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ABSTRACT 

Prediction of the outcome in cardiac arrest patients undergoing hypothermia using EEG wavelet 

entropy 

By: Hana Moshirvaziri 

Claremont Graduate University: (2019) 

Cardiac arrest (CA) is the leading cause of death in the United States. Induction of hypothermia 

has been found to improve the functional recovery of CA patients after resuscitation. However, 

there is no clear guideline for the clinicians yet to determine the prognosis of the CA when patients 

are treated with hypothermia. The present work aimed at the development of a prognostic marker 

for the CA patients undergoing hypothermia. A quantitative measure of the complexity of 

Electroencephalogram (EEG) signals, called wavelet sub-band entropy, was employed to predict 

the patients’ outcomes. We hypothesized that the EEG signals of the patients who survived would 

demonstrate more complexity and consequently higher values of wavelet sub-band entropies. 

A dataset of 16-channel EEG signals collected from CA patients undergoing hypothermia at Long 

Beach Memorial Medical Center was used to test the hypothesis. Following preprocessing of the 

signals and implementation of the wavelet transform, the wavelet sub-band entropies were 

calculated for different frequency bands and EEG channels. Then the values of wavelet sub-band 

entropies were compared among two groups of patients: survived vs. non-survived. Our results 

revealed that the brain high frequency oscillations (between 64-100 Hz) captured from the inferior 

frontal lobes are significantly more complex in the CA patients who survived (pvalue ≤ 0.02). 

Given that the non-invasive measurement of EEG is part of the standard clinical assessment for 

CA patients, the results of this study can enhance the management of the CA patients treated with 

hypothermia. 
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1.1 Background and statement of the problem 

Cardiac arrest (CA) is the leading cause of death in the United States [1, 2]. Each year, about 

325,000 people have an out-of-hospital cardiac arrest, whereas only 10–20% of them survive [3, 

4]. Poor functional outcomes such as moderate to severe disability or persistent vegetative state 

are common among the survivors [5, 6]. Early and accurate prediction of CA outcome is of 

tremendous value both in terms of (a) optimizing the clinical treatment/intervention, and (b) health 

care cost management. The accurate prognosis of CA would also help families of the patients to 

make a better-informed decision with respect to potential life support withdrawal versus continued 

supportive care [7]. 

 In addition to higher survival rate and better functional outcome, therapeutic hypothermia (TH) 

has been associated with shorter hospital stay duration for CA patients [8,9]. Thus, TH has recently 

become a standard of care after resuscitation [9]. However, CA outcome prognostication for the 

patients treated with TH is currently qualitative and poorly understood [7, 10]. This is mainly due 

to the use of sedative and paralytic agents, and neuroprotective effects of hypothermia that reduce 

sensitivity of the conventional CA prognostication markers and/or change their optimal timing for 

the outcome prediction [7, 9, 11–15]. 

Recent studies have shown that electroencephalography (EEG) can be useful in CA outcome 

prediction [9]. For example, several EEG patterns (including the absence of EEG reactivity, the 

presence of burst suppression with generalized epileptiform activity, and the presence of 

generalized periodic complexes on a flat background) have been associated with poor outcome 

[16, 17]. In contrast to other prognostication modalities, EEG measurement can be performed 

easily, continuously and noninvasively at the patient’s bedside. But visual EEG pattern recognition 

is laborious and subjective [18]. It also requires a specialized training in EEG interpretation and 
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many nurses and physicians in intensive care units (ICUs) lack such expertise [19]. Recent 

advances in the quantitative EEG analysis can overcome the above limitations [7, 20, 21]. As a 

result, over the last few years, there have been a growing interest in the development and 

employment of quantitative measures of EEG to predict CA outcome [22–28]. 

 

1.2 Research question and hypothesis, aim and objective 

The present work aimed at the development of a prognostic marker for the CA patients undergoing 

hypothermia. A quantitative measure of the complexity of Electroencephalogram (EEG) signals, 

called wavelet sub-band entropy, was employed to predict the patients’ outcomes. We 

hypothesized that the EEG signals of the patients who survived would demonstrate more 

complexity and consequently higher values of wavelet sub-band entropies. 

The main goal of the study was to investigate whether this quantitative measure of EEG calculated 

over several frequency bands and EEG channels is significantly different between the subjects who 

survived and those who did not. The results of this investigation could potentially enhance the 

management of CA patients treated with hypothermia. 
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2.1 Introduction 

In 1875 English physician Richard Caton discovered that brain has electrical activities. The 

recorded EEG was demonstrated by Berger in the 1920s [90]. 

The activity of the brain neurons produces electrical and magnetic fields. These fields are 

recordable by means of electrodes. Depending on the distances of the recording electrode from the 

source of electrical activities we can record different signals from the brain. For example the local 

EEG is recorded from a short distance from the sources of brain electrical activities, however the 

EEG, in the most common sense is recorded from a longer distances, even from the scalp [90] 

EEG recording is known as an easy to use non-invasive acquisition method of brain signals with 

safety and high temporal resolution which can be applied repeatedly to patients. [93]  

 

2.2 Brain waves Classification 

EEG Signal is a non-stationary signal which has low spatial resolution [93] EEG signal is normally 

range from 0.5 to 100 µV in amplitude and a frequency in the range of about 1 Hz to 100 Hz [95] 

that is commonly sinusoidal which make it easy to measure it from peak to peak. 

 

Figure 1: 1 second sample of EEG. 

Image description (from Wikipedia): The signal was acquired in the Oz position processed with scipy and exported 

with matplolib. The momntage was with common derivation related to linked ears. The sampling rate was 256 Hz. 

Created by Hugo Gamboa Dez 2005 
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  There are five patterns of brain wave shapes with certain range of frequencies exists: Gamma 

wave (>32), Beta wave (>16-32Hz), Alpha wave (8-16 Hz), Theta wave (4-8 Hz) and Delta wave 

(0.5 – 4 Hz) [92].  The precise frequency ranges associated with these waves are slightly different 

across studies [102]. 

Alpha rhythm is clearly is an oscillatory components of the human EEG [94] and with typical 

amplitude about 50 µV peak-peak can be usually observed better in the posterior and occipital 

regions of the brain. Closing the eyes, drowsiness and relaxation may induce the alpha waves, 

whereas any type of attention or alertness such as thinking, calculation and opening the eyes are 

put an end to this wave [91], [92]. It was suggested in several experiments that the speed of 

cognitive and good memory performance are indicated by about 1 hertz higher alpha frequencies 

[94]. 

Beta rhythms are dominates during normal state of wakefulness with open eyes [92] and have been 

recorded in olfactory brain area [90].  

Theta is the dominant rhythm in the hippocampus area and can be captured during deep sleeping. 

Detecting the Changes in theta frequency are very difficult without the helping of sophisticated 

method. Alpha and theta respond in different and opposite ways. The crucial finding is that with 

increasing task demands theta synchronized, whereas alpha desynchronizes. That theta frequency 

varies as a function of alpha frequency and it was suggested to use alpha frequency as a common 

reference point for adjusting different frequency bands not only for the alpha, but theta range as 

well [94]. 

Delta rhythm are primarily associated with deep sleep and may be present in the waking state. It 

is very easy to confuse artefact signals caused by the large muscles of the neck and jaw with the 

genuine delta response [96].  
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Gamma wave is a signature of cognitive state and network dysfunction. Gamma power increases 

with cognitive phenomena such as perceptual grouping, attention, working memory and learning 

[102].  

 

Figure 2: EEG waves. (a) Delta band ; (b) theta band (c) alpha band ; (d) beta band ; (e) gamma band Image reference [104] 

 

 

2.3 EEG Applications 

Neural activities’ complex patterns after a stimulation can be recorded within a fractions of second 

by EEG. Therefore, although EEG signal provides less spatial resolution compared to MRI and 
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PED imaging methods, has the speed advantages. EEG often combined with MRI scan to get better 

information of strength and position of electrical activities in different parts of brain [92] 

A few research and clinical applications of the EEG in humans and animals are listed below: [92] 

• Monitor alertness, coma and brain death and cognitive engagement;  

• Locate areas of Brain damage and test nerves pathways  

•  Control anesthesia depth  

• Investigate epilepsy and locate seizure origin;  

• Test epilepsy drug effects;   

• Monitor human and animal brain development;  

• Investigate sleep disorder and physiology.  

 

Different brain activities have different EEG traces. Signal processing methods can help to 

distinguish the normal and abnormal brain activities [95]. Reduction in EEG signal amplitude, 

decrease of dominate frequencies beyond the normal limits of brain waves and production of 

spikes or special patterns are some example of some abnormality existence in the brain [92]. 

One of the useful application of EEG recording is the event related potential (ERP) or Evoked 

potential technique to study the brain cognitive processes. EPRs are significant voltage fluctuation 

resulting from evoked neural activity which is initiated by external or internal stimulus. During a 

mental task, the active region of the brain can be localized by PET and MRI and the time course 

of these activities defines by ERPs [92]. 

Quantitative EEG (QEEG) is another technique that by applying multichannel measurements can 

increase the ability of EEG to read data from the entire head simultaneously [93]. 
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Another application of EEG is in Brain Computer Interface (BCI) which is a communication 

system. BCI is a process that makes use of the brain’s output path way for conveying the 

commands and messages to the external world [93]. 

EEG Biofeedback or neuro-feedback uses the EEG signal for feedback input in a learning 

procedure for a subject to modify the brain activities. Biofeedback can help patient to normalize 

their behavior, stabilized mood and improve their mental performance [92]. 

 

2.4 EEG signal acquisition techniques 

EEG recording system is consisted of four important elements:  

Electrodes with conductive media which read the signal from the scalp, amplifiers with filters that 

amplified the microvolt signals in to the acceptable range to be digitalized accurately and filters to 

remove artefacts from the signal, Analog to digital converter to convert brain signal from analog 

to digital and finally recording device such as computers to store and display obtained data [93].  

In mono channel EEG recording technique, the neural activity potential changes over the time are 

measured by a basic electric circuits which is consist of an active electrode and a reference 

electrodes. Also there is a ground electrode that calculates the differential voltages by subtracting 

the active electrode voltages and reference point. By increasing the number of active electrodes to 

128 or 256 we can get the multi-channel configuration for EEG measurement [92]. Mono-polar 

and bipolar are two types of EEG recording. Mono-polar recording picks up the voltage difference 

between an active electrode on the scalp and a reference electrode on the ear lobe. Bipolar 

electrodes give the voltage difference between two scalp electrodes [95]. 



10 
 

2.4.1 Electrodes 

Usually 10-20 standard electrodes array is used in EEG signal acquisition [93]. This system 

standardized the location and designation of electrodes on the scalp to provide comprehensive 

coverage of all regions of the brain [92]. Figure 3 illustrates the Electrode locations of International 

10-20 system for EEG recording.  Electrodes are labeled with letters and numbers based on the 

areas that electrodes are placed (Figure 4). Odd numbers are representative for the left side of the 

subject head and even numbers are representative for right side. Letters are F for frontal area, C 

for central area, T for temporal area, P for posterior area, and finally O for occipital area [92]. Note 

that commonly used scalp electrodes consist of Ag-AgCl disks with diameter of 1 to 3 mm and 

long flexible leads that can be plugged into an amplifier [91]. 

 

Figure 3: Electrode locations of International 10-20 system for EEG (electroencephalography) recording (Picture form Wikipedia- 
public domain) 
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Figure 4: four lobes of the cerebral cortex (Picture source: Public Domain) 

 

 

2.4.2 Amplifier 

The input signal to the amplifier consists of the desired and undesired bio-potentials, harmonics of 

power line interference signal (50/60 Hz), electrode and tissue interference signals and finally 

noise and artifacts [92]. Considerable amplifier for high quality EEG recording provides the gain 

of 106 [91] with high (at least 100MΩ) impute impedance and high (at least 100db) common mode 

rejection ratio [91, 92].  

 

2.4.3 Filters  

Analogue high pass filter with cut-off frequencies range of 0.1 – 0.7 Hz is integrated in 

amplification unit to reduce the low frequencies coming from bio-electric flowing potentials like 

breathing. Also a low- pass filter with a cut-off frequency equal to highest frequency of our interest 
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is used to ensure that the signal is band limited and prevent distortion of signal by interference 

effects with sampling rate, called aliasing [92]. Digital filtering and digital signal processing 

techniques can be applied after data are stored in computers.  

