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Abstract

An Exponential Formula for Random Variables Generated by Multiple Brownian Motions
By

Maximilian Lawrence Baroi

Claremont Graduate University: 2022

The frozen operator has been used to develop Dyson-series like representations for random vari-

ables generated by classical Brownian motion, Lévy processes and fractional Brownian with Hurst

index greater than 1
2 . The relationship between the conditional expectation of a random variable

(or fractional conditional expectation in the case of fractional Brownian motion) and that variable’s

Dyson-series like representation is the exponential formula. These results had not yet been extended

to either fractional Brownian motion with Hurst index less than 1
2 , or d-dimensional Brownian mo-

tion. The former is still out of reach, but we hope our review of stochastic integration for fractional

Brownian motion and our results for the later will provide a framework.

Examining the case of d-dimensional Brownian motion in general, and two-dimensional Brownian

motions in specific, have led to a number of new insights. The first of which, is realizing the

component operators in the Dyson-series expansion can be written concisely as iterated applications

of the Gross Laplacian. The original choice of “Dyson-series” as nomenclature was to suggest

some connection between the original results and expressions which occur in quantum field theory.

There have always been connections between financial and mathematical physics, and expressing

the exponential formula in terms of a foundational operator originally used to study the theory of

potentials on Hilbert space suggests another.

The second major insight: is to realize the natural domain of the freezing operator on stochastic

integrals is as an operator over Stratonovich integrals. Freezing a Skorokhod integral has always

been a challenge. The näıve assumption of how they interact is wrong, and there was little intuition

in the ensuing calculations. However, the näıve assumption does work for Stratonovich integrals.

In retrospect, this is understandable. The mental model for the frozen operator is in terms of

realizations of paths. One would expect the integral which emphasizes the geometric nature of

v



stochastic processes to be a more natural fit.

These two developments have allowed us to prove an exponential formula for random variables

generated by two Brownian motions, and apply those results to the SABR model. There has been

work in this field, but the extension from one Brownian motion to two Brownian motions was ad

hoc. Our development is more systematic and more readily extended to d-dimensional Brownian

motion.
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Chapter 1

Introduction

A centered Gaussian process {BHt , t ≥ 0} is called a fractional Brownian motion (also written as

fBm) with Hurst parameter H ∈ (0, 1) when the autocovariance function is of the form

RH(s, t) := E
[
BHs B

H
t

]
=

1

2

(
|s|2H + |t|2H − |t− s|2H

)
. (1.1)

When H is fixed or clear from the surrounding context, we may simply write Bt or R. We may also

write Bt to denote classical Brownian motion, but in those contexts we will explicitly state so, and

any fractional Brownian motion referred to within the same context will be written as BHt .

Though it was examined before, the phrase “fractional Brownian motion” and “Hurst” index first

appears in [MN68]. Within that paper, Mandelbrot and Van Ness state and prove the fundamental

analytical and probabilistic properties of fBm; including the moving average representation

BH(t) =
1

Γ(H + 1
2 )

∫
R

(t− s)H−
1
2

+ − (−s)H−
1
2

+ dB(s), (1.2)

of an fBm BHt (where (x)+ denotes the maximum of x and zero) as an integral against a classical

Brownian motion B. Hurst noticed a self-similar pattern in the historical data concerning frequency

and volume of excess discharge from the Nile river [Hur51]. Hurst, along with coauthors Black

and Simaikah, cataloged further empirical examples of self-similar phenomenon [HBS65]. Fractional

1



CHAPTER 1. INTRODUCTION

Brownian motion is not only of empirical interest, but is a natural generalization of classical Brownian

motion. We borrow a diagram which we first found in a much better dissertation [Ros09]. It is a

Figure 1.1: Interrelation between families of stochastic processes. Taken from [CT03]

wonderful diagram even if it is only mostly true. There are self-similar Gaussian processes which are

not fractional Brownian motions, such as sub-fractional Brownian motions [BGT04], but we will not

concern ourselves with that class. And the correct characterization of an fBm BHt is as the unique

centered Gaussian processes which satisfies the self-similarity condition

BHta ∼ |a|HBHt , (1.3)

for every positive a, and whose increments are stationary

BHt+h −BHh ∼ BHt . (1.4)

We fix Var[BH1 ] = 1 to preclude admission of arbitrary scalings. To prove this characterization is

a simple exercise. A process which satisfies the above conditions has some autocovariance function

RH(s, t). We know RH(t, t) = t2HRH(1, 1) = t2H from the self-similarity condition. Then consider

2



CHAPTER 1. INTRODUCTION

Var(BHs+h − BHs ). Since increments are stationary, this quantity must equal the variance of BHh ,

which is h2H . And a direct calculation shows

VarBHs+h −BHs =E
[
(BHs+h −BHs )2

]
=E

[
BHs+hB

H
s+h

]
− 2E

[
BHs+hB

H
s

]
+ E

[
BHs B

H
s

]
=(s+ h)2H − 2RH(s+ h, s) + s2H .

(1.5)

Combining these two results, we see

h2H =(s+ h)2H − 2RH(s+ h, s) + s2H

⇒ RH(s+ h, s) =
1

2

(
(s+ h)2H + s2H − h2H

)
.

(1.6)

If we substitute h = t−s, remember how we tacitly assumed t ≥ s, and note RH must be symmetric,

then we find

RH(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
, (1.7)

which is precisely what we wish to prove. A nice and practical consequence of the stationarity

of increments of fBm is we can appeal to more advanced and efficient methods of simulation like

[WC94]. However, our focus is to utilize the frozen path operator introduced in [JPS15a] to avoid

simulations. We want to develop methods to estimate the expectations of random variables using

only deterministic expressions and integrals.

The majority of our attention will be focused on fBm with Hurst index H < 1
2 . Our goal,

whose time horizon lays beyond this dissertation, is to eventually develop an exponential formula

for random variables generated by a set of fBm with Hurst index H < 1
2 . To accomplish this

will require us to extend the exponential formulae in [JPS15a] to processes generated by multiple

classical Brownian motion (Chapter 4), and then try to generalize that result using the knowledge

of stochastic integration against fBm with Hurst index H < 1
2 (Chapter 3). Underpinning these

two developments will be our general knowledge of isonormal Gaussian processes and re-interpreting

old results under that framework (Chapter 2). Hopefully, this dissertation will provide enough of a

framework to successfully tackle this original problem in future papers.

As we survey stochastic integration of fBm with Hurst index H < 1
2 , we will learn more about the

3



CHAPTER 1. INTRODUCTION

qualitative differences between the various classes of fractional Brownian motions. An immediate

difference is seen when examining the covariance between disjoint increments.

• When H > 1
2 , they are historical; the correlation is positive

• When H = 1
2 , they are ahistorical; they are independent

• When H < 1
2 , they are anti-historical; the correlation is negative

If we were able to rewrite the literature, we would use the terms “(historical/anti-historical) fBm”

instead of “fBm with Hurst index (greater/less) than 1
2”. But it is for the best we do not have that

power.

4



Chapter 2

The Malliavin Calculus on

Isonormal Gaussian Processes

We develop the Malliavin calculus for isonormal Gaussian processes. Our program will mainly follow

Chapter 2 of [NP12], but we will also use Chapter 1 of [Nua06] as a guide. Any result which we do

not ourselves prove will be appropriately cited.

2.1 Isonormal Gaussian Processes

One is first taught to consider stochastic processes as a collection of time-indexed random variables.

But there is a more expansive interpretation which allows us to more readily leverage functional

analytic tools. Instead of indexing over a parameter or set of parameters, we instead consider a

process indexed over a Hilbert space.

We fix a real separable Hilbert space H with an inner-product 〈·, ·〉H, and consider a process

X = {X(h);h ∈ H} indexed by H (one can also say a process over H). If X is a collection of centered

jointly Gaussian random variables, over some probability space (Ω,F ,P) such that

E[X(h)X(h′)] = 〈h, h′〉H, (2.1)

5



CHAPTER 2. THE MALLIAVIN CALCULUS

then we call X an isonormal Gaussian process over H. The map h 7→ X(h) is indeed linear since

E
[
(X(ah)− aX(h))

2
]

=E
[
X(ah)2

]
− 2aE[X(ah)X(h)] + a2E

[
X(h)2

]
=‖ah‖2H − 2a〈ah, h〉H + a2‖h‖2H

=0,

(2.2)

and

E
[
(X(h+ h′)− (X(h) +X(h′)))

2
]

=E
[
X(h+ h′)2

]
− 2E [X(h+ h′)X(h)]− 2E [X(h+ h′)X(h′)]

+ E
[
(X(h) +X(h′))

2
]

=‖h+ h′‖2H − 2〈h+ h′, h〉H − 2〈h+ h′, h′〉H

+
(
E[X(h)2] + 2E[X(h)X(h′)] + E[X(h′)2]

)
=− ‖h‖2H − 2〈h, h′〉H − ‖h′‖2H

+ ‖h‖2H + 2〈h, h′〉H + ‖h′‖2H

=0.

(2.3)

By construction this linear map is an isometry.

If we had a “traditional” centered Gaussian process X = {Xt} with a covariance function

R(s, t) = E[XsXt] we can construct a representation of X as an isonormal Gaussian process. This

representation is entirely induced by the canonical map 1[0,t] 7→ Xt, which we extend by linearity.

Any simple function of the form h =
∑
i ai1[0,ti] is mapped to the random variable

∑
i aiXti . The

space of simple functions has an inner-product defined by 〈1[0,s], 1[0,t]〉 = R(s, t) and extended by

bi-linearity. We set H to be closure of simple functions with respect to the norm induced by this

inner-product, and X can be considered an isonormal Gaussian process over H. So we can “embed”

our old notion of stochastic processes within the field of isonormal Gaussian processes.

6



CHAPTER 2. THE MALLIAVIN CALCULUS

2.2 Wiener-Itô Chaos Decomposition

The path before us is laid out in Section 1.1 of [Nua06]. To prove the Wiener-Itô chaos decomposition

we first need some ancillary results and calculations. We start with an isonormal Gaussian process

X over the Hilbert space H. Unless explicitly noted otherwise, we always assume the σ-algebra of the

underlying probability space (Ω,F ,P) is generated by the collection X and is complete. Furthermore,

we assume the probability space has no atoms i.e, there is no set A such that P[A] is positive but

P[B] is zero for every proper subset B ⊂ A.

In general, if we let Y and Z be standard normal random variables then sY + tZ is a normal

random variable with mean zero and variance equal to s2 + t2 + 2E[Y Z]. esY+tZ is of course log-

normal and therefore

E
[
esY−

s2

2 etZ−
t2

2

]
= eE[Y Z]. (2.4)

We know etx−
t2

2 is the generating function of the Hermite polynomials, see Proposition A.7, and

therefore etx−
t2

2 =
∑
k t
kHk(x). Plugging this relation into Equation (2.4) produces the identity

∞∑
k,`=0

skt`E[Hk(Y )H`(Z)] =

∞∑
m=0

smtm
1

m!
E[Y Z]m. (2.5)

These two expressions must have equal coefficients when considered as power series in s and t, and

we therefore have the following result

Proposition 2.1. For any two standard normal random variables Y and Z

E[Hk(Y )H`(Z)] =


0 if k 6= `

1
k!E [Y Z]

k
if k = `.

(2.6)

Our process X might be defined on a probability space (Ω,F ,P), but our results will generally

refer to the probability space (Ω,G,P) where G is the complete σ-algebra generated by the random

variables {X(h);h ∈ H}. Understandably, our results can generally only reference information which

can actually be gleaned from observing X.

Examining the family of log-normal random variables {eX(h);h ∈ H} is often useful.

7



CHAPTER 2. THE MALLIAVIN CALCULUS

Lemma 2.2. The family {eX(h);h ∈ H} is a total subset of L2(Ω,G,P) i.e., the span of this collection

is dense in L2(Ω,G,P).

Consider an L2 random variable Z that is orthogonal to any member of the above collection.

We follow Nualart’s proof of Lemma 1.1.2 in [Nua06]. The crux of the proof is recognizing that an

expression E[Zet1X(h1)+...+tmX(hm)] is always zero by assumption. We then recognize this expression

is the Laplace transform of the signed measure µ(A) = E[Z1A(X(hi), . . . , X(hm))] on Rm evaluated

at (t1, . . . , tm). Our choice of parameters t1, . . . , tm was arbitrary and therefore the Laplacian of µ is

identically zero and thus µ itself is identically zero. Again, our choices of A and the hi are completely

arbitrary, and we can thus conclude E[Z1G] = 0 for any G ∈ G. From this we can conclude Z is

zero. Hence, the span of the collection {eX(h);h ∈ H} is dense in L2(Ω,G,P).

Now we define the family Hn = {Hn(X(h));h ∈ H, ‖h‖H = 1} for any natural n. Hn is called

the n-th Wiener chaos and our L2 space has the following orthogonal decomposition

Theorem 2.3.

L2(Ω,G,P) =

∞⊕
n=0

Hn. (2.7)

Orthogonality between the Wiener chaoses follows from Proposition 2.1. We proceed as in the

proof of Lemma 2.2 and consider a square-integrable random variable Z that is orthogonal to every

n-th Wiener chaos. If we then fix a particular h, then E[ZHn(X(h))] is zero for every natural n.

Then E[ZX(h)n] is zero for every n, and thus E[ZeX(h)] is zero. Since this holds for any h ∈ H, then

as in the proof of Lemma 2.2, we must have Z equal to zero. Therefore, the only element orthogonal

to the above direct sum is zero, and hence the direct sum is equal to L2(Ω,G,P). Define Jn to be the

projection from L2(Ω,G,P) to the n-th Wiener chaos, then we can alternatively express our theorem

as

Theorem 2.4.

F =

∞∑
n=0

JnF, (2.8)

holds for any F in L2(Ω,G,P).

Our eventual goal is to express the chaos expansion as a sum of iterated stochastic integrals

with symmetric integrands. We will finally exploit our assumption that H is separable. Let {en}

8



CHAPTER 2. THE MALLIAVIN CALCULUS

be an orthonormal basis of H. Then the countable collection of random variables {X(en)} is an

orthonormal system in L2(Ω,G,P). Now we generalize the Hermite polynomials. Let J be the

collection of sequences of natural numbers with finite support i.e., a = (a1, a2, a3, . . .) ∈ J where

each ai is a natural number and all but finitely many terms are zero. Then the norm |a| =
∑
i ai and

a! =
∏
i ai! are of course well-defined. We can then define a collection of random variables indexed

by J by the equation

Ha =
√
a!

∞∏
i=1

Hai(X(ei)). (2.9)

If i and j differ, then X(ei) and X(ej) are independent and so are Hm(X(ei)) and Hn(X(ej)) for

any natural m and n. Once again, we appeal to Proposition 2.1 to determine the inner product of

elements in this system.

E [HaHb] =

∞∏
i=1

√
ai!bi!E [Hai(X(ei))Hbi(X(ei))]

=


1 if a = b

0 if a 6= b.

(2.10)

Thus, the collection of all Ha as a ranges over J is an orthonormal system.

The next step is to show {Ha; |a| = n} is a complete orthonormal system for the n-th Wiener

chaos Hn. The actual argument is a fair amount of low-level calculation. Essentially, given an

element Hn(X(h)) in Hn we construct a suitable approximation from elements of {Ha; |a|}. The

crux is to calculate E[Hn(X(h))Ha] and, while not difficult, it is not particularly illuminating.

So we will relegate the calculation to the Appendix B. Since each collection {Ha; |a| = n} is an

orthonormal system for the n-th Wiener chaos, the overall collection {Ha;a ∈ J } is an orthonormal

system for L2(Ω,G,P).

We now construct a space of symmetric kernels and define an abstract mapping In from the

basis of this space of kernels to elements of {Ha; |a| = n}. When H is the space of square-integrable

functions on a measurable space without atoms, then our abstract operator In precisely coincides

with iterated stochastic integrals. But for now we remain as abstract as possible since, asides from

classical Brownian motion, the underlying Hilbert space which generates fractional Brownian motion

9



CHAPTER 2. THE MALLIAVIN CALCULUS

is not of this form.

Let H�n be the n-fold symmetric tensor product of H. Given an orthonormal basis {ei} of H we

can construct a basis of H�n. But first, we have to introduce a bit of notation. Now that we have

fixed a basis for H, then for any finitely supported a ∈ J we can define an element

ea = ⊗∞i=1e
⊗ai
i . (2.11)

Then ea is an element of H⊗n (not H�n!) whenever |a| = n. For our second piece of notation, we

introduce the symmetrization operator which takes elements from H⊗n to H�n characterized by its

action on basis elements

Sym (ei1 ⊗ · · · ⊗ ein) =
1

n!

∑
σ∈Sn

eiσ(1) ⊗ · · · ⊗ eiσ(n)
. (2.12)

Here, σ ranges over all permutations on the set {1, . . . , n}. If an expression e is of small enough

width, we will write ẽ for Sym e. For those not familiar with this tensor algebra notation, we can

give some examples:

Sym (e1 ⊗ e2) =
1

2
(e1 ⊗ e2 + e2 ⊗ e1) , (2.13)

and the slightly more complicated

Sym
(
e⊗2

1 ⊗ e2

)
=

1

6
(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2

+ e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1 + e2 ⊗ e1 ⊗ e1)

=
1

3
(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1) .

(2.14)

In general, the tensor product is the only reasonable way to define a notion on multiplication for

an arbitrary Hilbert space H. However, if H is a collection of actual functions we can sometimes have

a more concrete definition of H⊗n and symmetrization. For example, if H is L2([0, T ]), which would

mean our isonormal Gaussian process is classical Brownian motion, then H⊗n is isomorphic to the

10



CHAPTER 2. THE MALLIAVIN CALCULUS

space of square-integrable multi-variable functions L2([0, T ]n) and symmetrization would simply be

f̃(x1, . . . , xn) =
∑
σ∈Sn

f(xσ(1), . . . , xσ(n)), (2.15)

as we would hope. Quick aside: when H = L2([0, T ]m), then our isonormal Gaussian process is a

Brownian sheet [Kho14].

Returning from our digression; we imbue the space H�n with the inner product 〈·, ·〉H�n , which

is defined as n!〈·, ·〉H⊗n . Where the inner product on H⊗n has the natural definition

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gn〉H⊗n = 〈f1, g1〉H · · · 〈fn, gn〉H. (2.16)

Now, consider the collection {ẽa; |a| = n}; whose span is obviously dense within H�n. Let us do

the immediate ask of determining the inner-product between two elements ẽa and ẽb. If we write

ea = ei1 ⊗ · · · ⊗ ein and eb = ej1 ⊗ · · · ⊗ ejn then we calculate

〈ẽa, ẽb〉H�n =n!〈ẽa, ẽb〉H⊗n

=
1

n!

∑
σ,σ′∈Sn

〈eiσ(1) ⊗ · · · ⊗ eiσ(n)
, ejσ′(1) ⊗ · · · ⊗ ejσ′(n)

〉H⊗n

=
∑
σ∈Sn

〈ei1 ⊗ · · · ⊗ ein , ejσ(1) ⊗ · · · ⊗ ejσ(n)
〉H⊗n

=
∑
σ∈Sn

〈ei1 , ejσ(1)〉H · · · 〈ein , ejσ(n)
〉H.

(2.17)

If a is not equal to b, then there exists some index k for which ak 6= bk. Here, ek appears ak times

in the tensor product ea and bk times in the tensor product eb. So regardless of how we re-order the

factors in eb, we cannot match every instance of ek in eb with a corresponding ek in ea. Hence, each

summand is zero. If instead b is equal to a, and we are calculating ‖ẽa‖2, then a summand is one is

if a permutation of the factors of ea is again ea, and zero otherwise. A permutation would need to

fix the a1 copies of e1, the a2 copies of e2, and etc. There are precisely a! such permutations, and

thus ‖ẽa‖2H�n is a!. Therefore, { 1√
a!
ẽa; |a| = n} is an orthonormal basis for H�n.

Finally, we can introduce the operator In : H�n → Hn, defined on the basis by the rule In(ẽa) =

11
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√
a!Ha. Our lengthy calculation was to convince ourselves that In is indeed an isometry between

the domain of symmetric kernels and the n-th Wiener chaos Hn. We can summarize our calculations

into the pithy algebraic statement Hence

Theorem 2.5.

L2(Ω,G,P) =

∞⊗
n=1

√
n!Hn. (2.18)

So for any F in L2(Ω,G,P) there exists a sequence of fn ∈ H�n such that

F =

∞∑
n=1

In(fn). (2.19)

This is the Fock space construction which appears in Quantum Mechanics. Our use of symmetric

tensors corresponds to the Fock space derived for a boson. The Fock space for a fermion would

involve antisymmetric tensors instead [Mey95]. We can make a stronger statement if H is the space

of square-integrable functions over an atom-free measure space (T,B, µ). In this case, an element

of H�n is a square-integrable function on Tn with the measure µ⊗n which is symmetric in its n

variables. We denote the space of all square-integrable symmetric function L̂2(Tn). In this case, our

isometry In perfectly coincides with iterated stochastic integration against our isonormal Gaussian

process X. One only needs to examine how the image of some indicator function 1A1×···×An , once

appropriately symmetrized, under Im is precisely X(A1) · · ·X(An). Let us rephrase our previous

result with more earthiness.

Theorem 2.6 (Wiener-Itô Chaos Decomposition). Given an isonormal Gaussian process X over

the space L2(T,B, µ). If (T,B, µ) is atom-free, and F is in L2(Ω,G,P), then there exists a sequence

of symmetric functions fn ∈ L̂2(Tn), where f0 = E[F ], such that

F =

∞∑
n=0

In(fn). (2.20)

2.3 The Malliavin Derivative

We are now in a place to introduce the fundamental operators we will use; beginning with the

Malliavin derivative. To begin we consider a subspace S of L2(Ω) of all random variables which can

12
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be expressed as f(X(h1), . . . , X(hm)) where f : Rn → R is a smooth function such that f and all

its derivatives have at most polynomial growth. Our usage of “S” to denote the family of smooth

cylindrical random variables is a mnemonic as every random variable within can be expressed as the

application of a function which resides in some Schwartz space [SS03] to elements of our isonormal

Gaussian process.

Definition 2.7 (The Malliavin Derivative). Consider a smooth cylindrical random variable F ∈ S of

the form f(X(h1, . . . , X(hm)), then the Malliavin derivative of F is defined as the H-valued process

DF =

m∑
i=1

∂f

∂xi
(X(h1)), . . . , X(hm))hi (2.21)

.

Consequently, the p-th Malliavin derivative of F is an element of L2(Ω × H�n) and has the

closed-form expression

DkF =

m∑
i1,...,ik=1

∂kf

∂xi1 · · · ∂xik
(X(h1), . . . , X(hm))hi1 ⊗ · · · ⊗ hik . (2.22)

Symmetry stems from the realization that f is smooth, so the order of partial differentiation is

irrelevant. The above expression is sufficient for almost all direct calculations. However, sometimes

an alternative expression for Dp will ease our burden. If we return to our vector notation, we can

write ha for ha11 ⊗ · · · ⊗ hamm , and h̃a for the symmetrization of ha. Then

DpF =
∑
|a|=p

p!

a!

∂pf

∂xa
(X(h1), . . . , X(hm))h̃a. (2.23)

When F and f is clear from context, we may denote Fa for ∂pf
∂xa (X(h1), . . . , X(hm)), and more

succinctly write

DpF =
∑
|a|=p

p!

a!
Fah̃a. (2.24)

When H is a space functions over an interval, then DF is a stochastic process indexed by some

parameter. In that case, we can write DF = {DsF} where DsF is the random variable the process

13
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DF assumes at “time” s.

