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ON AN EFFECTIVE VARIATION OF KRONECKER’S

APPROXIMATION THEOREM

LENNY FUKSHANSKY

Abstract. Let Λ ⊂ Rn be an algebraic lattice, coming from a projective

module over the ring of integers of a number field K. Let Z ⊂ Rn be the zero
locus of a finite collection of polynomials such that Λ * Z or a finite union of

proper full-rank sublattices of Λ. Let K1 be the number field generated over

K by coordinates of vectors in Λ, and let L1, . . . , Lt be linear forms in n vari-
ables with algebraic coefficients satisfying an appropriate linear independence

condition over K1. For each ε > 0 and a ∈ Rn, we prove the existence of a

vector x ∈ Λ \ Z of explicitly bounded sup-norm such that

‖Li(x)− ai‖ < ε

for each 1 ≤ i ≤ t, where ‖ ‖ stands for the distance to the nearest integer.
The bound on sup-norm of x depends on Λ, K, Z, heights of linear forms,

and ε. This presents a generalization of Kronecker’s approximation theorem,

establishing an effective result on density of the image of Λ\Z under the linear
forms L1, . . . , Lt in the t-torus Rt/Zt.

1. Introduction

Let 1, θ1, . . . , θt be Q-linearly independent real numbers. The classical approxi-
mation theorem of Kronecker then states that the set of points

{({nθ1}, . . . , {nθt}) : n ∈ Z}
is dense in the t-torus Rt/Zt, where { } stands for the fractional part of a real
number. This result was originally obtained by Kronecker [13] in 1884, and presents
a deep generalization of Dirichlet’s 1842 theorem on Diophantine approximation [5];
see, for instance, [11] for a detailed exposition of these classical results.

Kronecker’s theorem can also be viewed as a statement on density of the image
of the integer lattice under collection of linear forms in the torus Rt/Zt (compare to
the famous Oppenheim conjecture for quadratic forms). Specifically, if L1, . . . , Lt
are linear forms in n variables with real coefficients bij so that the set of numbers 1
and bij are linearly indepedent over Q, then for any ε > 0 and a ∈ Rt there exists
x ∈ Zn such that

(1) ‖Li(x)− ai‖ < ε ∀ 1 ≤ i ≤ t,
where ‖ ‖ stands for the distance to the nearest integer. A nice survey of a wide
variety of results related to Kronecker’s theorem is given in [9]. There are also some
effective versions of Kronecker’s theorem, where the size of the coordinates of the
vector x in (1) are bounded, under some additional algebraic assumptions on the
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2 LENNY FUKSHANSKY

coefficients of the linear forms: see, for instance, [15], [17]. The main goal of this
note is to extend the previously known effective versions of Kronecker’s theorem in
two ways:

(1) allow for the approximating vector x as in the equation (1) above to come
from a more general lattice than Zn,

(2) exclude vectors from any prescribed union of projective varieties or sublat-
tices not containing this lattice.

To give precise statements of our results, we need some notation.

1. The lattice. Let n ≥ 1 be an integer, and for each vector x ∈ Rn define the
sup-norm

|x| := max
1≤i≤n

|xi|.

Let K be a number field of degree d = r1 + 2r2 over Q, where r1 and r2 are
numbers of its real and complex places, respectively, and write OK for its ring of
integers. Let 1 ≤ s ≤ w be integers, and let M ⊂ Kw be an OK-module such
that M⊗K K ∼= Ks. Write DK(M) for the discriminant of M. Define UK(M), a
fractional OK-ideal in K, to be

(2) UK(M) = {α ∈ K : αM⊆ OwK} .

We let ΛK(M) ⊂ Rwd be the lattice of rank sd, which is the image ofM under the
standard Minkowski embedding.

2. The projective varieties. Let m ≥ 1 be an integer. For each 1 ≤ i ≤ m, let Si
be a finite set of homogeneous polynomials in R[x1, . . . , xwd] and Z(Si) be its zero
set in Rwd, that is,

Z(Si) = {x ∈ Rwd : P (x) = 0 for all P ∈ Si}.

For the collection S := {S1, . . . ,Sm} of finite sets of homogeneous polynomials,
define

(3) ZS :=

m⋃
i=1

Z(Si),

and

(4) MS :=

m∑
i=1

max{degP : P ∈ Si}.