 

2.4.4 Converter  

Obtained analog signals are repeatedly sampled at a fixed time sampling interval and then are 

converted to digital by at least 12 bits analogue to digital converters with accuracy lower than over 

all noise and sampling frequency between 128 - 1024 Hz, to store in computers or recording 

devices. The smallest amplitude that can be sampled is the base of the converter resolution. The 

recommended resolution is 0.5 µV [92].  

 

2.4.5 Artefacts  

Undesirable electrical potentials which comes from other than brain sources are called artifacts 

[95]. Artifacts sequences usually have higher amplitude and different shape in comparison to 

signal sequences. Artifacts in the recorded EEG have two different sources, they may be either 

patient related like unwanted physiological signals or technical related such as AC power line noise 

[92].  

Any minor body movement, EMG, ECG pulses and pace makers, eye movements and sweeting 

are some examples for patient related artefacts. However, power 50/60 Hz frequency, impedance 

fluctuation, cable movement, broken wire contacts, too much electrode jelly or dried pieces and 

low battery are some examples for technical related artifacts [92]. 
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2.5 EEG Signal Analysis  

EEG signals are highly non-Gaussian, non-stationary and have a non-linear and random nature 

which is usually contaminated by noise and artefacts. The patient’s age and their mental status 

have strong impact on the brain signal characteristics. By using advanced signal processing 

techniques, important features and hidden information from the signals can be extracted for the 

diagnosis of different diseases [95]. 

 

2.5.1 Signal enhancement and Feature extraction 

 Signal enhancement or signal pre-processing is applied after EEG signal acquisition. There are 

several well-known artefact removal techniques with different advantages and disadvantages for 

particular purpose of uses. 

In order to diagnosis a disease the feature extraction methods are applied to extract essential 

information from noise-free EEG signals which obtained after applying the signal enhancement 

techniques. Methods such as Fast Fourier Transformations (FFT), Principal component analysis 

(PCA), Independent Component Analysis (ICA), Wavelet Transformations (WT), Wavelet Packet 

Decomposition (WPD) are methods that can be used to extract signal features. Among these ICA, 

PCA, WT, WPD, FFT are mostly used [93]. 

Independent Component Analysis (ICA) feature extraction method forms the components that are 

independent to each other. This method helps in noise separation from EEG signal [93].  Principal 

Component Analysis (PCA) also uses as feature extraction method. The principal components of 

all-time series channels can be extracted by PCA method.  It is a powerful tool for analyzing and 

for dimension reduction of data without losing of information. Wavelet transformation is a multi-

resolution analysis that can act as low pass filter as well as high pass filter and it is able to extract 
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dynamical Information from EEG signals both in time and frequency domain. Wavelet Packet 

Decomposition (WPD) can extract features in both time and frequency domain from non-

stationary signals with the coefficients mean of WT [93]. This method needs more computational 

time. And finally Fourier Transform, which extracts the signal features by transforming the signals 

from the time domain to the frequency domain. This method is suitable to transform the stationary 

signals and linear random processes. It is very sensitive to noise and it cannot measure both the 

time and frequency [93]. 

 

2.6 Coma 

Coma is defined as a state of unconsciousness that patient does not have any respond to the sensory 

or physical stimuli. A person in a state of coma is described as being comatose. A wide range of 

conditions may be associated with coma or impaired consciousness such as traumatic brain 

damage, hypoglycemia and drug overdose [98].  

Glasgow coma scale (GCS) and other Clinical scales like motor responsiveness, verbal 

performance, and eye opening are used for assessing the depth and duration of impaired 

consciousness and coma [98].  

 

2.7 Cardiac Arrest (CA) 

Sudden cardiac arrest can be triggered by an electrical malfunction (arrhythmia) in the heart. A 

common arrhythmia in cardiac arrest is ventricular fibrillation. During the cardiac arrest blood 

cannot be pumped to the vital organs such as Brain and this causes consciousness loss on patients. 

Performing cardiopulmonary resuscitation (CPR) or using defibrillator device can restore the 

normal heart rhythm within minutes after CA [99].   
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2.8 Therapeutic hypothermia 

Therapeutic hypothermia is an advanced treatment to improve neurologic outcome after cardiac 

arrest. The early studies focused on moderate hypothermia but hypothermia with target 

temperatures of 32–34°C was the main focus on later studies. Cooling down the body temperature 

of cardiac arrest patients to 32°C to 34°C for 12 to 24 hours when the initial rhythm was ventricular 

fibrillation is recommended by The International Liaison Committee on Resuscitation [100]. 

Therapeutic Hypothermia has three main phases (Figure 5): Cooling (~4 hours) to get the patient 

to target body temperature, Hypothermia (~24 hours) to maintain the patient’s temperature within 

the target range (32° to 34° C) and controlled rewarming (~12 to 16 hours). 

 

 

Figure 5: Therapeutic Hypothermia phases 
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2.9 Cardiac Arrest and Hypothermia: 

Neurological complications after cardiac arrest (CA) can be fatal. Hypothermia treatment has been 

shown to be beneficial for CA patients. But understanding the mechanism and establishing 

neurological outcomes remains challenging because effects of CA and hypothermia are not well 

characterized [101]. Electroencephalogram (EEG) monitoring in patients treated with therapeutic 

hypothermia after cardiac arrest may assist in early outcome prediction [97].   
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CHAPTER 3: LITERATURE REVIEW [118]  
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3.1 Introduction  

 The aim of this review is to discuss the State-of-the-Art in employment of quantitative measures 

of EEG for prediction of the outcome in CA subjects treated with hypothermia. The review can 

provide a platform for the future potential development and examine of new measures and/or 

methods for the early and accurate CA outcome prediction for the patients undergoing 

hypothermia. 

 

3.2  Materials and methods 

Pubmed database was searched for the articles which were published between year 2000 and the 

present time (August 2017) using (logical conjunction of) the following keywords: 

“quantitative EEG” and “cardiac arrest” and “hypothermia”. In our review, we considered both 

animal and human studies. 

The previous investigations on the effect of changes in temperature of the brain have indicated that 

hypothermia has relatively similar influences on EEG in animals and humans [29]. The search 

resulted in more than 40 publications. The abstracts of these publications (and the body of the 

papers if the abstracts did not provide sufficient information) were studied to verify the relevancy 

of each paper to the subject of our search (employing quantitative measures of EEG for automatic 

CA outcome prediction in subjects undergoing hypothermia). Following exclusion of the irrelevant 

publications, remaining papers were read carefully, their proposed measures were identified and 

their results were summarized. 
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3.3  Results 

Exclusion of the irrelevant papers (those not related to employment of quantitative measures of 

EEG, or not related to cardiac arrest or hypothermia) resulted in selection of 24 papers. Table 1 

lists the selected papers along with a summary of the main findings of the papers. Table 2 includes 

a list of quantitative measures (features) of EEG which have been employed in prediction of CA 

outcome for the subjects undergoing hypothermia. For simplicity, the identified measures were 

grouped into four groups: conventional entropy based measures; burst suppression measures; 

information quantity measures; and combined measures. In the following subsections, we go over 

the definition of each measure and discuss its efficacy in prognostication of CA outcome for 

hypothermia subjects. 

 

Table 1: List of selected publications along with a summary of their results (ordered based on the year of publication) 

Paper, Year , 

Subject 

EEG feature and how it was 

obtained 

Summary of results 

Jia et al. [25] 

2006 

28 rats 

Information quantity (IQ),  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

OH), and its feature was extracted 

with in-house software 

The 72-h NDS of the hypothermia 

group was significantly improved 

compared to the normothermia. The IQ 

showed significantly different values 

between hypothermia and 

normothermia groups.  

There was a trend toward minor 

metabolic acidosis in the normothermic 

controls compared to hypothermic rats 

with a slight but statistically significant 

difference in bicarbonate concentration 

at 40 min post-CA 

Shin et al. [49] 

2006 

30 rodents 

Information quantity (IQ),  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

The IQ was greater for hypothermic 

than 
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Paper, Year , 

Subject 

EEG feature and how it was 

obtained 

Summary of results 

OH), and its feature was extracted 

with in-house software 

normothermic rats, with a difference of 

more than 0.2 

Jia et al. [19] 

2008 

28 male Wistar 

rats 

Information quantity (IQ),  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

OH), and its feature was extracted 

with in-house software 

Greater recovery of the IQ was found 

in rats treated with hypothermia, 

compared to normothermia and 

hyperthermia. IQ values correlated 

strongly with 72-h NDS as early as 

30 min post-CA (correlation = 0.735) 

Lu et al. [44] 

2008 

12 Wistar rats 

C0 Complexity,  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

OH), and its feature was extracted 

with in-house software 

Significantly greater C0 complexity 

was found in hypothermic group than 

that in normothermic group as early as 

4-h after the ROSC. C0 complexity at 

4-h correlated well with the 72-h NDS 

(correlation = 0.882) 

Shin et al. [50] 

2008 

13 rats 

Subband information quantity (SIQ), 

and information quantity (IQ).  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

OH), and its features were extracted 

with in-house software 

During hypothermia, SIQ was more 

correlated with neurological outcome 

than IQ (correlation of 0.74 vs. 0.65) 

Jia et al. [51] 

2008 

36 rats 

Subband information quantity (SIQ),  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

OH), and its feature was extracted 

with in-house software 

The 72-h NDS of the immediate 

hypothermia (IH, immediately post-

resuscitation maintained for 6-h) group 

was significantly better than the 

conventional hypothermia (CH, 

starting 1 h post-resuscitation, 

maintained 12 h) group. The SIQ 

values of the IH group was 

significantly  

higher. The neuronal cortical activity 

(measured by Cresyl violet staining) of 

the IH group was significantly lower. 

PCO2 was significantly lower and 
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Paper, Year , 

Subject 

EEG feature and how it was 

obtained 

Summary of results 

blood pressure was significantly in IH 

at  

40 min post-CA 

Kang et al. [26] 

2009 

10 Wistar rats 

Multi-scale entropy (MSE),  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

OH), and its feature was extracted 

with in-house software 

Alpha-rhythm MSE measured within 

1–2.5-h post-CA was significantly 

different between the hypothermic and 

normothermic groups 

Wennervirta et al. 

[21] 

2009 

30 comatose 

patients 

Burst suppression ratio (BSR), 

Wavelet subband entropy (WSE), 

response entropy and state entropy.  

EEG was measured using (Datex-

Ohmeda S/5, GE Healthcare, 

Helsinki, Finland). Wavelet subband 

entropy (WSE) was extracted by in-

house software. Burst suppression 

ratio (BSR),  

response entropy and state entropy 

were obtained by Datex-Ohmeda 

entropy module 

In the patients with good outcome 

(CPC of 1 and 2), BSR, WSE, response 

entropy and state entropy were all 

significantly higher. However, neuron-

specific enolase, protein 100B, and 

pulsatility index of cerebral blood flow 

velocity were significantly lower in 

patients with good  

outcomes 

Leary et al. [61] 

2010 

62 patients 

Bispectral Index (BIS),  

BIS monitoring (Aspect Medical 

Systems, Norwood, MA, USA) 

BIS was significantly higher in the 

good outcome group. BIS at 24 h post-

CA was the best predictive of CPC 1–2 

outcome compared to the other time 

points; a BIS cut-point of 45 exhibited 

a sensitivity of 63% and a specificity of 

86%, with a positive likelihood ratio of 

4.67 

Seder et al. [60] 

2010 

97 patients 

Bispectral Index (BIS) 

BIS monitoring (Aspect Medical 

Systems, Norwood, MA, USA) 

The BIS was higher in patients with 

good outcome (37 [28–40] vs. 7 [3–

15]). BIS < 22 predicted poor outcome 

with a likelihood ratio of 14.2 and 

accuracy of 0.91 
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Paper, Year , 

Subject 

EEG feature and how it was 

obtained 

Summary of results 

Chen et al. [33] 

2013 

20 male Sprague–

Dawley rats 

Burst suppression frequency (BSF), 

and spectrum entropy (SE).  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

OH), and features were extracted with 

in-house software 

96-h NDS and survival were 

significantly better in the hypothermic 

group. BSF and SE were greatly 

improved in the hypothermic group 

and correlated with 96-h NDS and 

survival 

Stammet et al. 

