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Abstract

A full asymptotic series of European call option prices

in the SABR model with beta=1

by

Zhengji Guo

Claremont Graudate University: 2019

We develop two pricing formulae for European options in the SABR model with

β = 1 case by means of Malliavin Calculus. We follow the approach of Alòs et al

(2006) who showed that under stochastic volatility framework, the option prices can

be written as the sum of the classic Hull-White (1987) term and a correction due

to correlation. We derive the Hull-White term, by using the conditional density of

the average volatility, and write it as a two-dimensional integral. For the correction

part, we use two different approaches. Both approaches rely on the pairing of the

exponential formula developed by Jin, Peng, and Schellhorn (2016) with analytical

calculations. The first approach, which we call ”Dyson series on the return’s idiosyn-

cratic noise” yields a complete series expansion but necessitates the calculation of a

7-dimensional integral. Two of these dimensions come from the use of Yor’s (1992)



formula for the joint density of a Brownian motion and the time-integral of geometric

Brownian motion.The second approach, which we call ”Dyson series on the common

noise” necessitates the calculation of only a one-dimensional integral, but the formula

is more complex.
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Chapter 1

Introduction

European options are traditionally priced and hedged by Black-Scholes [2] (1973) model.

One of the natural extensions of the Black-Scholes model to make volatility stochastic. The

simplest stochastic volatility models assume that the volatility and the noise driving stock

prices are uncorrelated. Moreover, the Hull-White formula [6] (1987) establishes that the

European option price is the expectation of the Black-Scholes option pricing formula with a

time-dependent volatility. An important success of this model is that it calculates European

prices which implied volatilities smile. The development of local volatility models by Dupire

and Derman (1994) was a major development in handling smiles and skews. However its

predictions contradict empirical findings. Thus the SABR(stochastic alpha beta rho) model,

a stochastic volatility model in which the asset price is correlated with its volatility was

derived by Hagan et al [7] (2002) to resolve this problem. Alòs [1] (2006) extended the

classical Hull-White formula to the correlated case by means of Malliavin calculus. The

new generalization decomposes option prices as the sum of the same derivative price if

there were no correlation and a correction due by correlation. Another popular model is

the Heston (1993) model. In that model, the volatility is mean-reverting. The general
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asymptotic method presented by Fouque, Papanicolau and Sircar (2000) [4] can be used to

analyze Heston’s model. For more information on stochastic volatility models, we refer the

reader to Gatheral [5] (2006).

Nevertheless, there are still terms of conditional expectation of functions of non adapted

processes in the new generalization of Hull-White formula. Jin, Peng and Schellhorn [8]

(2016) showed that under certain smoothness conditions, a Brownian martingale can be

represented via an exponential formula when evaluated at a fixed time. It is a powerfull

tool similar to Clark-Ocone formula that allows us to work with the conditional expectation

of a random variable instead of the random variable itself.

The main goal of this research was to obtain an option pricing formula for the special case

of the SABR model with β=1. We used two different approaches. Both approaches rely on

the pairing of the exponential formula developed by Jin, Peng, and Schellhorn (2016) with

analytical calculations, and starts by conditioning on the path of the common noise term

W . In the first approach, which we call “Dyson series in the return’s idiosyncratic noise”,

we first apply a Dyson series in the idiosyncratic noise term Z and then apply Yor’s [14]

formula (1992) for the joint density of a Brownian motion and the time-integral of geometric

Brownian motion to integrate with respect to the common noise term W . We note that Yor’s

formula is used for pricing Asian options, but it is ideally suited to analyze realized volatility

in the SABR model with β = 1, since volatility is a geometric Brownian motion. Faà di

Bruno’s formula is used for analytical differentiation. The first approach yields a complete

series expansion but necessitates the calculation of a 7-dimensional integral. Two of these

dimensions come from the analytical expression of the joint density of a Brownian motion

and the time-integral of geometric Brownian motion. In the second approach, which we call

“Dyson series in the common noise”, we first integrate away the idiosyncratic noise term

Z and then apply a Dyson series in the common noise term W . This results in a formula

2



which necessitates the calculation of only a one-dimensional integral, but the formula is

more complex, and we carried the calculation only of the first term of the series.

The organization of this paper is follows. In Section 2 we present a brief introduction to

Malliavin Calculus as well as a representation theorem for smooth Brownian Martingales.

Section 3 is a review of basic option pricing theory and an extension to stochastic volatility

models. In Section 4, we present several Hull-White formulas for European call option

prices with different model assumptions. In Section 5, we derive the Dyson series in the

return’s idiosyncratic noise for the call price. In Section 6, we derive the Dyson series in

the common noise for the call price, and compare numerically all approaches.
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Chapter 2

Preliminaries on Malliavin

Calculus

The following section briefly reviews some basic facts of Malliavin Calculus required along

the paper. For a complete exposition we refer to Nualart [10] (1995) and Øksendal [11]

(2008). Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space where {Ft} is gener-

ated by a standard Brownian motion {Wt}t≥0. In Section 2.4, we will enlarge our probability

space to consider two standard Brownian motions.

2.0.1 Malliavin Derivative

Let L2([0, T ]n) be the standard space of square integrable Borel real functions on [0, T ]n and

let L̃2([0, T ]n) ∈ L2([0, T ]n) be the space of symmetric square integrable Borel real functions

on [0, T ]n, consider the set Sn = {(t1, . . . , tn) ∈ [0, T ]n : 0 ≤ t1 ≤ · · · ≤ tn ≤ T}.

Definition 2.0.1. If f is a deterministic function defined on Sn(n ≥ 1) such that ‖

4



f ‖2L2(Sn)
:=
∫
Sn
f2(t1, . . . , tn)dt1 · · · dtn < ∞, then the n-fold iterated Itô integral is de-

fined as

Jn(f) :=

∫ T

0

∫ tn

0
· · ·
∫ t3

0

∫ t2

0
f(t1, . . . , tn)dWt1 · · · dWtn−1dWtn , (2.1)

and if g ∈ L̃2([0, T ]n) we define

In(g) =

∫
[0,T ]n

g(t1, . . . , tn)dWt1 · · · dWtn := n!Jn(g). (2.2)

Theorem 2.0.2. The Wiener-Itô Chaos Expansion. Let F be an FT -measurable random

variable in L2(P ). Then there exists a unique sequence {fn}∞0 of functions fn ∈ L̃2([0, T ]n)

such that F =
∑∞

0 In(fn).

Definition 2.0.3. Let u(t), t ∈ [0, T ], be a measurable stochastic process such that for

all t ∈ [0, T ] the random variable u(t) is FT -measurable and E[
∫ T
0 u2(t)dt] < ∞. Let its

Wiener-Itô chaos expansion be

u(t) =

∞∑
0

In(fn,t) =

∞∑
0

In(fn(·, t)). (2.3)

Then we define the Skorohod integral of u by

δ(u) :=

∫ T

0
u(t)δWt :=

∞∑
0

In+1(f̃n), (2.4)

when converge in L2(P ), we say that u is Skorohod integrable and we write u ∈ Dom(δ) if

the series in (4) converges in L2(P ).

The operator δ is an extension of the Itô integral, in the sense that the set L2(P ) of square

integrable and adapted processes is included in Dom(δ) and the operator δ restricted to

L2(P ) coincides with the Itô stochastic integral.

Theorem 2.0.4. Let u = u(t), t ∈ [0, T ], be a measurable F-adapted stochastic process such

that E[
∫ T
0 u2(t)dt] <∞. Then u ∈ Dom(δ) and its Skorohod integral coincides with the Itô

integral ∫ T

0
u(t)δWt =

∫ T

0
u(t)dWt. (2.5)
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Definition 2.0.5. Let F ∈ L2(P ) be FT -measurable with chaos expansion F =
∑∞

0 In(fn),

where f. ∈ L̃2([0, T ]n), for n = 1, 2, . . . , we say that F ∈ D1,2 if ‖ F ‖2D1,2
:=
∑∞

0 nn! ‖

fn ‖2L2([0,T ]n)<∞. If F ∈ D1,2 we define the Malliavin derivative DtF of F at time t as the

expansion

DtF =
∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, T ]. (2.6)

We will need the following results on the Malliavin derivative.

