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Spherical 2-designs and lattices from Abelian groups

Albrecht Böttcher, Lenny Fukshansky,
Stephan Ramon Garcia, Hiren Maharaj

Abstract. We consider lattices generated by finite Abelian groups. The main
result says that such a lattice is strongly eutactic, which means the normalized
minimal vectors of the lattice form a spherical 2-design, if and only if the group
is of odd order or if it is a power of the group of order 2. This result also
yields a criterion for the appropriately normalized minimal vectors to constitute
a uniform normalized tight frame.

1 Introduction and main result

A collection of points y1, . . . ,ym on the unit sphere Sn−1 in R
n is called a spherical t-design

for some integer t ≥ 1 if for every polynomial f(X) = f(X1, . . . , Xn) with real coefficients
of degree ≤ t the equality

∫

Sn−1

f(X) dµ(X) =
1

m

m∑

i=1

f(yi) (1)

holds, where µ is the surface measure normalized so that µ(Sn−1) = 1. Spherical designs were
introduced in the celebrated 1977 paper [2] of Delsarte, Goethals, and Seidel and have been
studied extensively ever since for their remarkable properties and many applications within
and outside of mathematics. The strong connection between spherical designs and lattices
was first observed by B. B. Venkov. See in particular [9] (also surveyed in [6], Chapter 16)
and the nice survey of Venkov’s fundamental work on this subject written by Nebe [7].

Let Λ ⊂ R
n be a lattice of full rank. The minimal norm of Λ is defined as

|Λ| = min {‖x‖ : x ∈ Λ \ {0}} ,

where ‖ ‖ denotes the Euclidean norm, and we let

S(Λ) = {x ∈ Λ : ‖x‖ = |Λ|}
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denote the set of minimal vectors of Λ. Clearly S(Λ) is a symmetric set, and the set

S ′(Λ) :=
1

|Λ|S(Λ) =
{

1

|Λ|x : x ∈ Λ, ‖x‖ = |Λ|
}

is a finite subset of the unit sphere Sn−1. The lattice Λ is called strongly eutactic if S ′(Λ) is
a spherical 2-design.

We remark that the original definition of strongly eutactic lattices is different. However,
it is equivalent to the one given here, that is, to the property that S ′(Λ) is a spherical 2-
design. We refer to [6] (Section 3.2 and Chapter 16, especially Corollary 16.1.3) and [7] for
further information on this.

Here is an an easy to use criterion for spherical 2-designs, which is actually equivalent
to Venkov’s criterion as in Proposition 16.1.2 and Theorem 16.1.4 of [6] and which can be
deduced from a more general result of [3]. We write vectors in R

n as columns and let ei
denote the i-th standard basis vector in R

n. Then e⊤i y is just the i-th component of y. The
criterion is as follows.

Proposition 1.1 (Theorem 4.1 of [3]). The set of points S ′(Λ) = {y1, . . . ,ym} is a spherical

2-design if and only if

m∑

i=1

(e⊤j yi)(e
⊤
k yi) =

{
m/n if j = k,
0 if j 6= k,

for all 1 ≤ j, k ≤ n.

In other words, the lattice Λ is strongly eutactic if and only if the n rows of the n ×m
matrix Y constituted by the columns

√

n/my1, . . . ,
√

n/mym form an orthonormal system
in the Euclidean space R

m, or, equivalently, if Y Y ⊤ = I. Since the surface measure µ is
invariant under orthogonal transformations, definition (1) implies that if V is an orthogonal
operator, then y1, . . . ,ym form a spherical t-design if and and only if so do V y1, . . . , V ym.
For spherical 2-designs this also follows from Proposition 1.1, because Y Y ⊤ = I if and only
if V Y (V Y )⊤ = I.

Here are two simple examples. Every one-dimensional full-rank lattice is strongly eutac-
tic, because the two points 1 and −1 are a spherical 2-design (even a spherical t-design) in
R

1, provided the integral in (1) is interpreted as f(−1)/2 + f(1)/2. In this case the matrix
Y is the row

1√
2
(−1 1). (2)

The hexagonal lattice is strongly eutactic in R
2, since the six vertices of a regular hexagon

inscribed in S1 form a spherical 2-design in R
2. Here the matrix Y is

1√
3

(
1 1/2 −1/2 −1 −1/2 1/2

0
√
3/2

√
3/2 0 −

√
3/2 −

√
3/2

)

. (3)