[64] 

2013 

75 patients 

Bispectral Index (BIS),  

Quatro sensor from ASPECT Medical 

Systems Inc., Newton, MA, USA 

NSE and S100B levels were 

significantly lower and BIS values 

were significantly higher in patients 

with good outcome (CPC 1–2). 

Patients with S100b level above 

0.03 mg/l and BIS below 5.5 had a 3.6-

fold higher risk of poor neurologi- 

cal outcome. S100b and BIS predicted 

6-month mortality (log-rank statistic: 

50.41) 

Riker et al. [62] 

2013 

509 patients 

Bispectral Index (BIS),  

models A2000 and VISTA from 

Covidien Medical, Boston, MA, USA 

Patients who awakened early had 

higher BIS values after the first dose of 

neuro -muscular blockade 

Tjepkema et al. 

[54] 

2013 

109 patients 

Cerebral Recovery Index (CRI),  

EEG was measured using Neurocenter 

(Clinical Science Systems, 

Voorschoten, The Netherlands) and its 

feature was extracted with in-house 

software 

CRI at 24-h post-CA classified the 

good outcome (CPC 1–2) versus poor 

outcome (CPC > 2) with specificity of 

100% 

Selig et al. [63] 

2014 

79 patients 

Bispectral Index (BIS),  

A-2000 system XP, software version 

3.30, Aspect Medical Systems 

Company, Newton, Massachusetts, 

USA and the BIS-Quattro sensor 

electrodes 

Using BIS < 40 as threshold criteria, 

poor neurological outcome was 

predicted with a specificity of 89.5% 

and a sensitivity of 85.7%. The odds 

ratio for predicting a poor outcome was 

0.921 (95% CI 0.853–0.985) 
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Paper, Year , 

Subject 

EEG feature and how it was 

obtained 

Summary of results 

Noirhomme et al. 

[28] 

2014 

46 comatose 

patients 

Burst Suppression Ratio (BSR) and 

Approximate Entropy (AE).  

EEG was measured using Viasys 

Neuro-care, Madison, WI and its 

feature was extracted with in-house 

software 

BSR was significantly lower and AE 

was significantly higher in patients 

with good outcome (CPC 1–2) 

Ghassemi et al. 

[10] 

2014 

167 patients 

Cerebral Recovery Index (CRI), and 

Enhanced Cerebral Recovery Index 

(ECRI) 

EEG was measured with standard 10–

20 montage (no further info is 

provided) and its features were 

extracted with in-house software 

Relative to CRI, ECRI measured in 24-

h post-CA increased the classification 

accuracy of good outcome (CPC 1–2) 

versus poor outcome classification by 

an average of 27% 

Seder et al. [48] 

2014 

171 patients 

Bispectral Index (BIS),  

models A2000 and VISTA from 

Covidien Medical, Boston, MA, USA 

BISi < 10 suffered 82% neurological-

cause and 91% overall mortality, BISi 

10–20 suffered 35% neurological and 

55% over-all mortality, and BISi > 20 

suffered 12% neurological and 36% 

overall mortality 

Stammet et al. 

[65] 

2014 

75 patients 

Bispectral Index (BIS),  

Quatro sensor from ASPECT Medical 

Systems Inc., Newton, MA, USA 

BIS was significantly higher in good 

outcome (CPC 1–2). Analysis of BIS 

recorded every 30 min provided an 

optimal prediction after 12.5 h, with an 

accuracy of 0.89 

Deng et al. [52] 

2015 

14 rats 

Subband information quantity (SIQ), 

and information quantity (IQ).  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

OH), and features were extracted with 

in-house software 

Both IQ and SIQ at as early as 1-h post-

CA had high correlation (0.8) with 72-

h NDS score. IQ could identify the 

presence of high-frequency oscillations 

during the recovery from severe brain 

injury 

Deng et al. [53] 

2015 

Subband information quantity (SIQ),  

EEG was measured using DI700 

Windaq (Data Q Instruments, Akron, 

The Gamma-band SIQ had the 

strongest correlation (between 0.52 and 

0.78), while Delta-band SIQ had the 

lowest correlation to 72-h NDS score 



24 
 

Paper, Year , 

Subject 

EEG feature and how it was 

obtained 

Summary of results 

24 Wistar rats OH), and its features was extracted 

with in-house software 

Better recovery of Gamma-band SIQ 

was found in the hypothermia group 

com- 

pared with the normothermia group and 

hyperthermia group 

Moshirvaziri 

et al. [18] 

2016 

11 comatose 

patients 

Wavelet subband entropy (WSE),  

EEG was measured using Viasys 

Neuro-care, (Madison, WI) and its 

feature was extracted with in-house 

software 

WSE over the frequency range of 64–

100 Hz captured from the inferior 

frontal lobes were significantly higher 

in those survived 

Jouffroy et all 

[66] 

2017 

46 patients 

Bispectral Index (BIS),  

(BIS monitor – Covidien©) No 

further info is provided 

BIS values were significantly lower in 

those who died (4 versus 34) 

Ochiai et al. [67] 

2017 

103 patients 

Bispectral Index (BIS),  

A-2000 and BISx monitors for 

different years both from Aspect 

Medical Systems, MA, USA 

Low mean BIS value best predicted 

poor outcomes with CPC of 3 to 5 with 

an accuracy of 0.861 
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3.3.1 Conventional entropy‑based measures 

In information theory, Shannon entropy is defined as a measure of the uncertainty in a random 

variable X by quantifying the expected value of the information contained in a signal [30]. Entropy 

is typically measured in bits as  

2 log ,
N

i i

i

Shannon Entropy p p= −    (1) 

where ip
 is the probability of random variable X  being equal to value iX

 for 1,2,...,i N= . Note 

that
1

1
N

i

i

p
=

= .  A higher level of randomness or complexity in the data generally indicates larger 

entropy values. 

Similar to many other organs, brain can be considered as a system with high level of complexity 

(entropy). A reduction of biological system’s complexity is often interpreted as a pathological or 

deteriorating state [31]. Brain injury and the disruption of its normal functionality can result in the 

reduction of brain’s complexity [32]. Therefore, using an appropriate EEG entropy analysis, one 

may be able to track the brain’s recovery progress after brain injury. Several conventional entropy-

based measures have been proposed for the CA outcome prediction. Here, we review the definition 

of those which have shown efficacy in prediction of the outcome when the subject went under 

hypothermia treatment. 

 

3.3.1.1  Spectrum entropy 

The spectrum entropy (SE) of the EEG signal is calculated as the Shannon entropy of the 

normalized energy of the signal within certain frequency subbands of interest. In other words, the 

probability pi in Eq. (1) is defined as: 
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1

,i i

N

i

i

E
p

E
=

=


                                      (2) 

where Ei is the energy of the signal within ith subband calculated from power spectral analysis of 

the EEG signal. 

Chen et al. choose N = 4 frequency subbands to study the efficacy of SE as a prognostic measure 

of CA outcome in rats: Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), and Beta (13–30 Hz) 

[33]. The results of this study indicated that the hypothermic rats have significantly higher values 

of SE (and better neurological outcome) relative to normothermic controls. Using a logistic 

regression analysis, the authors also showed that SE value at 6-h after restoration of spontaneous 

circulation (ROSC) was an independent predictor of 96-h survival outcome in hypothermic group. 

Two spectrum entropy-based variables that can be measured using a commercially available 

product (Datex-Ohmeda entropy module, GE Healthcare, Helsinki, Finland) are response entropy 

and state entropy [22]. State entropy is the entropy of the normalized energy of the signal over the 

EEG-dominant frequency range of 0.8–32 Hz, indicating the effect of hypnotics on the cortex. On 

the other hand, response entropy is the spectrum entropy over the frequency range of 0.8–47 Hz 

(including EEG and facial electromyography frequency components) and can be used to detect the 

patient’s responsiveness [21, 22]. In a study of 30 comatose patients by Wennervirta et al., both 

relative entropy and state entropy demonstrated significantly higher values during the first 24 h 

after CA in patients with cerebral performance category (CPC) [34] of 1 or 2 comparing to the 

other patients [21]. 
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3.3.1.2  Approximate entropy 

Approximate entropy (ApEn) is a parameter that quantifies the unpredictability of fluctuations in 

a time series [35]. Since its introduction two decades ago, ApEn has been widely used to 

characterize the complexity of various biological and physiological data [36]. ApEn is defined as 

the negative natural logarithm of the probability that the data sequences within a time series that 

are close for m points remain close for an additional point (m + 1 points). 

For an EEG signal{ ( ) | 1,2,..., }s i i N= , one can define a template vector ( )m iX  as:  

( ) { ( ) | 0 1}.m i s i k k m= +   −X                                              (3) 

Note that there exist 1N m− + of such vectors where1 1i N m  − + . Now, let us assume that the 

distance between two vectors ( )m iX  and ( )m jX is the maximum difference of their corresponding 

scalar components: 

( ( ), ( )) max( ( ) ( ) ),m md i j s i k s j k= + − +X X
                       (4) 

Where 0 1k m  − . Vector ( )m jX with 1 1j N m  − +  is called a match for template ( )m iX , if 

( )m jX is less than r distance away from ( )m iX , i.e., when ( ( ), ( ))m md i j rX X . 

Thus, the probability that vector ( )m jX is within r  distance of ( )m iX can be calculated as: 

( )
( ) ,

1

m im
i

n r
C r

N m
=

− +
                                                                              (5) 

where ( )imn r  is the number of matches for template ( )m iX . By averaging all ( )m

iC r  as: 

1

1

1
( ) ( ),

1

N m
m

m i

i

C r C r
N m

− +

=

=
− +

                                           (6) 
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we can calculate ApEn  for EEG signal of finite length N , with pattern length m and similarity 

criterion r , as: 

1

( )
log .

( )

m
e

m

C r
ApEn

C r+

=                                                        (7) 

 

Noirhomme et al. employed ApEn measure with m = 2, r = 1.4, and 8-s epochs to study the 

prognostic value of this parameter in 46 comatose patients in hypothermia [28]. The results 

revealed that the average ApEn value measures during hypothermia was significantly higher in 

patients with good outcome whose CPC values are 1 or 2. 

 

3.3.1.3 Multiple scale entropy 

A signal complexity is in general a “meaningful structural richness” [37] that incorporates 

correlations over multiple spatiotemporal scales [38]. While the previously discussed measures of 

entropy quantify the regularity of time series on a single scale, multiple scale entropy (MSE) 

considers the complexity of the signal over multiple scales. Given the clinical significance of 

various frequency subbands in EEG analysis, MSE may be a more appropriate measure for CA 

outcome prediction. 

 

For an EEG signal{ ( ) | 1,2,..., }s i i N= , MSE  of the signal is calculated in two steps: For a given 

scale (  ), first a moving-average filtering (with zero percent overlapping) is applied to the data to 

obtain a “coarse grained” signal 
jy as 
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( 1) 1

1
( ),

j

j

i j

y s i




 = − +

=                              (8) 

where 1
N

j


  . Then, the sample entropy (a refined version of ApEn  which excludes self-

matching to reduce the estimator’s bias [39]) of each coarse-grained signal is calculated. The final 

MSE is obtained as a plot of the calculated sample entropies over a range of potential scale values

1,2,..., = .  

As synchronous activity in thalamic pacemaker cells are related to the α-rhythm [40], Kang et al. 

hypothesized that the complexity changes of EEG α-rhythms (measured by α-rhythm MSE) may 

reveal different degrees of brain recovery during hypothermia after CA [26]. Given the sampling 

frequency of the signal, the scaling factors corresponding to the Alpha band (8–12 Hz) were 

identified and the values of MSE over those scales were averaged and used as the α-rhythm MSE 

measure. The results of this study on rodents showed that α-rhythm MSE measure within 1–2.5 h 

post-CA was significantly different between the hypothermic and normothermic groups. 