If we fix an h ∈ H and consider the above F , we can calculate the inner product between h and

DF

〈DF, h〉H =

m∑
i=1

∂f

∂xi
(X(h1), . . . , X(hm)) 〈hi, h〉

= lim
ε→0

f(X(h1) + ε〈h1, h〉H, . . . , X(hm) + ε〈hm, h〉H)− F
ε

,

(2.25)

which justifies the interpretation of the Malliavin derivative as a Fréchet derivative of operators on

the space of paths. The density of S in L2(Ω) is fairly obvious; S contains our orthonormal system

{Ha}J .

We need to give a suitable domain and topology for the Malliavin derivative. The following

spaces are ubiquitous in the literature though it seems they are rarely given a proper name. Given

the definition and setting, “Malliavin Sobolev spaces” [Imk+16] seems appropriate. For a smooth

cylindrical random variable F ∈ S we define the norm

‖F‖k,p =

(
E[|F |p] +

k∑
i=0

E
[
‖DiF‖H⊗i

]) 1
p

. (2.26)

In a deterministic setting, these are the norms which define the Sobolev spaces. We define Dk,p as

the closure of S with respect to the ‖ · ‖k,p norm. Then we can consider Dk as a map from Dk,p to

Lp(Ω × H�k). Finally, we define the space D∞,p as the intersection of all Dk,p. Of special interest

are the spaces of the form Dk,2, since they are Hilbert spaces with respect to the inner product

〈F,G〉 = E [FG] +

k∑
i=1

E
[
〈DiF,DiG〉H⊗n

]
. (2.27)

Chapter 1 of [Nua06] and Chapter 2 [NP12] prove relevant properties like inclusion and compatibility

among the Malliavin-Sobolev spaces.

We conclude with this simple result.

Proposition 2.8 (The Chain Rule). If we have a series of random variables F1, . . . , Fm ∈ D1,p,

and a continuously differentiable function φ : Rm → R with bounded partial derivatives, then

14
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φ(F1, . . . , Fm) is also in D1,p and

Dφ(F1, . . . , Fm) =

m∑
i=1

∂φ

∂xi
(F1, . . . , Fm)DFi. (2.28)

The proof of which just follows the definitions. So the Malliavin calculus is a first-order calculus,

which already distinguishes it from the Itô calculus.

2.4 The Divergence Operator

Naturally, the next operator we introduce after the Malliavin derivative corresponds to integration.

We define the divergence operator δp to be the adjoint of the k-th Malliavin derivative Dk : Dk,2 →

L2(Ω × H�k). The domain of this operator is denoted Dom δk and contains the processes u in

L2(Ω× H⊗n) such that there exists a constant C such that

|E
[
〈DkF, u〉

]
| ≤ C

√
E[F 2], (2.29)

for all F in Dk,2. Once we fix a particular u in Dom δk, the linear functional which maps an

L2(Ω) random variable F to E
[
〈DkF, u〉

]
H⊗k

is continuous. A routine appeal to the Reisz Repre-

sentation Theorem implies there is a unique random variable, which will be our δk(u), such that

E
[
〈DkF, u〉

]
H⊗k

is equal to E[Fδk(u)] for any square-integrable random variable F . The k-th order

divergence operator δk : Dom δk → L2(Ω) is defined by this integration by parts formula.

To actually begin integrating we will need one result.

Proposition 2.9. Let F be a smooth cylindrical random variable in S, and h be an element of H.

Then

E [〈DF, h〉H] = E [FX(h)] . (2.30)

This one of the few times we will actually evaluate an expectation as an integral against a

probability density function. Under the assumptions, F is of the form φ(X(h1), . . . , X(hm)). Of

course, we can assume h1, . . . , hm are orthonormal by replacing φ with φ ◦O where O is the change

15
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of coordinates transformation. Then

E [〈DF, h〉H]

=

m∑
i=1

aiE
[
∂φ

∂xi
(X(h1), . . . , X(hm))

]
,

(2.31)

where each ai is simply 〈h, hi〉H. (X(h1), . . . , X(hm)) is a standard normal random vector and

therefore

E
[
∂φ

∂xi
(X(h1), . . . , X(hm))

]
=

1

(2π)
m
2

∫
Rm

∂φ

∂xi
(x1, . . . , xm)e−

∑m
i=1 x

2
i

2 dx

=
1

(2π)
m
2

∫
Rm

φ(x1, . . . , xm)xie
−

∑m
i=1 x

2
i

2 dx

=E [φ(X(h1), . . . , X(hm))X(h1)] .

(2.32)

Substituting these terms back into our previous equation we see

E [〈DF, h〉H] = E [FX(h)] . (2.33)

We extend to all F by density, and remembering the definition of the divergence operator, we

conclude δ(h) = X(h).

Of special importance are the family of smooth elementary processes SH. A process u resides

within SH if u is of the form
∑n
i=1 Fihi where each Fi is a smooth cylindrical random variable.

Note, the image of smooth cylindrical random variables S under the Malliavin derivative lies within

SH. SH is usually the first input into the “standard machine”, and theorems are bootstrapped from

there.

Proposition 2.10. For any elementary process u =
∑n
i=1 Fihi in SH, u is in Dom δ and its diver-

gence is

δ(u) =

n∑
i=1

FiX(hi)−
n∑
i=1

〈DFi, hi〉H. (2.34)

Let us avoid using more indices than we have to and consider u = Fh, and only then extend to

16
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SH by linearity. We proceed by duality. For any G ∈ D1,2 we have

E [Gδ(Fh)] = E [〈DG,Fh〉H]

=E [〈FDG, h〉H]

=E [〈D(FG), h〉fH ]− E [〈GDF, h〉fH ]

=E [FGδ(h)]− E [G〈DF, h〉fH ]

=E [G (FX(h)− 〈DF, h〉fH)] .

(2.35)

By the uniqueness of the divergence we conclude δ(u) = FX(h)− 〈DF, h〉H.

Depending on the day, we are either amused or annoyed at how many integration-by-parts

formulae there are within the Malliavin calculus. We currently have one for integrating a random

variable against a deterministic process. We now expand it to one which covers integrating a random

variable against a stochastic process.

Proposition 2.11 (Integration By Parts). Given F ∈ D1,2 and u ∈ Dom δ such that F‖u‖H, Fδ(u)

and 〈DF, u〉H are square integrable, the integral of their product is

δ(Fu) = Fδ(u)− 〈DF, u〉H. (2.36)

As before, we begin by assuming is an extremely elementary process u = F ′h. From proposition

2.10 we know

δ(Fu) = δ(FF ′h) = FF ′X(h)− 〈D(FF ′), h〉H

=F (F ′X(h)− 〈DF ′, h〉H)− 〈DF,F ′h〉H

=Fδ(u)− 〈DF, u〉H.

(2.37)

As we promised, the proposition holds for SH by linearity and Dom δ by density; the standard

machine in operation. The restriction to random variables and processes which satisfy the stated

square-integrability conditions is what makes the algebraic rearrangements true and not merely

formal.

We would be remiss if we did not prove the Heisenberg commutativity principle. This is the rule
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of the symbol-pushing game which allows us to interchange divergence and the Malliavin derivative.

Lemma 2.12 (Heisenberg commutivity property). Consider a u ∈ Dom δ such that δ(u) ∈ D2,2.

Then

Dδ(u)− δ(Du) = u. (2.38)

Let u = Fh where F ∈ S, so F = φ(X(h1, ), . . . , X(hm)) for some smooth φ of at most polynomial

growth. Nothing to it but to do it. To save on ink, write Fj for ∂φ
∂xj

(X(h1), . . . , X(hm)) and Fjk

for ∂2φ
∂xj∂xk

(X(h1, ), . . . , X(hm)). We can use the same trick as before and assume h is in the span of

h1, . . . , hm. Furthermore, for now we let u = Fhi. Then

Dδ(u) = D (FX(hi)− 〈DF, hi〉H)

=Fhi +X(hi)DF −D
∑
j

DF 〈hj , hi〉

=u+X(hi)DF −DFi.

(2.39)

Let us make explicit the rule “first things first”, so δ(h⊗h′) = X(h)h′ and 〈h, h′⊗h′′〉H = 〈h, h′〉Hh′′.

Making the former choice fixes the other by the duality relation which defines the divergence. Usually,

everything is already symmetrized so all our arbitrary choices lead to the same result. But for right

now, we should specify. We also use the convention that taking a derivative “adds a variable at the

end” while integrating “consumes the first variable”, which is how we would normally calculate if H

was a family of univariate functions.

δ(Du) =
∑
j

δ(Fjhi ⊗ hj)

=
∑
j

Fjδ(hi ⊗ hj)−
∑
j

〈DFj , hi ⊗ hj〉H

=X(hi)
∑
j

Fjhj −
∑
j,k

Fjk〈hk, hi ⊗ hj〉H

=X(hi)DF −
∑
j

Fjihj .

(2.40)

Our desired result immediately follows.

Iterating on this idea we have the following result.
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Lemma 2.13 (The better Heisenberg commutivity property).

Dδku− δkDu = kδk−1u, (2.41)

which follows from a simple induction proof with Proposition 2.12 as the base case.

Dδk+1u− δk+1Du = (Dδk)δu− δk+1Du

=(kδk−1 + δkD)δu− δk+1Du = kδku+ δk(Dδu− δDu) = kδku+ δku

=(k + 1)δku.

(2.42)

At the moment, we have two different operators Ik and δk. The former is defined by mapping

basis vectors of the Hilbert space H�k to n-th Wiener chaos of L2(Ω,G,P). The latter is defined

as the adjoint of the n-th Malliavin derivative. We know prove they coincide. After fixing an

orthonormal basis {ei} of H, we consider the orthonormal basis { 1√
a!
ẽa; |a| = k}. In Section 2.2,

Ik( 1√
a!
ẽa) and Ha are equal definitionally. What remains is to show δk( 1√

a!
ẽa) is also equal to Ha.

Consider two elements 1√
a!
ẽa and 1√

b!
ẽb of H�k. For the moment, consider a multi-index a ∈ J

such that |a| = |b| = k. By the definition of δk we have

E
[
Haδ

k

(
1

b!
ẽb

)]
=

1√
b!
E
[
〈DkHa, ẽb〉H⊗k

]
. (2.43)

Recall Ha =
√
a!
∏∞
i=1Hai(X(ei)). We want to calculate the k-th Malliavin derivative of this

expression. After some relabelling of the ei we can express Ha as a smooth cylindrical random

variable of the form f(X(e′1), . . . , X(e′m)) where f(x1, . . . , xm) is equal to
√
a!Ha′1

(x1) · · ·Ha′m
(xm)

where all the a′i are positive and a′1 + · · ·+ a′m = k. Then we calculate the k-th Malliavin derivative

directly. From Equation (A.5) we can conclude di

dxiHj(x) = Hj−i(x) when i ≤ j and is identically

zero otherwise. Using Equation (2.23) we see

DkHa =
∑
|µ|=k

k!

µ!

∂kf

∂xµ
(X(e′1), . . . , X(e′m))ẽ′µ. (2.44)

By a pigeon-hole argument, ∂kf
∂xµ is zero unless µ is equal to a′ = (a′1, . . . , a

′
m), in which case it is
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√
a!. So the only summand which is non-zero is when µ is equal to a′. Then we return to our

original labelling to see

DkHa =
k!√
a!
ẽa. (2.45)

Plugging this result back into our original equation we find

E
[
Ik

(
1√
a!
ẽa

)
δk
(

1

b!
ẽb

)]
=

k!√
a!b!

E [〈ẽa, ẽb〉H⊗k ]

=

〈
1

a!
ẽa,

1

b!
ẽb!

〉
H�k

.

(2.46)

Therefore,

E
[
Haδ

k

(
1

b!
ẽb

)]
= E [HaHb] , (2.47)

for all |a| = |b| = k. We can at least conclude the projection of δk( 1
b! ẽb) onto the k-th Wiener

chaos is Hb when |b| = k. Now consider E[Haδ
k( 1
b! ẽb)] where |`| < k. As we retrace the steps of

the above proof we see DkHa is identically zero. And therefore E[Haδ
k( 1
b! ẽb)] is zero whenever

|a| < |b| = k. Finally, we must consider when |a| > |b| = k. In this third pass-through of the proof,

〈DkHa, ẽb〉H⊗n is an element the (|b| − |a|)-th Wiener chaos and therefore has mean zero. We can

conclude for any two multi-indices a, b where |a| = k (we place no restriction on |b|), E[Haδ
k( 1
b! ẽb)]

is identically zero unless a = b, in which case, the expression is equal to one. Since the {Ha}a∈J

form a complete orthonormal system of L2(Ω,G,P) we are forced to conclude δk( 1
b! ẽb) is Hb, and

therefore Ik and δk agree on H�k.

Our next operators are not as common in the literature.

2.5 The Gross Laplacian

The Malliavin calculus admits many different Laplace-type operators. There is the Lévy Laplacian

[Fel05] and its more exotic variants which have no direct finite-dimensional analog. There is the

Volterra Laplacian [Hid+93] which is a proper infinite-dimensional analog of the classical Laplacian

but a bit abstract for our purposes. We will work with the Gross Laplacian [Gro67] which is

more concrete a specialization of the Volterra Laplacian. For a cylindrical random variable F =
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f(X(h1), . . . , X(hm)) where all the hi are orthonormal we define the Gross Laplacian to be

∆F =

m∑
i=1

∂2f

∂x2
i

(X(h1), . . . , X(hm)), (2.48)

which is intuitive enough of a definition to justify the nomenclature.

We now prove that we can loosen the orthonormality requirement. Let F = f(X(h1), . . . , X(hm))

be a smooth cylindrical random variable, but let us drop the requirement that the hi are orthonormal.

Let {ei}`1 be an orthonormal basis for the span of the {hi}m1 . Then F can be expressed as

F = f(X(h1), . . . , X(hm)) = f

A

X(e1)

...

X(e`)


 , (2.49)

where the (possibly non-square) matrix A = (aij) is the change of coordinates between the {hi} and

the {ei}. If we let g = f ◦A, then

∆F =
∑̀
i=1

∂2g

∂x2
i

(X(e1), . . . , X(e`)). (2.50)

We calculate the first derivatives of g

∂g

∂xi
(x) =

∂

∂xi
(f(Ax)) =

m∑
j=1

(
∂f

∂xj
(Ax)

)
∂

∂xi

(∑̀
k=1

ajkxk

)

=

m∑
j=1

(
∂f

∂xj
(Ax)

)
aji.

(2.51)

The second derivatives are

∂2g

∂x2
i

=

m∑
j,k=1

(
∂f

∂xj∂xk
(Ax)

)
ajiaki, (2.52)
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and therefore

∂2g

∂x2
i

(X(ei), ·,W (e`)) =

m∑
j,k=1

(
∂f

∂xj∂xk
(X(h1), . . . , X(hm))

)
ajiaki. (2.53)

Once we recognize that 〈hj , hk〉H =
∑`
i=1 ajiaki, we can see

∆F =
∑̀
i=1

m∑
j,k=1

(
∂f

∂xj∂xk
(X(h1), . . . , X(hm))

)
ajiaki

=

m∑
j,k=1

(
∂f

∂xj∂xk
(X(h1), . . . , X(hm))

)∑̀
i=1

ajiaki

=

m∑
j,k=1

(
∂f

∂xj∂xk
(X(h1), . . . , X(hm))

)
〈hj , hk〉H.

(2.54)

Note

D2F =

m∑
j,k=1

∂jkf(hj ⊗ hk). (2.55)

So the Gross Laplacian is some sort of trace of D2F , which corresponds with the classical idea of

the Laplacian as the trace of the Hessian matrix.

If X was a classical BM, then 〈f, g〉 =
∫ T

0
f(s)g(s)ds and the Gross Laplacian would be equal

to the expression
∫ T

0
DsDsFds. The Gross Laplacian is actually one of the fundamental operators

within [JPS15a], and we can pithily rephrase a particular result as

E[F ] = ω0(e
1
2 ∆F ) =

∑
k

1

2kk!
ω0(∆kF ). (2.56)

The meaning of ω0 will be revealed shortly in Section 2.6. For now, we do not know if rewriting

exponential formulae using the Gross Laplacian is only notational concision, or whether there is

some more interesting connection between the exponential formulae and potential theory on Hilbert

spaces.
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2.6 The Frozen Path Operator

Introduced in [JPS15a], the frozen path operator was used for a new representation theorem for

smooth martingales generated by classical Brownian motion. This Dyson series [Zei06] was further

used to characterize solutions for path-dependent parabolic PDEs [JS16] and later extended [JPS15b]

to random variables generated by fBm with Hurst index greater than 1
2 .

If we have a smooth cylindrical random variable F = f(Bt1 , . . . , Btm) where B is classical

Brownian Motion then we can “freeze” the random variable at time 0 ≤ t ≤ T by defining the

operator ωt such that

ωt(F ) = f(Bt1∧t, . . . , Btm∧t). (2.57)

Alternatively, we may write F (ωt) for ωt(F ). Section 3.2 of [JPS15b] gives a proof that this operator

is indeed well-defined. Classical Brownian Motion is an isonormal Gaussian process over the Hilbert

space L2([0, T ]). So for a smooth cylindrical random variable F = f(B(h1), . . . , B(hm)) we have

B(hi) =
∫ T

0
hi(x)dB(x), where each hi is square-integrable. As we would expect, freezing this

random variable gives us

ωt(F ) = f

(∫ t

0

h1(x)dB(x), . . . ,

∫ t

0

hm(x)dB(x)

)
. (2.58)

All claims in this section continue to hold when B is replaced by a fBm BH regardless of whether

the Hurst index H is greater or less than 1
2 .

For an adapted process u, we do have the formula ωt
∫ T

0
usds =

∫ t
0
usds + ut(T − t). However,

for stochastic integrals of nondeterministic processes, the näıve guess that ωt
∫ T

0
usdBs is simply∫ t

0
usdBs immediately fails. If we let us = Bs, then

∫ T
0
BsdBs = 1

2B
2
T − T

2 , and freezing this result

at time t produces 1
2B

2
t − T

2 , while
∫ t

0
BsdBs = 1

2B
2
t − t

2 . Neither can we approximate the result

of freezing an integral by freezing an approximation. We have the same witness of
∫ T

0
BsdBs for a

counter-example. Given a partition of [0, T ], freeze the approximation
∑
iBti(Bti+1 −Bti), then let

the mesh become arbitrarily fine. Once again, we obtain the result 1
2B

2
t − t

2 instead of our desired

conclusion of 1
2B

2
T − T

2 . Later, will claim a simple formula for freezing the Stratonovich integral of

an adapted process.

23



CHAPTER 2. THE MALLIAVIN CALCULUS

2.7 d-dimensional BM as an Isonormal Gaussian Process

We wish to make explicit what we have only seen hinted at within the usual references; describing

d-dimensional Brownian Motion within the framework of isonormal Gaussian processes. After this

construction we will examine the rules of “multi-variable” stochastic calculus.

The underlying Hilbert space we will use is the space L2([0, T ];Rd) of Rd-valued functions h such

that
∫ T

0
|h(x)|2dx is finite. It may feel backwards to specify an indexing Hilbert space to generate a

Gaussian process instead of determining the underlying Hilbert space given a Gaussian process, but

Proposition 2.1.1 of [NP12] provides a simple construction of a Gaussian process given a real sepa-

rable Hilbert space and a sequence of i.i.d. standard normal random variables. If we let e1, . . . , ed

be the standard basis Rd, then a function h ∈ L2([0, T ];Rd) has a component-wise decomposition

h =
∑d
i=1 hiei where each hi is a square-integrable real function on [0, T ]. Well, L2([0, T ]) is the

underlying Hilbert space when considering classical Brownian Motion as an isonormal Gaussian

process. Intuitively, an isonormal Gaussian process over L2([0, T ];Rd) should contain d copies of

Brownian motions.

To begin, let B be an isonormal Gaussian process which has L2([0, T ];Rd) as its underlying

Hilbert space. Now define the linear map Bi : L2([0, T ]) → L2(Ω) by Bi(h) = B(hei). When we

want to emphasize Bi as a process over time we adhere to the usual notation and write Bi(t) for

Bi(1[0,t]) = B(1[0,t]ei). Then B(h) =
∑
iBi(hi) and in particular B(t) =

∑
iBi(t). {Bi(h)}h∈L2(0,T )

is a family of centered Gaussian random variables, and if we look at the auto-covariance of Bi we

see

E [Bi(s)Bi(t)] =E
[
B
(
1[0,s]ei

)
B
(
1[0,t]ei

)]
=
〈
1[0,s]ei, 1[0,t]ei

〉
L2

=

∫ T

0

1[0,s](u)1[0,t](u)du = s ∧ t.
(2.59)

The only Gaussian process which satisfies these properties is classical Brownian motion. Further-

more, if we consider Bi and Bj with distinct indices i and j then

E [Bi(s)Bj(t)] =
〈
1[0,s]ei, 1[0,t]ej

〉
L2 = 0, (2.60)
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which is all we need to conclude that B1, . . . , Bd are independent Brownian motions.

There is a slightly different representation which [Nua06] uses when it briefly comments on d-

dimensional Brownian motion as an isonormal Gaussian process. Which is understandable; there

are many Hilbert spaces isomorphic to L2([0, T ];Rd). If we let Nd be the set {1, . . . , d} we can

alternatively consider L2([0, T ] × Nd) as the underlying Hilbert space. Then an element h has a

unique decomposition defined by

h(t, j) =

d∑
i=1

hi(t)1{i}(j). (2.61)

Where, once again, each hi is an element of L2([0, T ]) and hi(t) = h(t, i). We want to avoid using

Kronecker deltas when discussing an indicator function on a single point because with the Skorokhod

integral we have too many deltas as is. Obviously the isomorphism between these two Hilbert spaces

is induced from mapping the indicator function 1{i} to the basis vector ei. Some analysis is easier

when considering L2([0, T ] × Nd) but instead of having two notations we write h =
∑
i hiei and

trust in the maturity of the reader to understand when we consider ei as a basis vector of Rd or

when we consider it as the indicator function on {i} in Nd. Let us quickly run through the Malliavin

operators.

Given a smooth cylindrical random variable F = f(B(h1), . . . , B(hm)) the Malliavin derivative

is the following Rd-valued process.

DF =

m∑
i=1

∂f

∂xi
(B(h1), . . . , B(hm))hi. (2.62)

Then we can define partial Malliavin derivatives by the relation

DF =


D1F

...

DdF

 . (2.63)

Each DiF is simply the i-th component of DF . One slight nuance is to calculate DiF , F needs to be

measurable with respect to B and not just Bi, and hence F must be measurable with respect to the
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σ-algebra generated jointly by d Brownian motions. Algorithmically, calculating DiF is equivalent

to calculating the Malliavin derivative as normal but treating all the Brownian motions aside from

Bi as deterministic parameters. It is slightly unwieldy, but we also write Di,sF to denote the value

of the stochastic process DiF at “time” s.

Now let δ be the divergence operator induced by B. Then for a scalar-valued process u we can

define δi(u) = δ(uei). By construction, for a Rd-valued process u =
∑d
i=1 uiei we have δ(u) =∑

i δi(ui). We would like to show δi coincides with the Skorokhod integral with respect to Bi. To

do so, we consider a square-integrable random variable F and a process u such that uei is in Dom δ

E [Fδi(u)] =E [Fδ(uei)] = E
[
〈DF, uei〉L2([0,T ];Rd)

]
=E

[
〈DiF, u〉L2([0,T ])

]
.

(2.64)

In the special case when F and u are generated only by Bi this collapses into the definition of the

Skorokhod integral for a single BM. δi really is the Skorokhod integral with respect to Bi. We can

prove it follows the expected integration-by-parts rule

δi(Fu) =δ (Fuei) = Fδ (uei)− 〈DF, uei〉L2([0,T ];Rd)

=Fδi(u)− 〈DiF, u〉L2([0,T ]).

(2.65)

We follow [Nua06] to argue that when u is adapted then δi(u) is equal to the Itô integral
∫ T

0
usdBi(s).

