Claremont, CA 91711, USA
lenny@cmc.edu

S. R. Garcia, Department of Mathematics, Pomona College,
610 N. College Ave, Claremont, CA 91711, USA
stephan.garcia@pomona.edu, URL: http://pages.pomona.edu/~sg064747/

H. Maharaj, 8543 Hillside Road, Rancho Cucamonga, CA 91701, USA
hmahara@g.clemson.edu

20

View publication statsView publication stats

http://arxiv.org/abs/1310.4685
http://arxiv.org/abs/1406.3086
http://pages.pomona.edu/~sg064747/
https://www.researchgate.net/publication/242373114_An_Algorithm_for_the_Inversion_of_Finite_Toeplitz_Matrices?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/242373114_An_Algorithm_for_the_Inversion_of_Finite_Toeplitz_Matrices?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/263091622_On_the_lattices_from_elliptic_curves_over_finite_fields?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/263091622_On_the_lattices_from_elliptic_curves_over_finite_fields?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/227210392_The_Generalised_Dyson_Circular_Unitary_Ensemble_Asymptotic_Distribution_of_the_Eigenvalues_at_the_Origin_of_the_Spectrum?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/227210392_The_Generalised_Dyson_Circular_Unitary_Ensemble_Asymptotic_Distribution_of_the_Eigenvalues_at_the_Origin_of_the_Spectrum?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/227210392_The_Generalised_Dyson_Circular_Unitary_Ensemble_Asymptotic_Distribution_of_the_Eigenvalues_at_the_Origin_of_the_Spectrum?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/220026672_Orthogonal_polynomials_on_the_unit_circle_Part_1_Classical_theory?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/220026672_Orthogonal_polynomials_on_the_unit_circle_Part_1_Classical_theory?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/255589503_New_Band_Toeplitz_Preconditioners_for_Ill-Conditioned_Symmetric_Positive_Definite_Toeplitz_Systems?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/255589503_New_Band_Toeplitz_Preconditioners_for_Ill-Conditioned_Symmetric_Positive_Definite_Toeplitz_Systems?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/255589503_New_Band_Toeplitz_Preconditioners_for_Ill-Conditioned_Symmetric_Positive_Definite_Toeplitz_Systems?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/257882750_Asymptotic_of_the_terms_of_the_Gegenbauer_polynomial_on_the_unit_circle_and_applications_to_the_inverse_of_Toeplitz_matrices?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/257882750_Asymptotic_of_the_terms_of_the_Gegenbauer_polynomial_on_the_unit_circle_and_applications_to_the_inverse_of_Toeplitz_matrices?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/257882750_Asymptotic_of_the_terms_of_the_Gegenbauer_polynomial_on_the_unit_circle_and_applications_to_the_inverse_of_Toeplitz_matrices?el=1_x_8&enrichId=rgreq-34c1a4c76a6a9d5376ce1570d0a6e106-XXX&enrichSource=Y292ZXJQYWdlOzI2ODc1MjI0NjtBUzoyNTM1MzU4NTgxOTY0ODBAMTQzNzQ1OTA2NzI0OA==
https://www.researchgate.net/publication/268752246

	Claremont Colleges
	Scholarship @ Claremont
	1-1-2015

	Toeplitz determinants with perturbations in the corners
	Albrecht Böttcher
	Lenny Fukshansky
	Stephan Ramon Garcia
	Hiren Maharaj
	Recommended Citation


	1 Introduction
	2 The lattice of a cyclic group
	3 The tame case
	4 The pure Fisher-Hartwig singulaity
	5 General Hermitian Fisher-Hartwig determinants