Strongly eutactic lattices are important in lattice theory due to their central role in dis-
crete optimization problems, especially sphere packing. For instance, A. Schürmann recently
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proved [8] that all perfect strongly eutactic lattices are periodic extreme, i.e., these lattices
cannot be “locally modified” to yield a better periodic packing. In fact, it has been proved
by Voronoi around 1900 that a lattice is extreme (i.e., is a local maximum of the packing
density function on the space of lattices in a fixed dimension) if and only if it is perfect and
eutactic, a condition being weaker than strong eutaxy; we refer to the reader to Martinet’s
book [6] and Nebe’s paper [7] for definitions and further information. While many of the
standard lattices, such as indecomposable root lattices, are known to be strongly eutactic, a
full classification of strongly eutactic lattices is only known in small dimensions. This makes
constructions of strongly eutactic lattices in arbitrary dimensions particularly interesting.

In this paper, we revisit the family of lattices generated by finite Abelian groups that we
studied previously in [1], showing that many of them are strongly eutactic.

Here is our main result.

Theorem 1.2. Let G = {g1 := 0, g2, . . . , gn} be a finite (additively written) Abelian group

of order n ≥ 2, let LG be the sublattice of the root lattice

An−1 =

{

x = (x1, . . . , xn) ∈ Z
n :

n∑

i=1

xi = 0

}

,

which is defined by

LG =

{

x = (x1, . . . , xn) ∈ An−1 :

n∑

j=2

xjgj = 0

}

, (4)

and let B : span
R
An−1 → R

n−1 be an arbitrary linear isometry. Then B(LG) is strongly

eutactic in R
n−1 if and only if G has odd order or is isomorphic to (Z/2Z)ν for some ν ≥ 1.

We finally want to mention the connection between spherical 2-designs and frames. Let
m ≥ n and let x1, . . . ,xm ∈ R

n be a collection of vectors of norm
√

n/m such that

R
n = span

R
{x1, . . . ,xm} and

m∑

i=1

|x⊤
i y|2 = ‖y‖2 for each y ∈ R

n.

Such a collection of vectors is called a uniform normalized tight (UNT) (m,n)-frame. It is
well-known (see, for instance Proposition 1.2 of [5]) that a finite subset y1, . . . ,ym of the
unit sphere Sn−1 in R

n is a spherical 2-design if and only if
√

n/m y1, . . . ,
√

n/m ym is
a UNT (m,n)-frame and

∑m

i=1 yi = 0. In fact, this observation was actually made earlier
by B. B. Venkov [9]: it is a special case of a more general criterion, which works for all t
(see Proposition 16.1.2 of [6]). Since sets of minimal vectors of lattices are 0-symmetric, the
condition

∑m

i=1 yi = 0 is automatically satisfied, and so our lattices also provide a family of
UNT (m,n)-frames, where m is the number of minimal vectors in the corresponding lattice,
as given by (5) below.

In Section 2, we recall the formula for the number of minimal vectors in the lattice LG

and give the proof of Theorem 1.2. This proof is based on four computational lemmas. The
proofs of these lemmas are shifted to Section 3.
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2 Proof of the main result

For convenience, when the context is clear, we will refer to the lattice point (x1, . . . , xn) by
using the formal sum x1g1 + x2g2 + . . .+ xngn in the group ring Z[G]. The following result
is proved in [4] in the special case of lattices from elliptic curves. Subsequently, in [1] we
pointed out that this theorem is valid for the lattices LG with virtually no change to the
proof. As that the proof is important for our present purposes, we give it in detail here
anew.

Proposition 2.1. Assume that n ≥ 4 and let κ denote the order of the subgroup G2 := {x ∈
G : 2x = 0} of G. Then the number of minimal vectors in LG is

n

κ
· (n− κ)(n− κ− 2)

4
+
(

n− n

κ

)

· n(n− 2)

4
. (5)

Proof. As shown in [1, 4], every minimal vector of LG is of the form p + q − r − s where
p, q, r, s ∈ G are distinct and p+ q = r+ s. Consider the homomorphism τ : G → G defined
by τ(p) = 2p. The kernel of τ is the subgroup G2 of G and the image Im(τ) of τ has n/κ
points. Fix an element z of G. First we count the number of solutions to the equation
p+ q = z where p, q are distinct elements of G. Observe that p = q if and only if z ∈ Im(τ).