It follows from Lemma 1.3.2 after consider the random variable uy as F[0,t]×{i}.

The last component which is essential to computation is determining how Di interacts with δj

as operators. Here we follow the proof of Proposition 2.5.4 in [NP12] which we had already seen in

Section 2.4. Take the elementary process Fh where h is in L2([0, T ]).

Diδj(Fh) =Di

(
FBj(h)− 〈DjF, h〉L2([0,T ])

)
=Bj(h)Di + FDiBj(h)− 〈DiDjF, 〉L2([0,T ]),

(2.66)
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while

δjDi(Fh) =δj (h⊗DiF ) = Bj(h)Dif − 〈DjDiF, h〉L2([0,T ]). (2.67)

Di and Dj obviously commute, so when we take the difference of these two expressions, we see

Diδj(Fh)− δjDi(Fh) =FDiBj(h). (2.68)

When i and j are equal this is the Heisenberg commutativity relation. When they differ, the right-

hand side is 0 and thus Di and δj commute.

For a cylindrical random variable F = f(B(h1), . . . , B(hm)), we want to arrange the terms of

the Gross Laplacian in a particular way. We express each hi as
∑
i hkiek, and then see

∆F =

m∑
i,j=1

∂2f

∂xi∂xj
(B(h1), . . . , B(hm)) 〈hi,hj〉L2([0,T ];Rd)

=

d∑
k=1

m∑
i,j=1

∂2f

∂xi∂xj
(B(h1), . . . , B(hm)) 〈hki, hkj〉L2([0,T ]).

(2.69)

Each summand will be denoted ∆kF , which is equivalent to the Gross Laplacian of F if the Brownian

motions other than Bk were constant. Then we could express the Gross Laplacian as ∆ = ∆1 +

· · ·+ ∆d. The freezing operator is even simpler and behaves like freezing all the Brownian motions

at the same point in time.

To express a chaos expansion of a random variable generated by d independent Brownian motions,

we should have a better idea of what symmetric kernels look like. Switching back to our scalar

notation, the second symmetric kernel would be of the form

f((s, i), (t, j)) =
∑
k,`

fk,`(s, t)ekl(i, j). (2.70)
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In this case, the constraint is f((s, i), (t, j)) = f((t, j), (s, i)) and

f((t, j), (s, j)) =
∑
k,`

fk`(t, s)ekl(j, i) =
∑
k,`

fk`(t, s)elk(i, j)

=
∑
k,`

f`k(t, s)ekl(i, j).

(2.71)

As this expression is equal to f((s, i), (t, j)) we must have f`k(t, s) = fk`(s, t). To provide a concrete

example to disabuse us of faulty intuition, consider the following matrix-valued function

f(s, t) =

 0 st2

s2t 0

 . (2.72)

Not all the components of f are symmetric functions nor is f generally a symmetric matrix. But if

we write f as

f(s, t) =

 s
s2

⊗
 t
t2

−
s

0

⊗
t

0

−
 0

s2

⊗
 0

t2

 , (2.73)

then we can readily see f is a symmetric element of L2([0, T ];Rd)⊗L2([0, T ];Rd). Our key point is f

is a symmetric kernel, but that neither implies that all the components of f are symmetric functions

nor f must always be a symmetric matrix for any fixed value of s and t.

We wish to rewrite the n-chaos In(fn) in terms iterates of our operators δ1, . . . , δd applied to the

components of fn. fn is of the form

fn(s1, . . . , sn) =
∑

1≤j1,...,jn≤d

fj1···jn(s1, . . . , sn)ej1,···jn . (2.74)

We repeat our previous symmetry argument in a more long-winded fashion. Consider fn as a
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symmetric scalar-valued function on ([0, T ]× Nd)n, and take a permutation σ on Nd. Then

fn((sσ(1), iσ(1)), . . . , (sσ(n), iσ(n)))

=
∑
j1,·,jn

fj1...jn(sσ(1), . . . , sσ(n))ej1···jn(iσ(1), . . . , iσ(n))

=
∑
j1,·,jn

fj1...jn(sσ(1), . . . , sσ(n))eσ−1(j1)···σ−1(jn)(i1, . . . , in)

=
∑
j1,·,jn

fσ(j1)...σ(jn)(sσ(1), . . . , sσ(n))ej1···jn(i1, . . . , in).

(2.75)

So the symmetry relation among components is as follows: for any multi-index (j1, · · · , jn) and

permutation σ, we must have

fσ(j1)...σ(jn)(sσ(1), . . . , sσ(n)) = fj1···jn(s1, . . . , sn). (2.76)

For the second symmetric kernel f2 =
∑
k` fk`ek` we have

I2(f2) =δ

(∑
`

δ

(∑
k

fk`ek

)
⊗ e`

)
= δ

(∑
`

(∑
k

δkfk`

)
e`

)

=
∑
k,`

δ`δkfk`.

(2.77)

Generalizing, we see if fN =
∑
j1,...,jn

fj1···jnej1···jn then

In(fn) =
∑

1≤j1,...,jn≤d

δjn · · · δj1fj1···jn . (2.78)

Now to exploit the symmetry condition we have established. For any index j1, . . . , jn there is a

permutation σ such that jσ(1) ≤ · · · ≤ jσ(n). Let us call this reordering j′1, · · · , j′. If we examine

29



CHAPTER 2. THE MALLIAVIN CALCULUS

the contribution of fj1···jn to In(fn) we see

δjn · · · δj1fj1···jn

=

∫ T

0

· · ·
∫ T

0

fj1···jn(s1, . . . , sn)δBj1(s1) · · · δBjn(sn)

=

∫ T

0

· · ·
∫ T

0

fjσ(1)···jσ(n)(sσ(1), . . . , sσ(n))δBj1(s1) · · · δBjn(sn)

=

∫ T

0

· · ·
∫ T

0

fj′1···j′n(sσ(1), . . . , sσ(n))δBjσ(1)(sσ(1)) · · · δBjσ(n)
(sσ(n))

=

∫ T

0

· · ·
∫ T

0

fj′1···j′n(s1, . . . , sn)δBj′1(s1) · · · δBj′n(sn)

=δj′n · · · δj′1fj′1···j′n .

(2.79)

To recap; we exploited the symmetry condition, re-ordered integration (one only needs to exam-

ine elementary process to see re-ordering is valid), and re-labeled dummy variables. Thus, two

components contribute equally to In(fn). We call a component fj1···jn whose index satisfies the

constraint j1 ≤ · · · ≤ jn a canonical component. A canonical component can be indexed by a vector

µ = (µ1, . . . , µd) ∈ Nd such that j1 = · · · = jµ1 = 1, the next µ2 indexes are all equal to 2, etc., and

where the last µd indexes are all equal d. Then we can label the canonical component fµ, and we

have

In(fn) =
∑

µ∈Nd;|µ|=n

n!

µ!
δµfµ, (2.80)

where δµ = δµdd · · · δ
µ1

1 . The symmetry relation manifests quite nicely for a canonical component. For

fµ, the function is symmetric under any permutation of the first µ1 variables. fµ is also symmetric

under permutation among the next µ2 variables, and so on. The n!
µ! is the number of components

whose contribution is equal to that of fµ. The advantage of this representation is there are no

redundancies between components. It is the same combinatorial exercise as when expressing the

higher-order Malliavin derivatives in terms of the symmetric basis. We can conclude this excursion

with the chaos expansion in terms of these canonical components.

Theorem 2.14. For a square-integrable random variable F generated by d independent copies of
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Brownian Motion. There is a unique decomposition

F =
∑
µ∈Nd

|µ|!
µ!

δµfµ, (2.81)

where the kernel

fµ(s1,1, . . . , s1,µ1 , s2,1, . . . , s2,µ2 , . . . , sd,1, . . . , sd,µd), (2.82)

is square-integrable on [0, T ]|µ| and is symmetric among the first variables s1,1, . . . , s1,µ1
, symmetric

among the next variables, s2,1, . . . , s2,µ2
, and so forth.

There is really nothing in this section unique to classical Brownian Motion. We can, repeat

this construction to utilize a Malliavin calculus for random variables and processes generated by

d independent copies of fractional Brownian Motion with Hurst index less than 1
2 . Dealing with

classical Brownian Motion is a better introduction, and it feels fairer to proceed with d-dimensional

fBm after we are more intimately acquainted with stochastic calculi specific to fBm.
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Chapter 3

A Survey of Stochastic Integration

for Fractional Brownian Motion

Until now, we have tried to work as abstractly as possible; partly to emphasize the elastic nature of

the Malliavin calculus, and partly to inspire ourselves about possible generalizations of later results.

However, now we turn away from the analysis of isonormal Gaussian processes in general to the

study of fractional Brownian motion with H < 1
2 in particular. For the proceeding sections we now

fix the Hurst index H < 1
2 , and we often employ the variables α = 1

2 −H. α is then an extremely

crude measure of how close our fBm is to classical Brownian motion. Many of the following results

will collapse into the standard ones after setting α equal to zero.

Every survey of stochastic calculus on fractional Brownian motion should reference Coutin’s

[Cou07]. One of our many failings in writing this dissertation is not discovering this reference

sooner. We are able to extend on Coutin’s survey in some aspects, but we have the slight advantage

of writing over a decade after her.

Our trouble begins when realizing fBm is not a semimartingale when H differs from 1
2 . Analysis

of fBm then falls outside the scope of the usual machinery of stochastic analysis via Itô integrals.
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3.1 Representation of fBm with H < 1
2 and the Transfer Prin-

ciple

We have worked somewhat backwards. We have our desired autocovariance function, and there is

an isonormal Gaussian process which has this autocovariance function. Ontology is not a problem,

but to better analyze fBm with H < 1
2 we need a better understanding. If we return to isonormal

Gaussian processes as our lens then our fBm BH is an isometry between some Hilbert space H into

the space of square-integrable random variables generated by our fBm. We need to characterize H.

3.1.1 Primer on Fractional Calculus

The usual guide on fractional calculus for the uninitiated is [SKM93]. Consider a function f in

L1([0, T ]). Definition 2.1 in [SKM93] of the fractional integral is

Definition 3.1 (The Riemann-Liouville fractional integral). The left-sided fractional integral of

order α is the function

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(u)

(x− u)1−α du, (3.1)

while the right-sided fractional integral of order α is

(IαT−f)(x) =
1

Γ(α)

∫ T

x

f(u)

(u− x)1−α du. (3.2)

For our purposes, α will lie in the interval (0, 1
2 ), but this definition is for any positive α.

A simple calculation proves the Riemann-Liouville fractional integrals enjoy the semigroup prop-

erty for any positive β and γ:

Iβ0+Iγ0+f = Iβ+γ
0+ f and IβT−I

γ
T−f = Iβ+γ

T− f. (3.3)
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The proof follows:

(Iβ0+Iγ0+f)(x) =
1

Γ(β)

∫ x

0

(Iβ0+f)(u)

(x− u)1−β du

=
1

Γ(β)

∫ x

0

∫ u

0

f(v)

(x− u)1−β(u− v)1−γ dvdu

=
1

Γ(β)Γ(γ)

∫ x

0

f(v)

∫ x

v

1

(x− u)1−β(u− v)1−γ dudv.

(3.4)

The last line is non-trivial and is an application of Dirichlet’s formula and noting f(v) is independent

of u. We make the substitution of s = u−v
x−v into the inner integral. The differential is ds = du

x−v ,

then end points become s = 0 and s = 1. x − u is equal to (x − v)(1 − s) while u − v is s(x − v).

Therefore, the inner integral is

∫ x

v

1

(x− v)1−β(u− v)1−γ du

=

∫ 1

0

(x− v)

((x− v)(1− s))1−β
(s(x− v))

1−γ ds

=
1

(x− v)1−β−γ

∫ 1

0

(1− s)β−1sγ−1ds

=
B(β, γ)

(x− v)1−β−γ ,

(3.5)

where B is the Beta function (Euler integral of the kind). Then

(Iβ0+Iγ0+f)(x) =
B(β, γ)

Γ(β)Γ(γ)

∫ x

0

f(v)

(x− v)1−β−γ dv

=(Iβ+γ
0+ f)(x),

(3.6)

where we use the relation B(β, γ) = Γ(β)Γ(γ)
Γ(β+γ) . The proof of the right-sided fractional integral is

similar, and would collapse to that of the left-sided fractional integral once one exploits what is

referred to as the reflection operator.

We also need an appropriate fractional analogue of the classical derivative. The domain for the

operator is more restricted since we need to assume a modicum of regularity. But the definitions are

intuitive, if we integrate a function to order α, we expect the result to be differentiable up to order

α.
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Definition 3.2 (The Riemann-Liouville fractional derivative). Fix p > 1, then define Iα0+(Lp) (or

IαT−(Lp)) to be the image of Lp([0, T ]) under the operator Iα0+ (or IαT−). If f is in Iα0+(Lp) (or

IαT−(Lp)) then we define the left-sided (right-sided) Riemann-Liouville fractional derivatives as

(Dα0+f)(x) =
1

Γ(1− α)

(
f(x)

xα
+ α

∫ x

0

f(x)− f(u)

(x− u)α+1
du

)
(3.7)

and

(DαT−f)(x) =
1

Γ(1− α)

(
f(x)

(T − x)α
+ α

∫ T

x

f(x)− f(u)

(u− x)α+1
du

)
. (3.8)

Unlike integration, this definition only holds for α in (0, 1).

We write the definitions differently than in [SKM93]. Our presentation is the same as the one

found in [LN06]. To extend the fractional derivatives to higher orders we break the order γ into

γ = bγc+{γ}. Here, bγc is the largest integer no greater than γ, {γ} = γ−bγc is the fractional part

of γ. Then we define Dγ0+f = dbγc

dxbγc
D{γ}0+ f , and DγT−f = (−1)bγc d

bγc

dxbγc
D{γ}T− f . The slight difference

in definition is due to our desired for left-sided derivative to generalize d
dx while the right-handed

should extend − d
dx . With all these definitions in place, we can state the most basic of the fractional

versions of the fundamental theorems of calculus

Dα0+Iα0+f = f, ∀f ∈ L1([0, T ])

Iα0+Dα0+f = f, ∀f ∈ Iα0+(L1)

DαT−I
α
T−f = f, ∀f ∈ L1([0, T ])

IαT−D
α
T−f = f, ∀f ∈ IαT−(L1).

(3.9)

The Clark-Ocone-Haussmann Theorem for fBm will come later, but its more technical arguments

rely on a series of function space embeddings which we present now since we are currently on the

subject of fractional calculus. If α < 1
p , then q satisfies 1

p + 1
q = α (so q is similar to a Hölder

conjugate of p) then the following inclusion holds

Iα0+(Lp) = IαT−(Lp) ⊂ Lq([0, T ]). (3.10)
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Conversely, if α > 1
p then

Iα0+(Lp) ∪ IαT−(Lp) ⊂ Cα−
1
p ([0, T ]), (3.11)

and we have the following inversion formulae

Dα0+Iα0+f = f, ∀f ∈ Lp([0, T ])

Iα0+Dα0+f = f, ∀f ∈ Iα0+(Lp)

DαT−I
α
T−f = f, ∀f ∈ Lp([0, T ])

IαT−D
α
T−f = f, ∀f ∈ IαT−(Lp).

(3.12)

Appendix B of [Bia+10] collects a nice summary of relations in the fractional calculus. The left-sided

and right-sided derivatives are further related by the integration by parts

∫ T

0

f(x)(Dα0+g)(x)dx =

∫ T

0

(DαT−f)(x)g(x)dx, (3.13)

for f ∈ IαT−(Lp) and g ∈ Iα0+(Lq) where 1
p + 1

q ≤ 1 + α, α ∈ (0, 1), and p, q are both greater than 1.

The corresponding integration by parts formula for fractional integration is

∫ T

0

f(x)(Iα0+g)(x)dx =

∫ T

0

(IαT−f)(x)g(x)dx, (3.14)

for f ∈ Lp([0, T ]), g ∈ L2([0, T ]) where 1
p + 1

q ≤ 1 + α where α must be positive and p, q greater

than 1.

We will use results from papers like [CN05] which decline to use Riemann-Liouville fractional

derivatives and integrals for functions on bounded intervals. Instead, they consider fractional calculus

on the whole real line. Ultimately the difference occurs because while we consider fBm on a fixed

time interval [0, T ] they opt to consider fBm as a stochastic process whose time domain is the entire

real line. Consequently, their fractional calculus is based on the Marchaud fractional derivatives

Dα±f(X) =
α

Γ(1− α)

∫ ∞
0

f(x)− f(x∓ u)

u1+α
du, (3.15)
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and the fractional integrals on the entire real axis

(Iα+f)(x) =
1

Γ(α)

∫ x

−∞

f(u)du

(x− u)1−α

(Iα−f)(x) =
1

Γ(α)

∫ ∞
x

f(u)du

(u− x)1−α .

(3.16)

Translating results will not be difficult, but for completion we should mention this nuance.

3.1.2 Representation of fBm with H < 1
2

Let E denote the family of step functions on the interval [0, T ]. We can induce an inner product on

E be defining

〈1[0,s], 1[0,t]〉E = RH(s, t) =
1

2

(
t2H + s2H − |t− s|2H

)
, (3.17)

and then extending by bilinearity to all of E × E . RH is of course the auto-covariance function

for a fBm with Hurst index equal to H. We let H denote the completion of E with respect to the

norm derived from the above inner product, and 〈·, ·〉H denote the inner-product of this resulting

Hilbert space. Given a fBm BH we can consider the map 1[0,t] 7→ BHt . The above map can be

extended to a linear transformation from H into square-integrable random variables generated by

the process {BHt }0≤t≤T . Let us abuse notation and denote this map by BH : H → L2(Ω). Again,

let us abuse notation and consider the image of this map BH = {BH(h);h ∈ H}. By construction,

E
[
BH(h1)BH(h2)

]
= 〈h1, h2〉H. BH is therefore an isonormal Gaussian process over the underlying

Hilbert space H. Our current goal is to characterize H.

H is called the reproducing kernel Hilbert space (RKHS). The nomenclature refers to our search

for a square-integrable kernel K on [0, T ]2 such that our fractional Brownian motion BH can be

expressed as the Volterra process

BHt =

∫ t

0

KH(t, s)dWs, (3.18)

where W is a classical Brownian motion. Furthermore, the kernel will satisfy the identity

RH(s, t) =

∫ s∧t

0

KH(t, r)KH(s, r)dr. (3.19)
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Examining KH as H varies can often explain qualitative differences between different fBms than

the auto-covariance function. Later on, we will see a sharp distinction between fBm with H ≤ 1
4 as

opposed to 1
4 < H < 1

2 . The differing regularity of KH in those two cases will explain the differing

behavior of fBms from between those two classes.

Our detour into fractional calculus now pays dividends. Proposition 6 of [AMN01] states H is

the space IαT−(L2) where α = 1
2 −H. So H is the image of L2([0, T ]) under the right-sided Riemann-

Liouville fractional integral of order α. To emphasize the dependence of the RKHS on both the

interval [0, T ] and Hurst parameter (and to save some more ink), we will write ΛHT = I
1
2−H
T− (L2).

We are not often blessed when considering fBm with H < 1
2 instead of H > 1

2 , but here we have

a small grace: the RKHS is an actual space of classical functions. When H > 1
2 , the RKHS is a

space of proper distributions. We can enjoy the simple pleasure of evaluating an element of ΛTH at

a point. When H > 1
2 we often need to modify an argument to consider only the subspace of the

RKHS which can be represented by actual functions.

Then we wish to define an operator K∗H : ΛHT → L2([0, T ]) such that 3.18 generalizes to

BH(h) =

∫ T

0

(K∗Hh)(t)dWt. (3.20)

At that point we will have a way to calculate elements of the first chaos by calculating an associated

element of the first chaos generated by classical Brownian motion.

[Nor+99] and Section 5.1 of [Nua06] trudge through the necessary calculus. [DÜ99] proves the

Relation (3.19), while we present the kernel ex nihilo:

KH(t, s) = CH

[(
t

s

)−α
(t− s)−α + αsα

∫ t

s

du

u1+α(u− s)α

]
, (3.21)

where

CH =

√
2H

(1− 2H)β(1− 2H,H + 1
2 )
, (3.22)

and β is the usual beta function. With kernel in hand we now turn our attention to the map K∗H .

The transformation is centered around the mapping (K∗H1[0,t](r)) = KH(t, r)1[0,t](r). To verify this
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initial choice, consider times t and u.

E

[∫ T

0

(K∗H1[0,s])(r)dWr

∫ T

0

(K∗H1[0,t])(r)dWr

]

=E

[∫ T

0

KH(s, r)1[0,s](r)dWr

∫ T

0

KH(t, r)1[0,t](r)dWr

]

=

∫ t∧u

0

KH(t, r)KH(s, r)dr = RH(t, s).

(3.23)

So the process t 7→
∫ T

0
(K∗H1[0,t])(s)dWs does have the same distribution as fBm. When we extend

this definition from step functions to all of ΛHT we are fortunate in that we actually do have a

closed-form formula for this map K∗H . The inner product on ΛHT is given by

〈g, h〉ΛHT = 〈K∗Hg,K∗Hh〉L2([0,T ]), (3.24)

where

(K∗Hh)(s) = CHΓ(1− α)sα
(
DαT−u

−αh(u)
)

(s). (3.25)

The foundation with which to understand fBm with H < 1
2 as an isonormal Gaussian process is now

complete, and we can now begin to consider the particulars of the Malliavin calculus specific to fBm

with H < 1
2 .

3.2 The Russo-Valois Symmetric Integral

We turn our attention to the integration of stochastic processes against a fBm BH with Hurst index

less than 1
2 . A näıve attempt to define integration against fBm path-wise fails immediately. We need

only consider
∫ 1

0
BHt dB

H
t . Consider a partition 0 ≤ t0 ≤ · · · ≤ tN = 1, and suppose we approximate

the
∫ ti+1

ti
BHt dB

H
t by (αBHti + βBHti+1

)(BHt+1 −BHti ) where α+ β = 1 and both parameters are non-

negative. So the “point of evaluation” is some convex combination of the values at the end-points

of the interval. Since this is only a sketch, we can make life more pleasant and assume the partition
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ti = i
N . The expectation of the approximation would be

E

[
N−1∑
i=0

(αBHti + βBHti+1
)(BHti+1

−BHti )

]

=

N−1∑
i=0

(
α

(
RH

(
i+ 1

N
,
i

N

)
−RH

(
i

N
,
i

N

))
+β

(
RH

(
i+ 1

N
,
i+ 1

N

)
−RH

(
i+ 1

N
,
i

N

)))
=
α

2

N−1∑
i=0

(
(i+ 1)2H

N2H
− i2H

N2H
− 1

N2H

)

+
β

2

N−1∑
i=0

(
(i+ 1)2H

N2H
− i2H

N2H
+

1

N2H

)
=
α

2

(
1− N

N2H

)
+
β

2

(
1 +

N

N2H

)
=

1

2
+
β − α

2
N1−2H .

(3.26)

Since H < 1
2 , the term N1−2H grows without bound. The only way for our approximation to actually

converge to anything would be if α = β = 1
2 , which would correspond to Stratonovich integration.

Our exercise hints that the way forward with respect to path-wise integration of fBm will be some

notion of a symmetric integral.