Theorem 2.0.6. Product rule for Malliavin derivative. Suppose F1, F2 ∈ D0
1,2. Then

F1, F2 ∈ D1,2 and also F1F2 ∈ D1,2 with

Dt(F1F2) = F1DtF2 + F2DtF1. (2.7)

Theorem 2.0.7. Chain rule. Let G ∈ D1,2 and g ∈ C1(R) with bounded derivative. Then

g(G) ∈ D1,2 and

Dtg(G) = g′(G)DtG. (2.8)

Example 2.0.1. Dt

( ∫ T
0 f(s)dWs

)n
= n

( ∫ T
0 f(s)dWs

)n−1
Dt

( ∫ T
0 f(s)dWs

)
= n

( ∫ T
0 f(s)dWs

)n−1
f(t).

Theorem 2.0.8. The fundamental theorem of calculus. Let u = u(s), s ∈ [0, T ], be

a stochastic process such that E[
∫ T
0 u2(s)ds <∞ and assume that, for all s ∈ [0, T ], u(s) ∈

D1,2 and that, for all t ∈ [0, T ], Dtu ∈ Dom(δ). Assume also that E[
∫ T
0 (δ(Dtu))2dt] < ∞.

Then
∫ T
0 u(s)δWs is well-defined and belongs to D1,2 and

Dt

(∫ T

0
u(s)δWs

)
=

∫ T

0
Dtu(s)δWs + u(t). (2.9)

2.0.2 Exponential Formula

A Brownian motion martingale can be represented via an exponential formula when evalu-

ated at a fixed time under certain smoothness conditions.

6



Definition 2.0.9. Given ω ∈ Ω, a freezing operator ωt is defined as:

W (s, ωt(ω)) =


W (s, ω), if s ≤ t;

W (t, ω), if t ≤ s ≤ T.
(2.10)

The freezing operator ωt is a mapping from Ω to Ω. The following equations show some

properties of the freezing operator:

Proposition 2.0.10. 1. For p ∈ P, space of polynomials, suppose F = p(Ws1 , . . . ,Wsn),

then F (ωt) = p(Ws1
∧
t, . . . ,Wsn

∧
t);

2.

(∫ T
0 f(s)dWs

)
(ωt) =

∫ t
0 f(s)dWs;

3.

(∫ T
0 Wsds

)
(ωt) =

∫ t
0 Wsds+Wt(T − t);

4.

(∫ T
0 WsdWs

)
(ωt) =

(
W 2
T−T
2

)
(ωt) =

W 2
t −T
2 .

We denote the Malliavin derivative of order l of F at time t by Dl
tF , as a shorthand notation

for Dt . . . DtF . We call D∞([0, T ]) the set of random variables which are Ft-measurable and

infinitely Malliavin differentiable.

Definition 2.0.11. A random variable F is said to be infinitely Malliavin differentiable if

for any integer n:

E

[(
sup

s1,...sn∈(t,T )
|(D2

sn . . . D
2
s1F )|

)2
]
< +∞. (2.11)

In particular, we denote by DN ([0, T ]) the space of all random variables F which satisfy

(14) for all n ≤ N .

The next theorem, or exponential formula, was obtained by Jin et al (2016). The resulting

series (12) is called a Dyson series.
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Theorem 2.0.12. Suppose F ∈ D∞([0, T ]) satisfies the following condition:

(T − t)2n

(2nn!)2
E

[(
sup

u1,...un∈(t,T )
|(D2

un . . . D
2
u1F )(ωt)|

)2
]
−−−→
n→∞

0,

for fixed t ∈ [0, T ], then

E[F |Ft] =
∞∑
i=0

1

2ii!

∫∫∫
[t,T ]i

(D2
si . . . D

2
s1F )(ωt)dsi . . . ds1. (2.12)

Example 2.0.2. An example of applying the Exponential formula: Let F = W 2
T , then for

t ≤ s ≤ T :

F (ωt) = W 2
t ; (D2

sF )(ωt) = 2,

then by Theorem 2.2 we have

E[F |Ft] = F (ωt) +
1

2

∫ T

t
(D2

sF )(ωt)ds = W 2
t + T − t.

2.0.3 Faà di Bruno’s Formula

Lemma 2.0.13. Faà di Bruno’s formula. If f and g are functions with a sufficient

number of derivatives, then

dn

dxn
f(g(x)) =

∑ n!

Πn
i=1mi!

f (
∑n
k=1mk)(g(x)) ·Πn

j=1

(
g(j)(x)

j!

)mj
, (2.13)

where the sum is over all n-tuples of non-negative integers (m1, . . . ,mn) satisfying the con-

straint
∑n

k=1 kmk = n. Combining the terms with the same value of
∑n

i=1mi = k leads to

a simpler formula expressed in terms of Bell polynomials Bn,k(x1, . . . , xn−k+1):

dn

dxn
f(g(x)) =

n∑
k=1

f (k)
(
g(x)

)
· Bn,k

(
g′(x), g′′(x), . . . , gn−k+1(x)

)
. (2.14)

Definition 2.0.14. Exponential Bell polynomials. The partial or incomplete exponen-

tial Bell polynomials are a triangular array of polynomials given by

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

Πn−k+1
i=1 ji!

Πn−k+1
i=1

(
xi
i!

)ji
, (2.15)
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where the sum is taken over all sequences j1, j2, . . . , jn−k+1 non-negative integers such that

these two conditions are satisfied:
∑n−k+1

i=1 ji = k and
∑n−k+1

i=1 i · ji = n.The sum

Bn(x1, . . . , xn) =
n∑
k=1

Bn,k(x1, x2, . . . , xn−k+1), (2.16)

is called the nth complete exponential Bell polynomials.

The Faà di Bruno’s formula can be generalized to Malliavin derivative in the following

way:

Lemma 2.0.15. Faà di Bruno’s formula for Malliavin derivative. If f and g are

functions with a sufficient number of derivatives, then for a random variable F ∈ DN ([0, T ])

and ∀n ≤ N , by theorem 2.0.7 and lemma 2.14 we have

Dn
t f(g(F )) =

n∑
k=1

f (k)
(
g(F )

)
· Bn,k

(
g′(F ), g′′(F ), . . . , gn−k+1(F )

)
Dn
t F, (2.17)

where Bn,k(x1, . . . , xn−k+1) are the incomplete exponential Bell polynomials.

2.0.4 Extension to two Brownian motions

In what follows, we work with two independent Brownian motions {Wt}t≥0 and {Zt}t≥0

defined in a probability space (Ω,F , {Ft}t≥0,P), let {FWt } and {FZt } be the filtrations

generated by the Brownian motionWt and Zt respectively. Let FWt1 ∨F
Z
t2 := σ{Ws1 , Zs2 , s1 ≤

t1, s2 ≤ t2, } be the filtration generated by two Brownian motions Wt and Zt. When

t1 = t2 = t, we keep the symbol Ft := FWt ∨ FZt for the sigma-algebra generated by both

Brownian motions.

Let DW and DZ be the Malliavin derivation operator w.r.t the Brownian motion Wt and Zt,

this implies that for a FT measurable random variable F (ω), the 2-dimensional directional

9



derivative of F at the point ω ∈ Ω in the direction γ(γ1, γ2) ∈ Ω by:

DγF (ω) := lim
ε→0

F (ω + εγ)− F (w)

ε
=

∫ T

0
DW
s F (ω)

dγ1
ds

ds+

∫ T

0
DZ
s F (ω)

dγ2
ds

ds. (2.18)

The freezing operators ωtW and ωtZ follow the same definition 2.0.9 as the one dimension

case. However, each random variable are depend on the the path of single Brownian motion

indicated by its subscript.
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Chapter 3

Preliminaries on Option Pricing

Throughout this paper we shall operate in the context of a complete financial market.

Options are an example of a broader class of assets called contingent claims. We will study

European call option pricing under stochastic framework. The aim of this section is to

review the basic objects, ideas and results of the classical Black-Scholes theory, stochastic

volatility models of derivative pricing [3].

Definition 3.0.1. 1. A contingent claim is any asset whose future payoff is contingent

on the outcome of some uncertain event.

2. A European call option is a contract that gives its holder the right, but not the

obligation, to buy one unit of an underlying asset for predetermined strike price K on

the maturity date T .