If z ∈ Im(τ), there are κ solutions p to 2p = z. Thus there are n−κ possible p such that
q := z − p 6= p, and so there are (n − κ)/2 pairs p, q such that p + q = z and p 6= q. Hence
the number of pairs r, s disjoint from {p, q} and such that r + s = z is (n − κ − 2)/2. In
total, there are (n − κ)/2 · (n − κ − 2)/2 = (n − κ)(n − κ − 2)/4 possible minimal vectors
p+ q− r− s such that p+ q = z = r+ s. The size of the image of τ is n

κ
so the total number

of possible minimal vectors p + q − r − s such that p + q = z = r + s with z ∈ Im(τ) is
n
κ
· (n−κ)(n−κ−2)

4
.

If z 6∈ Im(τ), there are no solutions p to 2p = z. A similar reasoning as above shows that

there are (n − n
κ
) · n(n−2)

4
minimal vectors p + q − r − s with p + q 6∈ Im(τ). Thus, by the

above argument, the number of minimal vectors of LG is given by (5).

We remark that κ = 1 if and only if and only if n is an odd number while κ = n if and
only if G = (Z/2Z)ν for some ν ≥ 2.

Let S ′(LG) = {u1,u2, . . . ,um} be the set of (normalized) minimal vectors of LG written
as n × 1 columns. The lattice LG is not a full-rank lattice in the column space R

n. We
rather think of LG as a full-rank lattice in the (n − 1)-dimensional Euclidean space that is
spanned by the real linear combinations of the vectors in the root lattice An−1. To be more
precise, we consider the lattice B(LG) where B : span

R
An−1 → R

n−1 is the linear isometry
from Theorem 1.2. We want to understand whether B(LG) is strongly eutactic in R

n−1.
First of all, the answer to the question whether B(LG) is strongly eutactic does not

depend on the concrete choice of B. Indeed, if B and C are two such linear isometries, then
CB−1 is a linear isometry of Rn−1 onto itself, and hence is given by an orthogonal matrix
V . We therefore may write C = V B. Consequently, C(S ′(LG)) = V B(S ′(LG)), and as
pointed out in Section 1, this implies that C(S ′(LG)) is a spherical 2-design if and only if so
is B(S ′(LG)). Thus, it suffices to prove Theorem 1.2 for a single specified linear isometry B.
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Our specification of B is as follows. Let A be the (n− 1)× n matrix whose j-th row is

1
√

j2 + j
(1, 1, . . . , 1
︸ ︷︷ ︸

j-ones

,−j, 0, 0, . . . , 0).

We are working with column spaces and may therefore identify matrices with the linear op-
erators they induce. Thus, we think of A as a linear operator of Rn to R

n−1. It is not difficult
to check that A maps span

R
An−1 isometrically onto R

n−1. The orthogonal complement of
spanRAn−1 in R

n is spanned by the vector (1, . . . , 1)⊤, and A is the zero operator on this
orthogonal complement. We specify B to be the restriction of A to spanRAn−1.

Let Ai,a denote the (i, a)-entry of the matrix A. It is immediately seen that A has the
following properties.

(P1) The rows of A form an orthonormal set, that is,
∑n

a=1Aj,aAk,a = δj,k.

(P2) The rows of A are orthogonal to the 1×n vector (1, 1, . . . , 1), that is,
∑n

a=1Aj,a = 0.

We have B(S ′(LG)) = {Au1, Au2, . . . , Aum}, where u1, . . . ,um are the normalized min-
imal vectors of LG. The set B(S ′(LG)) is a subset of Rn−1. Thus, when applying Propo-
sition 1.1 to {Au1, Au2, . . . , Aum}, we have to replace n by n − 1. Incidentally, the same
change from n to n− 1 must also be done when considering UNT frames in this context. To
draw an interim balance, what we have to prove is the following.

Theorem 2.2. Let n ≥ 2. With B as specified above, the set B(S ′(LG)) is a 2-design if and

only if κ = 1 or κ = n.

The cases n = 2 and n = 3 can be disposed of by straightforward inspection: for n = 2,
B(S ′(LG)) is the doubleton {−1, 1}, and we get the matrix (2), while for n = 3, the lattice
LG is a hexagonal lattice whose minimal vectors are the vertices of a regular hexagon and
after normalization lead to the matrix (3). Therefore we henceforth suppose that n ≥ 4.

The j-th entry of Aui is e⊤j Aui where ej is the (n − 1) × 1 column vector whose only
nonzero entry is 1 in the jth position. For 1 ≤ a ≤ n, let ea be the n× 1 vector whose only
nonzero entry is 1 in the a-th position. We denote the (j, a)-th entry of A by Aj,a. Note that
Aj,a = e⊤j Aea.