We allow for the possibility that ZS = {0}, in which case we take instead MS = 1.
Notice that ZS is an algebraic set, which is a union of a finite collection of projective
varieties. Assume that the lattice ΛK(M) is not contained in the set ZS .

3. The linear forms. Let K1 = K(ΛK(M)), i.e. K1 is the number field
generated over K by the entries of any basis matrix of the lattice ΛK(M). Let
B := (bij)1≤i≤t,1≤j≤wd be a t × wd matrix with real algebraic entries so that
1, b11, . . . , bt(wd) are linearly independent over K1, and let ` = [E : Q] where
E = K1(b11, . . . , bt(wd)). We will also write `v = [Ev : Qv] for the local degree
of E at every place v ∈M(E). Define t linear forms in wd variables

(5) Li(x1, . . . , xwd) =

wd∑
j=1

bijxj ∈ R[x1, . . . , xwd] ∀ 1 ≤ i ≤ t.
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Our first goal here is to prove the following effective result on density of the image
of the set ΛK(M) \ ZS under the linear forms L1, . . . , Lt in the torus Rt/Zt. Let
h denote the usual Weil height on algebraic numbers, as well as its extension to
vectors with algebraic coordinates; we recall the definition of height along with
other necessary notation in Section 2.

Theorem 1.1. Let a = (a1, . . . , at) ∈ Rt and ε > 0. There exist x ∈ ΛK(M) \ZS

and p ∈ Zt such that
|Li(x)− ai − pi| < ε

and

|x| ≤ aK(t, `, s)
(
sdMS |DK(M)| s2

)K+1
(

(wd)
3
2h(B)

)K
cK(M, `, t) ε−`+1,

where the exponent K = `2(t+ 1)− ` and the constants are

aK(t, `, s) = 2`t(`−1)+sr1K+ sd−1
2 (t+ 1)3`−1(t!)2`

and

cK(M, `, t) = min
{
h(α)(K+1)sd−1h(α−1)K : α ∈ UK(M)

}
.

One special case of Theorem 1.1 is when ZS is a union of linear spaces, which means
that the point x in question is in ΛK(M) but outside of a union of sublattices of
smaller rank than ΛK(M). What if the rank of such sublattices is equal to the
rank of ΛK(M)? The next theorem addresses this situation.

Theorem 1.2. Let a = (a1, . . . , at) ∈ Rt and ε > 0. Let m > 0 and Γ1, . . . ,Γm ⊂
ΛK(M) be proper sublattices of full rank and respective determinants D1, . . . ,Dm,
and let D = D1 · · · Dm. Then for every α ∈ UK(M) there exist x ∈ ΛK(M) \⋃m
i=1 Γi and p ∈ Zt such that

|Li(x)− ai − pi| < ε

and

|x| ≤
(
bK(t, `, s, w)

(
h(α)h(α−1)h(B)Eα(M,Γ1, . . . ,Γm)

)K D ε−`+1

|DK(M)| sm2
+ 1

)
Eα,

where the exponent K = `2(t+ 1)− `, as in Theorem 1.1, the constant

bK(t, `, s, w) = 2`t(`−1)+ K
2 +smr2(t+ 1)3`−1(t!)2`(wd)

3K
2 ,

and Eα =

(6) Eα(M,Γ1, . . . ,Γm) := 2
sr1−1

2 h(α)sd−1|DK(M)| s2
(

m∑
i=1

D
Di
−m+ 1

)
+D 1

sd .

Here is a sketch of the proofs of Theorems 1.1 and 1.2. We first construct
a point y ∈ ΛK(M) of controlled sup-norm, which is outside of ZS or

⋃m
i=1 Γi,

respectively: in the first case, we use the classical Minkowski’s Successive Minima
Theorem and a version of Alon’s Combinatorial Nullstellensatz [1] (we use the
convenient formulation developed in [7]), while in the second we employ a recent
result of Henk and Thiel [12] on points of small norm in a lattice outside of a union
of full-rank sublattices. We use y to construct an infinite sequence of points ny
satisfying the above conditions, and use an effective version of Kronecker’s original
theorem to obtain a value of the index n (depending on ε > 0) for which the
required inequalities on values of linear forms are satisfied. A convenient effective
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version of Kronecker’s theorem that we use is worked out in Section 3. It should
be remarked that the most important feature of approximation results such as our
Theorems 1.1 and 1.2 is the exponent on ε in the bounds for |x|. As we show,
this exponent is the same as in the corresponding bound of the effective version of
Kronecker’s theorem that we use.