We will remark upon Stratonovich integration later, and rough-path theory in general, but our

chosen method is the Russo-Valois symmetric integral [RV93] [RV95]. With Gradinaru and Nourdin,

Russo and Vallois were able to extend their results to arrive at an Itô formula for H > 1
6 [GRV03]

[Gra+05]. This is one of the few results we are aware of which manages to pierce the boundary at

H = 1
4 . Given continuous processes X and Y we can define the forward integral by the limit in

probability of the quantity

1

ε

∫ T

0

Yu(X(u+ε)∧T −Xu)du, (3.27)

as ε approaches 0 from above and is denoted
∫ T

0
Yud

−Xu. Similarly, we define the symmetric integral

as the limit in probability of

1

2ε

∫ T

0

Yu(X(u+ε)∧T −X(u−ε)∨0)du, (3.28)
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as ε approaches 0 from above and is denoted
∫ T

0
Yud

◦Xu. We are restricting ourselves to fBm

considered as a process on the interval [0, T ]. The definitions in [CN05] are slightly different, but

as that paper explains in Remark 5.2, the differences are superficial when we consider continuous

processes. The correction term between the forward and symmetric integrals is Russo and Vallois’s

covariation [X,Y ]t, which is the limit in probability of

1

ε

∫ T

0

(X(u+ε)∧T −Xu)(Y(u+ε)∧T − Yu)du, (3.29)

as ε shrinks to zero. The relation between the three quantities is what you would expect as gener-

alization of the Itô and Stratonovich integrals.

∫ T

0

Yud
◦Xu =

∫ T

0

Yud
−Xu +

1

2
[X,Y ]T . (3.30)

When X and Y are continuous Martingales, the above relation is precisely the translation between

Itô and Stratonovich integration. But the above expression can also hold for processes X,Y which

do not have a finite quadratic variation. Theorem 5.3 of [CN05] is a fundamental theorem of calculus

result:

Theorem 3.3. Let g ∈ C4([0, T ]) and 0 ≤ a ≤ b ≤ T , then

g(BHb )− g(BHb ) =

∫ b

a

g′(BHt )d◦BHt , (3.31)

when 1
6 < H < 1

2 , and the integral does not exist if H ≤ 1
6 .

We must now fine some method of comparing our new path-wise integration with the divergence

operator.

3.3 Extending the Divergence Operator

We have explored an interesting framework but the standard Malliavin calculus has a slight short-

coming: even simple stochastic integrals like
∫ T

0
BHt dB

H
t is undefined when H ≤ 1

4 ; see Proposition

3.2 of [CN05]. We know what it would be if it could be. The only answer which can possibly make
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sense is H2(BHT , T
H) = 1

2 ((BHT )2−T 2H). However, the process BHt is not in Dom δ for such small H.

So our algebraic method of integration currently has a more restricted domain than our path-wise

method introduced in the previous section.

There has been much work on extending the divergence operator. The introduction to [CN05]

surveys some attempts to extend the Malliavin calculus. [CN05] builds upon [AMN00] [AMN01].

This extension is the basis for a Clark-Ocone-Haussmann theorem for random variables generated

by fBm with H < 1
2 . It is also a fairly natural extension based on the same ideas of duality as the

normal divergence operator. Also, it is not an operator on Hida distributions. If we can get away with

extending integration without entering the realm of functional calculus on spaces of distributions,

we probably should. This approach is a more specific instance to the technique Lèon and Nualart

use in order to extend the divergence operator for arbitrary isonormal Gaussian processes [LN05].

Pedants, i.e. anyone who would read a mathematics dissertation, would note the extension in

[CN05] uses a different set of fractional derivative operators. Our characterization of the RKHS used

the Riemann-Liouville fractional derivative, while the paper uses the Marchaud fractional derivatives.

Cheridito and Nualart consider fBm as a two-sided process on the entire real line, while we restrict

our attention to the interval [0, T ]. The Marchaud derivative better handles functions rapidly growing

functions but that concern is moot when a maturity date is fixed from the start. [LN06] use these

results but have the same RKHS ΛHT as us and the same fractional calculus operators as we do.

So we are keeping kosher at least as rigorously as Lèon and Nualart. We can go through [CN05]

and convince ourselves the results translate. The analogous subspace inclusions, and integration by

parts formulae hold for the Riemann-Liouville fractional derivatives. Ultimately, the Hilbert space

they consider is the ΛH = Iα−(L2(R)) = Iα+(L2(R)); the image of L2(R) under the fractional integral

under the entire real-axis, and ΛHT = {h ∈ ΛH ;h1[0,T ](·)}. So elements of ΛHT are functions on the

real-line supported on the interval [0, T ]. Then if we consider the Marchaud derivatives in Equation

()3.16), we have the relation

〈g, h〉ΛH = c2H〈Dα−g,Dα−h〉L2(R), (3.32)

where cH is a normalization constant. Pipiras and Taqqu [PT00] have done the analytical verification

for us. We interchangeably consider g and h as both functions on [0, T ] and as functions on R
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supported on [0, T ]. As a sanity check we verify this alternative representation when f and g are

indicator functions on [0, T ]. Let g = 1[0,t], then the Marchaud derivative of g is

Γ(1− α)(Dα−1[0,t])(x) =α

∫ ∞
0

1[0,t](x)− 1[0,t](x+ u)

u1+α
du. (3.33)

This is obviously zero when x ≥ t. If x ≤ 0 then

Γ(1− α)(Dα−1[0,t])(x) =− α
∫ ∞

0

1[0,t](x+ u)

u1+α
du

=− α
∫ t−x

−x

1

u1+α
du

=
(
(t− x)−α − (−x)−α

)
.

(3.34)

Finally, if 0 ≤ x ≤ t then

Γ(1− α)(Dα−1[0,t])(x) =
α

Γ(1− α)

∫ ∞
0

1− 1[0,t](x+ u)

u1+α
du

=α

∫ ∞
t−x

du

u1+α

=(t− x)−α.

(3.35)

If we let denote max(a, 0) as (a)+ then we may write

(Dα−1[0,t])(x) =
1

Γ(1− α)

(
(t− x)−α+ − (−x)−α+

)
. (3.36)

To find the normalizing constant, consider

〈1[0,T ], 1[0,T ]〉Λ

=c2H〈(Dα−1[0,T ])(x), (Dα−1[0,T ])(x)〉L2(R)

=
c2H

Γ(1− α)2

∫
R

(
(T − u)−α+ − (−u)−α+

)2
du.

(3.37)
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First make the substitution u = Tv, then

〈1[0,T ], 1[0,T ]〉Λ

=
c2H

Γ(1− α)2

∫
R

(
(T − Tv)−α+ − (−Tv)−α+

)2
Tdv

=
c2H

Γ(1− α)
T 1−2α

∫
R

(
(1− v)−α+ − (−v)−α+

)2
dv

=
c2H

Γ(1− α)

∫
R

(
(1− v)−α+ − (−v)−α+

)2
dvT 2H

(3.38)

That is promising. Another substitution of w = −v leads us to

c2H =
Γ(1− α)∫

R
(
(1 + w)−α+ − (w)−α+

)2
dw

. (3.39)

Definition 3.4 (Extended Divergence Operator). First, let ΛH,∗ be the image of the elementary

functions E in L2(R) under the fractional integration operator Iα− where α is our customary quantity

1
2 −H. Let u be a measurable process. We say that u is in the extended domain Dom∗ δ if and only

if there exists a random variable, denoted δ(u), such that δ(u) ∈ ∪p>1L
p(Ω) and for all natural n

and h ∈ ΛH,∗ with unit length ‖h‖ΛH = 1, the following conditions hold

• utHn−1(BH(h)) is in L1(Ω) for almost all t ∈ R

• E[uHn−1(BH(φ))]Dα+Dα−h is in L1(R)

• c2H
∫ T

0
E[utHn−1(BH(h))]Dα+Dα−h(t)dt = E[δ(u)Hn(BH(h))]

The trade-off for the simpler form is the Marchaud derivative of a function in ΛHT is not necessarily

supported within [0, T ]. The Marchaud derivative does smear.

The end result of this work is an Itô formula connecting the Russo-Valois symmetric integral

and the extended divergence operator. There is a regularity requirement and a growth condition.

The growth condition is fairly generous. A function f : R→ R satisfies the growth condition on an

interval (a, b) is there exist a positive c and λ such that λ is bounded from above by 1
4 (|a| ∨ |b|)−2H

and |f(x)| ≤ ceλx2

for all real x. This ensures f(BHt ) is in L2(Ω) for any t in the interval (a, b).

Theorem 3.5 (Itô formula for extended divergence). If f satisfies the above growth condition, and
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f ∈ C2(R) then the Itô formula for the extended divergence operator is

δ
[
f ′(BHt )1(a,b](t)

]
=f(BHb )− f(BHa )−H

∫ b

a

f ′′(BHt )t2H−1dt

=

∫ b

a

f ′(BHt )d◦BHt −H
∫ b

a

f ′′(BHt )t2H−1dt.

(3.40)

We reserve the right to rewrite 2Ht2H−1dt as the differential d|t|2H , and the above result as

δ
[
f ′(BHt )1(a,b](t)

]
=f(BHb )− f(BHa )− 1

2

∫ b

a

f ′′(BHt )d|t|2H

=

∫ b

a

f ′(BHt )d◦BHt −
1

2

∫ b

a

f ′′(BHt )d|t|2H .
(3.41)

When we develop exponential formulae, we will need to know how the freezing operator acts on

the divergence of a process. The above equation gives us a way forward for a large class of problems.

We will extend this further by developing an Itô for processes of the form t 7→ f(t, BHt ). The Clark-

Ocone-Haussmann formula for fBm with H < 1
2 will provide a path forward for even more general

processes.

3.4 The Clark-Ocone formula for fBm with H < 1
2

Given a random variable F generated by a fractional Brownian motion BH with Hurst index H < 1
2 ,

there is a chaos decomposition of f

F =

∞∑
n=0

In(fn), (3.42)

where each fn is an element in the symmetric space (ΛHT )�n.

Ideally, we would have a suitable Clark-Ocone formula for representing F as F = E[F ]+
∫ T

0
usδB

H
s

for some suitable process us.

In the case of classical Brownian motion, the process us is the conditional expectation of the

Malliavin derivative at time s, given the history up to time s. But the conditional expectation of

fractional Brownian motion is not pleasant [GN96]. However, there is a more tractable quantity to

utilize. [LN06] introduces the fractional conditional expectation of a random variable F generated

by an fBm with H < 1
2 . The fractional conditional expectation is denoted either as Ẽ[F |Fs] (to
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remind the reader of the concept’s origins), and is defined in terms of the chaos expansion of F

Ẽ [F |Fs] :=

∞∑
n=0

In(f11[0,s]n). (3.43)

Then Ẽ[DsF |Fs] replaces the customary integrand in the Clark-Ocone formula. The main result

of that paper is the following Clark-Ocone formula for random variables generated by fractional

Brownian motion with H < 1
2 :

F = E[F ] +

∫ T

0

Ẽ[DsF |Fs]δBHs . (3.44)

This quantity Ẽ[DsF |Fs] is also written as D
(p)
s F and should be understood as the predictable

projection of the Malliavin derivative of F at time s.
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Exponential Formulae

4.1 A Sketch and Intuition for an Exponential Formula

Remark 2.3 of [JPS15a] provides a simple sketch of the exponential formula by considering expo-

nential martingales. The proof is then made rigorous in [JS16], but there is value in returning to

the sketch to guide us on what the exponential formula should be. This does not qualify as a proof

of the exponential formula since, as we have remarked repeatedly, the frozen operator is not closed

as an operator on L2(Ω). Given a function f ∈ L2([0, T ]) (we will assume f is continuous for the

sake of our argument), consider its image under the exponential ε(f) = exp(
∫ T

0
f(s)dBs). Now

exp(
∫ t

0
f(s)dBs − 1

2

∫ t
0
f(s)2ds) is a Martingale, so E[ε(f)] = exp(1

2

∫ T
0
f(s)2ds). Note the Malliavin

derivative of ε(f) is

Dtε(f) =Dt exp

(∫ T

0

f(s)dBs

)

= exp

(∫ T

0

f(s)dBs

)
Dt

∫ T

0

f(s)dBs

=ε(f)

(
f(t) +

∫ T

0

Dtf(s)dBs

)

=f(s)ε(f).

(4.1)
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Freezing the exponent results in

ω0

∫ T

0

f(s)dBs =− 1

2
ω0〈
∫ ·

0

fdBs, B·〉T

=− 1

2
ω0

∫ T

0

f(s)d〈f(·), B·〉s

=0,

(4.2)

since f has bounded variation. Now consider the expression

∞∑
i=0

1

2ii!
ω0
(
Λiε(f)

)
=

∞∑
i=0

1

2ii!

∫
[0,T ]k

ω0
(
D2
si · · ·D

2
s1ε(f)

)
ds1 · · · dsi

=
∞∑
i=0

1

2ii!

∫
[0,T ]k

f(s1)2 · · · f(si)
2ω0 (ε(f)) ds1 · · · dsi

=

∞∑
i=0

ω0 exp

(∫ T

0

f(s)dBs

)
1

2ii!

∫
[0,T ]k

f(s1)2f(si)
2ds1 · · · dsi

= exp(ω0

∫ T

0

f(s)ds)

∞∑
i=0

1

2ii!

(∫ T

0

f(s)2ds

)i

= exp(0)

i∑
i=0

1

i!

(
1

2

∫ T

0

f(s)2ds

)i

= exp

(
1

2

∫ T

0

d(s)2ds

)
.

(4.3)

Therefore

E [ε(f)] =

∞∑
i=0

1

2ii!
ω0
(
Λiε(f)

)
, (4.4)

for all continuous f in L2([0, T ]).

ε(f) was chosen because linear combinations of such random variables is dense in L2(Ω). The cor-

responding family of exponentials when considering random variables generated by two independent

copies of Brownian motion is

ε(f, g) = exp

(∫ T

0

fdB1(s) +

∫ T

0

gdB2(s)

)
, (4.5)
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where f and g are each in L2([0, T ]). We write ε(f, g) = FG where F = exp(
∫ T

0
fdB1(s)) and

G = exp(
∫ T

0
gdB2(s)). Linear combinations of such exponentials is dense in the family of L2(Ω)

random variables generated by B1 and B2. We can leverage independence to see

E [ε(f, g)] = E [F ]E [G] = exp

(
1

2

∫ T

0

f(s)2ds+
1

2

∫ T

0

g(s)2ds

)
, (4.6)

and we reuse the univariate sketch to prove

E [F ]E [G]

=

( ∞∑
i=0

1

2ii!
ω0 ◦∆i

1F

)( ∞∑
i=0

1

2jj!
ω0 ◦∆j

2G

)

=

∞∑
i,j=0

1

2i+ji!j!

(
ω0 ◦∆i

1F
) (
ω0 ◦∆j

2G
)

=

∞∑
i,j=0

1

2i+ji!j!
ω0 ◦

((
∆i

1∆j
2

)
(FG)

)

=

∞∑
k=0

1

2kk!
ω0 ◦

 ∑
i+j=k;i,j≥0

k!

i!j!
∆i

1∆j
2

 ε(f, g)


=

∞∑
k=0

1

2kk!
ω0 ◦

(
∆kε(f, g)

)
.

(4.7)

The same sketch applies in the multivariate case as in the univariate case, we should expect the

form of the exponential formula to remain the same, and hopefully we are able to let the univariate

version of the theorem to do the actual heavy lifting.

4.2 The Freezing operator

To be able to apply the frozen operator in the wild, we need to know how it interacts with stochastic

integrals. The simplest counter-example to show the frozen operator and stochastic integration does

not generally commute is

ω0

∫ T

0

BtdBt = ω0

(
1

2

(
B2
T − T

))
= −T

2
, (4.8)
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while ∫ T

0

ω0(Bt)dBt =

∫ T

0

0dBt = 0. (4.9)

So in general we cannot have

ωt
∫ T

0

usdBs =

∫ t

0

usdBs, (4.10)

for adapted processes.

We have the right operator, but are considering the wrong integral. Suppose we were to define

the operator ωt in terms of the Stratonovich integral. That is, if we have an adapted process u, then

we define

ωt

(∫ T

0

usd
◦Bs

)
:=

∫ t

0

usd
◦Bs. (4.11)

We then claim that this new definition coincides with our old definition of the frozen operator, at

least for large classes of random variables and processes of interest. Intuitively, the frozen path

operator is best visualized as an operator on paths. It makes more sense that it would behave nicely

with the integral which emphasizes the geometric nature of stochastic processes (Stratonovich) than

the integral which emphasizes the probabilistic nature (Itô).

We can verify their coincidence for the usual classes of random variables of interest. It is a

simple exercise to show that this claim holds for geometric Brownian motion. We have to be careful

about any argument which leverages density since we have shown than the freezing path operator is

not closed in the L2 sense. However, we can show that the claim holds true for smooth cylindrical

random variables via a direct argument. First consider a smooth cylindrical random variable of the

form F = f(Bt1 , . . . , BtM ) where 0 = t0 ≤ t1 ≤ · · · ≤ tM = T is a partition of [0, T ]. Without loss

of generality, we can rewrite F as

F = f
(
Bt1 −Bt0 , · · · , BtM −BtM−1

)
. (4.12)

We claim F = f(0, . . . , 0) +
∫ T

0
usd
◦Bs where

us =

M∑
i=1

1[ti−1,ti]
∂f

∂xi

(
Bt1 −Bt0 , . . . , Bti−1 −Bti−2 , Bs −Bti−1 , 0, . . . , 0

)
. (4.13)
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Then we integrate us over the interval [0, t] with respect to the Stratonovich integral. There exists

a K such that tK−1 ≤ t ≤ tK , and

∫ t

0

usd
◦Bs

=

∫ tK

tK−1

∂f

∂xK

(
Bt1 −Bt0 , . . . , Bti−1 −Bti−2 , Bs −Bti−1 , 0, . . . , 0

)
d◦Bs

+

K−1∑
i=1

∫ ti

ti−1

∂f

∂xi

(
Bt1 −Bt0 , . . . , Bti−1

−Bti−2
, Bs −Bti−1

, 0, . . . , 0
)
d◦Bs

=
(
f
(
Bt1 −Bt0 , . . . , Bti−1 −Bti−2 , Bs −Bti−1 , 0, . . . , 0

)
−f
(
Bt1 −Bt0 , . . . , Bti−1 −Bti−2 , 0, 0, . . . , 0

))
+

K−1∑
i=1

(
f
(
Bt1 −Bt0 , . . . , Bti−1 −Bti−2 , Bti −Bti−1 , 0, . . . , 0

)
−f
(
Bt1 −Bt0 , . . . , Bti−1

−Bti−2
, Bti−1

−Bti−2
, 0, . . . , 0

))
=
(
f
(
Bt1 −Bt0 , . . . , Bti−1

−Bti−2
, Bs −Bti−1

, 0, . . . , 0
)

−f
(
Bt1 −Bt0 , . . . , Bti−1 −Bti−2 , 0, 0, . . . , 0

))
+
(
f
(
Bt1 −Bt0 , . . . , Bti−1 −Bti−2 , 0, . . . , 0

)
−f(0, . . . , 0))

=f
(
Bt1 −Bt0 , . . . , Bti−1

−Bti−2
, Bs −Bti−1

, 0, . . . , 0
)
f(0, . . . , 0).

(4.14)

Thus

ωt(F ) =f(0, . . . , 0) + ωt
∫ T

0

usd
◦Bs

=f(0, . . . , 0) +

∫ t

0

usd
◦Bs

=f
(
Bt1 −Bt0 , . . . , BtK−1

−BtK−2
, Bt −BtK−1

, 0, . . . , 0
)
,

(4.15)

which precisely coincides with the old definition of the frozen operator.

Now consider an adapted process us which is a continuous semi-martingale, the Skorokhod

integral coincides with the Itô integral, and we can exploit the connection between the two integrals
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to see

ωt
∫ T

0

usdBs =

∫ t

0

usd
◦Bs −

1

2
ωt〈u·, B·〉T

=

∫ t

0

usdBs +
1

2
〈u·, B·〉t −

1

2
ωt〈u·, B·〉T .

(4.16)

In our instance, we will only consider t = 0, which further simplifies this equation to

ω0

∫ T

0

usδBs = −1

2
ω0〈u·, B·〉T . (4.17)

If we look at the involved calculations in [JS16] and squint, we can see some of the more involved

calculations are essentially trying to find a closed expression to iteratively applying the above equa-

tion to In(fn). Of course, this is all well and good, but we need to consider the multidimensional

case. The reader should refresh themselves on Section 2.7 on the multivariate Malliavin calculus.

We consider a d-dimensional Brownian motion

B(t) =


B1(s)

...

B1(d)

 , (4.18)

and the random variables and processes generated by it. The best way to state our definition is to

first consider a continuous integrable adapted Rd-valued process

u(s) =


u1(s)

...

ud(s)

 , (4.19)

so each component ui is a continuous integrable adapted real-valued process. Then the Skorokhod
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integral of u(s) is

δ(u(s))

=

d∑
i=1

δi(ui)

=

d∑
i=1

∫ T

0

ui(s)δBi(s),

(4.20)

and the Stratonovich integral is

∫ T

0

u(s) · d0B(s) =

d∑
i=1

∫ T

0

ui(s)d
0Bi(s). (4.21)

We define the operator ωt as

ωt

(∫ T

0

u(s) · d0B(s)

)
:=

d∑
i=1

∫ t

0

ui(s)d
0Bi(s). (4.22)

Since our assumption was that us is adapted and continuous, the Skorokhod integral corresponds

to the Itô integral. The translation between the Itô and Stratonovich integral remains the same in

higher dimensions; see any standard text on rough paths [FV10]. This allows us to take the frozen

path of multidimensional stochastic Itô integrals.

ωt ◦ δ(u)

=ωt
∫ T

0

u(s) · dB(s)

=ωt

(
d∑
i=1

∫ T

0

ui(s)dBi(s)

)

=ωt

(
d∑
i=1

∫ T

0

ui(s)d
0Bi(s)−

1

2
〈ui(·), Bi(·)〉T

)

=

d∑
i=0

∫ t

0

ui(s)d
0Bi(s)− ω0 1

2
〈ui(·), Bi(·)〉T

=

d∑
i=0

(∫ t

0

ui(s)d
0Bi(s) +

1

2
〈ui(·), Bi(·)〉t − ω0 1

2
〈ui(·), Bi(·)〉T

)
.

(4.23)

53



CHAPTER 4. EXPONENTIAL FORMULAE

Now that is a formula with which we can work. Let us this formula and examine a simple exercise

which will show us how we can apply the frozen operator in the multidimensional case, and show it

is compatible with the conjectured exponential formula given in the preceding section.

Our chosen example is F = (B2
1(T )−T )(B2

2(T )−T ) because it is a martingale with nice analytical

properties, and therefore we can readily check if the answer we produce after cranking the wheels

of our machinery is correct. It is also the simplest example which has a non-trivial second-order

Gross Laplacian. So it is a nice choice for an example of how these freezing operators and Gross

Laplacians work in practice. We would desire ωt(F ) = (B2
1(t)− T )(B2

2(t)− T ), which we will prove

from Equation (4.23). The Clark-Ocone formula in the multivariate Malliavin calculus is

F =E[F ] +

∫ T

0

E [DsF |Fs] · δB(s)

=E[F ] +

d∑
i=1

∫ T

0

[Di,sF |Fs] dBi(s).
(4.24)

For our chosen F we have E[F ] = 0. And the Malliavin derivative in our case

DsF =

D1,s

(
(B2

1(T )− T )(B2
2(T )− T )

)
D2,s

(
(B2

1(T )− T )(B2
2(T )− T )

)


=

2B1(T )(B2
2(T )− T )

2B2(T )(B2
1(T )− T )

 .
(4.25)

Each component is the product of independent martingales, so we see the conditional expectation

of the Malliavin derivative is

E [DsF |Fs] =

E [2B1(T )(B2
2(T )− T )|Fs

]
E
[
2B1(T )(B2

2(T )− T )|Fs
]


=2

B1(s)(B2
2(s)− s)

B2(s)(B2
1(s)− s)

 .
(4.26)
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Therefore

ωtF =2

(
ω0 ◦

∫ T

0

B1(s)(B2
2(s)− s)dB1(s) + ω0

∫ T

0

B2(s)(B2
1(s)− s)dB2(s)

)
. (4.27)

Let us calculate that first summand.