Furthermore, the authors found that good recovery outcomes were always achieved, when the ratio 

of α-rhythm MSE measured at 3-h post-CA to that of the baseline (before-CA) was above 0.85. In 

that study, the good outcome was defined as a case where the neurological deficit scale (NDS) was 

above 60. Note that NDS is a neurological outcome evaluation standard which includes sub-scores 

of general behavioral deficit, brain-stem function, motor and sensory assessment, behavior, and 

seizures [41, 42]. 
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3.3.1.4  Wavelet subband entropy 

Discrete Wavelet transform is one of the most efficient tools for the denoising of the transients, 

non-stationary and aperiodic signals such as EEG with low redundancy and computational 

complexity. 

To calculate Wavelet subband entropy (WSE), one needs to first apply a L-level discrete wavelet 

transform to the signal. The value of L is usually determined based on the sampling frequency and 

the clinical subbands of interests. Let us assume that 
l

i  is thi wavelet coefficient at level l, where 

l = 1, 2,..., L . Then, the l-level WSE can be obtained as the Shannon energy of the squared and 

normalized version of the coefficients at that decomposition level. In other words,  

2

2
21

1

( )
log           where              .

( )

lN
l l l l i

i i i N
li
i

i

WSE p p p
=

=


= − =





                             (9) 

Wennervita et al. employed WSE calculated over Beta subband (16–32 Hz) using Daubechies 3 

mother wavelet to study the CA outcome for the patients undergoing hypothermia [21]. Their result 

indicated that Wavelet Beta subband entropy measured between 24 and 48 h post-CA was 

significantly higher in the good outcome group (CPC of 1–2) evaluated within a 6-month follow-

up period. 

In a recent study, our group analyzed a dataset of 16-channel EEG signals collected from 11 CA 

patients undergoing hypothermia at Long Beach Memorial Medical Center using WSE [18]. Our 

results revealed that the frequency oscillations between 64 and 100 Hz captured from the inferior 

frontal lobes are significantly more complex in the CA patients who survived. 
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3.3.1.5 C0 complexity 

Another robust measure of the signal’s complexity is C0, a percentage of stochastic components 

of the signal [43]. For an EEG signal {s(i) | i = 1, 2, ..., N} , C0 complexity is defined as: 

 

𝐶0 =
∑ |𝑆(𝑖)−𝑦(𝑖)|2𝑁

𝑖=1

∑ |𝑆(𝑖)|2𝑁
𝑖=1

            (10) 

 

where {y(i) | i = 1, 2, ..., N} is obtained from EEG signal by zeroing the signal at all frequency 

components where the power of the signal is lower than the signal’s average power. 

Lu et al. employed C0 complexity to analyze the nonlinear characteristic of EEG for prediction of 

the outcome in 12 Wistar rats who were randomly undergoing hypothermia and normothermia 

[44]. Significantly higher C0 complexity values were found in hypothermic group (relative to 

normothermic group) as early as 4 h after the ROSC. Furthermore, C0 complexity at 4-h post-

ROSC was strongly correlated with the 72-h NDS (correlation = 0.882). 

 

3.3.2  Burst suppression measures 

Burst suppression is characterized by the presence of periods of bursting, when EEG amplitude 

rises above certain threshold typically in the range of 75–250 μV, followed by long periods (at 

least 0.5 s) of suppression, when EEG shows low amplitude activities (typically below 10 μV) [45, 

46]. A clear description of an algorithm to automatically detect the burst suppression patterns in 

EEG signal has been provided by Sarkela et al. in [47]. Several burst suppression features can be 

used to quantify the EEG background activities, e.g., burst suppression ratio (BSR), and burst 

suppression frequency (BSF). 
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3.3.2.1 Burst suppression ratio 

BSR is defined as the ratio between the total suppression time and total recording time [28]. There 

are commercially available products that can be used to obtain BSR values. Datex- Ohmeda 

entropy module (from GE Healthcare, Helsinki, Finland) calculates BSR using the algorithm 

described in [22] for every 1 min of data, while Bispectral Index (BIS) monitors (from ASPECT 

medical systems Inc., MA, U.S.A) obtains BSR for every 63 s of data using a proprietary algorithm 

[48]. 

A study on 30 comatose CA patients treated with induced hypothermia revealed that BSR 

(measured by Datex-Ohmeda entropy module) during the first 48 h after CA was significantly 

lower in patients with good outcomes (CPC of 1–2) evaluated within a 6-month follow-up period 

[21]. Similarly, in another study on 46 CA patients, low BSR values (computed with a software 

developed in house) were associated with good neurological outcome (CPC of 1–2) evaluated at 

3-month post-CA [28]. 

 

3.3.2.2 Burst suppression frequency 

BSF is a measure of frequency content of bursts (during burst suppression periods), and can be 

easily obtained using spectral analysis [33]. Chen et al. found that BSF was significantly Journal 

of higher in hypothermic rats compared to the control groups. The observed continuous increasing 

trend of BSF during the first 2 h after resuscitation of rats treated with hypothermia showed the 

effectiveness of therapeutic hypothermia in brain recovery. This study also indicated that the 2-h 

post-ROSC BSF value was independently predictive of 96-h survival outcome. 
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3.3.3  Information quantity measures 

3.3.3.1  Information quantity 

Information Quantity (IQ) measure was developed based on the assumption that a better 

neurological outcome is associated with larger information content of the brain rhythm [49]. 

IQ is defined as time dependent Shannon entropy of decorrelated EEG signals using discrete 

wavelet transform (DWT). 

A sliding temporal window W (n, w, Δ) is applied to the EEG signal {s(i) | i = 1, 2, ..., N} such 

that: 

 

( , , ) { ( ) | 1 ,...,1 }W n w s i i n w = = +  +                                             (11) 

 

where w  is the length of sliding window,  is the sliding step, and 0,1,..., 1
N

n w= − +


. Then using 

a r -level DWT, the signal within each window is decomposed into frequency subbands that 

represent standard clinical bands of interest. The DWT coefficients of each window, WC(r, n, w, 

Δ) , are obtained and the time dependent IQ is calculated as: 

 

2

1

( ) ( )log ( ( )),
M

m m

m

IQ n p n p n
=

= −                                                 (12) 

where pm (n) is the probability that the sampled signal belongs to the interval {Im ∶ m = 1, 2, ...,M} 

and is obtained as the ratio between the number of the samples found within interval Im and the 

total number of samples in WC(r, n, w, Δ). 
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IQ has demonstrated a superior tracking capability for both frequency changes and dynamic 

amplitude change comparing to conventional entropy-based measures such as Shannon entropy 

and Wavelet entropy. 

In a study of 28 rats, the IQ values showed significantly difference between hypothermia and 

normothermia groups [25]. Also, the experiments carried out on 30 rodents indicated that brain 

injury results in a reduction of IQ values [49]. Furthermore, the hypothermic rats showed greater 

average IQ than normothermic rats for various injury levels, confirming that hypothermia 

accelerates brain’s electrical recovery after CA. In another study of 28 rats, IQ values at 30-min 

post-CA also showed a strong correlation with 72-h NDS [19]. These results demonstrate the 

efficacy of the IQ at prognostication of CA outcome for hypothermia. 

 

3.3.3.2  Subband information quantity 

As discussed in Sect. 4.3.3.1., IQ measures information of the gross EEG signal in all frequency 

bands from delta to gamma. However, brain recovery from CA may be more related to the 

activities of individual EEG subbands. In fact, a more recent study on rats indicated that IQ 

prognostication sensitivity may degrade over time by overestimating the CA outcome at later 

period of recovery [50]. In contrast to IQ, subband information quantity (SIQ) calculates the 

information content within each k th subband of a r-level DWT separately: 
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( ) ( )log ( ( )),
M

k k k

m m

m

SIQ n p n p n
=

= −                                             (13) 

 where 1,2,..., 1k r= + . Note that ( )k

mp n  is the probability that the sampled signal in thk subband 

belongs to the interval { : 1,2,..., }mI m M= , and it is obtained as the ratio between the number of the 

samples found within interval 
mI and the total number of samples in thk subband.  
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Then the overall SIQ is calculated by averaging the individual subband information quantities over 

all subbands of interests: 

1

1

( ) ( ).
r

k

k

SIQ n SIQ n
+

=

= −                                                          (14) 

The examination of IQ and SIQ trends in a rodent hypothermia study indicated that SIQ values 

were more highly correlated (correlation of 0.74 vs. 0.65) with 72-h post-CA NDS than IQ values. 

It was also revealed that the most significant variations of SIQ were contributed by Theta, Beta, 

and Alpha bands. 

 

Another study on 36 rats showed that the SIQ value was significantly higher when hypothermia 

was administered immediately post-resuscitation and maintained for 6-h relative to when 

hypothermia started 1 h post-resuscitation and maintained 12 h [51]. Also in a study of 14 rats, 

Deng. et al. showed that both IQ and SIQ at 1-h post-CA had high correlation (0.8) with 72-h NDS 

scores [52]. 

In another study of 27 rats by the same group, the Gammaband SIQvalues showed the highest 

correlation with 72-h NDS at every time point from 30-min to 72-h post-ROSC, while the Delta-

band SIQ showed the lowest correlation to the CA outcome [53]. 

 

3.3.4 Combined measures 

3.3.4.1  Cerebral recovery Index 

Given the promising results of CA outcome predictions using single quantitative EEG measures 

(features), one could possibly enhance the accuracy in prognostication by using a combination of 

multiple features. Within this context, Tjepkema - Cloostermans et al. employed a set of EEG 
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features to define a single number index, called cerebral recovery index (CRI), for the 

prognostication of outcome in CA patients treated with hypothermia [54]. Motivated by the criteria 

generally employed by the neurologists for visual inspection of EEG patterns, the authors chose 

the following five EEG features:  

− SD: Standard deviation of the EEG signal over 5-min epochs were used as a measure 

of the signal power. 

− Hsh: Shannon entropy of the signal was calculated where the values of pi in Eq. (1) 

were determined using a histogram of the amplitude of the signal with 1 μV bin-width 

over the range of (− 200 to 200 μV). 

− ADR: The EEG signal ratio between Alpha-band (8–13 Hz) and Delta-band (0.5–4Hz) 

was obtained from power spectrum analysis of the signal. 

− COH: The mean coherence in the Delta-band between all possible combinations of 

EEG channels was used as a measure to quantify EEG patterns with abnormally high 

synchronization level. 

− REG: Finally, to differentiate burst suppression from continuous EEG patterns, a new 

regularity measure (REG) was introduced.  For this purpose, first a non-negative 

smoothed version of the EEG signal was obtained by applying a 0.5-s moving-average 

filtering to the square of the signal 

{s2(i)_i = 1, ..., N} . Then the values of the smoothed signal were sorted in descending 

order (let us call this sorted smoothed signal as {q(i)_i = 1, ...N} ) and the normalized 

standard deviation of the sorted values was calculated as  
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REG range of values is between 0 and 1. An EEG signal with shorter bursts would 

result in smaller values of REG, while values closer to 1 indicate a signal with longer 

bursts. 

 

Following the calculation of above features, they were normalized using a sigmoidal transform 

function whose coefficients were selected heuristically [10]. Given the significance of the role of 

the EEG signal power (SD) as an indicator of brain’s recovery, the cerebral recovery index was 

defined as:  

( )
.

4

shSD H ADR COH REG
CRI

+ + +
=                                       (16) 

The study of 109 hypothermic CA patients showed that the calculated CRI at 24-h post-CA can 

differentiate the dichotomized good outcome (CPC score of 1 or 2) versus poor outcome (CPC 

score of above 3) with the following accuracies: CRI < 0.29 predicted the poor outcome with 

sensitivity of 55% and specificity of 100%, while CRI > 0.69 predicted the good outcome with 

sensitivity of 25% and specificity of 100%. 