Remark 1.1. As mentioned above, there are some effective versions of Kronecker’s
theorem in the literature, such as the one produced by Malajovich [15]. Vesselin
Dimitrov also informed me that a similar result can also be obtained using the
Erdös-Turan-Koksma inequality in discrepancy theory (see Theorem 1.21 of [6]).
The version derived in Section 3 however has a substantially better exponent on ε;
this argument, based on Liouville’s inequality and a homogeneous-inhomogeneous
transference principle was suggested by the referee.

In Section 2 we introduce the necessary notation and provide all the details of our
setup. We then prove Theorem 1.1 in Section 4 and Theorem 1.2 in Section 5.

2. Notation and setup

Let the notation be as in Section 1. Here we introduce some additional notation
needed for our algebraic setup. Let the number field K have discriminant DK , r1

real embeddings σ1, . . . , σr1 of K, and r2 conjugate pairs of complex embeddings
τ1, τ1, . . . , τr2 , τ r2 , then d = r1 + 2r2. For each τk, write <(τk) for its real part and
=(τk) for its imaginary part. Let us write M(K) for the set of all places of K, then
the archimedean places of K are in correspondence with the embeddings of K, and
we choose the absolute values | |v1 , . . . , | |vr1+r2

so that for each a ∈ K

|a|vk = |σk(a)| ∀ 1 ≤ k ≤ r1

and

|a|vr1+k
= |τk(a)| =

√
<(τk(a))2 + =(τk(a))2 ∀ 1 ≤ k ≤ r2,

where | | stands for the usual absolute value on R or C, respectively. For each
v ∈M(K), we write Kv for the completion of K at v, and for each n ≥ 1 we define
a local norm | |v : Kn

v → R by

|a|v := max
1≤j≤n

|aj |v,

for each a = (a1, . . . , an) ∈ Kn
v . Then the extended Weil height on Kn is given by

h(a) =
∏

v∈M(K)

max{1, |a|v}dv/d,

where dv = [Kv : Qv] is the local degree of K at v, so that
∑
v|u dv = d for each

u ∈M(Q).
For each integer n ≥ 1, define the standard Minkowski embedding ρnK : Kn →

Rnd by

ρnK(a) :=
(
σn1 (a), . . . , σnr1(a),<(τn1 (a)),=(τn1 (a)), . . . ,<(τnr2(a)),=(τnr2(a))

)
.

We will now use Minkowski embedding to construct lattices from OK-modules and
outline some of their main properties; see [8] for further details. Let 1 ≤ s ≤ w be
integers, and let M ⊂ Kw be an OK-module such that M⊗K K ∼= Ks. By the
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structure theorem for finitely generated projective modules over Dedekind domains
(see, for instance [14]),

M =


s∑
j=1

βjyj : yj ∈ OwK , βj ∈ Ij


for some OK-fractional ideals I1, . . . , Is in K. By Proposition 13 on p.66 of [14],
the discriminant of M is then

(7) DK(M) := DK
s∏
j=1

N(Ij)2,

where N(Ij) is the norm of the fractional ideal Ij .
Let ΛK(M) := ρwK(M) be an algebraic lattice of rank sd in Rwd, then a direct

adaptation of Lemma 2 on p.115 of [14] implies that the determinant of ΛK(M) is

(8) det(ΛK(M)) = 2−sr2 |DK(M)| s2 = 2−sr2 |DK |
s
2

s∏
j=1

N(Ij),

where the last identity follows by (7) above. Let x ∈ ΛK(M), then x = ρwK(a) for
some a ∈M and

(9) |x| ≥ 1√
2
h(α)−1,

for any α ∈ UK(M) by inequality (54) of [8]. Let v ∈ M(K) be an archimedean
place, and assume first that it corresponds to a real embedding σj for some 1 ≤ j ≤
r1, then |a|v = |x|. On the other hand, if v corresponds to a complex embedding τj

for some 1 ≤ j ≤ r2, then |a|v ≤
(∑wd

j=1 x
2
j

)1/2

≤
√
wd |x|. Hence for each v | ∞,

(10) |x| ≤ |a|v ≤
√
wd |x|.