11



3.0.1 The Black-Scholes theory

The Black–Scholes model is widely used for the dynamics of a financial market containing

derivative investment instruments. From the Black–Scholes equation, one can deduce the

Black–Scholes formula, which gives a theoretical estimate of the price of European-style op-

tions. The Black-Scholes model with constant volatility under risk-neutral probability mea-

sure is that the stock price St satisfies the following stochastic differential equation:

dSt = rStdt+ σStdWt, (3.1)

where r and σ are constants. For reasons of convenience, we make the change of variable

in the following sections, let Xt = lnSt denote the logarithm of stock price, then

dXt = r − 1

2
σ2dt+ σdWt, (3.2)

the price Vt of an European call option with payoff (XT −K)+ at time t for this model with

constant volatility σ, current stock price ex, maturity time T and interest rate r, satisfy the

risk-neutral pricing formula [13]:

Vt = e−r(T−t)E[(ST −K)+|Ft] (3.3)

And the closed-form solution of Black-Scholes PDE is the Black-Scholes-Merton formula:

Vt = BS(t, x, σ) := exN(d+)−Ke−r(T−t)N(d−), (3.4)

where

d±(t, σ) =
Xt − lnK + (r ± σ2

2 )(T − t)
σ
√
T − t

, (3.5)

and

N(x) =
1√
2π

∫ x

−∞
e

−y2
2 dy =

1√
2π

∫ ∞
−x

e
−y2
2 dy. (3.6)

is the standard normal cumulative distribution function. The derivation consists of finding

a self-financing investment strategy, that replicates the call option payoff structure and

assume that one continuously adjusts the replicating portfolio over time.
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3.0.2 Stochastic volatility models

That it might make sense to model volatility as a random variable should be clear to the

most casual observer of equity markets. Nevertheless, given the success of the Black-Scholes

model in parsimoniously describing market option prices, it’s not immediately obvious what

the benefit of making such a modeling choice might be.

SABR(stochastic alpha beta rho) Model with β = 1

Stochastic volatility models are useful because they explain in a self-consistent way why

options with different strike and expiration have different Black-Scholes implied volatility.

And moreover, stochastic volatility models assume realistic dynamics for the underlying.

Specifically, the SABR model is an extension of the Black Scholes model in which the

volatility parameter follows a stochastic process:

dSt = rStdt+ σtS
β
t (ρdWt +

√
1− ρ2dZt), (3.7)

dσt = ασtdWt. (3.8)

The two Brownian motions, Wt and Zt are independent. It can be shown by Lévy’s Theorem

that Mt := ρdWt +
√

1− ρ2dZt is a Brownian motion, thus dMtdWt = ρdt. Volatility does

note mean revert in the SABR model, so it is only good for short expirations. Nevertheless

the model has the virtue of having an exact expression for the implied volatility smile in

the short-expiration limit τ := T − t → 0. The resulting functional form can be used to

fit observed short-dated implied volatilities and the model parameters α, β and ρ thereby

extracted.
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Hagan et al. derived, with perturbation techniques, an approximating direct formula for

this implied volatility under the SABR model in [7]:

σBS(S0,K) =
σ0

(S0K)(1−β)/2[1 + (1−β)2
24 ln2 S0

K + (1−β)4
1920 ln4 S0

K + · · · ]
z

x(z)
·[

1 +

(
(1− β)2

24

σ20
(S0K)1−β

+
1

4

ρβασ0

(S0K)(1−β)/2
+

2− 3ρ2

24
α2

)
τ + O(τ2)

]
, (3.9)

where z := − α
σ0

(S0K)(1−β)/2log(S0
K ) and x(z) = ln

(√
1−2ρz+z2+z−ρ

1−ρ

)
.

For the case of at-the money options, i.e. when S0 = K, this formula reduces to

σBS(S0, S0) =
σ0

S1−β
0

·
[
1 +

(
(1− β)2σ20

24S2−2β
0

+
ρβασ0

4S1−β
0

+
2− 3ρ2

24
α2

)
τ + O(τ2)

]
. (3.10)

In the special case β = 1, the SABR implied volatility formula reduces to

σBS(S0,K) = σ0
y

f(y)

[
1 +

(
1

4
ρασ0 +

2− 3ρ2

24
α2

)
τ + O(τ2)

]
, (3.11)

where y := − α
σ0
log(S0

K ) and f(y) = ln

(√
1−2ρy+y2+y−ρ

1−ρ

)
.

Exponential functions of Brownian motion

Marc Yor’s discovery (1992) of an integral formula for joint density of the distribution of a

Brownian motion and the integral of exponential Brownian motion taken over a finite time

interval has been computed in the case σ = 2.

Proposition 3.0.2. Marc Yor’s formula. Applying Brownian motion rescaling [12], this

joint density of
( ∫ t

0 e
σWsds,Wt

)
, σ > 0 can be written for an arbitrary volatility parameter

σ as

φt,σ(x, y) :=
1

dxdy
P
(∫ t

0
eσWsds ∈ dx,Wt ∈ dy

)
=

σ

2x
e−

2
σ2x

(1+eσy) · θ
(

4eσy/2

σ2x
,
σ2t

4

)
, (3.12)
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for x > 0, y ∈ R, t > 0, where

θ(r, t) =
r√

2π3t
e
π2

2t

∫ ∞
0

e−
ξ2

2t · e−r cosh ξ sinh ξ sin
πξ

t
dξ, r, t > 0. (3.13)

By Lyasoff [7], (3.13) is equivalent to the following:

θ(r, t) =
r√

2π3t
e
π2

2t

∫ ∞
0

e−
ξ2

2t · cosh ξ cos

(
r sinh ξ − πξ

2t

)
dξ, r, t > 0. (3.14)

From computational point of view, the π
2 -formula: (3.12) with θ(·) defined as (3.14), may

be preferable to the π-formula: (3.12) with θ(·) defined as (3.13).

Proposition 3.0.3. A straightforward application of the Cameron-Martin-Girsanov theo-

rem implies that the joint density of
( ∫ t

0 e
σWs−µsds,Wt

)
, σ > 0, µ ∈ R, which we denote by

φt,σ,µ(x, y), x > 0, y ∈ R, can be connected with the density φt,σ(x, y) = φt,σ,0(x, y) through

the formula

φt,σ,µ(x, y) = e−
µ
σ
y+ µ2t

2σ2 φt,σ,0(x, y −
µ

σ
t). (3.15)

Models of volatility with mean reversion

Mean reversion stochastic volatility models relax the constant volatility assumption in

Black-Scholes model and the asset price St satisfies (3.7) but with the following volatil-

ity process:

σt = f(Yt), (3.16)

dYt = α(m− Yt)dt+ . . . dWt, (3.17)

where ρ ∈ [−1, 1] is denoted as the instantaneous correlation coefficient between Wt and

Mt := ρdWt +
√

1− ρ2dZt. The drift of Yt is defined in a way guarantee its mean-reverting

property. Here α is called the rate of mean reversion and m is the long-run mean level
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of Yt. And f is some positive function so that is volatility of stock price can never be

negative. Different choices of function f and Y process will result for different models such

as Heston models with Yt follow Cox-Ingersoll-Ross process, among them some have very

nice properties.
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Chapter 4

Hull and White Formula and

Extension

The no-arbitrage price at time t using the risk-neutral theory for any derivatives with

terminal time T and payoff function h(x) is given by the risk-neutral formula below:

Vt = E[e−r(T−t)h(XT )|Ft]. (4.1)

Thus Vt is a no-arbitrage price for the contingent claim. In what follows, we consider the

pricing of a call option, i.e.:

h(XT ) = (eXT −K)+ (4.2)

4.0.1 Hull-White formula: uncorrelated volatility

Under the assumption that the volatility σt is uncorrelated with the asset price driven by

another Brownian motion Zt, i.e. when ρ = 0, the pricing formula (4.1) can be further

simplified. By conditioning on the path of the volatility process and using the iterated

17



conditioning property, the European call option price is given by

V (t,Xt, σt) = e−r(T−t)E
[
E[(eXT −K)+|Ft ∨ FWT ]

]
(4.3)

The inner expectation is the Black-Scholes computation with a time-dependent volatility.

Since σt is a Markov process, we can apply the Black-Scholes formula, and obtaine:

V (t, x, y) = E[BS(t, x;K,T ; vt)|Yt = y], (4.4)

where

v2t =
1

T − t

∫ T

t
σ2sds, (4.5)

is the root-mean-square time future average volatility.

4.0.2 Hull-White formula: correlated volatility

In general, the situation is more complicated when volatility is correlated with the Brow-

nian motion Wt driving the stock price. Again we can use iterated expectation to price a

European call option.