As already mentioned in the proof of Proposition 2.1, it was shown in [1, 4] that all
minimal vectors of LG are of the form ea + eb − ec − ed such that ga + gb = gc + gd and
ga, gb, gc, gd are all distinct elements of G. Now suppose that u = 1

2
(ea + eb − ec − ed) (the

factor 1
2
is a normalization factor). Then

e⊤j Au =
1

2
(Aj,a + Aj,b − Aj,c −Aj,d).

For once and for all we fix integers j, k such that 1 ≤ j, k ≤ n− 1 and put

f(a, b, c, d) := (Aj,a + Aj,b − Aj,c −Aj,d)(Ak,a + Ak,b −Ak,c − Ak,d).

5



Then, since

(e⊤j Au)(e
⊤
k Au) =

1

4
f(a, b, c, d),

the sum ∑

u∈S′(LG)

(e⊤j Au)(e
⊤
k Au) (6)

is the same as the sum of 1
4
f(a, b, c, d) over all (minimal) vectors ea + eb − ec − ed such that

ga + gb = gc + gd and ga, gb, gc, gd are all distinct elements of G.
For a fixed z ∈ G, we let Rz be the set of all ordered pairs (a, b) such that ga+gb = z and

a 6= b. For a fixed (a, b) ∈ Rz, we let Rz(a, b) denote the set of all ordered pairs (c, d) such
that gc + gd = z, c 6= d and {c, d} ∩ {a, b} = ∅. Notice that Rz(a, b) = Rz \ {(a, b), (b, a)}.
From the proof of Proposition 2.1 we infer that the sum (6) is the same as

∑

z∈Im(τ)

1
2

∑

(a,b)∈Rz

1
2

∑

(c,d)∈Rz(a,b)

1
4
f(a, b, c, d) +

∑

z 6∈Im(τ)

1
2

∑

(a,b)∈Rz

1
2

∑

(c,d)∈Rz(a,b)

1
4
f(a, b, c, d). (7)

The summation over z 6∈ Im(τ) is over all z ∈ G \ Im(τ). The number of minimal vectors is
given by

∑

z∈Im(τ)

1
2

∑

(a,b)∈Rz

1
2

∑

(c,d)∈Rz(a,b)

1 +
∑

z 6∈Im(τ)

1
2

∑

(a,b)∈Rz

1
2

∑

(c,d)∈Rz(a,b)

1.

We will compute

Φf :=
∑

z∈Im(τ)

∑

(a,b)∈Rz

∑

(c,d)∈Rz(a,b)

f(a, b, c, d) +
∑

z 6∈Im(τ)

∑

(a,b)∈Rz

∑

(c,d)∈Rz(a,b)

f(a, b, c, d). (8)

The 1
2
and 1

4
factors from (7) are suppressed for convenience.

Our goal is to prove the following Theorem 2.3. We need some notation before proceeding.
For a fixed z ∈ G, let Sz be the set of all ordered pairs (a, b) such that ga + gb = z and let
Tz be the set of all a such that 2ga = z. Note that |Sz| = n for all z ∈ G. Furthermore, |Tz|
is κ if z ∈ Im(τ) and 0 otherwise.

Theorem 2.3. The quantity Φf equals

(4n2 − 12n+ 8κ)δj,k − 4κ
∑

z∈Im(τ)

∑

(a,b)∈Sz

Aj,aAk,b − 8
∑

z∈Im(τ)

(
∑

a∈Tz

Aj,a

)(
∑

c∈Tz

Ak,c

)

. (9)

Formula (9) follows immediately from the four Lemmas 3.1, 3.2, 3.3, 3.4 we will prove
in the next section. So suppose (9) is established. To prove Theorem 2.2 we need one more
auxiliary result.

Lemma 2.4. Denote the distinct cosets of H := Im(τ) in G by

H1 = ga1 +H, H2 = ga2 +H, . . . , Hκ = gaκ +H.

6



Then

Φf

16
− m

n− 1
δj,k =

(
κ+ 1

4
− κ− 1

4(n− 1)

)

δj,k −
κ

4

κ∑

ℓ=1

(
∑

ga∈Hℓ

Aj,a

)(
∑

gb∈Hℓ

Ak,b

)

−1

2

∑

z∈Im(τ)

(
∑

a∈Tz

Aj,a

)(
∑

c∈Tz

Ak,c

)

. (10)

Proof. A straightforward computation using (9) gives

Φf

16
− m

n− 1
δj,k =

(
κ+ 1

4
− κ− 1

4(n− 1)

)

δj,k −
κ

4

∑

z∈Im(τ)