Let L1, . . . , Lt be the linear forms defined in (5). For each 1 ≤ i ≤ t, we define

|Li|v = max
1≤j≤wd

|bij |v,

for each place v ∈M(E), and define the height of Li to be

h(Li) = H(1, bi1, . . . , bi(wd)) =
∏

v∈M(E)

max{1, |Li|v}`v/`.

We similarly define the height of the matrix B to be

h(B) = H(1, b11, . . . , bt(wd)),

then h(Li) ≤ h(B) for all 1 ≤ i ≤ t. We are now ready to proceed.

3. An effective version of Kronecker’s theorem

In this section we derive an effective version of Kronecker’s theorem, which we
then use to prove Theorems 1.1 and 1.2. Similar to the setup in the beginning of
Section 1, let 1, θ1, . . . , θt be Q-linearly independent real algebraic numbers. For
each 1 ≤ j ≤ t, let fj(x) ∈ Z[x] be the minimal polynomial of θj of degree dj , |fj |
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be the maximum of absolute values of the coefficients of fj , and Aj be the leading
coefficient of fj , so Aj ≤ |fj |. By Lemma 3.11 of [18],

1

2dj
|fj | ≤ h(θj)

dj ≤
√
dj + 1 |fj |,

for every 1 ≤ j ≤ t. Define A to be the least common multiple of A1, . . . , At, so

(11) A ≤
t∏

j=1

|fj | ≤
t∏

j=1

(2h(θj))
dj .

Let F = Q(θ1, . . . , θt) be a number field of degree e ≥ t + 1, then e ≤
∏t
j=1 dj .

Let θt+1, . . . , θe−1 ∈ F be such that

1 = θ0, θ1, . . . , θt, θt+1, . . . , θe−1

form a Q-basis for F . Let σ1, . . . , σe be the embeddings of F into C. We recall
Liouville inequality. For any m = (m0, . . . ,mt, 0, . . . , 0) ∈ Ze,

(12) Ae
e∏
i=1

∣∣∣∣∣∣
e−1∑
j=0

σi(θj)mj

∣∣∣∣∣∣ ≥ 1,

and so

(13) Ae
(

(t+ 1) max
1≤i≤e,0≤j≤t

|σi(θj)|
)e−1

|m|e−1‖m1θ1 + · · ·+mtθt‖ ≥ 1.

Now observe that

max
1≤i≤e,0≤j≤t

|σi(θj)| ≤ max
1≤j≤t

h(θj)
dj ,

and so define

(14) C1 = C1(θ1, . . . , θt) :=

(
(t+ 1) max

1≤j≤t
h(θj)

dj

)e−1 t∏
j=1

(2h(θj))
edj .

Then for any 0 6= m ∈ Zt,

(15) ‖m1θ1 + · · ·+mtθt‖ ≥ C−1
1 |m|−e+1.

We will now apply a transference homogeneous-inhomogeneous argument. A trans-
ference principle of this sort was first described in Chapter V, §4 of [3]; the particular
stronger result we are applying here is obtained in [2]. Let us write

M(y) =

t∑
i=1

θiyi

for y = (y1, . . . , yt) ∈ Zt, and let

Lj(x) = θjx, 1 ≤ j ≤ t
for x ∈ Z. Then (15) guarantees that for any 0 6= y ∈ Zt with |y| ≤ Y ,

‖M(y)‖ ≥ C−1
1 Y −(e−1).

Now applying the transference Lemma 3 of [2] to these linear forms, we have that for
every a = (a1, . . . , at) ∈ Rt there exists x ∈ Z such that |x| ≤ 2−t((t+ 1)!)2C1Y e−1

and

max
1≤j≤t

‖Lj(x)− aj‖ ≤ 2−t((t+ 1)!)2Y −1.
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Letting Q =
(
2t((t+ 1)!)−2Y

)e−1
, we obtain that

max
1≤j≤t

‖Lj(x)− αj‖ ≤ Q−
1

e−1

for some 0 6= x ∈ Z with |x| ≤ 2−et((t+ 1)!)2eC1Q. Taking ε = Q−
1

e−1 immediately
yields the following effective version of Kronecker’s theorem.

Theorem 3.1. Let 1, θ1, . . . , θt be Q-linearly independent real algebraic numbers,
and let e = [Q(θ1, . . . , θt) : Q]. Let C1 be given by (14) above, and let ε > 0. Then
for any (a1, . . . , at) ∈ Rt there exists q ∈ Z \ {0} such that

(16) ‖qθj − aj‖ ≤ ε, 1 ≤ j ≤ t

and

|q| ≤ 2−et((t+ 1)!)2eC1ε−e+1.