 

3.3.5  Enhanced cerebral recovery index 

In a recent study, Ghassemi et al. [10] introduced an enhanced version of cerebral recovery index 

(ECRI) by including the following additional features: 
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• Tsalis entropy area (TsEnA): Tsalis entropy is a non-extensive statistics to quantify 

the regularity of a signal [55], and is defined as  

1

1 ( )

,
1
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p

TsEn
q

=

−

=
−



                                                                  (17) 

 

where q is the nonextensivity degree. Comparing to conventional measures of entropy, 

TsEn can better describe the quasi-stationary properties of weakly ergodic systems in long-

ranging interactions [55]. Since EEG signal is the result of long-ranging interactions across 

corticothalamic and thalamocortical networks [56], in general, TsEn may be able to provide 

more detailed information on EEG spikes and bursts, relative to other traditional entropy 

measures. 

 To predict the CA arrest outcomes in a rodent model (with no hypothermia), Zhang et al. 

defined a new Tsalis entropy-based measure named Tsalis entropy area (TsEnA) to 

quantify the complex dynamics of burst suppression in EEG after CA [57]: 
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                                               (18) 

 

 where t1 and t2 are the starting and ending times of burst suppression. Using a smooth 

histogram of the amplitude of the signal with N = 50, and q = 3, the authors achieved a 

high correlation of 0.86 between TsEnA values and 72-h post-ROSC NDS scores. Given 

the success of this study, Ghassemi et al. used TsEnA with q = 2 as one of the features to 

predict CA outcome in patients undergoing hypothermia. 
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• Cepstrum coefficients (CP) is the inverse of the Fourier transform of the log-

magnitude of the spectrum of the signal [58]. CP provides information about rate of change 

in different spectrum bands and is widely used as a feature vector in signal processing. 

• Maximum phase lag index ( MaxPLI ) across all EEG channels was used as a measure 

of connectivity/synchronization. It is known that the phase lag index characterizes the 

asymmetry of the distribution of phase differences   between two signals [59] and can 

be calculated as  

[ ( )] ,iPLI Sign t=   
                                                       (19) 

where { | 1,..., }it i N= are the time indices. PLI is within the range of zero to one. A value of 

zero indicates either no coupling or coupling with   centered around 0mod , while a 

value of one means phase locking at a   different than 0mod .  .Ghassemi et al. used 

the maximum values of PLI over all EEG channels as one of the additional features for CA 

outcome prediction. 

• A binary low voltage state measure to detect the EEG less than 1 𝜇V. 

 

A logistic regression model was applied to the aforementioned EEG features to obtain the 

enhanced cerebral recovery index (ECRI) and to estimate a dichotomized CPC score at discharge 

(CPC scores of 1–2 vs. CPC scores of 3–5). A one-leave-out cross-evaluation of the proposed 

method on EEG data of 167 CA patients spanning from three institutions revealed that (comparing 

to CRI) the ECRI increased the accuracy of prognostication in the first 24-h post-CA by an average 

of 27%.  



40 
 

These results confirm the efficacy of employing the combined features in prognostication of CA 

outcome for the patients undergoing the hypothermia. 

3.3.5.1  Bispectral Index 

Bispectral index (BIS) is a quantitative measure of EEG that is measured by a commercially 

available device from ASPECT Medical Systems Inc., MA, USA. The first version of the product 

entered the market in 1994, and since then BIS monitors have undergone various updates both in 

terms of software and hardware. Frontotemporal adhesive sensors are used to capture the surface 

EEG, then a weighted sum of several EEG features are obtained (including frequency below which 

95% of the power spectrum resides, the relative beta ratio, BSR, and a measure of EEG phase 

coupling), and then a number in the range of 0–100 is reported to indicate the level of awareness 

[48]. BIS is simple to apply, however the exact algorithm to calculate the index is proprietary 

information. In fact, the use of BIS monitors to track the hypnotic component of anesthesia has 

been controversial at times [45]. 

Several recent studies have been able to use BIS for the prediction of CA outcome for the patients 

undergoing hypothermia. The majority of these studies have revealed that the mean BIS values are 

significantly lower in the patients with poor outcomes (CPC of 1 and 2) [48, 60–67]. A BIS cutoff-

point in a range of 35–45 has shown an accuracy above 0.85 in prediction of the poor outcome 

[60, 61, 63, 65, 67]. More details about the results of these studies can be found in Table 2. 
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Table 2: Summary of the State-of-the-Art in employment of quantitative EEG measures (features) for prognostication of 
outcome in the cardiac arrest subjects treated with hypothermia 

Feature 

group 

Features name  Feature’s efficacy in cardiac arrest prognostication 

Conventional  

entropy-

based  

measures 

Spectrum entropy (SE) - In a study of 20 rats, SE at 6-h post-ROSC was 

predictive of 96-h survival outcomes [33] 

Approximate entropy 

(ApEn) 

- In a study of 46 comatose patients, the average 

ApEn was significantly higher in patients with 

good outcome (CPC 1–2) evaluated at 3-month 

post-CA[28] 

Multiscale entropy 

(MSE) 

- In a study of 10 rats, alpha-rhythm MSE 

measured within 1–2.5-h post-CA was 

significantly different between the hypothermic 

and normothermic groups. Good recovery 

outcomes (NDS > 60) was always achieved if the 

ratio of alpha-rhythm MSE measured at 3-h post-

CA to that of the baseline (before-CA) was 

above 0.85[26] 

Wavelet subband entropy 

(WSE) 

- In a study of 30 comatose patients, Beta WSE 

measured between 24 and 48 h post-CA was 

significantly higher in the good outcome group 

(CPC of 1–2) evaluated within a 6-month 

follow-up period [21] 

- In a study of 11 comatose patients, 64–100 Hz 

WSE captured from the inferior frontal lobes 

were significantly higher in those survived [18] 

C0 Complexity - In a study of 12 rats, C0 complexity measured as 

early as 4-h after the ROSC was significantly 

higher in hypothermic group than normothermic 

group. In fact, C0 complexity at 4-h correlated 

well with the 72-h NDS (correlation = 0.882)[44] 

Burst 

suppression  

measures 

Burst suppression ratio 

(BSR) 

- In a study of 46 comatose patients, the average 

BSR was significantly lower in patients with 

good outcome (CPC 1–2) evaluated at 3-month 

post-CA [28] 

- In a study of 30 comatose patients, BSR during 

the first 48 h post-CA was significantly lower in 

the good outcome group (CPC of 1–2) evaluated 

within a 6-month follow-up period[21] 
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Feature 

group 

Features name  Feature’s efficacy in cardiac arrest prognostication 

Burst suppression 

frequency (BSF) 

- In a study of 20 rats, BSF at 2-h post-ROSC was 

predictive of 96-h survival outcomes [33] 

Information 

quantity 

measures 

Information quantity (IQ) - In a study of 28 rats, the 72-h NDS of the  

hypothermia group was significantly improved 

compared to the normothermia. The IQ also 

showed significantly different values between 

hypothermia and normothermia groups[25] 

- A study of 30 rodents showed that brain injury 

results in a reduction of IQ, and the average IQ 

of hypothermic rats was significantly higher than 

the normothermic rats for various injury levels 

[49] 

- In a study of 28 rats, IQ at 30-min post-CA had 

strong correlation of 0.735 with 72-h NDS 

scores[19] 

Subband information 

quantity (SIQ) 

- In a study of 36 rats, SIQ values was 

significantly higher when hypothermia was 

administered immediately post-resuscitation and 

maintained for 6-h relative to when hypothermia 

started 1 h post-resuscitation and maintained 

12 h[51] 

- In a study of 13 rats, SIQ showed a higher 

correlation (0.74) with 72-h NDS scores than IQ 

(0.65)[50] 

- In a study of 14 rats, both IQ and SIQ at as early 

as 1-h post-CA had high correlation (0.8) with 

72-h NDS score [52] 

- In a study of 27 rats, the Gamma-band SIQ had 

the strongest correlation(between 0.52 and 0.78), 

while Delta-band SIQ had the lowest correlation 

to 72-h NDS score [53] 

Combined 

measures 

Cerebral Recovery Index 

(CRI) (combination of 5 

features)  

Power, shannon entropy, 

alpha to delta ratio, 

regularity, coherence 

- In a study of 109 comatose patients, CRI at 24-h 

post-CA classified the good outcome (CPC 1–2) 

versus poor outcome (CPC > 2)[54] 

- CRI < 0.29 predicted poor outcomes (sensitivity 

= 55%, specificity  = 100%) 

- CRI > 0.69 predicted good outcomes (sensitivity 

= 25%, specificity  = 100%) 
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Feature 

group 

Features name  Feature’s efficacy in cardiac arrest prognostication 

Enhanced Cerebral 

Recovery Index (ECRI) 

(combination of 9 

features) 

Power, shannon entropy, 

alpha to delta ratio, 

regularity, coherence, 

tsalis entropy area, 

cepstrum coefficients, 

Maximum Phase Lag 

Index, binary low voltage 

measure 

- In a study of 167 comatose patients, ECRI 

measured in 24-h post-CA increased the 

classification accuracy of good outcome (CPC 

1–2) versus poor outcome classification by an 

average of 27%[10] 

Bispectral Index (BIS) - In a study of 62 patients, BIS was significantly 

higher in the good outcome group. BIS at 24 h 

post-CA was the best predictive of CPC 1–2 

outcome compared to the other time points; a 

BIS cut-point of 45 exhibited a sensitivity of 

63% and a specificity of 86%, with a positive 

likelihood ratio of 4.67[61] 

- In a study of 97 patients, BIS was higher in 

patients with good outcome (37 [28–40] vs. 7 [3–

15]). BIS < 22 predicted poor outcome with a 

likelihood ratio of 14.2 and accuracy of 0.91 [60] 

 

- In a study of 75 patients, BIS values were 

significantly higher in patients with good 

outcome (CPC 1–2). patients with S100b level 

above 0.03 mg/l and BIS below 5.5 had a 3.6-

fold higher risk of poor neurological outcome 

[64] 

- In study of 75 patients, using BIS < 40 as 

threshold criteria, poor neurological 

outcome(CPC 3–5) was predicted with a 

specificity of 89.5% and a sensitivity of 

85.7%[63] 

- In a study of 509 patients, those who awakened 

early had significantly higher BIS values after 

the first dose of neuromuscular blockade [62] 
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Feature 

group 

Features name  Feature’s efficacy in cardiac arrest prognostication 

- In a study of 171 patients, BISi < 10 suffered 

82% neurological-cause and 91% overall 

mortality, BISi 10–20 suffered 35% neurological 

and 55% overall mortality, and BISi > 20 

suffered 12% neurological and 36% overall 

mortality [48] 

- In a study of 75 patients, BIS was significantly 

higher in good outcome (CPC 1–2). Analysis of 

BIS recorded every 30 min provided an optimal 

prediction after 12.5 h, with an accuracy of 0.89 

[65] 

- In a study of 46 patients, BIS values were 

significantly lower in those who died (4 versus 

34) [65] 

- In a study of 103 patients, Low mean BIS value 

best predicted poor outcomes with CPC of 3 to 5 

with an accuracy of 0.861[67] 

 

 

3.4 Discussion and conclusion 

Early and accurate assessment of brain recovery and neurological outcome after CA can 

substantially help with the optimal healthcare management of the CA patients, and minimizing 

related emotional and financial costs for their families. Over the last few decades, several 

prognostication markers of CA outcome have been developed using various modalities including 

clinical examination, biochemical markers, electrophysiological testing, and neuroimaging [9]. 

Clinical examination outcomes such as the absence of motor response to painful stimuli, presence 

of myoclonus status epilepticus, and lack of brainstem reflexes have been widely used for CA 

prognostication [17, 68]. Biochemical markers of cerebral injury such as increased levels of lactate 

and Neuron-Specific Enolase (NSE) have been employed to predict the CA outcome, as well [69, 
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70]. The loss of distinction between gray and white matter measured by computer tomography 

(CT) [71], or reduced glucose metabolism detected by position emission tomography (PET) are 

other potential prognostication markers of CA outcome [72].  

Hypothermia is shown to be one of the most effective neuroprotective methods for improving the 

CA functional outcome in animal models of global ischemia [33, 73, 74] and human clinical trials 

[75, 76]. Moderate hypothermia is the process of reducing the body core temperature to a range of 

about 32–34 °C (90–93 °F), and maintaining it for 12–24 h, to ensure organ perfusion and 

oxygenation [77]. However, the use of sedative and paralytic agents affects sensitivity of the 

conventional CA prognostication markers and changes their optimal timing for the outcome 

prediction [7, 9, 11–15]. Hence, currently there is no universally accepted method for CA outcome 

prognostication of the patients treated with hypothermia [7]. 