2ω0

∫ T

0

B1(s)(B2
2(s)− s)dB1(s)

=2

∫ t

0

B1(s)(B2
2(s)− s)dB1(s) +

〈
B1(s)(B2

2(s)− s), B1(s)
〉
t

− ω0
〈
B1(s)(B2

2(s)− s), B1(s)
〉
T
.

(4.28)

To calculate the quadratic variation, it is best to have a martingale representation of B1(s)(B2
2(s)−s).

Again, we use Clark-Ocone.

B1(s)(B2
2(s)− s)

=E
[
B1(s)(B2

2(s)− s)
]

+

∫ s

0

E
[
Ds

(
B1(s)(B2

2(s)− s)
)
|Fr
]
· dB(r)

=0 +

∫ s

0

E
[
D1,s

(
B1(s)(B2

2(s)− s)
)
|Fr
]
dB1(r)

+

∫ s

0

E
[
D2,s

(
B1(s)(B2

2(s)− s)
)
|Fr
]
dB2(r)

=

∫ s

0

E
[
B2

2(s)− s|Fr
]
dB1(r) + 2

∫ s

0

E [B1(s)B2(s)|Fr] dB2(r)

=

∫ s

0

(
B2

2(r)− r
)
dB1(r) + 2

∫ s

0

B1(r)B2(r)dB2(r)

(4.29)
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Then

〈
B1(s)(B2

2(s)− s), B1(s)
〉
t

=

〈∫ s

0

B2
2(r)− rdB1(r) + 2

∫ s

0

B1(r)B2(r)dB2(r), B1(s)

〉
t

=

〈∫ s

0

B2
2(r)− rdB1(r), B1(s)

〉
t

+ 2

〈∫ s

0

B1(r)B2(r)dB2(r), B1(s)

〉
t

=

∫ t

0

B2
2(r)− rd〈B1(·), B1(·)〉r + 2

∫ t

0

B1(r)B2(r)d〈B2(·), B1(·)〉r

=

∫ t

0

B2
2(r)− rdr + 2

∫ t

0

B1(r)B2(r)d0

=

∫ t

0

B2
2(r)dr − t2

2
,

(4.30)

and

2ω0

∫ T

0

B1(s)(B2
2(s)− s)dB1(s)

=2

∫ t

0

B1(s)(B2
2(s)− s)dB1(s) +

∫ t

0

B2
2(r)dr − t2

2

− ωt
(∫ T

0

B2
2(r)dr − T 2

2

)

=2

∫ t

0

B1(s)(B2
2(s)− s)dB1(s) +

∫ t

0

B2
2(r)dr − t2

2

−
∫ t

0

ωtB2
2(r)dr +

T 2

2

=2

∫ t

0

B1(s)(B2
2(s)− s)dB1(s) +

∫ t

0

B2
2(r)dr − t2

2

−
∫ t

0

B2
2(r)dr −

∫ T

t

B2
2(t)dr +

T 2

2

=2

∫ t

0

B1(s)(B2
2(s)− s)dB1(s)−B2

2(t)(T − t)− t2

2
− T 2

2
.

(4.31)

Similarly

2ω0

∫ T

0

B2(s)(B2
1(s)− s)dB2(s)

=2

∫ t

0

B2(s)(B2
1(s)− s)dB2(s)−B2

1(t)(T − t)− t2

2
+
T 2

2
.

(4.32)
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Combining these two results

ωtF

=2

∫ t

0

B1(s)(B2
2(s)− s)dB1(s)−B2

2(t)(T − t)− t2

2
+
T 2

2

2

∫ t

0

B2(s)(B2
1(s)− s)dB2(s)−B2

1(t)(T − t)− t2

2
+
T 2

2

=

∫ t

0

2B1(s)(B2
2(s)− s)dB1(s)

2B2(s)(B2
1(s)− s)dB2(s)

 · dB(s)− (B2
1(t)−B2

2(t))(T − t)− t2 + T 2

=

∫ t

0

E
[
Ds(B

2
1(t)− t)(B2

2(t)− t)|Fs
]
· dB(s)− (B2

1(t)−B2
2(t))(T − t)− t2 + T 2

=(B2
1(t)− t)(B2

2(t)− t)− (B2
1(t)−B2

2(t))(T − t)− t2 − T 2

=B2
1(t)B2

2(t)− t(B2
1(t) +B2

2(t)) + t2 − (B2
1(t)−B2

2(t))(T − t)− t2 + T 2

=B2
1(t)B2

2(t)− T (B2
1(t) +B2

2(t)) + T 2

=(B2
1(t)− T )(B2

2(t)− T ),

(4.33)

which is positive evidence towards our approach to freezing. To corroborate our conjecture of the
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exponential formula, let us calculate all the non-trivial the Gross Laplacians:

∆1F =

∫ T

0

D2
1,u

(
(B2

1(T )− T )(B2
2(T )− T )

)
du

=2

∫ T

0

(B2
2(T )− T )du

=2T (B2
2(T )− T )

∆2F =2T (B2
1(T )− T )

∆F =∆1F + ∆2F

=2TB2
1(T ) + 2TB2

2(T )− 4T 2

∆2
1F =

∫ T

0

D2
1,u

(
2T (B2

2(T )− T )
)
du

=0

∆2
2F =0

∆2∆1F =

∫ T

0

D2
2,u

(
2T (B2

2 − T )
)
du

=4T

∫ T

0

du

=4T 2

∆2F =∆2
1F + 2∆2∆1F + ∆2

2F

=8T 2,

(4.34)

and all higher-order Laplacians are zero. Then plugging this into the exponential formula

∞∑
k=0

1

2kk!
ω0 ◦∆kF

=ω0F +
1

2
ω0∆F +

1

8
ω0∆2F

=ω0
(
B2

1(T )− T )(B2
2(T )− T )

)
+

1

2
ω0
(
2TB2

1(T ) + 2TB2
2(T )− 4T 2

)
+

1

8
ω0
(
8T 2

)
=T 2 +

1

2
(−4T 2) + T 2

=0,

(4.35)
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which is precisely E[F ].

4.3 An Exponential Formula for 2-Dimensional Brownian Mo-

tion

To prove our analogue, consider Wiener chaos decomposition
∑∞
n=0 In(fn) of a random variable F .

If we return to our previous exposition on the Malliavin calculus on d-dimensional Brownian Motion

(Section 2.7), then fn is a tensor-valued function of the form

fn(s1, . . . , sn) =
∑

1≤i1,...,in≤2

f i1···in(s1, . . . , sn)ei1 ⊗ · · · ein . (4.36)

In which case, we have

In(fn) =
∑

1≤i1,...,in≤2

δin · · · δi1f i1···in . (4.37)

From Section 2.7 we know that for any permutation σ on {1, . . . , n} we have

δiσ(n)
· · · δiσ(1)f

iσ(1)···iσ(n) = δin · · · δi1f i1···in . (4.38)

To refresh, we exploit this symmetry and consider what we refer to as a canonical component.

Consider the summand of the form

f

`1s︷ ︸︸ ︷
1 · · · 1

m2s︷ ︸︸ ︷
2 · · · 2 (4.39)

where of course `+m = n. We can denote this summand by f (`,m). From the above reasoning, we

can rewrite In(fn) as

In(fn) =
∑

`+m=n

(
n

`

)
δm2 δ

`
1f

(`,m). (4.40)

The advantage of writing In(fn) in this form is each summand is unique. Furthermore, each term

f (`,m)(r1, . . . , r`, s1, . . . , sm), (4.41)
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is invariant under any permutation of the first ` parameters, and is also equal under any permutation

under the last m parameters which simplifies some analysis. Lastly, when writing in this format it

feels “obvious” how to proceed in the d-dimensional case.

Let us show our exponential formula directly. We have our symmetric kernel

f(r1, . . . , r`, s1, . . . , sm), (4.42)

then

ω0 ◦ δm2 δ`1f

=m!ω0 ◦
∫ T

0

∫ sm

0

· · ·
∫ s2

0

δ`1f(·, s1, . . . , sm)dB2(s1) · · · dB2(sm)

=− m!

2
ω0 ◦

〈∫ v

0

∫
∆m−2(sm−1)

δ`1f(·, s1, . . . , sm−1, v)dB2(s)⊗(m−1), B2(v)

〉
T

,

(4.43)

where ∆m−2(sm−1) is the simplex {(s1, . . . , sm−2); 0 ≤ s1 ≤ · · · ≤ sm−2 ≤ sm−1}, and not the Gross

Laplacian. Then, if we take a partition Π = {0 = v0 ≤ v1 ≤ vM = T}, the quadratic variation is

the limit of all approximations 〈·, ·〉Π as |Π| = supi |vi+1 − vi| tends towards zero. The value of this

approximation would be

〈∫ v

0

∫
∆m−2(sm−1)

δ`1f(·, s1, . . . , sm−1, v)dB2(s)⊗(m−1), B2(v)

〉
Π

=

M−1∑
k=0

(B2(vi+1)−B2(vi))

(∫ vi+1

0

∫
∆m−2(sm−1)

δ`1f(·, s1, . . . , sm−1, vi+1)dB2(s)⊗(m−1)

−
∫ vi

0

∫
∆m−2(sm−1)

δ`1f(·, s1, . . . , sm−1, vi)dB2(s)⊗(m−1)

)

=

M−1∑
k=0

(B2(vi+1)−B2(vi))

(∫ vi+1

vi

∫
∆m−2(sm−1)

δ`1f(·, s1, . . . , sm−1, vi+1)dB2(s)⊗(m−1)

)

=

M−1∑
k=0

(B2(vi+1)−B2(vi))

(∫ vi+1

vi

∫
∆m−2(sm−1)

δ`1f(·, s1, . . . , sm−1,i+1 )dB2(s)⊗(m−1)

)

+

M−1∑
k=0

(B2(vi+1)−B2(vi))

(∫ vi

0

∫
∆m−2(sm−1)

(
δ`1f(·, s1, . . . , sm−1, vi+1)

−δ`1f(·, s1, . . . , sm−1, vi)dB2(s)⊗(m−1)
))

.

(4.44)
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Let us consider the first sum. It has a natural approximation via

M−1∑
k=0

(B2(vi+1)−B2(vi))

(∫ vi+1

vi

∫
∆m−2(sm−1)

δ`1f(·, s1, . . . , sm−1, vi+1)dB2(s)⊗(m−1)

)

≈
M−1∑
k=0

(B2(vi+1)−B2(vi))
2

∫
∆m−2(vi)

δ`1f(·, s1, . . . , sm−2, vi, vi+1)dB2(s)⊗(m−2)

=

M−1∑
k=0

(B2(vi+1)−B2(vi))
2

∫
∆m−2(vi)

δ`1f(·, s1, . . . , sm−2, vi, vi)dB2(s)⊗(m−2)

+

M−1∑
k=0

(B2(vi+1)−B2(vi))
2

∫
∆m−2(vi)

(
δ`1f(·, s1, . . . , sm−2, vi, vi+1)

−δ`1f(·, s1, . . . , sm−2, vi, vi)
)
dB2(s)⊗(m−2).

(4.45)

Then using the differentiability of f , we have

M−1∑
k=0

(B2(vi+1)−B2(vi))
2

∫
∆m−2(vi)

δ`1f(·, s1, . . . , sm−2, vi, vi)dB2(s)⊗(m−2)

+

M−1∑
k=0

(B2(vi+1)−B2(vi))
2

∫
∆m−2(vi)

(
δ`1f(·, s1, . . . , sm−2, vi, vi+1)

−δ`1f(·, s1, . . . , sm−2, vi, vi)
)
dB2(s)⊗(m−2)

≈
M−1∑
k=0

(B2(vi+1)−B2(vi))
2

∫
∆m−2(vi)

δ`1f(·, s1, . . . , sm−2, vi, vi)dB2(s)⊗(m−2)

+

M−1∑
k=0

(B2(vi+1)−B2(vi))
2(vi+1 − vi)

·
∫

∆m−2(vi)

δ`1

(
∂f

∂sm
(·, s1, . . . , sm−2, vi, vi)

)
dB2(s)⊗(m−2).

(4.46)

If we consider the L2 limit of the first series, it is precisely

M−1∑
k=0

(B2(vi+1)−B2(vi))
2

∫
∆m−2(vi)

δ`1f(·, s1, . . . , sm−2, vi, vi)dB2(s)⊗(m−2)

→L2

∫ T

0

∫
∆m−2(v)

δ`1f(·, s1, . . . , sm−2, v, v)dB2(s)⊗(m−2)dv.

(4.47)

As for the second series, each term (vi+1−vi)(B2(vi+1)−B2(vi))
2 has variance 3(vi+1−vi)4, and the

61



CHAPTER 4. EXPONENTIAL FORMULAE

iterated integral has bounded convergence. So overall, the second series has variance on the order

of O(|Π|3). It is a mean zero process since the mean of each iterated integral is zero. Therefore, the

limit of this second series is simply zero.

We have determined the limit of the first series of Equation (4.44). We must determine the limit

of the second series. Once again, we exploit the assumption that f is differentiable.

M−1∑
k=0

(B2(vi+1)−B2(vi))

(∫ vi

0

∫
∆m−2(sm−1)

(
δ`1f(·, s1, . . . , sm−1, vi+1)

−δ`1f(·, s1, . . . , sm−1, vi)dB2(s)⊗(m−1)
))

≈
M−1∑
k=0

(vi+1 − vi)(B2(vi+1)−B2(vi))

·
∫

∆m−2(sm−1)

δ`1

(
∂f

∂sm
(·, s1, . . . , sm−2, vi, vi)

)
dB2(s)⊗(m−2).

(4.48)

By a similar argument to before, the (vi+1−vi)(B2(vi+1)−B2(vi)) are independent of their adjoining

iterated integrals, and have variance (vi+1 − vi)3, and therefore the variance of the entire series is

O(|Π|2). As before, it is also a mean zero series and therefore the limit of this series is identically

zero. From this argument we see

〈∫ v

0

∫
∆m−2(sm−1)

δ`1f(·, s1, . . . , sm−1, v)dB2(s)⊗(m−1), B2(v)

〉

=

∫ T

0

∫
∆m−2(v)

δ`1f(·, s1, . . . , v, v)dB2(s)⊗(m−2)dv

=
1

(m− 2)!

∫ T

0

∫
[0,v]m−2

δ`1f(·, v, v)dB2(s)⊗(m−2)dv

(4.49)

Of course, our choice to first deal with integrals with respect to B2 was completely arbitrarily, and

a similar result applies to B1. Consequently, we have

ω0 ◦ δm2 δ`1f

=− m(m− 1)

2

∫ T

0

ω0

∫
[0,v]m−2

δ`1f(·, v, v)dB2(s)⊗(m−2)dv.
(4.50)

By running through the proof with the example δ1
2δ
`
1f , we see that random variables frozen image
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is zero. So by repeated applications of Equation (4.50) we see

ω0 ◦ δm2 δ`1f =(−1)
m
2
m!

2
m
2

∫ T

0

∫ vm
2

0

· · ·
∫ v2

0

ω0δ`1f(·, v1, v1, . . . , vm2 , v
m
2

)dv⊗
m
2

=(−1)
m
2

m!

2
m
2 (m2 )!

∫
[0,T ]

m
2

ω0 ◦ δ`1f(·, v1, v1, . . . , vm2 , v
m
2

)dv⊗
m
2 .

(4.51)

when m is even and zero otherwise. This perfectly coincides with Proposition 2 of [JS16]. Of course,

we can repeat the same procedure for B1, which leads us to our foundational result for verifying the

exponential formula.

Lemma 4.1. Given a differentiable symmetric kernel f in L̂2([0, T ]2`)⊗ L̂2([0, T ]2m)

ω0 ◦ δ2m
2 δ2`

1 f

=(−1)`+m
(2`!)(2m!)

2`+mm!`!

∫
[0,T ]`×[0,T ]m

f(u1, u1, . . . , u `
2
, u `

2
, v1, v1, . . . , vm2 , v

m
2

)du`dvm
(4.52)

and is zero when either 2` or 2m is replaced by an odd natural number.

To verify the exponential formula, we first need to check the formula holds for a component

δm2 δ
`
1f where f is a symmetric kernel on the product L̂2([0, T ]`) and L̂2([0, T ]m). We also write the

exponential formula differently. We first saw this alternative expression in Equation (4.7)

E
[
δm2 δ

`
1f
]

=

∞∑
i,j=0

1

2i+ji!j!
ω0 ◦

(
∆1

1∆j
2

(
δm2 δ

`
1f
))
. (4.53)

When ` = m = 0, this identity holds trivially. When ` or m is non-zero, then the left-hand side of
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the equation is zero. First, let us consider the non-trivial case of Lemma 4.1 and examine δ2m
2 δ2`

1 f .

∞∑
i,j=0

1

2i+ji!j!
ω0 ◦

(
∆1

1∆j
2

(
δ2m
2 δ2`

1 f
))

=
∑

0≤i≤`;0≤j≤m

1

2i+ji!j!
ω0 ◦

(
∆1

1∆j
2

(
δ2m
2 δ2`

1 f
))

=
∑

0≤i≤`;0≤j≤m

1

2i+ji!j!
ω0 ◦

(∫
[0,T ]i

∫
[0,T ]j

D2
2,vj ·D

2
2,v1D

2
1,ui ·D

2
1,u1

δ2m
2 δ2`

1 fdu
⊗idv⊗j

)

=
∑

0≤i≤`;0≤j≤m

(2`!)(2m!)

2i+ji!j!(2`− 2i)!(2m− 2j)!

ω0 ◦
∫

[0,T ]i

∫
[0,T ]j

δ2m−2j
2 δ2`−2i

1 f(·, u1, u1, . . . , ui, ui, ·, v1, v1, . . . , vj , vd)du
⊗idv⊗j .

(4.54)

Then use Lemma 4.1 to evaluate the frozen images.

=
∑

0≤i≤`;0≤j≤m

(2`!)(2m!)

2i+ji!j!(2`− 2i)!(2m− 2j)!

· (−1)`−i+m−j
(2`− 2i)!(2m− 2j)!

2`−i+m+j(`− i)!(m− j)!

·
∫

[0,T ]`

∫
[0,T ]m

f(u1, u1, . . . , u`, u`, v1, v1, . . . , vm, vm)du⊗(`)dv⊗(m)

=(2`)!(2m)!C
∑

0≤i≤`;0≤j≤m

(−1)`−i+m−j
1

2`+mi!j!(`− i)!(m− j)!
,

(4.55)

where C is the integral which appears on the penultimate in Equation (4.55). Continuing

=
(2`)!(2m)!C

`!m!2`+m

∑
0≤i≤`;0≤j≤m

(−1)`−i+m−j
`!m!

i!j!(`− i)!(m− j)!

=
(2`)!(2m)!C

`!m!2`+m

(∑̀
i=0

(−1)`−i
`!

(`− i)

) m∑
j=0

(−1)m−j
m!

(m− j)


=

(2`)!(2m)!C

`!m!2`+m
(1− 1)`(1− 1)m

=0.

(4.56)

Therefore, by a direct calculation, we have shown

Lemma 4.2. Given a differentiable symmetric kernel f in the product space of L̂2([0, T ]`) and
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L̂2([0, T ]2), the exponential formula holds for δm2 δ
`
1f . The proof follows since there are only finitely

many terms in each infinite series,

E
[
ω0 ◦ δm2 δ`1f

]
=

∞∑
i,j=0

1

2i+ji!j!
ω0 ◦

(
∆1

1∆j
2

(
δ2m
2 δ2`

1 f
))

=

∞∑
k=0

1

2kk!
ω0 ◦∆k

(
δ2m
2 δ2`

1 f
)

=e
1
2ω

0◦∆δm2 δ
`
1f.

(4.57)

So we have at least proven the exponential formula is true within each chaos, and is therefore at

least true for any random variable whose chaos decomposition contains finitely many terms. As is

usual in analysis, the difficulty is taking the argument in the limit, and proving the relation holds

for a random variable whose chaos decomposition is an infinite sum.

We start by defining a series of linear transformations ω0
n. Each ω0

n will map a subset of the n-th

Wiener chaos Hn to R by working backwards from the result in Lemma 4.1. So ω0
n is the linear map

induced by the relation

ω0
n

(
δ2m
2 δ2`

1 f
)

:=(−1)`+m
(2`!)(2m!)

2`+mm!`!

∫
[0,T ]`×[0,T ]m

f(u1, u1, . . . , u`, u`, v1, v1, . . . , vm, vm)du`dvm,
(4.58)

where 2`+2m = n, and f is a differentiable element of L̂2([0, T ]2`)⊗L̂2([0, T ]2m). We set ω0(δm
′

2 δ`
′

1 f)

to zero when `′ + m′ = n, either ` or m is odd, and f is a differentiable element of L̂2([0, T ]`
′
) ⊗

L̂2([0, T ]m
′
). We let Domω0

n be the subset of Hn for which this mapping is finite.

Then our hands our tied. Given a random variable F generated by two independent Brownian

motions F , which has a chaos decomposition F =
∑∞
n=0 In(fn) where fn ∈ Dom ω̃0 for each n, and

the series
∞∑
n=0

ω0
n(In(fn)), (4.59)
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converges absolute, we say F ∈ Dom w̃0 and define

w̃0F =

∞∑
n=0

ω0
n(In(fn)). (4.60)

Since ω̃0 agrees with ω0
n on the n-th chaos, we can write

ω̃0(F ) =

∞∑
n=0

ω̃0(In(fn)), (4.61)

for an F =
∑
n In(fn) in Dom ω̃0.

We then define a series of space beginning with Dom0 ω̃0 := Dom ω̃0, and say a random variable

F is in Domk+1 ω̃0 if F is in Dom ω̃0, and ∆F exists and is in Domk ω̃0. Then we define Dom∞ ω̃0 as

the intersection of all these spaces. So if we have an F ∈ Dom∞ ω̃0 with the usual chaos expansion

F =
∑
n In(fn), we can safely say each series

ω̃0(∆kF ) =

∞∑
n=0

ω0(∆kIn(fn)), (4.62)

converges absolutely. We simply plug F into the exponential formula and remember Lemma 4.2

implies the exponential formula holds for each chaos In(fn).

∞∑
k=0

1

2kk!
ω0(∆kF )

=

∞∑
k=0

1

2kk!

∞∑
n=0

ω0(∆kIn(fn))

=
∑
n=0

∞∑
k=0

1

2kk!
ω0(∆kIn(fn))

=
∑
n=0

E [In(fn)]

=E [F ] .

(4.63)

There was a lot of scaffolding to erect in order to swap summation signs.

Theorem 4.3. For a random variable F generated by two independent Brownian such that F lies
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with Dom∞ ω̃0, F satisfies the exponential formula

E [F ] =

∞∑
k=0

1

2kk!
ω0 ◦∆k(F )

=e
1
2ω

0◦∆F.

(4.64)

Future work should characterize the space Dom∞ ω̃0, but there are robust families of random

variables already known to lie within Dom∞ ω̃0. Polynomials in B1 and B2 are automatically within

the space, as are exponentials.

4.4 An Exponential Formula for d-dimensional Brownian Mo-

tion

The notation is somewhat scarier, but the logic is the same as the two-dimensional case. We start

with a random variable F generated by d-dimensional Brownian motion and its decomposition

F =
∑
µ∈Nd

|µ|!
µ!

δµfµ. (4.65)

Where |µ| = µ1 + ·+ µd, µ! = µ1! · · ·µd!, and δµ = δµdd · · · δ
µ1

1 .

Each symmetric kernel is of the form

fµ(s1,1, . . . , s1,µ1 , s2,1, . . . , ss,µ2 , · · · , sd,1, sd,µd), (4.66)

and is square integrable. Here, fµ is invariant under any permutation which maps each set of

{si,1, . . . , si,νi} to themselves. Furthermore, we make the restriction that f is differentiable fµ.