In particular, if h(θj) ≤ H for all 1 ≤ j ≤ t and max{e, d1, . . . , dt} ≤ `, then

|q| ≤
(

2`t(`−1)(t+ 1)3`−1(t!)2`H`2(t+1)−`
)
ε−`+1.

Remark 3.1. Stronger non-effective results can be derived as corollaries of Schmidt’s
subspace theorem. For instance, results discussed in Chapter 6, §2 of [16] together
with the transference principles of Chapter V, §4 of [3] and [2] imply, for any
ε > 0 and a ∈ Rt under the assumptions of Theorem 3.1, the existence of q ∈ Z
satisfying 16 such that

|q| ≤ C′(δ)ε−t−δ,
for any δ > 0, where the constant C′(δ) is non-effective. This would result in
the same exponent on ε in the bounds for |q| in Theorems 1.1 and 1.2, but with
non-effective constants.

4. Proof of Theorem 1.1

Here we present the proof of our first result. Since ΛK(M) * ZS , ΛK(M) *
Z(Si) for all 1 ≤ i ≤ m, and so for each i at least one polynomial Pi in Si is not
identically zero on ΛK(M). Clearly for each 1 ≤ i ≤ m,

Z(Si) ⊆ Z(Pi) :=
{
x ∈ Rwd : Pi(x) = 0

}
.

Define

P (x) =

m∏
i=1

Pi(x),

so that ΛK(M) * Z(P ) while ZS ⊆ Z(P ) and deg(P ) ≤ MS . We will next
construct a point y ∈ ΛK(M) of controlled sup-norm such that P (y) 6= 0.

Let V = spanR ΛK(M) be the sd-dimensional subspace of Rwd spanned by the
lattice ΛK(M). For a positive real number µ, let us write

CV (µ) := {x ∈ V : |x| ≤ µ}

for the sd-dimensional cube with side-length 2µ centered at the origin in V , so
CV (µ) = µCV (1). Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λsd be the successive minima of
ΛK(M) with respect to the cube CV (1). In other words, for each 1 ≤ i ≤ sd,

λi := min {µ ∈ R>0 : dimR spanR (ΛK(M) ∩ CV (µ)) ≥ i} .
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Let v1, . . . ,vsd be a collection of linearly independent vectors in ΛK(M) corre-
sponding to these successive minima, then |vi| = λi. Since the volume of sd-
dimensional cube CV (1) is 2sd, Minkowski’s Successive Minima Theorem (see, for
instance, [4] or [10]) implies that

det(ΛK(M))

(sd)!
≤

sd∏
i=1

|vi| ≤ det(ΛK(M)),

where 1√
2
h(α)−1 ≤ |v1| ≤ · · · ≤ |vsd|, by (9). This means that

(17) |v1| ≤ · · · ≤ |vsd| ≤
(√

2h(α)
)sd−1

det(ΛK(M)).

Let I(MS) = {0, 1, 2, . . . ,MS} be the set of the first MS + 1 non-negative integers.
For each ξ ∈ I(MS)sd, define

v(ξ) =

sd∑
i=1

ξivi,

then

(18) |v(ξ)| = max
1≤j≤wd

∣∣∣∣∣
sd∑
i=1

ξivij

∣∣∣∣∣ ≤ sd|ξ||vsd| ≤ sdMS

(√
2h(α)

)sd−1

det(ΛK(M)),

by (17). Assume that P (v(ξ)) = 0 for each ξ ∈ I(MS)sd. Then Theorem 4.2
of [7] implies that P (x) must be identically zero on V , which would contradict
the fact that P does not vanish identically on ΛK(M). Hence there must exist
some ξ ∈ I(MS)sd such that P does not vanish at the corresponding y := v(ξ),

and |y| ≤ sdMS

(√
2h(α)

)sd−1
det(ΛK(M)) by (18). Since P (x) is a homogeneous

polynomial, it must be true that P (ny) 6= 0 for every n ∈ Z>0. On the other hand,
by our construction

ny = n

sd∑
i=1

ξivi ∈ spanZ {v1, . . . ,vsd} ⊆ ΛK(M),

and so {ny}n∈Z>0
gives an infinite sequence of points in ΛK(M) outside of ZS .