V (t, x, y) = E[ξtBS(t, x;Kξ−1t , T ; σ̄ρ)|Yt = y], (4.6)

where

ξt = exp

(
ρ

∫ T

t
σsdẐs −

1

2
ρ2
∫ T

t
σ2sds

)
,

σ̄2ρ =
1

T − t

∫ T

t
(1− ρ2)σ2sds.

The Hull-White formula is of practical use for Monte Carlo simulation of prices in a corre-

lated stochastic volatility model since only one Brownian motion path has to be generated.

However, it does not directly reveal any information about the implied volatility curve like

the uncorrelated case.
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4.0.3 A generalization of Hull-White formula

The classical Hull-White formula for option pricing can be extended, by means of Malliavin

Calculus, to the correlated case. The main problem is that average future volatility is not

adapted, however, this issue can be resolved by anticipating stochastic calculus. And this

method decomposes option prices as the sum of the same derivative price if there is no

correlation and a correction due by correlation. The following theorem is due to Alòs et al

(2006).

Theorem 4.0.1. Consider model (3.7)-(3.8) with β = 1, and assume the following hy-

potheses hold:

1. The payoff function h : R→ R+ is continuous and piecewise C1;

2. There exists a positive real constant a such that a ≤ σ2t for all t ∈ [0, T ];

3. σ2 ∈ L1,2W ([0, T ]);

4. For all t ∈ [0, T ] there exists a positive constant C such that for all s ∈ [0, T ],∣∣∣∣∣E
[(∫ T

s
DW
s σ

2
rdr

)
σs

∣∣∣∣Ft]
∣∣∣∣∣ ≤ C.

Then, for all t ∈ [0, T ],

Vt = E[BS(t,Xt, vt)|Ft] +
ρ

2
E

[ ∫ T

t
e−r(s−t)H(s,Xs, vs)Λsds

∣∣∣∣Ft], (4.7)

where v2t is the future average volatility defined (4.5) in Subsection 4.0.1 and

H(s,Xs, vs) :=

(
∂3

∂x3
− ∂2

∂x2

)
BS(s,Xs, vs),

Λs :=

(∫ T

s
DW
s σ

2
rdr

)
σs.
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Notice that formula (4.7) does not reduce the dimensionality of the problem but identifies

the impact of correlation. When ρ = 0, it is the same as (4.4).
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Chapter 5

Dyson series in the return’s

idiosyncratic noise

5.0.1 Application of Marc Yor’s formula

Throughout this and next section we denote by Vt1,t2 :=
∫ t2
t1
σ2udu a cumulative time integral,

from t1 to t2, of future volatility, i.e. Vs,T = v2s(T − s). The aim of this paper is to extend

Theorem 4.1 to a deterministic form by specifically assuming the underlying asset and

volatility process follow (3.7), then σt is a square integrable process adapted to {FWt }.

Lemma 5.0.1. The conditional probability density function of Vs,T is 1
σ2
s
ψVs,T ( v

σ2
s
).

where ψVs,T (v) =

∫ ∞
−∞

φT−s,2α,α2(v, z)dz. (5.1)

One straightforward application of (5.1) is using the conditional density of Vt,T to obtain

the first conditional expectation in (4.7):
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Theorem 5.0.2. The conditional expectation of BS(t,Xt, vt) is

E[BS(t,Xt, vt)|Ft] =

∫ ∞
0

BS

(
t,Xt,

√
v

T − t

)
1

σ2t
ψVt,T (

v

σ2t
)dv. (5.2)

5.0.2 Application of exponential formula

Theorem 5.0.3. For t ≤ s, define G(s,Xs, vs) =
∑∞

n=0
1

2nn!gn(s,Xt, vt), where gn(s,Xt, vt) =

ωtZ ◦
∫∫∫
[t,T ]n D

2n,Z
τ
⊗
nH(s,Xs, vs)dτ

⊗
n. Let Gs, Hs be the short notation for G(s,Xs, vs) and

H(s,Xs, vs), then the option price (4.7) can be further simplified as the following:

Vt = E[BS(t,Xt, vt)|Ft] +
ρ

2

∫ T

t
e−r(s−t)E[ΛsGs|Ft]ds. (5.3)

Now we use Malliavin calculus to deduce a full asymptotic series for G(s,Xs, vs) and use it

to obtain E[ΛsGs|Ft] in (5.3), which gives us an deterministic formula for European option

price. By (3.2) and (23),

Xs = Xt +

∫ s

t
r − 1

2
σ2udu+

∫ s

t
σu(ρdWu +

√
1− ρ2dZu)

= Xt + r(s− t)− 1

2
Vt,s +

ρ

α
(σs − σt) +

√
1− ρ2

∫ s

t
σudZu. (5.4)

Note that the volatility process in (3.7) is the differential notation for σt−σ0 =
∫ t
0 ασudWu,

and obviously for 0 < t < s, σs − σt =
∫ s
t ασudWu. And accordingly by (5.4) and (3.5),

d±(s,Xs, vs) =
Xs−lnK+(r± v

2
s
2
)(T−s)√

Vs,T
. Therefor by Theorem 2.0.7,

DZ
τ Xs = DZ

τ

∫ s

t
σu
√

1− ρ2dZu = στ
√

1− ρ21{τ≤s}, (5.5)

DZ
τ d+ = DZ

τ d− =
DZ
τ Xs

vs
√
T − s

=
στ
√

1− ρ21{τ≤s}
vs
√
T − s

. (5.6)
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Lemma 5.0.4. Let two real-valued functions p(t, x, σ) and q(t, x, σ) be defined as following:

p(t, x, σ) = x−
d2+(x, t)

2
+ ln(−d−(x, t)), (5.7)

q(t, x, σ) =
1√

2πσ2(T − t)
ex. (5.8)

Then the 2nth order Malliavin derivative of Hs can be expressed as:

D2n,Z
τ
⊗
nHs = (1− ρ2)nHsB2n

(
p′(·), p′′(·), . . . , p(2n)(·)

)
Πn
i=1σ

2
τi1{τi≤s}, (5.9)

where p(j)(s,Xs, vs) =


(−1)j+1−d2−
(
√
Vs,T d−)j

when j = 1, 2;

(−1)j+1(j−1)!
(
√
Vs,T d−)j

for j ≥ 3.

(5.10)

for d− evaluated at (s,Xs, vs).

The second step to calculate G(s,Xs, vs) is to apply freezing operator ωtZ to D2n,Z
τ
⊗
nHs for

n = 0, 1, 2, . . . . Let X be any random variable depend on Brownian motion {Zt}t≥0, denote

X ωZ := ωtZ ◦X be the random variable X applied by the freezing operator ωtZ , by Proposition

2.0.10,

Xω
s := Xt + r(s− t)− 1

2

∫ s

t
σ2udu+

ρ

α
(σs − σt) + ωtZ ◦

∫ s

t
σu
√

1− ρ2dZu

= Xt + r(s− t)− 1

2
Vt,s +

ρ

α
(σs − σt), (5.11)

and accordingly we have

dω±(s,Xs, vs) = d±(s,Xω
s , vs) =

Xω
s − lnK + (r ± v2s

2 )(T − s)√
Vs,T

, (5.12)

Hω
s =

√
Vs,T − dω+√

2πVs,T
eX

ω
s −

dω+
2

2 =
−dω−√
2πVs,T

eX
ω
s −

dω+
2

2 . (5.13)
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Therefore in general, for n = 0, 1, 2, . . . ,

D2n,Z
τ
⊗
nH

ω
s = ωtZ ◦

[
(1− ρ2)nHsB2n

(
p′(s,Xs, vs), . . . , p

(2n)(s,Xs, vs)
)

Πn
i=1σ

2
τi

]
= (1− ρ2)nHω

s B2n

(
p′(s,Xω

s , vs), . . . , p
(2n)(s,Xω

s , vs)
)

Πn
i=1σ

2
τi1{τi≤s}, (5.14)

where p(j)(s,Xω
s , vs) := ωtZ ◦p(j)(s,Xs, vs) is given by (5.10) except that d− is now evaluated

at (s,Xω
s , vs). Thus, by (5.14), we are able to compute Gs in the following:

Gs =
∞∑
n=0

1

2nn!
ωtZ ◦

∫∫∫
[t,T ]n

D2n,Z
τ
⊗
nH(s,Xs, vs)dτ

⊗
n

=

∞∑
n=0

(1− ρ2)n

2nn!
Hω
s B2n

(
p′(s,Xs, vs), . . . , p

(2n)(s,Xs, vs)
)∫∫∫

[t,T ]n
Πn
i=1σ

2
τi1{τi≤s}dτ

⊗
n

= Hω
s

∞∑
n=0

(1− ρ2)n

2nn!