 EEG monitoring has been shown to be useful in early CA outcome prediction [78], but the 

subjective and time consuming visual EEG interpretation limits its applicability as the preferred 

prognostic method. Automatic EEG pattern recognition using quantitative measures of EEG can 

overcome these barriers [54]. Thus, over the last few years there has been a growing interest in 

development and study of quantitative EEG prognostication markers [42]. Given the applicability 

of EEG monitoring and the significance of hypothermia in the prognostication of the CA outcome, 

in this work, we reviewed the existing literature on the employment of the quantitative measures 

of EEG to predict the outcome of CA in the patients treated with hypothermia. 

An injury to the brain system can adversely affect its complexity. Thus, the use of entropy (a 

measure of system’s complexity) may assist in tracking the recovery status of the brain after CA. 

Given this premise, a majority of the developed CA prognostication markers are entropy-based. 

Spectrum entropy, approximate entropy, multiple Scale entropy, and Wavelet subband entropy 
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have all proved to be useful in CA outcome prediction for the subjects undergoing hypothermia 

[18, 21, 26, 28, 33]. In general, higher values of these entropy-based measures have been shown 

to be associated with better neurological outcomes. Among the features, multiple scale entropy 

and Wavelet subband entropy can provide a more comprehensive characterization of the signal’s 

complexity, as they include more spatiotemporal information. 

However, they require higher computational complexity which may be an issue for automatic real-

time EEG analysis.  

A clinically accepted marker of brain injury is burst suppression activity in EEG [57]. Few burst 

suppression features have been successfully employed for CA outcome prediction during 

hypothermia [21, 28, 33]. Lower burst suppression ratio and higher burst suppression frequency 

have been generally associated with better outcomes. 

Information quantity-based measures have demonstrated better tracking capability for both 

frequency changes and dynamic amplitude changes relative to conventional entropybased 

measures [19, 49, 52, 53]. Brain injury results in a reduction of information quantity, and thus, 

higher values of information quantity are associated with better outcomes. 

 It is well-known that brain is a non-linear time-variant system, and EEG is a quasi-periodic and 

non-stationary signal. Thus, a single EEG feature may only provide limited information about the 

status of such a complicated system. On the other hand, combining EEG features may improve the 

accuracy of CA prognostication. The original cerebral recovery index and its enhanced version 

were developed based on this premise [10, 54]. Although these two indices have demonstrated 

some promising results in CA outcome prediction, their further enhancement in terms of prediction 

sensitivity is needed to be clinically acceptable. Currently, there are few commercially available 

products to extract the EEG features. For example, the entropy module of Datex-Ohmeda (GE 



47 
 

Healthcare, Helsinki, Finland) can be used to extract state entropy, relative entropy, and BSR. BIS 

monitors by ASPECT medical systems, MA, USA can also extract BSR and BIS values. These 

commercially available monitors are simple to use by clinicians. However, some degree of 

variability among different monitors/models and consequently the extracted feature values should 

be expected, especially because some of these products (e.g., BIS monitors) have undergone 

various software/hardware updates throughout the years. 

In general, significantly lower BIS values have been associated with poor outcome (CPC of 1 and 

2) in CA patients [48, 60–67], and a BIS cutoff-point in the range of 35–45 has shown an accuracy 

of above 0.85 in prediction of the poor outcome in patients treated with hypothermia [60, 61, 63, 

65, 67].  

One potential approach to design a highly accurate CA outcome classification system is to apply 

advanced machine learning algorithms (e.g., support vector machines, decision trees) to a large 

vector of various EEG features (including those measured by commercially available products). 

Recent advancements in data mining techniques have enabled the efficient handling of the inherent 

variability in the extracted features (such as those due to employment of different BIS monitors). 

Inclusion of quantitative features from other modalities (e.g., biochemical markers or 

neuroimaging) could further enhance the classification accuracy [9, 21, 64]. For example, in [21], 

Wennervirta et al. showed that the accuracy of CA outcome prediction can be considerably 

improved by combining a biochemical marker (protein 100B) and an EEG feature (wavelet 

subband entropy). However, their small cohort study prevented them from performing statistically 

reliable techniques such as cross-validation to validate their prediction accuracy on an independent 

dataset. In a larger study cohort (75 patients), Stammet et al. were able to enhance the accuracy of 
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CA outcome prediction by more than 5% (statistically significant) with combining the S100B and 

BIS information [64]. 

 

In general, the reliable implementation of machine learning approaches requires a large dataset of 

CA subjects with clear documentation of physiological and clinical data following CA. A potential 

solution to overcome this challenge is the conduct of multi-institution research collaborations 

where the multimodality data is consistently and uniformly collected and shared among 

researchers to facilitate the development of reliable methods to predict the CA outcome. 
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CHAPTER 4: STUDY DESIGN 
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4.1 Collection of the data  

Patients who underwent therapeutic hypothermia after cardiac arrest must have met the criteria 

based on their neurological exam.  In addition, Long Beach Memorial hospital hypothermia 

guidelines required the ED physician to contact the neurologist prior to induction of hypothermia 

for appropriate patient selection.  The neurologic exam to start the protocol was prior to start of 

sedation after spontaneous return of circulation had occurred.  The patients who were to be 

undergoing hypothermia protocol were required to be unresponsive, not following commands, or 

Glasgow Coma Scale (GCS) < 8.  

Note: After a traumatic brain injury the level of patient’s consciousness is described by a scoring 

system called Glasgow Coma Scale.  

 

4.2 Patient’s data 

A retrospective study of the EEG data collected from 11 comatose adult patients (5 Males and 6 

females, aged between 40 to 82 years old) was conducted. These patients were admitted from April 

to October 2011 to the ICU of the Long Beach Memorial Medical Center and treated with TH after 

the successful resuscitation from CA. Approvals of the study were obtained from the Institutional 

Review Boards of Long Beach Memorial Medical Center and California State University, Long 

Beach with the waiver of informed consent, because EEG was part of standard patient care. 

 The IV injection for the therapeutic hypothermia was started (2.9±1.4) hours following the 

patients’ admission to the hospital. It took an average of (3.6±2.5) hours for the patients to get to 

the targeted temperature. The patients were kept at the hypothermia stage for an average of 

(24±0.1) hours. Then their body temperatures were adjusted back to the normal temperature 

through a rewarming process with an average time length of (16±1.7) hours. Out of the 11 
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comatose patients, 4 had survived. EEG signals of the patients were captured from the following 

16 channels: FP1-FP2, F3-F4, C3-C4, P3-P4, O1- O2, F7-F8, T3-T4 and T5-T6. 

 

4.3 Patient demographic 

Baseline demographic variables, including gender, age and initial arrest rhythm, were comparable 

between survived and non-survived patients (Table 3).  

Table 3: Patient demographic 

Patient baseline characteristics 

Survived patients 

(n=4) 

non-survived patients 

(n=7) 

Female gender, number (%) 100 2 (28.57) 

Median age, years(range) 56.6 (40-77) 60 (57-82) 

Initial CA rhythm ventricular fibrillation, 

number (%) 

3 (75) 4 (57.14) 

 

4.4 Study Limitations 

The retrospective nature of study impose some limitations to the study. For example the 

distribution of the dataset in terms of number of patients with a specific survival outcome (or 

functional outcome) would affect our hypothesis testing results. In addition, the inter-subject 

variability that inherently exists with respect to the time interval from collapse to restoration of 

spontaneous circulation, or how hypothermia is managed (how long after the cardiac arrest the 

hypothermia was initiated and how long it has been maintained) would affect the result of the 

study. Another issue will be the availability and duration of continues EEG (cEEG) recording over 

the course of TH intervention. These are limiting factors that may affect the result of our study.  
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CHAPTER 5: DATA PROCESSING METHOD 
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5.1 Data processing steps 

Our method of this study consists of four major steps:  

A. EEG signal preprocessing;  

B. Discrete wavelet transform;  

C. Calculation of wavelet sub-band entropy; and  

D. Statistical Analysis.  

Figure 6 illustrates a block diagram of various steps of the implemented method. In the following 

sections, each step is explained in details. 

 

 

Figure 6: A block diagram of the implemented EEG processing method 

 

 

5.2 Preprocessing 

EEG signal were captured by standard 10-20 positioning system at Long Beach Memorial 

Hospital. For each patient different length of signals were available during the hypothermia and 

normothermia phases. The sampling rates were vary between patients and recording episodes (500, 

1000. 1024. 2040 Hz). After a careful review of signals we found a high level of noise to signal 



54 
 

ratio on earlobes and midline channels (A1, A2, Fz, Cz and Pz).Therefore it was decided to not 

considering these signals in the signal processing phase due to a high level of the noise (Figure 7 

and Figure 8).  EEG signals that were captured from the following 16 channels were considered in 

the signal processing phase: FP1-FP2, F3-F4, C3-C4, P3-P4, O1- O2, F7-F8, T3-T4 and T5-T6. 

 

 

Figure 7: All EEG channels 
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Figure 8: Location of signals with high rate of noise to signal value 

Cz ,Pz and Fz are ground or common reference points for all EEG electrodes  

A1 - A2 are used for contralateral referencing of all EEG electrodes 

 

 

The EEG signal of each channel was first down sampled to 256 Hz to reduce the computational 

complexity. Given that the main frequencies of the human EEG waves are between 0 and 100 Hz, 

a linear phase Butterworth band-pass filter with passband of 0.15-100 Hz was applied to remove 

low and high frequency noise and artifacts [84]. Then a linear phase Butterworth notch filter at 60 

Hz was applied to remove the power-line interferences. 

Note: The magnitude of the frequency response for Butterworth filters calculated as follow: 

|𝐻(𝑗𝜔)|2= 
𝐺0

2

1+(
𝑗𝜔

𝜔𝑐
)2𝑛

 

 

Where n is the order of filter, ω
c
 is the cutoff frequency and G

0
 is the gain at zero frequency.  
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5.3 Discrete Wavelet Transform 

Wavelet transform has proved to be a useful tool for denoising, delineation and compression of 

signals. In contrast to Fourier transform, wavelet transform allows for the analysis of transients, 

non-stationary and aperiodic signals (such as spikes and bursts) by highlighting the subtle changes 

in signal morphology over various scales of interest. Discrete wavelet transform has few additional 

advantages (comparing to continuous wavelet transform) including less redundancy and lower 

computational complexity.  

Given the sampling frequency of 256 Hz, using a 6-level discrete wavelet transform, one can 

decompose the EEG signal into frequency sub-bands that represent standard clinical bands of 

interest: Delta (< 4 Hz), Theta (4-8 Hz), Alpha (8-16 Hz), Beta (16-32 Hz), Gamma (32-64 Hz), 

and high frequency oscillation (> 64 Hz).  

A Daubechies3 mother wavelet was employed to implement discrete wavelet transform. This 

mother wavelet can help in capturing spiky EEG waveforms due to its shape (Figure 9). 

 

 

Figure 9: Daubechies3 wavelet function 
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5.4 Wavelet Sub-band Entropy 

In this study, wavelet sub-band entropy [83] was employed as a quantified measure of EEG to 

predict the death and survival outcomes. 

Let us assume that l

mC is thm wavelet coefficient at level l , where 1,2,...,6l = and 1,2,...,m M= . Note 

M  is the length of the coefficient vector (in samples) at each level of the decomposition. Each l

mC

was first squared and normalized as  

2

2
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( )

l
l m
m M
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=


C     (20) 

Then the wavelet sub-band entropy ( lE ) was obtained by calculating Shannon entropy of the 

normalized coefficients at each level: 

      1

log( )

.
log

M
l l

m m
l mE

M

=

− 

=
C C

        (21) 

Filter tree algorithm for discrete wavelet transform (DWT) is shown in Figure 10: 
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Figure 10: filter tree algorithm for discrete wavelet transform (DWT) picture reference [105] 

 

 

5.5 ANOVA Mathematical Details 

ANOVA tests for the difference in the group by splitting the Total Variability into two components:  

− variation between groups  

− variation within group 

There are three assumptions for ANOVA test that should be satisfied to get the completely reliable 

results from analysis:  

- independence of cases 

- Normal distribution of the residuals 

- Equality of variance 

Usually failing to have the normal distribution of the measurement variables may result to increase 

the false positive (FP) rate in tests that have normality assumption for their under test data.  Based 

on a simulation study to check the effect of non-normality distribution on ANOVA test, it was 
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concluded that the FP rate was not affected significantly by violating from this assumption [107, 

108, 109].  