∑

(a,b)∈Sz

Aj,aAk,b

−1

2

∑

z∈Im(τ)

(
∑

a∈Tz

Aj,a

)(
∑

c∈Tz

Ak,c

)

. (11)

For each a, we have ga + gb ∈ Im(τ) if and only if gb ∈ −ga + Im(τ) = ga + Im(τ). Hence

∑

z∈Im(τ)

∑

(a,b)∈Sz

Aj,aAk,b =

n∑

a=1

∑

gb∈−ga+Im(τ)

Aj,aAk,b =

n∑

a=1

Aj,a

∑

gb∈ga+Im(τ)

Ak,b

=

κ∑

ℓ=1

∑

ga∈gaℓ+H

Aj,a

∑

gb∈gaℓ+H

Ak,b =

κ∑

ℓ=1

∑

ga∈Hℓ

Aj,a

∑

gb∈Hℓ

Ak,b

=

κ∑

ℓ=1

(
∑

ga∈Hℓ

Aj,a

)(
∑

gb∈Hℓ

Ak,b

)

.

Inserting this in (11) we arrive at (10).

Proposition 2.5. If κ = 1 or κ = n, then 1
16
Φf = m

n−1
δj,k and consequently, the set

B(S ′(LG)) is a spherical 2-design.

Proof. Let first κ = 1. Then H = Im(τ) = G. Consequently, the first sum on the right of
(10) equals

−κ

4

κ∑

ℓ=1

(
∑

ga∈Hℓ

Aj,a

)(
∑

gb∈Hℓ

Ak,b

)

= −1

4

(
n∑

a=1

Aj,a

)(
n∑

b=1

Ak,b

)

,

and this is zero because of property (P2). Furthermore, since each set Tz is a singleton, the
second sum in (10) is

−1

2

∑

z∈Im(τ)

(
∑

a∈Tz

Aj,a

)(
∑

c∈Tz

Ak,c

)

= −1

2

n∑

a=1

Aj,aAk,a,

7



which equals −1
2
δj,k due to property (P1). In summary, (10) becomes

1 + 1

4
δj,k −

1

2
δj,k = 0,

as asserted. Now suppose κ = n. Then H = Im(τ) = {0} and hence the first sum on the
right of (10) is equal to

−κ

4

κ∑

ℓ=1

(
∑

ga∈Hℓ

Aj,a

)(
∑

gb∈Hℓ

Ak,b

)

= −n

4

n∑

a=1

Aj,aAk,b,

which is −n
4
δj,k by virtue of property (P1). Since T0 = G, we see that the second sum on

the right of (10) is

−1

2

∑

z∈Im(τ)

(
∑

a∈Tz

Aj,a

)(
∑

c∈Tz

Ak,c

)

= −1

2

(
n∑

a=1

Aj,a

)(
n∑

c=1

Ak,c

)

,

and from property (P2) we infer that this is zero. Thus, in this case (10) equals
(
n + 1

4
− 1

4

)

δj,k −
n

4
δj,k = 0,

again as asserted.

Proposition 2.6. If 1 < κ < n, then 1
16
Φf 6= m

n−1
δj,k and consequently, the set B(S ′(LG))

is not a spherical 2-design.

Proof. Assume the contrary, that is, assume that we do have a spherical 2-design. Then the
right side of (10) must be 0. In particular, for j = k = 1 we have

κ+ 1

4
− κ− 1

4(n− 1)
=

κ

4

κ∑

ℓ=1

(
∑

ga∈Hℓ

A1,a

)2

− 1

2

∑

z∈Im(τ)

(
∑

a∈Tz

A1,a

)2

(12)

Now the first row of A has one 1/
√
2, one −1/

√
2 and the remaining entries are all 0. Thus

implies that
κ+ 1

4
− κ− 1

4(n− 1)
=

κ

4
λ1 −

1

2
λ2

where λ1, λ2 are either 0 or 1. Multiplying both sides by 4 we get

κ+ 1− κ− 1

(n− 1)
= κλ1 − 2λ2

Since 1 < κ < n, the left-hand side is strictly between κ and κ+ 1 while the right-hand side
is at most κ. This is the desired contradiction.

Combining Propositions 2.5 and 2.6, we arrive at Theorem 2.2 and thus at Theorem 1.2.
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3 The remaining four lemmas

Recall that Φf is defined by (8).