(
Vt,s
)n

B2n

(
p′(s,Xω

s , vs), . . . , p
(2n)(s,Xω

s , vs)
)
. (5.15)

5.0.3 Option pricing formula for SABR model

Lemma 5.0.5. Let Lωs = Vs,TH
ω
s =

−dω−√
2π
eX

ω
s −

dω+
2

2 and f(s,Xs, vs) = Vs,TG(s,Xs, vs), given

that Gs is a function in terms of Xs and Vs,T in (5.15), then conditional expectation of the

product of Λs and Gs can be calculated as the following :

E[ΛsGs|Ft] = 2α

∫ ∞
0

∫ ∞
−∞

h
(
σ2t x, σs(y)

)
φs−t,2α,α2(x, y)dydx, (5.16)

where h
(
Vt,s, σs(Ws −Wt)

)
= 1

σs

∫∞
0 f

(
s,Xs(Vt,s, σs),

√
v

T−s

)
ψVs,T

(
v
σ2
s

)
dv.

Remark. Equation (5.11) shows that Xω
s is a function depends only on two random vari-

ables: Vt,s and σs, i.e. Xω
s (Vt,s, σs) = Xt+ r(s− t)− 1

2

∫ s
t σ

2
udu+ ρ

α(σs−σt). While σs itself
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is a function of Ws−Wt. The joint density for (Vt,s,Ws−t) is given by Marc Yor’s formula,

Proposition (3.0.2) in Section 3, with properly parameters.

Remark. Xx,y
s represent a real-valued function of (s,x,y) which mimic the definition of Xω

s

but replace Vt,s and Ws −Wt with x and y.

Theorem 5.0.6. Full Dyson Series Expansion. For SABR model (3.7)-(3.8) with

β = 1, let c =
(T−t)

√
1−ρ2√

2
and assume that

c2n

n!2
E
[(

sup
τi∈(t,T )

|HsB2n

(
p′(s,Xs, vs), . . . , p

(2n)(s,Xs, vs))Π
n
i=1σ

2
τi1{τi≤s}

)2] −−−→
n→∞

0.

Let p(·) and f(·) be defined in Lemma 5.0.4 and Lemma 5.0.5, respectively, then for all

t ∈ [0, T ],

Vt =

∫ ∞
0

∫ ∞
−∞

1

σ2t
BS

(
t,Xt,

√
v

T − t

)
φT−t,2α,α2

( v
σ2t
, z
)
dzdv

+ ρα

∫ T

t

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

l(s, v, z, x, y)dzdvdydxds, (5.17)

where

l(s, v, z, x, y) =
e−r(s−t)

σs(y)
· f
(
s,Xx,y

s ,

√
v

T − s

)
· φT−s,2α,α2

( v
σ2s
, z
)
· φs−t,2α,α2(x, y).

Example 5.0.1. First Order Approximation. Let m > 0, define

fm(s,Xs, vs) := Lωs

m∑
n=0

(
(1− ρ2)Vt,s

)n
2nn!

B2n

(
p′(Xω

s ), p′′(Xω
s ), . . . , p2n(Xω

s )
)
, (5.18)

then the first order approximation f1(s, vs, Xs) is calculated as following:

f1(s,Xs, vs) = Lωs

(
1 +

(1− ρ2)Vt,s
2

[(
p(1)(Xω

s )
)2

+ p(2)(Xω
s )
])

= Lωs

(
1 +

(1− ρ2)Vt,s
2

[( 1− d2−√
Vs,Td−)

)2
+
−1− d2−

(
√
Vs,Td−)2

])
=
−dω−√

2π
eX

ω
s −

dω+
2

2

(
1 +

(1− ρ2)Vt,s
2

dω−
2 − 3

Vs,T

)
. (5.19)
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Chapter 6

Dyson series in the common

noise

6.0.1 First order approximation pricing formula for SABR model

One obvious drawback of formula (5.17) is that the option price is a 7-dimensional integral

when the volatility is correlated with underlying asset, which could be computationally

expensive, even for the first order approximation. In this section, we reverse the order of

the two major steps that have been used in previous section by first using the conditional

probability density to solve one Brownian motion, then apply Exponential formula to the

remaining. For simplicity, we denote J = ρ
2E

[ ∫ T
t e−r(s−t)HsΛsds

∣∣∣∣Ft
]

as the correlation

correction term of option price (4.7) in Theorem 4.1. Therefore the option price is the sum of

conditional expectation of Black-Scholes and the correction term: Vt = E[BS(t,Xt, vt)|Ft]+

J .

Theorem 6.0.1. Let C1 = 1√
2π
ραKe−r(T−t), Qs = E

[
− d−e

−
d2−
2 |FWT ∪ FZt

]
, then the

correction term can be written as J = C1

∫ T
t E

[
σsQs

∣∣∣Ft]ds.
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Lemma 6.0.2. Let C2 = − 1
(2−ρ2)3/2 , C3 = − 1

2(2−ρ2) , κ = Xt − lnK + r(T − t) and define

γ(Vt,s, Vs,T , σs) :=
κ+ ρ

α
(σs−σt)− 1

2
(Vt,s+Vs,T )√

Vs,T
, for simplicity, we write γ instead of γ(Vt,s, Vs,T , σs)

hereafter, then Qs defined in the above theorem is calculated as Qs = C2γe
C3γ2.

Theorem 6.0.3. For ∀t ≤ s, define R(s,Xs, vs) = σsQs
C2

, let Rs be the short notation for

R(s,Xs, vs), define rn(s,Xt, vt) = ωtW ◦
∫∫∫
[t,T ]n D

2n,W
τ
⊗
nRsdτ

⊗
n. Let c = (T−t)√

2
, assume that

c2n

n!2
E
[(

sup
τi∈(t,T )

|D2n,W
τ
⊗
nRs

)2] −−−→
n→∞

0, then the correction term of the option price in (4.7)

can be further simplified as the following:

J = C1

∫ T

t
E
[
σsQs

∣∣∣Ft]ds = C1C2

∫ T

t

∞∑
n=0

1

2nn!
rn(s,Xt, vt)ds. (6.1)

Corollary 1. By Theorem 6.0.3, let m > 0, then the mth order approximation for the

correction term can be obtained by

J ≈ Jm = C1C2

∫ T

t

m∑
n=0

1

2nn!
rn(s,Xt, vt)ds. (6.2)

Corollary 2. First order approximation by time integral. For ∀s ∈ [t, T ], there

exists two analytical functions p(s) and q(s), (6.5) and (6.4), such that the first order

approximation for the correction term of the option price is a time integral of the sum of

those two functions:

J1 =
1

2
C1C2

[ ∫ T

t

[
p(s) + q(s)

]
ds+ 2(T − t)

]
. (6.3)

q(s) = Rωs

[
− 2α2

(
2C2

3 (γω3 +
√
V ωs,T γ

ω2) + 1 +

√
V ωs,T

γω

)
+ 4α2V ωs,T

2Aω3
]
(T − s), (6.4)
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p(s) = Rωs

[[
ρα2e−

1
2α

2(s−t)(s− t)√
e−α2(s−t) − e−α2(T−t)

−
2ασt(

1
α2 (1− e−α2(s−t))− (s− t)e−α2(s−t))
√
e−α2(s−t) − e−α2(T−t)

− 2α2
(√σ2

t

α2
(e−α2(s−t) − e−α2(T−t)) + γω

)
·

1
α2 (1− e−α2(s−t))− (s− t)e−α2(T−t)

e−α2(s−t) − e−α2(T−t)

+ 2

(
ρα2e−

1
2α

2(s−t) + ασte
−α2(s−t))(s− t)− σt

α (1− e−α2(s−t))
√
e−α2(s−t) − e−α2(T−t)

]
·
(

1

γω
+ 2C3γ

ω

)
+(

ραe−
1
2α

2(s−t) + σte
−α2(s−t))2(s− t)− 2 ρασt(e

− 1
2α

2(s−t) − e− 3
2α

2(s−t)) +
σ2
t

2α2 (3e−2α2(s−t) − 4e−α
2(s−t) + 1)

e−α2(s−t) − e−α2(T−t)