Variation between groups is defined as group means variation from the overall mean:  

𝑆𝑆𝑅 = ∑ 𝑛𝑖(𝑥𝑖̅ − 𝑥̅)𝑘
𝑖=1       (22) 

Where 𝑥𝑖̅  is the sample mean value,  𝑛𝑖 is the sample size of 𝑖𝑡ℎgroup and 𝑥̅ is the overall mean. 

𝑖 = 1,2, … , 𝑘.  

Variation within group is defined as variation of observations in each group from their group mean 

estimates.  

𝑆𝑆𝐸 = ∑ ∑ (𝑥𝑖𝑗 − 𝑥𝑖̅)
2                 

𝑛𝑖
𝑗=1

𝑘
𝑖=1 (23) 

Where the 𝑥𝑖𝑗 is the𝑗𝑡ℎresponse sampled from the 𝑖𝑡ℎ group.  

ANOVA partitions the sum of squares total (SST) into sum of squares due to between-groups effect 

(SSR) and sum of squared errors (SSE). 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸 = ∑ ∑ (𝑥𝑖𝑗 − 𝑥̅)2                 
𝑛𝑖
𝑗=1

𝑘
𝑖=1 (24) 

ANOVA calculates the ratio of the variation between groups (SSR) to the variation within groups 

(SSE). If this ratio is significantly high, then it can be concluded that the group means are 

significantly different from each other. 

The test statistics with F-distribution (with (k – 1, N – k) degrees of freedom) is defined as follow:  

𝐹 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑆𝑆𝑅/(𝐾−1)

𝑆𝑆𝐸/(𝑁−𝑘)
=  

𝑀𝑆𝑅

𝑀𝑆𝐸
 ~ 𝐹𝑘−1,𝑁−𝑘   (25) 
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where MSR is called the mean squared treatment, MSE is the mean squared error, k is the number 

of groups, and N is the total number of observations. 

 If the p-value for the F-statistic is smaller than 0.05 (or 0.01), then the test rejects the null 

hypothesis. In ANOVA the null hypothesis is that all group means are equal. Small P-value means 

that at least one of the group means is different from the others [106]. 

 

5.6 Statistical analysis 

A moving window of length T with 50% overlapping was applied to the recorded EEG signal of 

each channel and the wavelet sub-band entropies were calculated for each window. A one-way 

analysis of variance (ANOVA) test was employed to determine whether the calculated entropies 

are significantly different between those subjects who survived and those who died. The ANOVA 

test was repeated for all the 6 levels and all the 16 EEG channels. Our hypothesis was that the EEG 

signals of the patients who survived would demonstrate more complexity and consequently higher 

values of wavelet sub-band entropies. 
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6.1 Results  

Various window lengths were used (including T of 10 seconds, 30 seconds and 60 seconds) to test 

our hypothesis. Interestingly, the results were similar regardless of the window length.  

The normality distribution of the data under test were analyzed to make sure that the data 

distribution satisfies the ANOVA assumptions. A sample graph of the normality results is shown 

in Figure 11:  

 

 

Figure 11: Check the normality of data for ANOVA (Sample plot) 

 

 

Our data analysis revealed that out of all the wavelet sub-band entropies calculated for various 

frequency bands (representing standard clinical bands of interest) and over 16 different EEG 

channels collected during hypothermia, only the wavelet sub-band entropies of high frequency 

oscillations (HFO in this study: 64-100 Hz) that are captured from the inferior frontal lobes (F7 

and F8) are associated with the CA outcomes. 
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Figure 12: Boxplots of  high  frequency  oscillation  sub-band  (64-100  Hz) wavelet entropies over inferior frontal: A) F7 EEG 
channel; B) F8 EEG channel. 

 

 

Figure 12 illustrates the box plots of the HFO sub-band entropies calculated from the EEG of the 

inferior frontal lobes (F7 and F8) for the survived and non-survived outcomes when T=1 minute. 

It can be noted that the mean HFO sub-band entropies of both F7 and F8 EEG channels are 

significantly higher in the patients who survived than those who died. The p-values for F7 and F8 

channels were 0.01 and 0.02, respectively. 

 Figure 13A displays a one-minute sample of EEG signal captured from the inferior frontal lobes 

of one of the patients who survived, while Figure 13B illustrates a sample of EEG signal from a 

patient who died. The EEG signal of the survived patient displays more complexity. This is 

consistent with our hypothesis that the patients who survive would have more complexity and 

consequently higher entropy values of EEG signals. Figure 14 shows the location of F7 and F8 

channels on 10-20 system for electrode layouts.   
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Figure 13: One-minute EEG signal captured from inferior frontal lobes (F7-F8) of A) a survived patient; B) a non-survived patient. 
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Figure 14: Location of F7 and F8 channels based on the 10-20 standard layout of EEG electrodes 

 

Same analysis were done on the normothermia signals. ANOVA results revealed no significant 

differences between channels and frequencies during the normothermia phase in Survived and 

non_survived patients (Figure 15). The P_value was 0.6312.  

 

Figure 15: Boxplots of high frequency oscillation sub-band (64-100 Hz) wavelet entropies over inferior frontal during Normo-
thermia 
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Figure 16  displays a one-minute sample of EEG signal captured from the inferior frontal lobes of 

one of the patients who survived during Hypothermia (a) and Normothermia(b), while Figure 16 

illustrates a sample of EEG signal from a patient who died during Hypothermia (c) and 

Normothermia(d).  

 

Figure 16: Comparison between Hypothermia and Normothermia signals in Survived and Non-survived patients 
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6.2 Discussion and Conclusion 

The visual interpretation of EEG patterns, e.g., background and reactivity analysis, provides 

important information about the CA outcome, but is time-consuming and subjective. Automated 

EEG analysis may help in quantification of the brain damage following CA and the prognostication 

of the outcome [85]. Recently, several animal studies have successfully investigated the possibility 

of using quantitative measures of EEG during hypothermia, e.g., information quantity (IQ) and 

sub-band information quantity (SIQ), to predict the CA functional recovery outcome[79, 80-82]. 

However, to the best of our knowledge, only few human studies have employed quantitative 

measures of EEG, e.g., burst-suppression ratio and state entropy, to predict the outcome of CA 

patients treated with hypothermia [85, 86].  

In the present study, we sought to examine whether any of the EEG wavelet sub-band entropies 

calculated over various frequency bands of clinical interest and for 16 different EEG channels can 

be used to distinguish the survival versus death outcome in CA patients undergoing hypothermia.  

Our results demonstrated that the high frequency oscillations (HFO: 64-100 Hz) of inferior frontal 

lobes during hypothermia were more complex in the people who survived. It is known that the 

frontal lobe is considered as “the most human structure” of the brain, because frontal lobe is larger 

and more developed in humans than in any other organism. F7 EEG electrode is located near the 

center of rational activities (related to verbal and cognitive activities), while F8 is close to the 

sources of emotional responses (endogenous). Therefore, our results indicate that, during 

hypothermia, high frequency oscillations that are captured from inferior frontal (related to the 

cognitive and emotional responses) demonstrate more complex patterns in the patients who 

survive. These results are consistent with those of recent studies showing that the presence of 

HFOs after CA may indicate good functional recovery [87, 88].  
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Hence, recovery of high frequency brain activities should be a main target to recover neurological 

functionality post-CA. One of the limitations of the present work was the small sample size which 

could not be adjusted due to retrospective nature of the study. Our future work will involve a 

prospective study of a larger dataset of CA patients undergoing hypothermia to further verify the 

reliability of the developed prognostic marker of CA. A dataset with more number of subjects 

would also allow us to enhance the validity of the statistical analysis by considering other variables 

(e.g. age) that could play a significant role in the CA outcome.  

In conclusion, this study showed that wavelet sub-band entropy of EEG high frequency oscillations 

captured from inferior frontal lobes can be successfully employed to prognosticate CA outcome 

for patients undergoing hypothermia.  The result of this study can improve the quality of care for 

CA patients by early prediction of the outcome. 
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7.1 Wavelet Coefficients Spectral Entropy (WCSE) 

As the next step of this study, we decided to do the same analysis with different quantitative 

measures.  

Kumar et al. [110] used a classification method to automatically detect the epileptic seizures.  They 

selected two main entropy features, Wavelet Entropy and Spectral Entropy, to test and train the 

recurrent neural network classifier. They achieved high classification accuracy results in their 

studies. They also concluded that Wavelet entropy feature provides more accurate results in 

compare to spectral entropy feature [110]. This study highlighted the ability of wavelet entropy 

and spectral entropy quantities to detect EEG abnormalities among of all other different 

quantitative EEG features that can be developed.  

Mirzaei et al [88], calculated the spectral entropy of wavelet coefficients of EEG signal to detect 

the epileptic seizures. They found significant differences between SE values in Ictal and healthy 

subjects.  

Chen et al. [33], applied the Spectral Entropy method on EEG signals of rats to evaluate the CA 

outcome. They concluded that the spectral entropy (SE) values was higher in the hypothermic rats. 

Wennervirta et al., in a study of 30 comatose patients concluded that the spectral entropy 

demonstrated significantly higher values in CA patients with good cerebral performance category 

(CPC) outcomes. 

 Given the success of wavelet transform for analyzing the components of a non-stationary signals 

in different frequency levels, and spectral entropy as a successful feature to distinguish EEG 

abnormalities, we combined these tools to create a better marker in order to distinguish between 

survived and un-survived cases.  
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As it was discussed before (see section 3.3.1.1), in most of the previous studies the spectral entropy 

were measured by commercially available products with limited frequency bands of 0.8–32 Hz 

(state entropy) and 0.8–47 Hz (response entropy). Because of various software/hardware updates 

throughout the years over these tools there are some variability exists between their extracted 

spectral entropy features.   

Therefore, as our next step of study we developed a new EEG quantitative measure, Wavelet 

Coefficients Spectral Entropy (WCSE). We calculated the spectral entropy of each sets of Wavelet 

Sub-band Coefficients. So instead of having the SE value only for limited range of frequencies, 

we can analyze the SE value for all clinical sub-band frequencies.  

Then we compared the value of wavelet coefficient spectral entropy between survived and un-

survived patients.  Our goal was to find significant differences between the WCSE value of 

Survived and un-survived CA patients. We expected to have higher WCSE value in survived 

patients.  

 

7.2 WCSE Method 

In this step of our study, we followed the same preprocessing of the data that was introduced in 

Sub-band wavelet entropy section. 

In order to retrieve the useful signals Butterworth band pass filter has been applied and Interference 

noise has been filtered by a notch filter. Figure 17 illustrates the overall specification of the 

bandpass and notch filters.  Then after applying the 6-level discrete db3 wavelet transform, the 

spectral entropy of each set of wavelet coefficients were calculated.  
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Figure 17: Butterworth filters specification, A) Bandpass, B) Notch 

The wavelet coefficient spectral entropy (WCSE) of the EEG signal is calculated as the Shannon 

entropy of the normalized energy distribution of the signal within certain frequency sub-bands of 

interest. 

To calculate the WCSE value, the same method that was described by Mirzaei et al [88] and Liu 

et al. [110] were applied:  

A moving window of length T (T=60 sec) with 50% overlapping was applied to the recorded EEG 

of each channel and for each level of coefficients in each window, the normalized energy 

distribution calculated as follow:  

𝑃𝑖 =  
𝐸𝑖

∑ 𝐸𝑖
𝑁
𝑖=1

     (26) 

where Ei is the energy of the coefficients’signal within ith subband calculated from power spectral 

analysis of the EEG signal. 