Lemma 3.1. The quantity Φf equals
∑

z∈G

∑

(a,b)∈Sz

∑

(c,d)∈Sz

f(a, b, c, d)− 2
∑

z∈Im(τ)

∑

(a,b)∈Sz

∑

c∈Tz

f(a, b, c, c)

+
∑

z∈Im(τ)

∑

a∈Tz

∑

c∈Tz

f(a, a, c, c).

Proof. Fix z ∈ Im(τ) and (a, b) ∈ Rz. We then have

∑

(c,d)∈Rz(a,b)

f(a, b, c, d) =
∑

(c,d)∈Rz\{(a,b),(b,a)}

f(a, b, c, d)

=
∑

(c,d)∈Rz

f(a, b, c, d)− f(a, b, a, b)− f(a, b, b, a) =
∑

(c,d)∈Rz

f(a, b, c, d)

because f(a, b, a, b) = f(a, b, b, a) = 0. Now
∑

(c,d)∈Rz

f(a, b, c, d) =
∑

(c,d)∈Sz

f(a, b, c, d)−
∑

c∈Tz

f(a, b, c, c).

So ∑

(c,d)∈Rz(a,b)

f(a, b, c, d) =
∑

(c,d)∈Sz

f(a, b, c, d)−
∑

c∈Tz

f(a, b, c, c).

It follows that
∑

(a,b)∈Rz

∑

(c,d)∈Rz(a,b)

f(a, b, c, d)

=
∑

(a,b)∈Rz




∑

(c,d)∈Sz

f(a, b, c, d)−
∑

c∈Tz

f(a, b, c, c)





=
∑

(a,b)∈Sz




∑

(c,d)∈Sz

f(a, b, c, d)−
∑

c∈Tz

f(a, b, c, c)





−
∑

a∈Tz




∑

(c,d)∈Sz

f(a, a, c, d)−
∑

c∈Tz

f(a, a, c, c)





=
∑

(a,b)∈Sz

∑

(c,d)∈Sz

f(a, b, c, d)−
∑

(a,b)∈Sz

∑

c∈Tz

f(a, b, c, c)−
∑

a∈Tz

∑

(c,d)∈Sz

f(a, a, c, d)

+
∑

a∈Tz

∑

c∈Tz

f(a, a, c, c).
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We claim that ∑

(a,b)∈Sz

∑

c∈Tz

f(a, b, c, c) =
∑

a∈Tz

∑

(c,d)∈Sz

f(a, a, c, d). (13)

This can be seen as follows. Since

f(a, b, c, c) = (Aj,a + Aj,b − 2Aj,c)(Ak,a + Ak,b − 2Ak,c)

= (2Aj,c − Aj,a −Aj,b)(2Ak,c −Ak,a − Ak,b) = f(c, c, a, b),

we get

∑

(a,b)∈Sz

∑

c∈Tz

f(a, b, c, c) =
∑

(a,b)∈Sz

∑

c∈Tz

f(c, c, a, b) =
∑

a′∈Tz

∑

{c′,d′}∈Sz

f(a′, a′, c′, d′),

where we make the change of variable c′ := a, d′ := b, a′ := c. This gives (13). Thus, we have

∑

(a,b)∈Rz

∑

(c,d)∈Rz(a,b)

f(a, b, c, d)

=
∑

(a,b)∈Sz

∑

(c,d)∈Sz

f(a, b, c, d)− 2
∑

(a,b)∈Sz

∑

c∈Tz

f(a, b, c, c) +
∑

a∈Tz

∑

c∈Tz

f(a, a, c, c). (14)

For a fixed z 6∈ Im(τ), using a similar analysis as above, we get

∑

(a,b)∈Rz

∑

(c,d)∈Rz(a,b)

f(a, b, c, d) =
∑

(a,b)∈Sz

∑

(c,d)∈Sz

f(a, b, c, d) (15)

From (8), (14) and (15) the asserted formula for Φf follows.

In the following three lemmas we compute the three sums occurring in Lemma 3.1.

Lemma 3.2. We have

∑

z∈G

∑

(a,b)∈Sz

∑

(c,d)∈Sz

f(a, b, c, d) = 4n2δj,k.

Proof. We begin with observing that

f(a, b, c, d) = (Aj,a + Aj,b −Aj,c − Aj,d)(Ak,a + Ak,b − Ak,c − Ak,d)

= (Aj,a + Aj,b)(Ak,a + Ak,b) + (Aj,c + Aj,d)(Ak,c + Ak,d)

−(Aj,a + Aj,b)(Ak,c + Ak,d)− (Aj,c + Aj,d)(Ak,a + Ak,b). (16)

This is h1 + h2 − h3 − h4 with

h1(a, b, c, d) = (Aj,a + Aj,b)(Ak,a + Ak,b), h2(a, b, c, d) = (Aj,c + Aj,d)(Ak,c + Ak,d),

h3(a, b, c, d) = (Aj,a + Aj,b)(Ak,c + Ak,d), h4(a, b, c, d) = (Aj,c + Aj,d)(Ak,a + Ak,b).
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We first compute
∑

z∈G

∑

(a,b)∈Sz

∑

(c,d)∈Sz

h1(a, b, c, d).