For each such point, we have

Li(ny) = nLi(y), ∀ 1 ≤ i ≤ t.
Let us define, for each 1 ≤ i ≤ t,

(19) θi := Li(y) =

wd∑
j=1

bijyj 6= 0,

since yj ∈ K1, not all zero, and bij are K1-linearly independent. Notice that
θ1, . . . , θt ∈ E, and hence all of them are algebraic numbers of degree ≤ `.

Let α ∈ UK(M). Then, by (10), for each archimedean v ∈M(E),

max{1, |θi|v} ≤ max{1, (wd)
3
2 |Li|v|y|} ≤ (wd)

3
2 max{1, |y|}max{1, |Li|v}

≤
√

2 (wd)
3
2h(α)|y|max{1, |Li|v},(20)

by (9). By (18), |y| ≤ sdMS

(√
2h(α)

)sd−1
det(ΛK(M)), and hence

(21) max{1, |θi|v} ≤ sd(wd)
3
2MS

(√
2h(α)

)sd
det(ΛK(M)) max{1, |Li|v}.
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Now suppose v ∈ M(E) is non-archimedean. Then αyj is an algebraic integer for
each 1 ≤ j ≤ wd, and hence |αyj |v = |α|v|yj |v ≤ 1, meaning that

max{1, |y1|v, . . . , |ywd|v} ≤ max{1, |α|−1
v }.

Then

max{1, |θi|v} ≤ max{1, |Li|v}max{1, |y1|v, . . . , |ywd|v}
≤ max{1, |α−1|v}max{1, |Li|v},(22)

for each non-archimedean v ∈ M(E). Taking a product over all places of E, we
obtain:

h(θi) =
∏

v∈M(E)

max{1, |θi|v}
`v
` =

∏
v|∞

max{1, |θi|v}`v ×
∏
v-∞

max{1, |θi|v}`v
 1

`

≤ sd(wd)
3
2MS

(√
2h(α)

)sd
det(ΛK(M))h(Li)

∏
v-∞

max{1, |α−1|v}
`v
`

≤ sd(wd)
3
2MS

(√
2h(α)

)sd
h(α−1) det(ΛK(M))h(Li).

Recalling that h(Li) ≤ h(B) for all 1 ≤ i ≤ t, we obtain

(23) h(θi) ≤ 2
sd
2 sd(wd)

3
2MSh(α)sdh(α−1) det(ΛK(M))h(B),

for each 1 ≤ i ≤ t, where the choice of α ∈ UK(M) is arbitrary.
We will now show that 1, θ1, . . . , θt are Q-linearly independent. Suppose not,

then there exist c0, c1, . . . , ct ∈ Q, not all zero, such that

c0 =

t∑
i=1

ciθi =

t∑
i=1

wd∑
j=1

ciyjbij ,

where not all ciyj are equal to zero. Recall that y ∈ ΛK(M), meaning that coor-
dinates of y are in K1, hence all ciyj are in K1. This contradicts the assumption
that 1, b11, . . . , b1(wd) are linearly independent over K1. Hence 1, θ1, . . . , θt must be
linearly independent over Q.

Now let a = (a1, . . . , at) ∈ Rt and ε > 0, as in the statement of our theorem.
Then, by (23) and Theorem 3.1, there exists q ∈ Z and p ∈ Zt such that

|q| ≤ 2`t(`−1)(t+ 1)3`−1(t!)2` ×

×
(

2
sd
2 sd(wd)

3
2MSh(α)sdh(α−1) det(ΛK(M))h(B)

)`2(t+1)−`
ε−`+1(24)

and

|qθi − ai − pi| < ε ∀ 1 ≤ i ≤ t.

Letting x = qy, we see that qθi = Li(x) for each 1 ≤ i ≤ t and |x| = |q||y|.
Combining these observations with (18), (24) and (8) and taking a minimum over
all α ∈ UK(M) finishes the proof of the theorem.
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5. Proof of Theorem 1.2

Let Γ1, . . . ,Γm be full-rank sublattices of ΛK(M) of respective determinants
D1, . . . ,Dm. Let Ω = ∩mi=1Γi, then Ω also has full rank and

D := D1 · · · Dm ≥ det Ω.