We follow the same path as in the proceeding section, and first try to obtain a closed-form

expression for δµfµ. If we repeat the reasoning behind Lemma 4.1 we obtain the following formula.
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Lemma 4.4. Given a differentiable symmetric kernel f in ⊗di=1L̂
2([0, T ]2νi)

ω0 ◦ δ2νf

=(−1)|ν|
(2ν)!

2|ν|ν!

∫
[0,T ]|ν|

f(u1,1, u1,1, . . . , u1,ν1 , u1,ν1 , . . . , ud,1, ud,1, . . . , ud,νd , ud,νd)du⊗νi1 du⊗νdd ,

(4.67)

and is zero when either 2` or 2m is replaced by an odd natural number.

An alternative way to express this relation is

ω0 ◦ δ2νf = (−1)|ν|
1

2|ν|ν!
∆νδ2νf. (4.68)

So if we have a multi-index µ ≤ ν (µ1 ≤ ν1, . . . , µd ≤ νd) and write the iterated partial Gross

Laplacian ∆µ = ∆µd
d · · ·∆

µ1

1 , then we have the identity

ω0∆µδ2νf

=
2ν!

(2ν − 2µ)!

∫
[0,T ]|µ|

ω0δ2ν−2µf(·)du⊗µ1

1 du⊗µdd

=
2ν!

(2ν − 2µ)!

(−1)|ν−µ|(2ν − 2µ)!

2|ν−µ|(ν − µ)!

∫
[0,T ]|ν|

f(·)du⊗ν11 du⊗νdd

=
(−1)|ν−µ|

2|ν−µ|(ν − µ)!
∆νδ2νf,

(4.69)

and note if there exists some index µi that is greater than νi, then ∆µδ2νf is identically zero. We

trust if the reader has made it this far, then they know what arguments are being integrated without

having to bleed into the margins by fully writing out the arguments to f . We were not explicit, but

the above identity is what we used in the proof for the two-dimensional case.

Then we apply the appropriate analogue of the exponential formula for such an f . For d-
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dimensional Brownian motion it is

∑
µ∈Nd

1

2|µ|µ!
ω0∆µδ2νf

=
∑
µ≤ν

1

2|µ|µ!
ω0∆µδ2νf

=
∑
µ≤ν

1

2|µ|µ!

(−1)|ν−µ|

2|ν−µ|(ν − µ)!
∆νδ2νf

=∆νδ2νf
∑
µ≤ν

1

2|ν|µ!

(−1)|ν−µ|

(ν − µ)!

=
∆νδ2ν

2νν!

∑
µ≤ν

(−1)|ν−µ|ν!

µ!(ν − µ)!

=
∆νδ2ν

2νν!

∑
µ1,...,µd;0≤µi≤νi

d∏
i=1

(−1)νi−µiνi!

µi!(νi − µi)!

=
∆νδ2ν

2νν!

d∏
i=1

(1− 1)νi

=
∆νδ2ν

2νν!
0|ν|

=0.

(4.70)

A formal manipulation of series will show

∞∑
k=0

1

2kk!
∆k =

∑
µ∈Nd

1

2|µ|µ!
∆µ, (4.71)

where we have the total Gross Laplacian ∆ = ∆1 + · · ·+ ∆d. When each of these series is applied to

δ2νf , there are only finitely many non-zero terms, so we do not have any problems of convergence,

and δ2νf is mean zero. And the case where there exists an odd component somewhere in the multi-

index is trivial, since freezing such a random variable or any of its Gross Laplacians is always zero.

Therefore, we can say

Lemma 4.5. Given a differentiable symmetric kernel f in ⊗di=1L̂
2([0, T ]νi)

E [δνf ] =

∞∑
k=0

1

2kk!
ω0 ◦∆k(δνf). (4.72)
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From here, we proceed with constructing a freezing operator on a subset of L2(Ω) in the same

fashion as in the previous section. So we construct a space Dom ω̃0 such that the relation

ω̃0 (F ) =

∞∑
n=0

ω0(In(fn)), (4.73)

holds for any F ∈ Dom ω̃0 with chaos expansion
∑
n In(fn). From there we construct the d-

dimensional version Dom∞ ω̃0. Thus, we can extend the final result by linearity to

Theorem 4.6. For a random variable F ∈ Dom∞ ω̃0 generated by d independent Brownian motions

with a chaos decomposition

F =
∑
µ∈Nd

|µ|!
µ!

δµfµ, (4.74)

F satisfies the exponential formula

E [F ] =

∞∑
k=0

1

2kk!
ω0 ◦∆k(F ) = e

1
2ω

0◦∆F. (4.75)

4.5 SABR model with β = 1

We would like to apply our developed analytical tools to the SABR model with β = 1; continuing

the work done in [GS19]. We break with the traditional notation of the domain to be consistent

with the notations within this work. The SABR model [Hag+02] is traditionally expressed as the

following SDEs driven by the Brownian motions W and Z

dFt =σtF
β
j dZt

dσt =ασtdWt

dWtdZt =ρdt,

(4.76)
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with β in [0, 1]. F should be interpreted as the forward rate, while σt is stochastic volatility. We

take β = 1 because we wish to eventually graduate. We will write

dFt =σtFt(
√

1− ρ2dB1(t) + ρdB2(t))

dσt =ασtdB2(t),

(4.77)

with β in [0, 1] and F0 = σ0 = 1, and we set Xt = logFt. The volatility has the closed-form

expression

σt = σ0e
αB2(t)−α2

2 t, (4.78)

and Xt satisfies the SDE

dXt =σt(
√

1− ρ2dB1(t) + ρdB2(t))− 1

2
σ2
t dt

=σtdZt −
1

2
σ2
t dt.

(4.79)

Our goal is to calculate the price at time 0 of a European call option on F and maturity T . For

the sake of simplicity we assume the call is “at the money” and normalize so K = F0 = 1, and

thus X0 = 0. To do so, we apply Theorem 6 of [Alò06]. We introduce the following quantities from

[Alò06]:

d±(t, x, σ) =
x± σ2

2 (T − t)
σ
√
T − t

N(z) =
1√
2π

∫ z

−∞
e−

u2

2 du

BS(t, x, σ) =exN(d+)−N(d−)

v2
s =

1

T − s

∫ T

s

σ2
rdr

Ξ(s,Xs, vs) =

(
(
∂3

∂x3
− ∂

∂x
) BS

)
(s,Xs, vs)

Λs =σs

∫ T

s

D2,sσ
2
rdr = 2ασs

∫ T

s

σ2
rdr

V0 =E [BS(0, X0, v0)] +
ρ

2

∫ T

0

E [ΞsΛs] ds.

(4.80)
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The application of our results is to approximate V0 using the exponential formula for random vari-

ables generated by multiple Brownian motions. For a random variable G, the identity revolving

around the exponential formula is

E [G] =

∞∑
n=0

1

n!2n
ω0 ◦∆nG = ω0 ◦ (G) +

1

2
ω0 ◦ (∆G) +

1

8
ω0 ◦

(
∆2G

)
+ · · · (4.81)

The resulting approximation of V0 is the expression

ω0 ◦ (BS(0, 0, v0)) +
1

2
ω0 ◦ (∆BS(0, 0, v0))

+
ρ

2

∫ T

0

(
ω0 ◦ (ΞsΛs) +

1

2
ω0 ◦∆ (ΞsΛs)

)
ds.

(4.82)

To break up the calculation, we introduce the following variables for the terms in the approximation

A =ω0 ◦ (BS(0, 0, v0))

B =ω0 ◦ (∆BS(0, 0, v0))

C =ω0 ◦ (ΞsΛs)

D =ω0 ◦∆ (ΞsΛs) ,

(4.83)

and to finally calculate

A +
1

2
B +

ρ

2

∫ T

0

(
C +

1

2
D

)
ds. (4.84)

It will behoove us to further break down the calculation of D. ∆(ΞsΛs) is the sum of ∆1(ΞsΛs) and

∆2(ΞsΛs); the Gross-Laplacian with respect to B1 plus the Gross-Laplacian with respect to B2. So

we further write

E =ω0 ◦∆1 (ΞsΛs)

F =ω0 ◦∆2 (ΞsΛs)

D =E + F.

(4.85)
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4.5.1 Preliminaries: The Greeks

We will make common use of the identities

N ′(z) =
1√
2π
e−

z2

2

N ′′(z) =− zN ′(z)

∂d±(t, x, σ)

∂x
=

1

σ
√
T − t

.

(4.86)

We will also need to know the partial derivative of d± with respect to σ

∂d±
∂σ

=− x

σ2
√
T − t

± 1

2

√
T − t

=− 1

σ

(
x∓+ 1

2σ
2(T − t)

σ
√
T − t

)
=− d∓

σ
.

(4.87)

Our approximation will necessitate calculating the various derivatives of the Black-Scholes function

BS; the Greeks. For better or worse, only the Greeks up to the third order have names. Though it

seems the taxonomic effort started waning half-way through the second-order Greeks. Most tables

express the Greeks in terms of the price F and not the rate X, so we will proceed slowly and verify

and translation. Tables will be used more as a sanity check on our algebra. Consulting [Hau07], we

see the stochastic process Ξs is the difference between the speed and the delta. We leave it to our

betters to explain any possible interpretation. The first derivative with respect to the rate (delta) is

∂BS

∂x
=exN(d+) + exN ′(d+)

∂d+

∂x
−N ′(d−)

∂d−
∂x

=exN(d+) +
1

σ
√

2π
√
T − t

(
ex−

d2+
2 − e−

d2−
2

)
.

(4.88)
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We recall the basic identity d+ − d− = σ
√
T − t, and therefore

x−
d2

+

2
=

2x− (d− + σ
√
T − t)2

2

=
2x− (d2

− + 2d−σ
√
T − t+ σ2(T − t))

2

=
2x−

(
d2
− + 2(x− 1

2σ
2(T − t)) + σ2(T − t)

)
2

=−
d2
−
2
.

(4.89)

Thus, exN ′(d+) is N ′(d−) and therefore the delta is

∂BS

∂x
= exN(d+). (4.90)

Using the previous calculation we find the second derivative with respect to the rate (gamma) is

∂2BS

∂x2
=exN(d+) +

exN ′(d+)

σ
√
T − t

=exN(d+) +
N ′(d−)

σ
√
T − t

.

(4.91)

Finally, the third derivative with respect to the rate (speed) is

∂3BS

∂x3
=exN(d+) +

N ′(d−)

σ
√
T − t

− d−
N ′(d−)

σ
√
T − t

∂d−
∂x

=exN(d+) +
N ′(d−)

σ
√
T − t

(
1− d−

σ
√
T − t

)
.

(4.92)

So if we express the process Ξs as b(s,Xs, vs) where b(t, x, σ) is a deterministic function, then

b(t, x, σ) =

(
∂3

∂x3
− ∂

∂x

)
BS(t, x, σ)

=
N ′(d−)

σ
√
T − t

(
1− d−

σ
√
T − t

)
.

(4.93)
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We will also need the derivatives of BS with respect to volatility σ. The first derivative of BS with

respect to σ (vega) is

∂BS

∂σ
=exN ′(d+)

∂d+

∂σ
−N ′(d−)

∂d−
∂σ

=− d−N
′(d−)

σ
+
d+N

′(d−)

σ

=
N ′(d−)

σ
(d+ − d−)

=
√
T − tN ′(d−).

(4.94)

The second derivative with respect to the volatility (vega) is the vomma multiplied by d+d−
σ

∂2BS

∂σ2
=−

√
T − td−N ′(d−)

∂d−
∂σ

=
√
T − td−d+

σ
N ′(d−).

(4.95)

There will be higher derivatives which will be relevant for specific calculations. However, these are

the derivatives of BS which are common to multiple calculations.

4.5.2 Preliminaries: The RMS volatility

The stochastic volatility σs is ubiquitous throughout every calculation; usually as a sub-term of a

more complicated process. The frozen path of σt is

ω0(σt) = σ0e
−α2

2 t, (4.96)

and of course ω0(σ2
t ) = e−α

2t.

The RMS volatility appears in all calculations. In general, v2
s is an easier term to manipulate

than vs itself. Freezing v2
s results in the deterministic process

ω0(v2
s) =

σ0

T − s

∫ T

s

e−α
2rdr

=
σ2

0

α2(T − s)

(
e−α

2s − e−α
2T
)

ω0(vs) =
σ0

α
√
T − s

√
e−α2s − e−α2T .

(4.97)
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We will also need to know the first and second-order Malliavin derivatives of vs. vs itself is a function

of the stochastic volatility σs which is entirely generated by the second Brownian motion. So D1,uvs

is identically zero. To calculate D2,uvs we first calculate D2,uv
2
s . What is important to note is how

u compares to s.

D2,uv
2
s =

1

T − s

∫ T

s

D2,uσ
2
rdr

=
2α

T − s

∫ T

s

σ2
r1[0,r](u)dr

=
2α

T − s

(
1[0,s](u)

∫ T

s

σ2
rdr + 1[s,T ](u)

∫ T

u

σ2
rdr

)

=2α

(
1[0,s](u)v2

s + 1[s,T ](u)
T − u
T − s

v2
u

)
,

(4.98)

which is a sort of interpolation, or bridge, between v2
s and v2

u. Freezing this quantity results in the

expression

ω0 ◦D2,uv
2
s

=2α

(
1[0,s](u)ω0(v2

s) + 1[s,T ](u)
T − u
T − s

ω0(v2
u)

)
=

2ασ2
0

α2

(
1[0,s](u)

e−α
2s − e−α2T

T − s
+ 1[s,T ](u)

T − u
T − s

e−α
2u − e−α2T

T − u

)

=
2σ2

0

α(T − s)

(
1[0,s](u)

(
e−α

2s − e−α
2T
)

+ 1[s,T ](u)
(
e−α

2u − e−α
2T
)
.
)

(4.99)

To calculate D2,uvs itself we express vs as
√
vs

2. Then since the Malliavin calculus is a first-order

calculus we have

D2,uvs =D2,u

√
v2
s =

D2,uv
2
2

2vs
. (4.100)
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Then freezing this would result

ω0 ◦D2,uvs =
σ2

0

α(T − s)ω0(vs)

(
1[0,s](u)

(
e−α

2s − e−α
2T
)

+1[s,T ](u)
(
e−α

2u − e−α
2T
))

=
σ2

0

α(T − s)
α
√
T − s

σ0

√
e−α2s − e−α2T

(
1[0,s](u)

(
e−α

2s − e−α
2T
)

+1[s,T ](u)
(
e−α

2u − e−α
2T
))

=
σ0√

T − s
√
e−α2s − e−α2T

(
1[0,s](u)

(
e−α

2s − e−α
2T
)

+1[s,T ](u)
(
e−α

2u − e−α
2T
))

.

(4.101)

It is a value judgement on how far to elaborate these expressions. We could have just left the first

line in the above calculation. However, by finishing the calculation we do see some results of interest.

ω0 ◦D2,uvs has a linear dependence on σ0, while the initial leading factor depending on a power of

α has disappeared.

The second Malliavin derivative of v2
s is

D2
2,uv

2
s =2α

(
1[0,s](u)D2,uv

2
s + 1[s,T ]

T − u
T − s

D2,uv
2
u

)
. (4.102)

We get to exploit the short-circuit 1[0,s](u)1[s,T ](u) = 0 in the first summand. And in the second

summand we have D2,uv
2
u = 2αv2

u. Therefore,

D2
2,uv

2
s =4α2

(
1[0,s](u)v2

s + 1[s,T ]
T − u
T − s

v2
u

)
. (4.103)

That is, D2
2,uv

2
s = 2αD2,uv

2
s , so ω0 ◦D2

2,uv
2
s = 2αω0 ◦D2,uv

2
s .
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For the second Malliavin derivative of vs itself

D2
2,uvs =D2,u

(
D2,uv

2
2

2vs

)
=
D2

2,uv
2
s

2vs
− (D2,uv

2
s)D2,uvs

2v2
s

=α
D2,uv

2
s

vs
− (D2,uv

2
s)2

4v3
s

.

(4.104)

Again, we exploit the short-circuit 1[0,s](u)1[s,T ](u) = 0. Using equation (4.98) for D2,uv
2
s we see

D2
2,uvs =

2α2

vs

(
1[0,s](u)v2

s + 1[s,T ](u)
T − u
T − s

v2
u

)
− 4α2

4v3
s

(
1[0,s](u)v4

s + 1[s,T ](u)
(T − u)2

(T − s)2
v4
u

)
=α2vs1[0,s](u) + α2

(
2− T − u

T − s
v2
u

v2
s

)
(T − u)v2

u

(T − s)vs
1[s,T ](u),

(4.105)

which when frozen is

ω0 ◦D2
2,uvs =α2ω0(vs)1[0,s](u)

+ α2

(
2− T − u

T − s
ω0(v2

u)

ω0(v2
s)

)
(T − u)ω0(v2

u)

(T − s)ω0(vs)
1[s,T ](u).

(4.106)

4.5.3 Calculating A = ω0 ◦BS(0, 0, v0)

By far, A is our most trivial term.

A =ω0 ◦BS(0, 0, v0)

=N(d+(0, 0, ω0(vs))−N(d+(0, 0, ω0(vs)).

(4.107)

Now d±(0, 0, σ) = ± 1
2σ
√
T , so

A =N(d+(0, 0, ω0(vs))−N(d+(0, 0, ω0(vs))

=N

(
1

2
ω0(v0)

√
T

)
−N

(
−1

2
ω0(v0)

√
T

)
=N

( σ0

2α

√
1− e−α2T

)
−N

(
− σ0

2α

√
1− e−α2T

)
.

(4.108)
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4.5.4 Calculating B = ω0 ◦∆BS(0, 0, v0)

The Gross-Laplacian ∆ is the sum, ∆1+∆2, of the Gross-Laplacian with respect to the first Brownian

motion and the Gross-Laplacian with respect to the second Brownian motion. The key to saving

ourselves a lot of effort is to realize the stochasticity of B is entirely dependent on v0. Since v0 is

entirely generated by B2, BS(0, 0, v0) is entirely generated by B2. The Gross-Laplacian satisfies the

identity ∆iG =
∫ T

0
D2
i,uGdu, and from the above reasoning, we have D1,uBS(0, 0, v0) is identically

zero. Therefore, ∆1∆BS(0, 0, v0) is zero, and thus ∆BS(0, 0, v0) coincides with the Gross-Laplacian

of BS(0, 0, v0) with respect to B2 only. So ∆BS(0, 0, v0) is just ∆2BS(0, 0, v0). We must consider

D2
2,uBS(0, 0, v0) =D2,u

(
∂BS

∂σ
(0, 0, v0)D2,uv0

)
=
∂BS

∂σ
(0, 0, v0)D2

2,uv0 +
∂2BS

∂σ2
(0, 0, v0) (D2,uv0)

2
.

(4.109)

The freezing operator and deterministic integration commute, so we have

ω0 (∆BS(0, 0, v0)) =

∫ T

0

ω0

(
∂BS

∂σ
(0, 0, v0)

)
ω0
(
D2

2,uv0

)
+ ω0

(
∂2BS

∂σ2
(0, 0, v0)

)
ω0 (D2,uv0)

2
du.

(4.110)

Effectively, we are allowed to simplify before integrating. Now we have already calculated ω0 (D2,uv0)

and ω0
(
D2

2,uv0

)
in Equations (4.101) and (4.106). In this instance where we are concerned with v0

specifically, we have

ω0 ◦ (D2,uv0)2 =
σ2

0

(
e−α

2u − e−α2T
)2

T (1− e−α2T )
. (4.111)
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We calculate D2,uv0 using Equation (4.97)

ω0 ◦ (D2
2,uv0) =α2

(
2− (T − u)ω0(v2

u)

Tω0(v2
0)

)
(T − u)ω0(v2

u)

Tω0(v0)

=
σ2

0

Tω0(v0)

(
2− e−α

2u − e−α2T

1− e−α2T

)(
e−α

2u − e−α
2T
)

=
ασ0√
T

(1− e−α2T )− (1− e−α2u)√
1− e−α2T

(1− e−α2

) + (1− e−α2u)

1− e−α2T

=
ασ0√
T

(
1− e−α2T

)2

−
(

1− e−α2u
)2

(
1− e−α2T

) 3
2

.

(4.112)

Now we calculate the frozen vega ω0 ◦ ∂BS∂σ (0, 0, v0). To calculate this and the frozen vomma we

need to freeze d±(0, 0, v0), which we calculated in Equation (4.108)

ω0(d±(0, 0, v0)) =±
√
T

2
ω0(v0)

=± σ0

2α

√
1− e−α2T .

(4.113)

From the calculation for the vega in Equation (4.94), we have

ω0 ◦ ∂BS
∂σ

(0, 0, v0) =
√
TN ′(ω0(d−))

=
√
TN ′

(
− σ0

2α

√
1− e−α2T

)
.

(4.114)

And for the vomma, we use Equation (4.95)

ω0 ◦ ∂
2BS

∂σ2
(0, 0, v0)

=
√
T
ω0(d+)ω0(d−)

ω0(v0)
N ′
(
ω0(d−)

)
=− T

3
2

4
ω0(v0)N ′(ω0(d−))

=− σ0T

4α

√
1− e−α2TN ′

(
− σ0

2α

√
1− e−α2T

)
(4.115)
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We have calculated all the terms in the integrand, and thus we have shown how to calculate

B =

∫ T

0

(
ω0

(
∂BS

∂σ
(0, 0, v0)

)
ω0
(
D2

2,uv0

)
+ω0

(
∂2BS

∂σ2
(0, 0, v0)

)
ω0 (D2,uv0)

2

)
du.

(4.116)

When calculating approximations, we will see that the integral of ω0 ◦∆BS(0, 0, v0) actually has a

closed-form expression.

4.5.5 The log price Xs

So far we have only been concerned about terms at the initial time s = 0, at which the forward

rate process X is 0. We now turn our attention to the corrective term
∫ T

0
E[ΞsΛs]ds. To reason

about this quantity, we must first examine the process X: determine a closed form expression for

this process, it’s various Malliavin derivatives, and the images of each under the frozen operator. X

satisfies the SDE given in Equation (4.79); the solution to which is

Xs =
√

1− ρ2

∫ s

0

σrdB1(r) + ρ

∫ s

0

σrdB2(r)− 1

2

∫ s

0

σ2
rdr. (4.117)

If we have defined the frozen path operators in terms of the Stratonovich, then we have

ω0 ◦
∫ T

0

YsdZs = −1

2
ω0 ◦ 〈Y,Z〉T . (4.118)
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To freeze, we follow our nose; guided by the properties of quadratic variation as outlined in Sections

2.2 and 2.3 of [Kun90]. Freezing the first integral results in

ω0 ◦
∫ s

0

σrdB1(r) =− 1

2
ω0 ◦ 〈σ,B1〉s

=− 1

2
ω0 ◦ 〈σ0 + α

∫ ·
0

σrdB2(r), B1〉s

=− α

2
ω0 ◦ 〈

∫ ·
0

σrdB2(r), B1〉s

=− α

2
ω0 ◦

∫ s

0

σrd〈B2, B1〉r

=0,

(4.119)

since the joint quadratic variation of two independent Brownian motions is zero. The calculation

short-circuits before we even have to apply the freezing operator. We follow the same intermediary

steps for the second integral

ω0 ◦
∫ s

0

σrdB2(r) =− α

2
ω0 ◦

∫ s

0

σrd〈B2, B2〉r

=− α

2
ω0 ◦

∫ s

0

σrdr

=− ασ0

2

∫ s

0

e−
1
2α

2rdr

=− ασ0

2

2

α2
(1− e− 1

2α
2s)

=− σ0

α

(
1− e− 1

2α
2s
)
.

(4.120)

The third integral has become routine for us

ω0 ◦
∫ s

0

σ2
rdr =σ2

0

∫ s

0

e−α
2rdr

=
σ2

0

α2

(
1− e−α

2s
)
.