For a fixed z ∈ G and (a, b) ∈ Sz, we have
∑

(c,d)∈Sz

h1(a, b, c, d) =
∑

(c,d)∈Sz

(Aj,a + Aj,b)(Ak,a + Ak,b) = n(Aj,a + Aj,b)(Ak,a + Ak,b).

Thus
∑

(a,b)∈Sz

∑

(c,d)∈Sz

h1(a, b, c, d) = n
∑

(a,b)∈Sz

(Aj,a + Aj,b)(Ak,a + Ak,b)

= n
∑

(a,b)∈Sz

(Aj,aAk,a + Aj,bAk,b + Aj,aAk,b + Aj,bAk,a)

= 2nδj,k + n
∑

(a,b)∈Sz

(Aj,aAk,b + Aj,bAk,a) (by (P1)).

Since, by (P2),

∑

z∈G

∑

(a,b)∈Sz

Aj,aAk,b =

n∑

a,b=1

Aj,aAk,b = (

n∑

a=1

Aj,a)(

n∑

b=1

Ak,b) = 0,

it follows that ∑

z∈G

∑

(a,b)∈Sz

∑

(c,d)∈Sz

h1(a, b, c, d) = 2n2δj,k. (17)

By symmetry, we also have
∑

z∈G

∑

(a,b)∈Sz

∑

(c,d)∈Sz

h2(a, b, c, d) = 2n2δj,k. (18)

Now note that for a fixed z ∈ G and (a, b) ∈ Sz,
∑

(c,d)∈Sz

h3(a, b, c, d) =
∑

(c,d)∈Sz

(Aj,a + Aj,b)(Ak,c + Ak,d)

= (Aj,a + Aj,b)
∑

(c,d)∈Sz

(Ak,c + Ak,d) = 0 (by (P1)).

This shows that ∑

z∈G

∑

(a,b)∈Sz

∑

(c,d)∈Sz

h3(a, b, c, d) = 0.

Similarly,
∑

z∈G

∑

(a,b)∈Sz

∑

(c,d)∈Sz

h4(a, b, c, d) = 0.

This together with equations (16), (17) and (18) implies the desired result.
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Lemma 3.3. We have

∑

z∈Im(τ)

∑

(a,b)∈Sz

∑

c∈Tz

f(a, b, c, c) = 6nδj,k + 2κ
∑

z∈Im(τ)

∑

(a,b)∈Sz

Aj,aAk,b.

Proof. Clearly,

f(a, b, c, c) = (Aj,a + Aj,b − 2Aj,c)(Ak,a + Ak,b − 2Ak,c)

= (Aj,a + Aj,b)(Ak,a + Ak,b) + 4Aj,cAk,c

−2(Aj,a + Aj,b)Ak,c − 2(Ak,a + Ak,b)Aj,c, (19)

which is h1 + 4h2 − 2h3 − 2h4 with

h1(a, b, c, d) = (Aj,a + Aj,b)(Ak,a + Ak,b), h2(a, b, c, d) = Aj,cAk,c,

h3(a, b, c, d) = (Aj,a + Aj,b)Ak,c, h4(a, b, c, d) = (Ak,a + Ak,b)Aj,c.

Fix z ∈ Im(τ) and (a, b) ∈ Sz. Then

∑

c∈Tz

h1(a, b, c, d) =
∑

c∈Tz

(Aj,a + Aj,b)(Ak,a + Ak,b) = (Aj,a + Aj,b)(Ak,a + Ak,b)κ

and hence
∑

(a,b)∈Sz

∑

c∈Tz

h1(a, b, c, d) = κ
∑

(a,b)∈Sz

(Aj,a + Aj,b)(Ak,a + Ak,b)

= κ
∑

(a,b)∈Sz

(Aj,aAk,a + Aj,bAk,b + Aj,aAk,b + Aj,bAk,a)

= κ

n∑

a=1

Aj,aAk,a + κ

n∑

b=1

Aj,bAk,b + κ
∑

(a,b)∈Sz

(Aj,aAk,b + Aj,bAk,a)