· (6C3 + 4C2
3γ

2,ω)− 2σ3
t

ρ

α
e−

1
2α

2(s−t)(
1

α2
(1− e−α

2(s−t))− (s− t)e−α
2(T−t))Aω1

+
4σ4

t

α4

[(1

2
(1−e−2α2(s−t))+(e−2α2(s−t)+e−2α2(s−t+T−t)−e−α

2(s−t)−e−α
2(T−t))+α2e−α

2(T−t+s−t)(s−t)
)
Aω2

+
(1

2
(1− e−2α2(s−t)) + 2(e−α

2(T−t+s−t) − e−α
2(T−t)) + α2e−2α2(T−t)(s− t)

)
Aω3
]

+ α2(s− t)

]
,

(6.5)

where

Aω1 =
4C2

3γ
ω3 + 4C2

3

√
V ω
s,Tγ

ω2 + 8C3γ
ω + 6C3

√
V ω
s,T√

V ω
s,T

3

+
1√

V ω
s,T

3γω
+
α

ρ

(2C3γ
ω2 + 2C3

√
V ω
s,Tγ

ω + 1

σωs V
ω
s,T

+
1

σωs

√
V ω
s,Tγ

ω

)
,

Aω2 =
2C2

3γ
ω3 + 2C2

3

√
V ω
s,Tγ

ω2 + C3(V
ω
s,T + 3)γω + 3C3

√
V ω
s,T√

V ω
s,T

3
+

1

2
√
V ω
s,Tγ

ω
,

Aω3 =
C2
3γ

ω4 + 2C2
3

√
V ω
s,Tγ

ω3 + (C2
3V

ω
s,T + 3C3)γ

ω2 + 4C3

√
V ω
s,Tγ

ω

V ω
s,T

2

+
6C3V

ω
s,T + 3

4V ω
s,T

2 +
1

2
√
V ω
s,T

3γω
,

V ω
s,T =

σ2t
α2

(e−α
2(s−t) − e−α2(T−t)),
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γω(Vt,s, Vs,T , σs) =
ακ+ ρσt(e

− 1
2
α2(s−t) − 1)− σ2

t
2α(1− e−α2(T−t))

σt
√
e−α2(s−t) − e−α2(T−t)

.

6.0.2 Numerical Approximation

In the following tables we compare the values of the approximate European call option

prices approximated by different approaches. The Monte Carlo Simulation (MCS) used

number of simulation times by N = 106. We have chosen T − t = 1, lnXt = 100, r =

0.1, σt = 0.3, α = 1, ρ = 0,±0.5 and varying values for the strike price K listed in the first

column. Column 2- column 5 are corresponding option prices through MCS, Hagan’s implied

volatility formula (3.11), first order approximation by Full Dyson Series Expansion (5.17)

and the one-dimensional time integral approximation formula (6.3), respectively.

ρ = 0

K Monte Carlo Hagan (3.11) Uncorrelated pricing formula (5.2)

90 23.573138 23.415000 23.626726

95 20.440334 20.337570 20.457574

100 17.562962 17.624483 17.594033

105 15.066565 15.291032 15.063452

110 12.885739 13.322697 12.875527

ρ = −0.5
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K Monte Carlo Hagan (3.11) Formula I (5.17) Formula II (6.3)

90 23.972526 22.025500 23.762565 23.704533

95 20.640584 19.229952 20.539753 20.772327

100 17.500136 16.889528 17.505670 17.792294

105 14.688296 14.952772 14.836533 14.581574

110 12.121686 13.353472 12.884976 11.002132

ρ = 0.5

K Monte Carlo Hagan (3.11) Formula I (5.17) Formula II (6.3)

90 22.352943 24.228522 22.979063 21.234073

95 20.035690 20.836574 20.304502 18.059835

100 17.186214 17.691469 17.555458 17.124973

105 15.172375 14.842598 14.965057 16.082605

110 13.080356 12.333288 12.802697 14.488551

The average calculation speed for each methods are listed below:

Methods Time in seconds

Monte Carlo Simulation 29.117930

Hagan (3.11) 0.008773

Formula I (5.17) 27.315683

Formula II (6.3) 4.220214

Uncorrelated pricing formula (5.2) 4.172000

Although providing high accuracy, both Monte Carlo and Quasi Monte Carlo used in Dyson

(5.17) is time-consuming. While Hagan (3.11) has a great advantage in calculation speed

because the formula is analytic. Notice that it cost almost same amount of time when

comparing 1 -Dim integral (6.3) and Uncorrelated pricing formula (5.2), which implies that
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not only (6.3) provides accuracy but also can be viewed as time efficiency.
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Chapter 7

Conclusions

We derived that the European call option price for SABR model with β = 1 in two different

approaches by means of Malliavin Calculus. The full Dyson series expansion is a high

dimension integration with its integrand to be a infinite sum of asymptotic series. The

second approach use similar method as previous one but with different order, it yields to

a first order approximation by time integral for the correction part of option price. A big

advantage of the latter is that the integrand is analytic function. Besides, some partial

results can be further extends to fractional Brownian motion case, which will be our future

work.
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Appendix A

Appendix1

A.0.1 Proof of Lemma 5.1

The conditional density of
∫ T
s σ2udu can be obtained by integrating the joint probability

density of
( ∫ t

0 e
σWs−µsds,Wt

)
, t > 0. By Markov property of the volatility process σt and

proposition 3.0.2 we have

P
(∫ T

s
σ2udu ≤ v|σs

)
= P

(∫ T−s

0
e2α(Wu)−α2udu ≤ v

σ2s
,WT−s <∞

)
=

∫ v

σ2s

0

∫ ∞
−∞

φT−s,2α,α2(x, y)dydx. � (A.1)

A.0.2 Proof of Theorem 5.3

Let F = H(s,Xs, vs)Λs, recall that FWT ∨ FZt := σ{WT , Zt} is the filtration generated by

WT and Zt, using iterated conditioning we have, for s ≥ t,

E[F |Ft] = E
[
E
[
HsΛs|FWT ∨ FZt

]∣∣∣Ft] = E[ΛsGs|Ft], (A.2)

35



where Gs = E
[
Hs|FWT ∨ FZt

]
is a random variable depending only on Brownian motion

{Zt}t≥0, and we can apply exponential formula (2.12) to Hs. �

A.0.3 Proof of Lemma 5.4

From the framework Black-Scholes Theory we know that ∂BS(t,x,σ)
∂x = N(d+)ex, and accord-

inglyHs =
(
∂3

∂x3
− ∂2

∂x2

)
BS(s,Xs, vs) =

√
Vs,T−d+√
2πVs,T

eXs−
d2+
2 , for d+ evaluated at (s,Xs, vs).

It is obvious that dqn

dxn = q for ∀n ∈ N and

dpn

dxn
=


(−1)j+1−d2−(x,t)

(σ
√
T−sd−(x,t))n

when j = 1, 2;

(−1)n−1(n−1)!
(σ
√
T−sd−(x,t))n

for j ≥ 3.

Then q(s, p(s,Xs, vs), vs) = −d−√
2πVs,T

eXs−
d2+
2 = Hs, and by Lemma 2.0.15,

D2n,Z
τ
⊗
nHs = D2n,Z

τ
⊗
nq(s, p(s,Xs, vs), vs)

=

2n∑
k=1

q(k)(·, p(·)) · B2n,k

(
p′(·), p′′(·), . . . , p(2n−k+1)(·)

)
D2n,Z
τ
⊗
nXs

= q(·, p(·))
2n∑
k=1

B2n,k

(
p′(·), p′′(·), . . . , p(2n−k+1)(·)

)
Πn
i=1(1− ρ2)σ2τi1{τi≤s}

= (1− ρ2)nHsB2n

(
p′(·), p′′(·), . . . , p(2n)(·)

)
Πn
i=1σ

2
τi1{τi≤s}. � (A.3)

A.0.4 Proof of Lemma 5.5

Note that the volatility in model (3.7) is an exponential martingale, thus Λs can be further

simplified as Λs :=
( ∫ T

s DW
s σ

2
rdr
)
σs =

( ∫ T
s 2ασ2rdr

)
σs = 2αVs,Tσs. Then, for t ≤ s ≤ T ,

by Iterated conditioning property, we have

E[ΛsGs|Ft] = 2αE
[
σsE[Vs,TGs|Fs]

∣∣Ft] = 2αE
[
σsE[f(s,Xs, vs)|Fs]

∣∣Ft], (A.4)
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where f(s,Xs, vs) = Lωs
∑∞

n=0

(
(1−ρ2)Vt,s

)n
2nn! B2n

(
p′(s,Xω

s , vs), . . . , p
(2n)(s,Xω

s , vs)
)
.