(4.121)

Therefore, Xs when frozen is

ω0(Xs) = −ρσ0

α

(
1− e− 1

2α
2s
)
− σ2

0

2α2

(
1− e−α

2s
)
. (4.122)
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The various partial Malliavin derivatives of X are required to calculate our last term E and F.

Calculating D1,uXs is easy. We remember D1,uσr is identically zero, and that the partial Malliavin

derivative with respect to B1 commutes with integration against B2. So D1,uXs and its frozen image

is

D1,uXs =
√

1− ρ2

(
1[0,s](u)σu +

∫ T

0

1[0,s](r)D1,uσrdB1(r)

)

+ ρ

∫ s

0

D1,uσrdB2(r)− 1

2

∫ s

0

D1,uσ
2
rdr

=
√

1− ρ21[0,s](u)σu

ω0 ◦D1,uXs =σ0

√
1− ρ21[0,s](u)e−

α2

2 u.

(4.123)

Then D2
1,uXs is identically zero, as is ω0 ◦D2

1,uXs. The Malliavin derivative with respect to B2 is

D2,uXs =
√

1− ρ2

∫ T

0

1[0,s](r)D2,uσrdB1(r) + ρ1[0,s](u)σu

+ ρ

∫ T

0

1[0,s](r)D2,uσrdB2(r)− 1

2

∫ T

0

1[0,s](r)D2,uσ
2
rdr

=α
√

1− ρ2

∫ T

0

1[0,r](u)1[0,s](r)σrdB1(r) + ρ1[0,s](u)σu

+ αρ

∫ T

0

1[0,s](r)1[0,r](u)σrdB2(r)− α
∫ T

0

1[0,s](r)1[0,r](u)σ2
rdr.

(4.124)

The term 1[0,s](r)1[0,r](u) is non-zero only when u ≤ r ≤ s, therefore

D2,uXs =1[0,s](u)

(
α
√

1− ρ2

∫ u

s

σrdB1(r) + ρσu

+αρ

∫ s

u

σrdB2(r)− α
∫ s

u

σ2
rdr

)
.

(4.125)

So when we freeze we have

ω0 ◦D2,uXs =1[0,s](u)
(

0 + ρσ0e
−α2

2 u

+αρω0 ◦
∫ s

u

σrdB2(r)− α
∫ s

u

ω0(σ2
r)dr

)
.

(4.126)
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From Equation (4.120) we see

ω0 ◦
∫ s

u

σrdB2(r) =− σ0

α

(
e−

α2

2 u − e−α
2

2 s
)
, (4.127)

while from equation (4.121) we have

ω0 ◦
∫ s

u

σ2
rdr =

σ2
0

α2

(
e−α

2u − e−α
2s
)
. (4.128)

Therefore

ω0 ◦D2,uXs =1[0,s](u)
(
ρσ0e

−α2

2 u − ρασ0

α

(
e−

α2

2 u − e−α
2

2 s
)

−ασ
2
0

α2

(
e−α

2u − e−α
2s
))

=1[0,s](u)

(
ρσ0e

−α2

2 s − σ2
0

α

(
e−α

2u − e−α
2s
))

.

(4.129)

Since D2,uXs has a factor of 1[0,s](u), we can assume u ≤ s when calculating D2
2,uXs since that

same leading factor will be present.

D2
2,uXs =1[0,s](u)

(
α
√

1− ρ2

∫ u

s

D2,uσrdB1(r) + ρD2,uσu + αρσu

+αρ

∫ s

u

D2,uσrdB2(r)− α
∫ s

u

D2,uσ
2
rdr

)
=1[0,s](u)

(
α2
√

1− ρ2

∫ u

s

σrdB1(r) + 2αρσu

+α2ρ

∫ s

u

σrdB2(r)− 2α2

∫ s

u

σ2
rdr

)
.

(4.130)

Then we freeze this quantity using the previously calculated intermediary results in Equations (4.127)
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and (4.128)

ω0 ◦D2
2,uXs =1[0,s]

(
0 + 2αρσ0e

−α2

2 u − α2ρ
σ0

α

(
e−

α2

2 u − e−α
2

2 s
)

−2α2 σ
2
0

α2

(
e−α

2u − e−α
2s
))

=1[0,s](u)
(
αρσ0

(
e−

α2

2 u + e−
α2

2 s
)

−2σ2
0

(
e−α

2u − e−α
2s
))

.

(4.131)

We are now able to tackle the corrective term.

4.5.6 Calculating C = ω0(ΞsΛs)

Of course ω0(ΞsΛs) = ω0(Ξs)ω
0(Λs). Remember Ξs = b(s,Xs, vs) where

b(t, x, σ) =
N ′(d−(t, x, σ))

σ
√
T − t

(
1− d−(t, x, σ)

σ
√
T − t

)
, (4.132)

where we rely on the reader’s mathematical maturity to know when we are referring to the stochastic

process σr and the parameter σ which is standard in the financial literature. Then

ω0(Ξs) =
N ′(d−(s, ω0(Xs), ω

0(vs)))

ω0(vs)
√
T − s

(
1− d−(s, ω0(Xs), ω

0(vs))

ω0(vs)
√
T − s

)
, (4.133)

and we have already calculated every subterm of this expression in Equations (4.122) and (4.97).

To freeze Λs is also simple

ω0 ◦ Λs =2αω0(σs)

∫ T

s

ω0(σ2
r)dr

=2α2σ0e
−α2

2 s

∫ t

s

σ2
0e
−α2rdr

=2σ3
0e
−α2

2 s
(
e−α

2s − e−α
2T
)
.

(4.134)

And thus we have the factors of C.
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4.5.7 The derivatives of b

The last term that remains is D. As we calculate the terms E and F, which D comprises, we will

need the partial derivatives (up to order two) of our function b(t, x, σ) with respect to x and σ.

Thankfully, we will not need to also consider the derivatives with respect to t since we were not so

masochistic as to make the time parameter of model a stochastic process. We will make liberal use

of the identities in equations (4.86) and (4.86). To begin

∂b

∂x
=
∂

∂x

(
N ′(d−)

(
1

σ
√
T − t

− d−

σ2
√
T − t2

))

=− d−

σ
√
T − t

(N ′(d−)

(
1

σ
√
T − t

− d−

σ2
√
T − t2

)

+N ′(d−)

(
0− 1

σ3
√
T − t3

)
=N ′(d−)

(
− d−

σ2
√
T − t2

+
−1 + d2

−

σ3
√
T − t3

)
,

(4.135)

and

∂2b

∂x2

=− d−

σ
√
T − t

N ′(d−)

(
− d−

σ2
√
T − t2

+
−1 + d2

−

σ3
√
T − t3

)

+N ′(d−)

(
− 1

σ3
√
T − t3

+
0 + 2d−

σ4
√
T − t4

)

=N ′(d−)

(
−1 + d2

−

σ3
√
T − t3

+
3d− − d3

−

σ4
√
T − t4

)
.

(4.136)

There is some pattern dealing with polynomials with the parameters d− and 1
σ
√
T−t , but such basic

algebra is beyond us. We will also need the derivatives with respect to σ. We can use the following

formulas to aid in the subsequent calculations

∂N(d−)

∂σ
=
d−d+

σ
N ′(d−)

∂

∂σ
(dm−d

n
+) =−

mdm−1
− dn+1

+ + ndm+1
− dn−1

+

σ
.

(4.137)
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Then the first derivative with respect to σ would be.

∂b

∂σ
=
d−d+

σ
N ′(d−)

(
1

σ
√
T − t

− d−

σ2
√
T − t2

)

+N ′(d−)

(
− 1

σ2
√
T − t

+ 2
d−

σ3
√
T − t2

+
d+

σ3
√
T − t2

)

=N ′(d−)

(
d−d+

σ2
√
T − t

−
d2
−d+

σ3
√
T − t2

)

+N ′(d−)

(
− 1

σ2
√
T − t

+
2d− + d+

σ3
√
T − t2

)

=N ′(d−)

(
−1 + d−d+

σ2
√
T − t

+
2d− + d+ − d2

−d+

σ3
√
T − t2

)
.

(4.138)

Then the second derivative with respect to σ is

∂2b

∂σ2
=
d−d+

σ
N ′(d−)

(
−1 + d−d+

σ2
√
T − t

+
2d− + d+ − d2

−d+

σ3
√
T − t2

)

+N ′(d−)

(
−2
−1 + d−d+

σ3
√
T − t

−
d2
− + d2

+

σ3
√
T − t

−3
2d− + d+ − d2

−d+

σ4
√
T − t2

−
2d+ + d− − d3

− − 2d−d
2
+

σ4
√
T − t2

)

= N ′(d−)

(
−d−d+ + d2

−d
2
+

σ3
√
T − t

+
2d2
−d+ + d−d

2
+ − d3

−d
2
+

σ4
√
T − t2

)

+N ′(d−)

(
2− 2d−d+ − d2

− − d2
+

σ3
√
T − t

+
−7d− − 5d+ + d3

− + 3d2
−d+ + 2d−d

2
+

σ4
√
T − t2

)

= N ′(d−)

(
2− d2

− − 3d−d+ − d2
+ + d2

−d
2
+

σ3
√
T − t

+
−7d− − 5d+ + d3

− + 5d2
−d+ + 3d−d

2
+ − d3

−d
2
+

σ4
√
T − t2

)
.

(4.139)
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Then finally the cross term

∂2b

∂x∂σ
=
∂

∂x

(
N ′(d−)

(
−1 + d−d+

σ2
√
T − t

+
2d− + d+ − d2

−d+

σ3
√
T − t2

))

=− d−

σ
√
T − t

N ′(d−)

(
−1 + d−d+

σ2
√
T − t

+
2d− + d+ − d2

−d+

σ3
√
T − t2

)

+N ′(d−)

(
0 + d− + d+

σ3
√
T − t2

+
2 + 1− 2d−d+ − d2

−

σ4
√
T − t3

)

=N ′(d−)

(
d− − d2

−d+

σ3
√
T − t2

+
−2d2

− − d−d+ + d3
−d+

σ4
√
T − t3

)

+N ′(d−)

(
d− + d+

σ3
√
T − t2

+
3− d2

− − 2d−d+

σ4
√
T − t3

)

=N ′(d−)

(
2d− + d+ − d2

−d+

σ3
√
T − t2

+
3− 3d2

− − 3d−d+ + d3
−d+

σ4
√
T − t3

)
.

(4.140)

With these results in hand, we are ready to proceed onto calculating D = E + F.

4.5.8 Calculating E = ω0(∆1(ΞsΛs))

We have the following identity

∆1(ΞsΛs) =

∫ T

0

D2
1,u (ΞsΛs) du. (4.141)

However, Λs is entirely generated by B2, and therefore D1,uΛs is identically zero. So we can further

simplify and see

E =ω0 ◦
∫ T

0

D2
1,u (ΞsΛs) du

=ω0(Λs)

∫ T

0

ω0 ◦D2
1,uΞsdu.

(4.142)
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We have already calculated the leading term ω0(Λs), and for the integrand

ω0 ◦D2
1,uΞs =ω0 ◦D2

1,ub(s,Xs, vs)

=ω0 ◦D1,u

(
∂b

∂x
(s,Xs, vs)D1,uD1,uXs

)
=ω0

(
∂2b

∂x2
(s,Xs, vs) (D1,uXs)

2
+
∂b

∂x
(s,Xs, vs)D

2
1,uXs

)
=
∂2b

∂x2
(s, ω0(Xs), ω

0(vs))ω
0 (D1,uXs)

2
,

(4.143)

since D2
1,uXs is zero. Thus, using Equations (4.123) and (4.134), we see

E =ω0(Λs)

∫ T

0

∂2b

∂x2
(s, ω0(Xs), ω

0(vs))ω
0 (D1,uXs)

2
du

=2σ3
0e
−α2

2 s
(
e−α

2s − e−α
2T
)

·
∫ T

0

∂2b

∂x2
(s, ω0(Xs), ω

0(vs))σ0

√
1− ρ21[0,s](u)e−

α2

2 udu

=2σ4
0

√
1− ρ2e−

α2

2 s
(
e−α

2s − e−α
2T
)∫ s

0

e−
α2

2 u
∂2b

∂x2
(s, ω0(Xs), ω

0(vs))du.

(4.144)

4.5.9 Calculating F = ω0(∆2(ΞsΛs))

For our last calculation, there are no real shortcuts, or quick reductions. The term is as general as

it can be. We break F into three summands

F

=ω0

∫ T

0

D2
2,u (ΞsΛs) du

=ω0(Ξs)

∫ T

0

ω0 ◦D2
2,uΛsdu+ 2

∫ T

0

ω0 ◦D2,uΞsω
0 ◦D2,uΛsdu

+ ω0(Λs)

∫ T

0

ω0 ◦D2
2,uΞsdu

=F1 + 2F2 + F3.

(4.145)
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We have already calculated ω0(Λs) in equation (4.134). Let us then calculate ω0 ◦D2,uΛs

D2,uΛs =2αD2,u

(
σs

∫ T

s

σ2
rdr

)

=2α2σs1[0,s](u)

∫ T

s

σ2
rdr + 2ασs

∫ T

0

1[s,T ](r)D2,uσ
2
rdr

=αΛs1[0,s](u) + 4α2σs

∫ T

0

1[s,T ](r)1[0,r](u)σ2
rdr

=αΛs1[0,s](u) + 4α2σs

(
1[0,s](u)

∫ T

s

σ2
rdr + 1[s,T ](u)

∫ T

u

σ2
rdr

)

=3αΛs1[0,s](u) + 4α2σs

∫ T

u

σ2
rdr · 1[s,T ](u),

(4.146)

and

ω0 ◦D2,uΛs =3αω0(Λs)1[0,s](u) + 4α2σ0e
−α2

2 s

∫ T

u

σ2
0e
−α2rdr1[s,T ](u)

=3αω0(Λs)1[0,s](u) + 4σ3
0e
−α2

2 s
(
e−α

2u − e−α
2T
)

1[s,T ](u).

(4.147)

For the second Malliavin derivative of Λs with respect to B2 we compute

D2
2,uΛs =3α

(
3αΛs1[0,s](u) + 4α2σs

∫ T

u

σ2
rdr · 1[s,T ](u)

)
1[0,s](u)

+ 4α2

(
ασs1[0,s](u)

∫ T

u

σ2
rdr + 2ασs

∫ T

u

σ2
rdr

)
1[s,T ](u)

=9α2Λs1[0,s](u) + 8α3

∫ T

u

σ2
rdr1[s,T ](u),

(4.148)

using the identity 1[0,s](u)1[s,T ](u) = 0. The frozen image is

ω0 ◦D2
2,uΛs = 9α2ω0(Λs)1[0,s](u) + 8ασ3

0e
−α2

2 s
(
e−α

2u − e−α
2T
)

1[s,T ](u). (4.149)

Now onto the Malliavin derivatives of Ξs. First

ω0 ◦D2,uΞs

=
∂b

∂x
(s, ω0(Xs), ω

0(vs))ω
0 ◦D2,uXs +

∂b

∂σ
(s, ω0(Xs), ω

0(vs))ω
0 ◦D2,uvs.

(4.150)
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The subterms of this expression were previously calculated in the following equations: ∂b
∂x in Equa-

tion (4.135), ∂b
∂σ in Equation (4.138), ω0(D2,uXs) in Equation (4.129), and ω0(D2,uvs) in Equation

(4.101). Therefore

D2,uΞs

=D2,u

(
∂b

∂x
(s,Xs, vs)D2,uXs +

∂b

∂σ
(s,Xs, vs)D2,uvs

)
=
∂2b

∂x2
(s,Xs, vs)(D2,uXs)

2 + 2
∂2b

∂x∂σ
(s,Xs, vs)(D2,uXs)(D2,uvs)

+
∂2b

∂σ2
(s,Xs, vs)(D2,uvs)

2

+
∂b

∂x
(s,Xs, vs)D

2
2,uXs +

∂b

∂σ
(s,Xs, vs)D

2
2,uvs,

(4.151)

and freezing this results in

ω0 ◦D2,uΞs

=
∂2b

∂x2
(s, ω0(Xs), ω

0(vs))ω
0(D2,uXs)

2 + +
∂2b

∂σ2
(s, ω0(Xs), ω

0(vs))ω
0(D2,uvs)

2

+ 2
∂2b

∂x∂σ
(s, ω0(Xs), ω

0(vs))ω
0(D2,uXs)ω

0(D2,uvs)

+
∂b

∂x
(s, ω0(Xs), ω

0(vs))ω ◦D2
2,uXs +

∂b

∂σ
(s, ω0(Xs), ω

0(vs))ω
0 ◦D2

2,uvs.

(4.152)

In addition to utilizing the aforementioned equations, we calculate this result using Equation (4.136)

for ∂2b
∂x2 , Equation (4.139) for ∂2b

∂σ2 , Equation (4.140) for ∂2b
∂x∂σ , Equation (4.106) for ω0(D2

2,uvs), and

Equation (4.131) for ω0(D2
2,uXs).

Then

F1 = ω0(Ξs)

∫ T

0

ω0 ◦D2
2,uΛsdu, (4.153)

is calculated via Equations (4.133) and (4.149).

F2 =

∫ T

0

ω0 ◦D2,uΞsω
0 ◦D2,uΛsdu, (4.154)
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is calculated via equations (4.150) and (4.147), and

F3 = ω0(Λs)

∫ T

0

ω0 ◦D2
2,uΞsdu, (4.155)

is calculated via Equations (4.152) and (4.134).

Then we combine these results to finally calculate

ω0 ◦∆2(ΞsΛs) = F = F1 + 2F2 + F3. (4.156)

4.5.10 Final Assembly

Now we can finally calculate

ω0 ◦∆(ΞsΛs) = D = E + F. (4.157)

With our four intermediary results A,B,C and D we can then approximate the value of the call

option by calculating

ω0 ◦ (BS(0, 0, v0)) + ω0 ◦ (∆BS(0, 0, v0))

+
ρ

2

∫ T

0

ω0 ◦ (ΞsΛs) + ω0 ◦∆ (ΞsΛs) ds

=A +
1

2
B +

ρ

2

∫ T

0

(
C +

1

2
D

)
ds.

(4.158)

4.5.11 Empirical Results

What we are most interested in is the corrective term ρ
2

∫ T
0

(C + 1
2D)ds, and the relative contribu-

tion it makes to value of the call option. Define VOrig(α, σ0, T ) to be A + B; which is an approx-

imation of E[BS(0, X0, v0)] and what we consider the “traditional” value of the call option. Let

VCorr(α, σ0, T, ρ) to be ρ
2

∫ T
0

(C + 1
2D)ds; which is an approximation of the (corrective or correlated)

term ρ
2

∫ T
0
E[ΞsΛs]ds introduced by Alòs. Once we fix α, σ0 and T , we can look at the statistic

S =
VCorr

|VOrig|+ |VCorr|
, (4.159)
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Figure 4.1: Plots of relative contribution of the corrective term S as a function of ρ for different
values of α and σ0. Time to maturity is fixed at T = 10.

Figure 4.2: Simulations grouped by α as σ0 varies.

to approximate the relative impact of Alòs’s term to the overall price as ρ varies. There is no

absolute sign in the numerator, so the score can reflect whether the correction increases or decreases

the option price.

The longer the time to maturity, the more pronounced the corrective term. Hence, we chose

a fixed time of T = 10 across all simulations in order to get a better intuition of our score S.

Then, we ran twenty-five simulations for S. One for each α ∈ {0.05, 0.065, 0.08, 0.095, 0.11} and

σ0 ∈ {0.30, 0.35, 0.40, 0.45, 0.50}. These choices are fairly realistic values for α and σ0. With every

other parameter fixed, S is plotted as a function of ρ over the domain [−1, 1]. The results are

displayed in Figure 4.1.

We can group these plots by α and overlay them in order to see the effect of σ0 on the profile of

the score.
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Figure 4.3: Simulations grouped by σ0 as α varies.

Similarly, we can group these plots by σ0 and overlay them in order to see the effect of α on the

profile of the score.

And finally, it is a bit chaotic, but there is some intuition to gain by overlaying all plots.

Figure 4.4: All simulation overlaid.

We see as σ0 varies, there is a qualitative difference in the “smile” of S, while increasing α

increases the weight of the contribution, but the shape of the curve remains intact. When all are

overlaid, one can see curves grouped by σ0 with relatively little difference seen as α is varied. This

suggests the score is more sensitive to changes in σ0 than in α. We can infer from Figure 4.4 that

the score S is well-behaved statistics that variously smoothly with changes in α and σ0, and should

therefore be a good metric for measuring the contribution of Alòs’s corrective term on the overall

price.
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This has been a lot of work, but it is worth stopping a moment to appreciate what we have done.

We have successfully simulated the values of a call option for a highly non-trivial stochastic model

using only deterministic techniques. We do not need to generate any paths; our implementation

never makes a single call to a random number generator. Only second-order integrals are used,

so we have thus escaped the tyranny of higher-dimensions. It is somewhat modest to describe

the calculation as a first-order approximation since we do have second-order Malliavin derivatives

present. Our approach is also not ad hoc. The same technique can be used whenever there is a

closed-form expression for the pricing formula and forward rate.

To make a comparison, we estimated the call option value via Monte Carlo simulation. For each

simulation, we fixed parameters α and σ0, choose an expiration time T , and set the time increment to

∆t = T
100 . We realized a hundred paths for the underlying processes σs and Xs, by using the built-in

SDE solver in Mathematica [Inc]. From these, the paths for vs, Λs and Xis were computed. When

deterministic integration was required, we did a simple first-order Eulerian scheme. Simulations

were run over the inputs:

T ∈ {1, 10},

α ∈ {0.05, 0.065, 0.08, 0.095, 0.11},

σ0 ∈ {0.30, 0.35, 0.40, 0.45, 0.50} ∪ {0.1, 0.2, 0.3, 0.4, 0.5},

ρ ∈{−0.5,−0.25, 0, 0.25, 0.5}.

(4.160)

The results were mixed. For some configuration of parameters, our frozen approximation and Monte

Carlo approximations coincide. In general, frozen approximations with T = 1 and σ0 ≥ 0.3 were

within ten percent of the Monte Carlo simulations. α and ρ were not great predictors of agreement.

When the initial volatility was low (σ0 ≤ 0.2) and the maturity time large (T = 10), there was

usually a divergence between the frozen path approximation and the Monte Carlo simulation. The

closest approximations were when ρ was 0, which is promising. This may hint that errors may be

more due to accumulated inaccuracies in our (rather simplistic) integration methods, and not in

the exponential formula itself. When we consider classical term E[BS(0, 0, v0)], the two methods

never differed more than four percent, regardless of the other parameter values. For this term, the
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only integration is a single deterministic integration where the integrand has highly regular. For the

Monte Carlo simulation of the term
∫ T

0
E[ΞsΛs]ds, we have to numerically integrate paths which

have Hölder regularity less than 1
2 , since they are driven by classical Brownian motion. The exact

integral is ensured by Young, but it would not be surprising if some observed discrepancies were due

to lower order of the truncation error of our first-order Eulerian scheme applied to low regularity

paths.

4.6 The Road Forward

The hardest decision we faced when writing this dissertation was how wide should its scope be.

There is plenty of more exposition to write, theory to extend, and applications to tackle. In terms

of the literature review, we wish we could have done more presenting the theory of rough paths

and its applications to integration for fractional Brownian motion less than 1
2 . Path integration is

the natural home for the freezing operator. Delving more into that subject might be fruitful for

extending the notion to more general processes.

Application-wise, it is lengthy calculation but the SABR model we chose was the simplest non-

trivial instance. We chose an at-the-money call option with β = 1. Among the first advances we

would wish to make would be to retry our application using numerical methods with higher-order

truncation errors, as well as extending the result by dropping the at-the-money assumption.