We write λi for the successive minima of ΛK(M) and λi(Ω) for the successive
minima of Ω. Theorem 1.2 of [12] implies that there exists y ∈ ΛK(M) \

⋃m
i=1 Γi

such that

|y| < det ΛK(M)

λ1(Ω)sd−1

(
m∑
i=1

D
Di
−m+ 1

)
+ λ1(Ω).

Our first goal is to make this bound more explicit in terms of the parameters ofM.
First notice that by Minkowski’s Successive Minima Theorem,

λ1(Ω) ≤

(
sd∏
i=1

λi(Ω)

)1/sd

≤ (det Ω)
1/sd ≤ D1/sd.

We also need a lower bound on λ1(Ω). Observe that λ1(Ω) ≥ λ1, while λ1 ≥
1√
2
h(α)−1 for any α ∈ UK(M), by (9) above. Putting these estimates together, we

see that

(25) |y| <
(√

2h(α)
)sd−1

det ΛK(M)

(
m∑
i=1

D
Di
−m+ 1

)
+D1/sd

for any α ∈ UK(M).
Since y ∈ ΛK(M) and |ΛK(M) : Γi| = Di/ det ΛK(M) for each 1 ≤ i ≤ m, it

follows that

(g|ΛK(M) : Γi|)y =
gDi

det ΛK(M)
y ∈ Γi,

for every g ∈ Z, and hence(
gD1 · · · Dm

(det ΛK(M))
m

)
y =

(
gD

(det ΛK(M))
m

)
y ∈ Ω,

for every g ∈ Z. Therefore, it must be true that(
gD

(det ΛK(M))
m + 1

)
y ∈ ΛK(M) \

m⋃
i=1

Γi,

for every g ∈ Z. For brevity, let us write D′ = D
(det ΛK(M))m .

From here on, the argument is largely similar to the proof of Theorem 1.1 above,
but with some notable changes. For each 1 ≤ i ≤ t, let θi be as in (19) for our
choice of y ∈ ΛK(M) \

⋃m
i=1 Γi satisfying (25) as above, then

Li((gD′ + 1)y) = (gD′ + 1)θi ∀ 1 ≤ i ≤ t.

Using (20) with (25) instead of (18), we obtain that max{1, |θi|v} ≤

(wd)
3
2

((√
2h(α)

)sd
det ΛK(M)

(
m∑
i=1

D
Di
−m+ 1

)
+D 1

sd

√
2h(α)

)
max{1, |Li|v}

for all archimedean v ∈M(E), while for the non-archimedean v ∈M(E),

max{1, |θi|v} ≤ max{1, |α−1|v}max{1, |Li|v},
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as in (22). Taking the product over all places of E, we have for every 1 ≤ i ≤ t:

h(θi) ≤ (wd)
3
2

√
2h(α)h(α−1)h(B)×

×

((√
2h(α)

)sd−1

det ΛK(M)

(
m∑
i=1

D
Di
−m+ 1

)
+D 1

sd

)
,(26)

and 1, θ1, . . . , θt (and hence 1,D′θ1, . . . ,D′θt) are Q-linearly independent by the
same reasoning as in the proof of Theorem 1.1.

Now let a = (a1, . . . , at) ∈ Rt and ε > 0, as in the statement of our theorem.
Notice that for each 1 ≤ i ≤ t,

|(gD′ + 1)θi − ai − pi| = |g(D′θi) + (θi − ai)− pi| ,

for any integers p1, . . . , pt. Then, applying Theorem 3.1 to approximate the vector
(θ1 − a1, . . . , θt − at) by the fractional parts of the integer multiples of the vector
(D′θ1, . . . ,D′θt), we conclude that there exists g ∈ Z and p ∈ Zt such that

|g| ≤ 2`t(`−1)(t+ 1)3`−1(t!)2` ×

×
(

(wd)
3
2

√
2h(α)h(α−1)h(B)Eα(M,Γ1, . . . ,Γm)

)`2(t+1)−`
ε−`+1,(27)

where Eα(M,Γ1, . . . ,Γm) is as in (6), and

|g(D′θi) + (θi − ai)− pi| < ε ∀ 1 ≤ i ≤ t.

Letting x = (gD′ + 1)y, we see that (gD′ + 1)θi = Li(x) for each 1 ≤ i ≤ t and
|x| = |gD′ + 1||y|. Combining these observations with (25), (27) and (8) finishes
the proof of the theorem.
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