Recall that the conditional probability density of Vs,T is given by (5.1), therefore the condi-

tional expectation E[f(s,Xs, vs)|Fs], through probabilistic approach, is E[f(s,Xs, vs)|Fs] =∫∞
0 f

(
s,Xs,

√
v

T−s

)
1
σ2
s
ψVs,T

(
v
σ2
s

)
dv, and

E[ΛsGs|Ft] = 2αE

[
1

σs

∫ ∞
0

f

(
s,Xs,

√
v

T − s

)
ψVs,T

(
v

σ2s

)
dv

∣∣∣∣Ft]. (A.5)

Denote σs(Ws−Wt) = σte
α(Ws−Wt)− 1

2
α2(s−t), Xx,y

s = Xω
s (σ2t x, σs(y)), define h

(
Vt,s, σs(Ws−

Wt)
)

= 1
σs

∫∞
0 f

(
s,Xs(Vt,s, σs),

√
v

T−s

)
ψVs,T

(
v
σ2
s

)
dv, then again using proposition 3.0.2

we have

E

[
1

σs

∫ ∞
0

f

(
s,Xs,

√
v

T − s

)
ψVs,T

(
v

σ2s

)
dv

∣∣∣∣Ft] = E
[
h
(
Vt,s, σs(Ws −Wt)

)∣∣∣Ft]
=

∫ ∞
0

∫ ∞
−∞

h
(
σ2t x, σs(y)

)
φs−t,2α,α2(x, y)dydx. � (A.6)

A.0.5 Proof of Theorem 5.6

This theorem is an extension result of Theorem 5.0.3, the proof is easily combine of Theorem

5.0.1 and Lemma 5.0.5, then Equation (5.3) becomes

Vt = E[BS(t,Xt, vt)|Ft] +
ρ

2

∫ T

t
e−r(s−t)E[ΛsGs|Ft]ds

= E[BS(t,Xt, vt)|Ft] + ρα

∫ T

t
e−r(s−t)E

[
1

σs

∫ ∞
0

f

(
s,Xs,

√
v

T − s

)
ψVs,T

(
v

σ2s

)
dv

∣∣∣∣Ft]ds
=

∫ ∞
0

BS

(
t,Xt,

√
v

T − t

)
1

σ2t
ψVt,T

(
v

σ2t

)
dv

+ ρα

∫ T

t

∫ ∞
0

∫ ∞
−∞

e−r(s−t)h
(
σ2t x, σs(y)

)
φs−t,2α,α2(x, y)dydxds

=

∫ ∞
0

∫ ∞
−∞

1

σ2t
BS

(
t,Xt,

√
v

T − t

)
φT−t,2α,α2

(
v

σ2t
, z

)
dzdv

+ ρα

∫ T

t

∫ ∞
0

∫ ∞
−∞

∫ ∞
0

∫ ∞
−∞

l(s, v, z, x, y)dzdvdydxds, (A.7)
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where

l(s, v, z, x, y) =
e−r(s−t)

σs(y)
· f
(
s,Xx,y

s ,

√
v

T − s

)
· φT−s,2α,α2

(
v

σ2s
, z

)
· φs−t,2α,α2(x, y). �
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Appendix B

Appendix2

B.0.1 Proof of Theorem 6.1

From Theorem 5.3 we see the expression of Xs and d±, a straightforward algebra calculation

shows that Xs −
d2+
2 = −d2−

2 +
(

lnK − r(T − s)
)
. Therefore we have the correction term as

the following:

J =
ρ

2

∫ T

t
e−r(s−t)E[

−d−√
2πVs,T

eXs−
d2+
2 2αVs,Tσs|Ft]ds

=
ρ

2

∫ T

t
e−r(s−t)

2α√
2π
E
[
σsE

[
− d−e−

d2−
2

+
(
lnK)−r(T−s)

)
|FWT ∨ FZt

]∣∣∣Ft]ds
= C1

∫ T

t
E
[
σsQs

∣∣∣Ft]ds. � (B.1)

B.0.2 Proof of Lemma 6.2

Recall that Xs by (5.4) is a linear function in Z =
∫ s
t σudZu, where Z is conditional normal

with zero mean and variance of Vt,s i.e. Z ∼ N (0, Vt,s). Denote λ(Vs,T ) :=
√

1−ρ2
Vs,T

and for
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simplicity we will write λ for λ(Vs,T ) in all derivation following, thus

d−(s,Xs, vs) =
Xs + r(T − s)− lnK − 1

2Vs,T√
Vs,T

= λZ + γ, (B.2)

is also a linear function of Z. Substitute (B.2) into Qs and use the normal probability

density of Z we can solve for Qs. For simplicity, we write a = λ2Vt,s+1, b =
λγVt,s
a , c =

γ2Vt,s
a ,

then

Qs = E
[
− (λZ + γ)e−

(λZ+γ)2

2

)
|FWT ∨ FZt

]
=

∫
R
−(λz + γ)e−

(λz+γ)2

2
1√

2πVt,s
e
− z2

2Vt,s dz

= − 1√
2πVt,s

∫
R

(λz + γ)e
−a(z

2+2bz+c)
2Vt,s dz = −e

a(b2−c)
2Vt,s

(
γ − λb√

a

)
= − γ

(2− ρ2)3/2
e
− γ2

2(2−ρ2) = C2γe
C3γ2 . �

Notice that we used the fact that λ2Vt,s = 1− ρ2 and a = 2− ρ2 for the substitution in the

second last equality.

B.0.3 Proof of Theorem 6.3

Since Rs = σsγe
C3γ2 is a random variable depends only on Brownian motion {Wt}t≥0, we

may apply exponential formula (2.12) to Rs such that:

E
[
Rs

∣∣∣Ft] =
∞∑
n=0

1

2nn!
rn(s,Xt, vt). � (B.3)

B.0.4 Sketch of Proof of Corollary 6.2

The formal proof use no more techniques than calculating the first and second order Malli-

avin derivative of Rs based on the stochastic process of the volatility, and then apply freezing

operator ωtW to Malliavin derivative of Rs for t ≤ s ≤ T , the integration result will be the

correction term of the option price.
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Step 1: Calculation of D2,W
τ γ(Vt,s, Vs,T , σs)

Denote γ as a short notation for γ(Vt,s, Vs,T , σs) defined in lemma 6.2, and by chain

rule(Thoerem 2.7), DW
τ

√
Vs,T =

DτVs,T

2
√
Vs,T

=
∫ T
s Dτσ2

udu

2(
∫ T
s σ2

udu)
1
2

, then we have

DW
τ γ =

√
Vs,T

( ρ
αD

W
τ σs − 1

2D
W
τ Vt,s

)
− 1

2

(√
Vs,T + γ

)
DW
τ Vs,T

Vs,T
, (B.4)

(DW
τ γ)2 =

( ρ
αD

W
τ σs − 1

2D
W
τ Vt,s

)2
Vs,T

+

(√
Vs,T + γ

)2
4V 2

s,T

(DW
τ Vs,T )2

−

( ρ
αD

W
τ σs − 1

2D
W
τ Vt,s

)(√
Vs,T + γ

)
√
V 3
s,T

DW
τ Vs,T . (B.5)

D2,W
τ γ = DW

τ

( ρ
αD

W
τ σs − 1

2D
W
τ Vt,s√

Vs,T

)
− 1

2
DW
τ

((√
Vs,T + γ

)
DW
τ Vs,T

Vs,T

)
= M− 1

2
N, (B.6)

where

M =
ρ
αD

2,W
τ σs − 1

2D
2,W
τ Vt,s√

Vs,T
−

ρ
αD

W
τ σs − 1

2D
W
τ Vt,s

2
√
V 3
s,T

DτVs,T ,

N =

(
1

2
√
V 3
s,T

−
√
Vs,T + γ

V 2
s,T

)
(DW

τ Vs,T )2 +
DW
τ γ

Vs,T
DW
τ Vs,T +

√
Vs,T + γ

Vs,T
D2,W
τ Vs,T .