= 2κδj,k + κ
∑

(a,b)∈Sz

(Aj,aAk,b + Aj,bAk,a),

the last equality resulting from (P1). Consequently,

∑

z∈Im(τ)

∑

(a,b)∈Sz

∑

c∈Tz

h1(a, b, c, d) = 2κδj,k ·
n

κ
+ κ

∑

z∈Im(τ)

∑

(a,b)∈Sz

(Aj,aAk,b + Aj,bAk,a)

= 2nδj,k + 2κ
∑

z∈Im(τ)

∑

(a,b)∈Sz

Aj,aAk,b. (20)

Further, for fixed z ∈ Im(τ) we have that

∑

(a,b)∈Sz

∑

c∈Tz

h2(a, b, c, d) =
∑

(a,b)∈Sz

∑

c∈Tz

Aj,cAk,c = n
∑

c∈Tz

Aj,cAk,c.
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This gives

∑

z∈Im(τ)

∑

(a,b)∈Sz

∑

c∈Tz

h2(a, b, c, d) = n
∑

z∈Im(τ)

∑

c∈Tz

Aj,cAk,c = n

n∑

c=1

Aj,cAk,c = nδj,k, (21)

where we again used (P2). For fixed z ∈ Im(τ) and (a, b) ∈ Sz we also get

∑

c∈Tz

h3(a, b, c, d) =
∑

c∈Tz

(Aj,a + Aj,b)Ak,c = (Aj,a + Aj,b)
∑

c∈Tz

Ak,c,

so

∑

(a,b)∈Sz

∑

c∈Tz

h3(a, b, c, d) =

(
∑

c∈Tz

Ak,c

)
∑

(a,b)∈Sz

(Aj,a + Aj,b)

=

(
∑

c∈Tz

Ak,c

)(
n∑

a=1

Aj,a +
n∑

b=1

Aj,b

)

= 0,

the last equality resulting once more due to (P2). Thus,

∑

z∈Im(τ)

∑

(a,b)∈Sz

∑

c∈Tz

h3(a, b, c, d) = 0. (22)

Similarly
∑

z∈Im(τ)

∑

(a,b)∈Sz

∑

c∈Tz

h4(a, b, c, d) = 0 (23)

The result now follows from equalities (16), (20), (21), (22), and (23).

Lemma 3.4. We have
∑

z∈Im(τ)

∑

a∈Tz

∑

c∈Tz

f(a, a, c, c) = 8κδj,k − 8
∑

z∈Im(τ)

(
∑

a∈Tz

Aj,a)(
∑

c∈Tz

Ak,c).

Proof. First of all,

f(a, a, c, c) = (Aj,a + Aj,a −Aj,c − Aj,c)(Ak,a + Ak,a −Ak,c −Ak,c)

= 4(Aj,a −Aj,c)(Ak,a − Ak,c).

Thus, for fixed z ∈ Im(τ) and a fixed integer a with 1 ≤ a ≤ n,

∑

c∈Tz

f(a, a, c, c) =
∑

c∈Tz

4(Aj,a −Aj,c)(Ak,a − Ak,c)

= 4
∑

c∈Tz

Aj,cAk,c − 4Aj,a

∑

c∈Tz

Ak,c − 4Ak,a

∑

c∈Tz

Aj,c + 4Aj,aAk,a

∑

c∈Tz

1

= 4
∑

c∈Tz

Aj,cAk,c − 4Aj,a

∑

c∈Tz

Ak,c − 4Ak,a

∑

c∈Tz

Aj,c + 4Aj,aAk,aκ.
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Now
∑

a∈Tz

∑

c∈Tz

f(a, a, c, c)

= 4κ
∑

c∈Tz

Aj,cAk,c − 4
∑

a∈Tz

Aj,a

∑

c∈Tz

Ak,c − 4
∑

a∈Tz

Ak,a

∑

c∈Tz

Aj,c + 4κ
∑

a∈Tz

Aj,aAk,a

= 4κ
∑

c∈Tz

Aj,cAk,c − 8
∑

a∈Tz

Aj,a

∑

c∈Tz

Ak,c + 4κ
∑

a∈Tz

Aj,aAk,a

and we finally get
∑

z∈Im(τ)

∑

a∈Tz

∑

c∈Tz

f(a, a, c, c) = 8κδj,k − 8
∑

z∈Im(τ)

∑

a∈Tz

Aj,a

∑

c∈Tz

Ak,c,

as desired.

As already said, the preceding four lemmas yield Theorem 2.3.
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