Then the Shannon entropy of the normalized energy distribution calculated:  

𝑆𝑆𝐸 =
− ∑ 𝑝𝑖log2 𝑝𝑖

𝑁
𝑖

log 𝑁
  (27) 

N is the length of coefficient vector at each level of decomposition.  
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Then the ANOVA test applied to determine if the calculated WCSE is significantly different 

between survived and non-survived subjects. We hypothesis that WCSE value for survived 

patients demonstrates higher value in compare with non-survived patients.  

The ANOVA test was repeated for all 6 levels and 16 EEG channels.  

 

7.3 WCSE Results  

The data analysis reveals that out of all Wavelet Coefficients Spectral Entropies (WCSE) 

calculated for all standard clinical frequency bands during the hypothermia and over 16 different 

EEG channels only the WCSE of Theta band frequencies (4-8 Hz) that are captured from the C3 

(left-central lobe) and F3 (Middle-left Frontal lobe) channels are associated with CA outcomes 

(Figure 18).  

 

Figure 18: Location of C3 and C5 channels based on the 10-20 standard layout of EEG electrodes 
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The box plot of the theta band wavelet coefficients spectral entropies calculated from the central 

and middle frontal lobes for the survived and non-survived patients illustrated in Figure 19.  

 

 

 

Figure 19: Boxplot of theta band frequencies (4-8 Hz) wavelet coefficients spectral entropies over C3 and F3 channels: A) F3 EEG 
channel, B) C3 EEG Channel 
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The mean of theta band wavelet coefficients spectral entropies for both C3 and F3 channels are 

significantly higher in survived patients in compare with un-survived patients with the p-value of 

0.04 and 0.02, respectively.  One-minute sample EEG captured form C3 and F3 channels for 

survived and non-survived are displayed in Figure 20.  

It is clearly illustrated that the survived patients EEG signal is more complex. These results are 

consistent with the hypothesis that the spectral entropy (SE) values was higher in the survived 

patients due to more complexity of EEG signals.  

 

 

Figure 20: one minute EEG signal captured from C3 and F3 channels: A) Non-survived patient, B) Survived patient 
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7.4 Discussion and Conclusion 

Our goal in this phase of study was to examine the wavelet coefficients spectral entropies (WCSE) 

as a quantitative marker of the CA patients’ outcome. Our results demonstrated that the theta 

frequencies of left central lobe (which is related to sensory and motor functions) and middle-left 

frontal lobe (related to motor planning and actions) during hypothermia were more complex in the 

people who survived. 

Theta band waves are low-frequencies components of EEG signal, typically ranged from 4 to 8 

Hz. Theta rhythms are commonly encountered in the fronto-central regions in healthy brains. Theta 

rhythm is considered abnormal if is observed in a different location [113, 114]. Theta band 

frequencies are usually related to drowsiness or heightened emotional states [112].  

Grunwald et al. found that that fronto-central theta power of the EEG correlates with the load of 

working memory independent of stimulus modality. They showed in their study that the theta 

waves powers in the EEG of human subjects increases during recall of haptic information [114]. 

  

In summary, our results indicate that, during hypothermia, EEG theta frequencies that are captured 

from fronto-central regions (C3-F3) demonstrate more complex patterns in the patients who 

survive. These results are consistent with those of studies showing the correlation of higher values 

of SE and good functional outcome [33] and the presence of fronto-central theta rhythms in normal 

and healthy brain [113].  

 

7.5 Discussion on Left and Right Brain Hemisphere Differences 

Functions and characteristics of each hemisphere are well established. The left hemisphere controls 

the right side of the body and responsible for analytical thinking and logical tasks while most of 
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the visualization and emotions, as well as the left side of the body, are controlled by the right 

hemisphere.  

Henda et al. studied the functional outcome and mortality between left- and right-hemisphere 

ischemic strokes. They concluded that the left-hemispheric ischemic strokes appear to be more 

frequent and often have a worse outcome (higher risk of mortality) than their right-hemispheric 

counterparts [115]. 

In our study, we developed two quantitative EEG markers, Sub-band Wavelet entropy (SWE) and 

Wavelet Coefficients Spectral Entropy (WCSE), to predict the outcome of cardiac arrest patients 

treated with hypothermia.  

Our results revealed that the brain high frequency oscillations (Gamma Band: 64-100 HZ) SWE 

is higher in inferior Frontal lobe and theta band (4-8 Hz) WCSE is higher in left side fronto-central 

lobes of survived patients. Figure 21 illustrates the location of all EEG channels that were 

associated with CA outcome.  

 

Figure 21: EEG channels associated with good outcomes, Pink: WCSE results, Blue: SWE results 
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As it is shown in the Figure 21, three out of four of these distinguished channels in survived 

patients are located in the left hemisphere which is consistent with the study showing that the less 

damages on left hemispheric may increase the chance of good outcome in ischemic strokes patients 

[115]. Also, Frontal lobe (Middle and Inferior) which is considered as the “most human structure” 

of the brain shows more complexity in both studies in survived patients.  

Therefore, recovery of the Gamma and Theta frequency activities on left-hemisphere and/or 

Frontal lobe can be main target for post cardiac arrest recovery.  

Given all the limiting and confounding factors that this retrospective study has, we still believe 

that performing such study would be substantial as it employs a new approach (automatically 

quantified cEEG measure, i.e. entropy) to predict patient outcome after cardiac arrest. 

 Furthermore, the experience that we learn from this study, can guide us to design a prospective 

study aiming at the same objective and addressing all the limiting and confounding factors to 

guarantee the future success of the study. 
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8.1 Background: Question that was raised during the Qualification exam  

“Assume you do not know which patient survived and which did not, assume that you collected 

all the original signals obtained from all sensors attached to the frontal zone from all the patients 

(the total number of signals is equal to the total number of the sensors in frontal zone multiplied 

by the total number of the patients) and you first use SVD to reduce the number of dimensions and 

after that you use say K-means to split the signals into two clusters. Will all signals form the 

survived patients be in cluster one and all signals from the patients who did not survive in the 

cluster two, if you use say just only 3 principal components for SVD? ” 

 

8.2 Introduction to Singular-Value Decomposition (SVD) 

The Singular-Value Decomposition (SVD) is a matrix decomposition method for reducing a 

matrix to its fundamental elements in order to make certain subsequent matrix calculations simpler. 

Because SVD can be calculated for all matrices, it can be used as a stable method for data and 

dimension reduction purposes [116].  

SVD for a rectangular m-by-n matrix A is calculated as:  

𝐴 = 𝑈. Σ. 𝑉𝐻  (28) 

Where U is a m-by-m matrix, Σ is a m-by-n diagonal matrix and V is a Hermitian n-by-n matrix. 

The values in the Sigma diagonal matrix are the singular values of the matrix A. The columns of 

the U matrix are called the left-singular vectors of A are in columns of the U matrix and the right-

singular vectors of A are the columns of the V matrix [116].  

When we have a matrix of data with larger number of features than observations, by using SVD 

method we can find the most relevant features.  SVD reduces the dimension of the data matrix and 

this lower rank matrix can be used as a good approximation of the original data.   
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The approximation matrix can be calculated by applying the SVD on the original data and finding 

the top K largest singular values from  Σ matrix and their corresponding values from 𝑉𝐻 matrix 

[116].  

 

8.3 K-mean clustering 

K-mean clustering is a method that partition the observations (n data points) into desired K clusters. 

Each cluster is defined by its centroid point. The algorithm go through following steps [117]:  

− Choose k initial cluster centers (centroid) 

− Compute point-to-cluster-centroid distances of all observations to each centroid 

− Assign each observation to the cluster with the closest centroid. 

− Compute the average of the observations in each cluster to obtain k new centroid 

locations. 

− Repeat steps until cluster assignments do not change 

 

8.4 SVD Analysis and K-mean clustering – Phase I 

Based on the prior knowledge from Wavelet Sub-band Entropy analysis, that the Frontal lobe’s 

electrodes have significant differences in survived and non-survived patients, we applied the 

singular-value decomposition (SVD) and K-mean clustering analysis over the frontal lobe's 

electrodes (F7 and F8).  

We hypothesized that the non-survived data points should cluster together and the survived data 

points should cluster together. 

Here are the steps of this analysis:  



82 
 

- Extracted filtered data from F7 (and F8) channels during hypothermia for all patients 

- Down-sampled the data to avoid getting overloaded error 

- Applied SVD Matlab built-in function to define eigenvalues (calculate the Covariance of 

eigenvalues)  

- Plotted the eigenvalues (descending order) 

- Calculated the projection matrix of all patients' channel 7 (and channel 8) data (both 2 

dimensions and 6 dimensions (See Figure 22) calculated for comparison purposes (matrices 

11x2 and 11x6)) 

- Applied 2 groups’ k-means clustering.  

- Calculated the Accuracy and Sensitivity (true positive rate) of the results  

 

Figure 22: Sorted eigenvalues 

 

8.5 SVD Results- Phase I  

The Survived and non-survived data points were clustered together with the accuracy of 

72% and Sensitivity of 60% (Figure 23).  
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Figure 23: Clustering results of survived and non-survived patients 

 

Table 4 summarized the clustering results of total population of 11 data points for both survived 

and non-serviced categories.  

 

Table 4: summary of K-mean results 

Total number of data points 11  

True Negative (TN) 5 

True Positive (TP) 3 

False Positive (FP) 1 

False Negative (FN) 2 

Sensitivity=True Positive Rate= TP/(TP+FN) 60% 

Accuracy= (TP+TN)/(TP+TN+FP+FN) 72% 
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To understand that whether F7 and F8 (significant channels from Entropy analysis) give us better 

clustering results relative to other channels or not, the same process applied for all available 16 

channels. 

The results were almost the same for all channels. It means we could not get any significant 

differences between channel 7 and 8 (Frontal channels) and other channels.  

Note: Plots of the clustering results for all 16 channels are captured in Appendix I  

 

8.6 More Analysis – Phase II 

As a second level of processes, to increase the number of points of samples to cluster, every 15 

minutes available data for each patients during hypothermia were extracted. Then a matrix was 

created that each rows represent every 15 minutes available data during hypothermia from all 

subjects. It means if we had 30 minutes of data for one survived patient, in that matrix we had two 

rows of 15 minutes for that patient.  Then the SVD analysis applied on this matrix and data 

projection matrix on the 2 largest Eigen values were calculated. This way instead of 11 points on 

each figure, we had multiple data points from the same subject. Then all the data points were 

plotted. The data points from non-survived plotted with one color and from survived with another 

color. We Hypothesis that in the ideal scenario, the non-survived points should cluster together 

and the survived points should cluster together. 

 

Here are summary of the analysis steps:  

− re-sampled the data 

− extracted all available 15 minutes of patients data during hypothermia  
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− generated a matrix with 37 rows (survived and un-survived samples), each rows contained 

15 minutes of data 

− applied the SVD analysis and plotted the projection matrix on the 2 largest Eigen values  

− this matrix was created separately for each of 16 channels (16 plots) 

This process were repeated for all 16 channels.  

 

8.7 Results – Phase II 

By increasing the number of data points from 11 to 37, there were no clear clustering for survived 

(red star *) and non-survived EEG samples (blue circles) in this set of analysis. Figure 24 and 

Figure 25 illustrate the clustering results for two channels of data.  

 

Figure 24: clustering result for channels 1 data points. 
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Figure 25: clustering result for channels 2 data points. 

 

Note: Plots of the clustering results for all 16 channels are captured in Appendix II 

 

8.8 Conclusion  

The classic time dependent SVD analysis and K-mean clustering were not successful in 

categorizing data points from Survived and non-survived patients. This analysis confirms that Sub-

band Wavelet Entropy (SWE) is a powerful method for EEG signals analysis during hypothermia. 

By using the SWE method, we were able to find the accurate frequency band of brain waves and 

the exact locations of the brain that have significant differences between survived and non-

survived cardiac arrest patients.  
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Appendix I – Phase I plots 

Plots of the clustering results of 11 data points for two Survived and non-survived categories for 

all available 16 EEG channels. 
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Appendix II – Phase II plots 

Plots of the clustering results of 37 data points for two Survived and non-survived categories for 

all available 16 EEG channels. 
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