Therefore, substitute M and N in (B.6) and combining like terms, we have

D2,W
τ γ =

ρ/α√
Vs,T

D2,W
τ σs −

1

2
√
Vs,T

D2,W
τ Vt,s −

√
Vs,T + γ

2Vs,T
D2,W
τ Vs,T

− ρ/α√
V 3
s,T

DW
τ σsD

W
τ Vs,T +

1

2
√
Vs,T

DW
τ Vt,sD

W
τ Vs,T +

2
√
Vs,T + 3γ

4V 2
s,T

(DW
τ Vs,T )2. (B.7)

Step 2: Calculation of D2,W
τ R(s,Xs, vs)

Let f(x, y) = yxeC3x2 , then R(s,Xs, vs) = f(γ, σs) and fyy = 0, by Product rule and Chain
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rule, Theorem 2.6 and 2.7,

D2,W
τ Rs = fx(γ, σs)D

2,W
τ γ+fxx(γ, σs)(D

W
τ γ)2+fy(γ, σs)D

2,W
τ σs+2fxy(γ, σs)D

W
τ γD

W
τ σs

= Rs

[(1

γ
+2C3γ

)
D2,W
τ γ+(6C3+4C2

3γ
2)(DW

τ γ)2+
1

σs
D2,W
τ σs+2

(
1

γσs
+

2C3γ

σs

)
DW
τ γD

W
τ σs

]
= Rs

[
1

σs
D2,W
τ σs+

(
1

γ
+2C3γ

)(
ρ/α√
Vs,T

D2,W
τ σs−

1

2
√
Vs,T

D2,W
τ Vt,s−

√
Vs,T + γ

2Vs,T
D2,W
τ Vs,T

)

+2

(
1

γσs
+

2C3γ

σs

)( ρ
α(DW

τ σs)
2 − 1

2D
W
τ σsD

W
τ Vt,s√

Vs,T

)
+(6C3 +4C2

3γ
2)

( ρ
αD

W
τ σs − 1

2D
W
τ Vt,s

)2
Vs,T

− ρ

α
A1D

W
τ σsD

W
τ Vs,T +A2D

W
τ Vt,sD

W
τ Vs,T +A3(D

W
τ Vs,T )2

]
, (B.8)

where

A1 =
4C2

3γ
3 + 4C2

3

√
Vs,Tγ

2 + 8C3γ + 6C3

√
Vs,T√

V 3
s,T

+
1√
V 3
s,Tγ

+
α

ρ

(
2C3γ

2 + 2C3

√
Vs,Tγ + 1

σsVs,T
+

1

σs
√
Vs,Tγ

)
,

A2 =
2C2

3γ
3 + 2C2

3

√
Vs,Tγ

2 + C3(Vs,T + 3)γ + 3C3

√
Vs,T√

V 3
s,T

+
1

2
√
Vs,Tγ

,

A3 =
4
(
C2
3γ

4 + 2C2
3

√
Vs,Tγ

3 + (C2
3Vs,T + 3C3)γ

2 + 4C3

√
Vs,Tγ

)
+ 6C3Vs,T + 3

4V 2
s,T

+
1

2
√
V 3
s,Tγ

.

Step 3: Apply freezing operator ωtW to D2,W
τ R(s,Xs, vs) to obtain an analytical

expression

Recall that the volatility process σt for t ∈ [0, T ] is is defined by (3.8), which implies that

for 0 < t < s < T , σs = σte
− 1

2
α2(s−t)+α(Ws−Wt). By the structure of σt for t ∈ [0, T ], we
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have the following results:

DW
τ σs = ασs1{τ≤s}, D2,W

τ σs = α2σs1{τ≤s}, (B.9)

DW
τ Vs,T = 2αVτ∧s,T , D2,W

τ Vs,T = 4α2Vτ∧s,T , (B.10)

DW
τ Vt,s = 2αVτ,s1{τ≤s}, D2,W

τ Vt,s = 4α2Vτ,s1{τ≤s}. (B.11)

The following results can be obtained by applying freezing operator ωtW to each integral of

square of volatility for t ≤ s ≤ T ,

σωs := ωtW ◦ σs = σte
− 1

2
α2(s−t), (B.12)

V ω
t,s := ωtW ◦ Vt,s =

σ2t
α2

(1− e−α2(s−t)), (B.13)

V ω
s,T := ωtW ◦ Vs,T =

σ2t
α2

(e−α
2(s−t) − e−α2(T−t)), (B.14)

V ω
t,T := ωtW ◦ Vt,T =

σ2t
α2

(1− e−α2(T−t)). (B.15)

Thus, it is straightforward to calculate γω(Vt,s, Vs,T , σs) := ωtW ◦ γ(Vt,s, Vs,T , σs) which we

write γω and Aωk := ωtW ◦ Ak, for k = 1, 2, 3.

γω(Vt,s, Vs,T , σs) = ωtW ◦
κ+ ρ

α(σs − σt)− 1
2(Vt,s + Vs,T )√

Vs,T

=
ακ+ ρσt(e

− 1
2
α2(s−t) − 1)− σ2

t
2α(1− e−α2(T−t))

σt
√
e−α2(s−t) − e−α2(T−t)

. (B.16)

Combine these results with (B.8), we have for τ > s,

D2,W
τ Rωs := ωtW ◦D2,W

τ Rs = Rωs

[( 1

γω
+2C2

3γ
ω2

)(
−2α2(

√
V ω
s,T +γω)

)
+Aω3 (2αV ω

s,T )2
]
.

(B.17)
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Notice that when τ > s, DW
τ σs = DW

τ Vt,s = 0. When τ ≤ s,

D2,W
τ Rωs = Rωs

[
α2+

(
1

γω
+2C3γ

ω

)(
ρ/α√
V ω
s,T

α2σωs −
1

2
√
V ω
s,T

4α2V ω
τ,s−

√
V ω
s,T + γω

2V ω
s,T

4α2V ω
τ,T

+ 2
( ρ
α(ασωs )2 − 1

2ασ
ω
s 2αV ω

τ,s

σs
√
V ω
s,T

))
+ (6C3 + 4C2

3γ
2,ω)

( ρ
αασ

ω
s − 1

22αV ω
τ,s

)2
V ω
s,T

− ρ

α
Aω1ασωs 2αV ω

τ,T +Aω2 2αV ω
τ,s2αV

ω
τ,T +Aω3 (2αV ω

τ,T )2

]

= Rωs

[
α2 +

(
1

γω
+ 2C3γ

ω

)(
ρα2e−

1
2
α2(s−t)√

e−α2(s−t) − e−α2(T−t)
− 2ασt(e

−α2(τ−t) − e−α2(s−t))√
e−α2(s−t) − e−α2(T−t)

− 2α2
(√σ2t

α2
(e−α2(s−t) − e−α2(T−t)) + γω

)
· e
−α2(τ−t) − e−α2(T−t)

e−α2(s−t) − e−α2(T−t)

+ 2
ρα2e−

1
2
α2(s−t) − ασt(e−α

2(τ−t) − e−α2(s−t))√
e−α2(s−t) − e−α2(T−t)

)

+ (6C3 + 4C2
3γ

2,ω)

(
ραe−

1
2
α2(s−t) − σt(e−α

2(τ−t) − e−α2(s−t))
)2

e−α2(s−t) − e−α2(T−t)

− 2σ3t
ρ

α
e−

1
2
α2(s−t)(e−α

2(τ−t) − e−α2(T−t))Aω1

+
4σ4t
α2

[
(e−α

2(τ−t) − e−α2(s−t))(e−α
2(τ−t) − e−α2(T−t))Aω2 + (e−α

2(τ−t) − e−α2(T−t))2Aω3
]]
.

(B.18)

Step 4: A time integral formula for the correction term of option price

Let p(s) :=
∫ s
t D

2,W
τ Rωs dτ and q(s) :=

∫ T
s D2,W

τ Rωs dτ be the integration of D2,W
τ R(s,Xs, vs)

for both τ ≤ s and τ > s case, respectively. By Corollary 1, the first order approximation

for the correction term is

J1 = C1C2

∫ T

t
1 +

1

2

∫ T

t
D2,W
τ Rωs dτds =

1

2
C1C2

[ ∫ T

t
p(s) + q(s)ds + 2(T − t)

]
. (B.19)

The detail integration calculation for p(s) and q(s) is omitted here, a remark for q(s) is

that when τ > s, D2,W
τ Rωs does not depend on τ , which yields an simpler expression of q(s)

than p(s). �
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