Choosing a different β would be another challenge entirely. It might be worth-while to examine

β = 1
2 and see how apply our methods in a scenario where the underlying forward rate does not have

a closed-form solution. Even our current implementation could be improved for β = 1. We used a

computer algebra system to verify much of our SABR calculations. Now that we have our results

in hand, there could be an advantage of reimplementing our code within some performance-focused

numerical computing environment.

As for theory, we have hinted many times that we would like to prove an exponential formula

for random variables generated by fractional Brownian motion with Hurst index less than 1
2 . d-

dimensional fractional Brownian motion should follow that. However, we should be honest and

remember we have just partially generalized old results. The original exponential formulae were for
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the conditional expectation of a random variable; not just the overall expectation. We are confident

these results can be extended to conditional expectations, but that bookkeeping still needs to be

performed. Finally, sheets are more interesting than motions. Though we have no idea if that

mountain is presently scalable.
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Appendix A

Hermite Polynomials

We use a Rodrigues formula as our definitional basis.

Definition A.1. The n-th Hermite Polynomials Hn is defined for any natural n by

Hn(x) =
(−1)n

n!
e
x2

2
dn

dxn

(
e−

x2

2

)
. (A.1)

By convention, we define H−1(x) = 0 in order to ensure certain relations which hold for positive

n also hold when n is zero.

The first few Hermite polynomials are

H0(x) =1

H1(x) =x

H2(x) =
1

2

(
x2 − 1

)
H3(x) =

1

6

(
x3 − 3x

)
H4(x) =

1

24

(
x4 − 6x2 + 3

)
.

(A.2)

An author has the choice of whether to include the 1
n! factor in the definition; most choose to

omit. When [PT11] introduce the Hermite polynomials in Chapter 8, the authors provide a brief

survey of the sides in this debate. [PT11], [NØP09], [KS91], and [Kyo75] all omit the factor. The
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books and papers of Nualart are noticeable holdouts. We side with Nualart; partially due to our

contrarian nature and partially because of switching cost. Nualart’s work was our entry point to

this domain. To add to the confusion, there are also the physicists’ Hermite polynomials (ours are

referred to as the probabilists’ Hermite polynomials) which is a completely different rescaling than

what we are talking about.

Given our minority stance and the Hermite polynomials’ ubiquitous presence throughout calcu-

lation and proof, we collect and prove various properties of the Hermite polynomials. What proceeds

can be considered a translation of the results collected in Appendix C of [Hol+10] and Section 1.4

of [NP12] to our chosen rescaling. Our first translation is of the standard recurrence relation.

Proposition A.2.

(n+ 1)Hn+1(x) = xHn(x)−Hn−1(x), (A.3)

holds for all natural n.

We proceed by direct calculation with Leibniz’s product rule.

(n+ 1)Hn+1(x) =− (−1)n

n!
e
x2

2
dn+1

dn+1
e−

x2

2 =
(−1)n

n!
e
x2

2
dn

dn

(
xe−

x2

2

)
=

(−1)n

n!
e
x2

2

n∑
k=0

(
n

k

)(
dk

dxk
x

)(
dn−k

dxn−k
e−

x2

2

)
=

(−1)n

n!
e
x2

2

(
x
dn

dxn
e−

x2

2 + n
dn−1

dxn−1
e−

x2

2

)
=xHn(x)−Hn−1(x).

(A.4)

We also have the pleasant differential recurrence relation

Proposition A.3.

H ′n(x) = H ′n−1(x), (A.5)

for all natural n.
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Again, we proceed by direct calculation and Equation (A.3)

H ′n(x) =
(−1)n

n!

(
xe

x2

2
dn

dxn
e−

x2

2 + e
x2

2
dn+1

dxn+1
e−

x2

2

)
=xHn(x)− (n+ 1)Hn+1(x)

=Hn−1(x).

(A.6)

The generating function of the Hermite polynomials is

Proposition A.4.

etx−
t2

2 =

∞∑
n=0

tnHn(x), (A.7)

which may contain the origin of the dispute over the 1
n! factor. We begin by rewriting the original

expression.

etx−
t2

2 =e
x2

2 e−
(x−t)2

2

=e
x2

2

∞∑
n=0

1

n!

dn

dtn

∣∣∣∣
t=0

e−
(x−t)2

2 .
(A.8)

The result immediately follows if we prove the n-th derivative of e−
(x−t)2

2 with respective to t

evaluated at t = 0 is equal to (−1)n dn

dxn e
− x22 . We proceed by induction. The base case is trivial and

the induction step is, once again, handled by Leibniz’s product rule. We apply Leibniz’s rule with

respect differentiation by t and then with respect to differentiation by x.

dn+1

dtn+1

∣∣∣∣
t=0

e−
(x−t)2

2 =
dn

dtn

∣∣∣∣
t=0

(x− t)e−
(x−t)2

2

=

n∑
k=0

(
n

k

)
dk

dtk
(x− t)

∣∣∣∣
t=0

dn−k

dn−kt
e−

(x−t)2
2

∣∣∣∣
t=0

=x(−1)n
dn

dxn
e−

x2

2 − (−1)n
dn−1

dxn−1
e−

x2

2

=− (−1)n
dn

dxn

(
−xe− x

2

2

)
=(−1)n+1 d

n+1

dxn+1
e−

x2

2 .

(A.9)

The equality holds and plugging this result back into Equation (A.8) proves our desired result.
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Our notation is from [MT05] We write ∂f = f ′ and call ∂ the annihilation operator, and refer

to its adjoint (∂∗f)(x) = −(∂f)(x) + xf(x) as the creation operator. Finally, we let γ be the

Gaussian probability measure on R, so
∫
fdγ =

∫
f(x) 1√

2π
e−

x2

2 dx. We will prove some additional

properties of the Hermite polynomials using only elementary calculus, but the context deserves

explanation. As Chapter 1 of [NP12] makes clear, we will essentially be developing a one-dimensional

Malliavin calculus in a deterministic setting. The Malliavin calculus is a variational calculus, and

the Malliavin derivative is a Fréchet derivative and thus a generalization of ∂, while the Skorokhod

integral/divergence operator is the generalization of ∂∗. We use ∂ and ∂∗ to avoid overloading the

operators D and δ more than we already do, and also to emphasize there is no stochastic or functional

analytic witchery involved; just introductory calculus. And we write ∂n and (∂∗n for their iterates.

Our following proofs also form a sketch of how to construct the Malliavin calculus on isonormal

Gaussian processes. The idea is analogous to developing the Lebesgue measure on R. Constructing

the Lebesgue measure on R provides a simple and intuitive sketch of how to proceed when extending

measure theory beyond R. And in the same way simple functions are the basis of the “standard

machine” in real analysis, the Hermite polynomials are the usual stepping stones when reasoning

about isonormal Gaussian processes.

Let us first verify our claim that creation is the adjoint of annihilation. For two sufficiently

smooth functions f, g in L2(γ) we have

〈∂f, g〉 =
1√
2π

∫
R
f ′(x)g(x)e−

x2

2 dx = − 1√
2π

∫
R
f(x)

(
g(x)e−

x2

2

)′
dx

=
1√
2π

∫
R

(g′(x)− xg(x)) e−
x2

2 dx = 〈f, ∂∗g〉.
(A.10)

Our notation is justified and of course

〈∂nf, g〉 = 〈f, ∂∗ng〉, (A.11)
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follows. Following close behind is the Heisenberg commutativity principle

(∂∂∗ − ∂∗∂) =
d

dx
(−f ′ + xf)− (− d

dx
+ x)f ′

=− f ′′ + f + xf ′ − (−f ′′ + xf ′)

=f,

(A.12)

which can generalized by induction.

Proposition A.5.

∂∂∗n − ∂∗n∂ = n∂∗n−1 (A.13)

for all n ≥ 1.

As we said, by induction

∂∂∗n+1 − ∂∗n+1∂ =(∂∂∗n)∂∗ − ∂∗n+1∂ = (n∂∗n−1 + ∂∗n∂)∂∗ − ∂∗n+1∂

=n∂∗n + ∂∗n(∂∂∗ − ∂∗∂)

=(n+ 1)∂∗n.

(A.14)

We can start to see how ∂∗ is the proper “toy model” of the Skorokhod integral with the following

calculation.

Proposition A.6.

∂∗n1 = n!Hn(x), (A.15)

for all natural n.

The base case is obvious and by induction

∂∗n+11 =n!∂∗Hn(x) = n! (xHn(x)−Hn−1(x))

=(n+ 1)!Hn+1(x).

(A.16)

One reason we call Definition A.1 a Rodrigues formula is similar to how the Legendre polynomials

are an orthonormal basis for L2([−1, 1]), the Hermite polynomials can be made into an orthonormal

basis of L2(γ).
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Proposition A.7. {
√
n!Hn} is an orthonormal basis in L2(γ).

We simply calculate. Without loss of generality, assume m ≥ n

〈Hm(x), Hn(x)〉 = 〈 1

m!
∂∗m1, Hn(x)〉

=
1

m!
〈1, ∂mHn(x)〉.

(A.17)

If m is greater than n then this is 0, and when they are equal then ∂nHn(x) = 1, so ‖Hn‖2 = 1
n! .

All polynomials are in the span of {
√
n!Hn} and the polynomials are dense in L2(γ) and therefore

{
√
n!Hn} is also a basis. Consequently, we have the following representation formula.

Proposition A.8. For any f in L2(γ)

f =

∞∑
n=0

n!

(∫
fHndγ

)
Hn. (A.18)

For certain well-behaved f , the above can be written as follows.

Proposition A.9. For a smooth f whose derivatives are all in L2(γ), we have the following Stroock

[Str87] decomposition

f =

∞∑
n=0

(∫
∂nfdγ

)
Hn. (A.19)

The proof is the calculation

n!

∫
fHndγ = 〈f, n!Hn〉 = 〈f, ∂∗n1〉 = 〈∂nf, 1〉 =

∫
∂nfdγ. (A.20)

As we’ve established, the Hermite polynomials are naturally generated by the derivative operator

and its adjoint on L2(γ). This preceding web of relations forms a natural foundation for analysis

on L2(γ). Consequently, they should be the appropriate building blocks for an analytical toolkit

applicable to isonormal Gaussian processes.

For convenience, we define a related family of polynomials Hn(x, λ) which we will call the two-

parameter Hermite polynomials.
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Definition A.10. The two-parameter polynomials Hn(x, λ) on R× R+ are defined as

Hn(x, λ) = λ
n
2Hn

(
x√
λ

)
, (A.21)

for any natural n.

We will also make use of the following recurrence and differential relations on Hn(x, λ):

Proposition A.11.

(n+ 1)Hn+1(x, λ) =xHn(x, λ)− λHn−1(x, λ)

∂Hn+1

∂x
(x, λ) =Hn(x, λ)

∂Hn+1

∂λ
(x, λ) =− 1

2
Hn−1(x, λ).

(A.22)

Firstly

(n+ 1)Hn+1(x, λ) =λ
n+1
2

(
x√
λ
Hn(x, λ)−Hn−1(x, λ)

)
=x
(
λ
n
2Hn(x, λ)

)
− λ

(
λ
n−1
2 Hn−1(x, λ)

)
=xHn(x, λ)− λHn−1(x, λ),

(A.23)

secondly

∂

∂x
Hn(x, λ) = λ

n
2Hn−1(x, λ)

1√
λ

= Hn−1(x, λ), (A.24)

and lastly

∂

∂λ
Hn+1(x, λ) =

n+ 1

2
λ
n−1
2 Hn+1

(
x√
λ

)
+ λ

n+1
2 Hn

(
x√
λ

)(
− x

2
√
λ

3

)

=
1

2
λ
n−1
2

(
(n+ 1)Hn+1

(
x√
λ

)
− x√

λ
Hn

(
x√
λ

))
=

1

2
λ
n−1
2

(
−H

(
x√
λ

))
=− 1

2
Hn−1(x, λ).

(A.25)
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An immediate consequence is the two-parameter Hermite polynomials satisfy the following series of

SDEs

dHn(t,Wt) =Hn−1(t,Wt)dWt

H0 =1.

(A.26)
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An Orthonormal System for the

n-th Wiener Chaos

We wish to show {Ha; |a| = n} is a complete orthonormal system of the n-th Wiener chaos Hn.

Ultimately, this requires us to compute the inner product of some Hn(X(φ)) and Ha where ‖φ‖ = 1

and |a| = n.

To calculate, we investigate a familiar-looking expression:

E
[
etZ−

t2

2 es1Y1−
s21
2 · · · esmYm−

s2m
2

]
, (B.1)

where Z is a standard normal random variable and Y = (Y1, . . . , Ym) is a standard normal random

vector. If we evaluate this value by expansion via the generating function ecx−
c2

2 =
∑
k c

kHk(x)

then Equation (B.1) becomes
∞∑
j=0

∑
k∈Nm

tjskE [Hj(Z)Hk(Y )] , (B.2)

where sk = sk11 · · · skmm and Hk(Y ) = Hk1(Yi) · · ·Hkm(Yk).

There is another other way to calculate Equation (B.1). Recognize (Z, Y1, . . . , Ym) has a multi-
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variate Gaussian distribution with mean zero and covariance matrix

Σ = Var



Z

Y1

...

Ym


=

1 ρT

ρ Im×m

 , (B.3)

where ρ = (ρ1, . . . , ρm) = (E[ZY1], . . . ,E[ZYm]) and Im is the m-by-m identity matrix. Then

tZ+ s1Y1 + · · ·+ smYm = tZ+ sY is another normal random variable with mean zero, and variance

equal to

[
t sT

]1 ρT

ρ Im


t
s

 =

[
t sT

]t+ ρ · s

tρ+ s

 = t2 + 2tρ · s+ ‖s‖2. (B.4)

Then reducing Equation (B.1) we find

E
[
etZ+s·Y − t

2−‖s‖2
2

]
=etρ·s

=ets1ρ1+···+tsmρm

=
∑
`∈Nm

1

`!
t|`|s`ρ`.

(B.5)

We equate this expression with Equation (B.2). They must be equal when considered as analytical

expressions in the variables t, s1, . . . , sm. Therefore, E[Hj(Z)Hk(Y )] is zero if j and |k| differ, and

when they coincide we see

E
[
H|k|(Z)Hk(Y )

]
=

1

k!
ρk =

m∏
i=1

1

ki!
E[ZYi]

k1 . (B.6)

Consequently, the n-th Wiener chaos is orthogonal to any family {Ha; |a| = m} whenever m

differs with n. Now suppose a random variable Hn(X(φ)), where ‖φ‖ = 1, is orthogonal to each

element in {Ha; |a| = n}. Specifically, Hn(X(φ)) is orthogonal to each Hn(X(ei)). This would

imply each E[X(φ)X(ei)], and therefore each 〈φ, ei〉H, is zero. The only such φ would be zero, but
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we assumed ‖φ‖ = 1. From this we can conclude {Ha; |a| = n} is a complete orthonormal system

for the n-th Wiener chaos.
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An Itô’s Lemma for fBm with

H < 1
2

[CN05] develops an Itô’s formula for any Hurst index H in (0, 1). However, their result is only for

processes of the form f(Bt) (here, we drop the superscript and consider B an fBm with H < 1
2 ).

We follow the path in section 4 of their paper to construct an Itô’s formula for smooth functions.

While our result is not terribly novel, it is more useful and provides the flavor of proofs involving

the extended divergence operator. To properly extend [CN05] we would also need to prove a Tanaka

local-time formula and then use those to prove an Itô formula for C2 functions.

Lemma C.1. Let f ∈ C∞([0,∞] × R) satisfy the growth conditions in Definition 4.1 of [CN05],

and 0 ≤ a ≤ b ≤ T . Then

∂f

∂x
(t, Bt)1(a,b](t) ∈ Dom∗ δ, (C.1)

and

f(Bb)− f(Ba)

=

∫ b

a

∂f

∂t
(t, Bt)dt+

∫ b

a

∂f

∂x
(t, Bt)δBt +

1

2

∫ b

a

∂2f

∂x2
(t, Bt)d|t|2H .

(C.2)

109



APPENDIX C. AN ITÔ’S LEMMA

To prove this, we need to show the following equation holds.

c2H

∫ b

a

E
[
∂f

∂x
(t, Bt)Hn−1(B(φ))

]
(Dα+Dα−φ)(t)dt

=E

[(
f(b, Bb)− f(Ba, a)−

∫ b

a

∂f

∂t
(t, Bt)δdt

−1

2

∫ b

a

∂2f

∂x2
(t, Bt)d|t|2H

)
Hn(B(φ))

]
,

(C.3)

for all natural n and φ ∈ ΛH,∗ with unit length. The hardest part of the argument is remembering

that, occasionally, one can actually calculate the expectation of a random variable by integrating

the PDF. The growth conditions are what allows us to claim both

∂f

∂x
(t, Bt)1(a,b](t), (C.4)

and

f(Bb)− f(Ba)−
∫ b

a

∂f

∂t
(t, Bt)dt−

1

2

∫ b

a

∂2f

∂x2
(t, Bt)d|t|2H , (C.5)

are in the requisite L2 spaces.

Let p(σ, x) = 1√
2πσ

e−
x2

2σ be the usual PDF of a centered Gaussian distribution with variance σ2.

Recall, p satisfies the heat equation ∂p
∂σ = 1

2
∂2p
∂x2 . Then for any natural `,m and 0 < t ≤ b we see

d

dt
E
[
∂`+mf

∂t`∂xm
(t, Bt)

]
=
d

dt

∫
R
p(t2H , x)

∂`+mf

∂t`∂xm
(t, x)dx

=p(t2H , x)
∂`+m+1f

∂t`+1∂xm
(t, x)dx+ 2H

∫
R
t2H−1 ∂p

∂σ
(t2H , x)

∂`+mf

∂t`∂xm
(t, x)dx

=E
[
∂`+m+1f

∂t`+1∂xm
(t, Bt)

]
+Ht2H−1

∫
R

∂2p

∂x2
(t2H , x)

∂`+mf

∂t`∂xm
(t, x)dx

=E
[
∂`+m+1f

∂t`+1∂xm
(t, Bt)

]
+Ht2H−1

∫
R
p(t2H , x)

∂`+m+2f

∂t`∂xm+2
(t, x)dx

=E
[
∂`+m+1f

∂t`+1∂xm
(t, Bt)

]
+ E

[
∂`+m+2f

∂t`∂xm+2
(t, Bt)

]
.

(C.6)

Setting ` = m = 0 and integrating both sides from 0 to b, we see the following expression is identically
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zero

E [f(b, Bb)]− f(0, 0)−
∫ b

0

E
[
∂f

∂t
(t, Bt)

]
dt− 1

2

∫ b

0

E
[
∂2f

∂x2
(t, Bt)

]
d|t|2H . (C.7)

From this, we can conclude when n = 0 the right-hand side of Equation (C.3) is identically zero.

By convention H−1(x) is identically zero, so the left-hand side of Equation (C.3) is also zero. So we

have proven the lemma holds for n = 0.

We continue by assuming Equation (C.3) holds for all k bounded by some n, and now consider

the case k = n + 1. By the construction of ΛH,∗, and the integration by parts formula for the

Marchaud derivatives, we have

〈1(0,t], φ〉ΛH =c2H〈Dα−1(0,t], φDα−1(0,t], 〉L2(R)

=

∫
R

(
Dα−1(0,t]

)
(s)
(
Dα−φ

)
(s)ds

=

∫
R

1(0,t](s)
(
Dα+Dα−φ

)
(s)ds

=

∫ t

0

(
Dα+Dα−φ

)
(s)ds.

(C.8)

Then

d

dt

(
E
[
∂n+1f

∂xn+1
(t, Bt)

]
〈1(0,t], φ〉n+1

ΛH

)
=E

[
∂n+2f

∂t∂xn+1
(t, Bt)

]
〈1(0,t], φ〉n+1

ΛH
+Ht2H−1E

[
∂n+3f

∂xn+3
(t, Bt)

]
〈1(0,t], φ〉n+1

ΛH

+ c2H(n+ 1)E
[
∂n+1f

∂xn+1
(t, Bt)

]
〈1(0,t], φ〉nΛH

(
Dα+Dα−φ

)
(t).

(C.9)
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We do our usual integration from 0 to b while noting 〈1(0,0]φ〉ΛH is zero

E
[
∂n+1f

∂xn+1
(b, Bb)

]
〈1(0,b], φ〉n+1

ΛH

=

∫ b

0

E
[
∂n+2f

∂t∂xn+1
(t, Bt)

]
〈1(0,t], φ〉n+1

ΛH
dt

+
1

2

∫ b

0

E
[
∂n+3f

∂xn+3
(t, Bt)

]
〈1(0,t], φ〉n+1

ΛH
d|t|2H

+ c2H(n+ 1)

∫ b

0

E
[
∂n+1f

∂xn+1
(t, Bt)

]
〈1(0,t], φ〉nΛH

(
Dα+Dα−φ

)
(t)dt.

(C.10)

Now Hn(B(φ))φ is in Dom δ and

δ [Hn(B(φ))φ] = (n+ 1)Hn+1(B(φ)). (C.11)

The quickest way to note this is via the Clark-Ocone-Haussmann formula for fBm with H < 1
2

[LN06] but can be proved directly via integration by parts and the recurrence formula for Hermite

polynomials.

δ [Hn(B(φ))φ(·)] =Hn(B(φ))B(φ)− 〈DHn(B(φ)), φ(·)〉ΛH

=Hn(B(φ))B(φ)− 〈Hn−1(B(φ))φ(·), φ(·)〉ΛH

=Hn(B(φ))B(φ)− 〈Hn−1(B(φ))

=(n+ 1)Hn+1(B(φ)),

(C.12)
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since ‖φ‖2ΛH = 1. Now to exploit the smoothness of f

k!E
[
∂`+mf

∂t`∂xm
(t, Bt)Hk(B(φ))

]
=E

[
∂`+mf

∂t`∂xm
(t, Bt)δ

p(φ⊗k)

]
=E

[〈
Dp

(
∂`+mf

∂t`∂xm
(t, Bt)

)
, φ⊗k

〉
(ΛH)⊗k

]

=E

[〈
∂`+m+kf

∂t`∂xm+k
(t, Bt)1

⊗k
(0,t], φ

⊗k
〉

(ΛH)⊗k

]

=E
[
∂`+m+kf

∂t`∂xm+k
(t, Bt)

]
〈1(0,t], φ〉kΛH .

(C.13)

If we substitute the above result to each term in Equation (C.10) then we obtain

(n+ 1)!E [f(b, Bb)Hn+1B(φ)]

=(n+ 1)!

∫ b

0

E
[
∂f

∂t
(t, Bt)Hn+1B(φ)

]
dt

+
1

2
(n+ 1)!

∫ b

0

E
[
∂2f

∂x2
(t, Bt)Hn+1B(φ)

]
d|t|2H

+ c2H(n+ 1)n!

∫ b

0

E
[
∂f

∂x
(t, Bt)HnB(φ)

] (
Dα+Dα−φ

)
(t)dt.

(C.14)

We have a similar identity once we integrate from 0 to a. Then we cancel n! from both sides,

rearrange terms, and take the difference of the result with a as the endpoint from the result with b

as the endpoint to come to our conclusion.

c2H

∫ b

a

E
[
∂f

∂x
(t, Bt)Hn(B(φ))

]
(Dα+Dα−φ)(t)dt

=E

[(
f(b, Bb)− f(Ba, a)−

∫ b

a

∂f

∂t
(t, Bt)δdt

−1

2

∫ b

a

∂2f

∂x2
(t, Bt)d|t|2H

)
Hn+1(B(φ))

]
,

(C.15)

which is precisely what we need to conclude the induction step, and therefore prove for the lemma.
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[2] Elisa Alòs, Olivier Mazet, and David Nualart. “Stochastic Calculus with Respect to Frac-

tional Brownian Motion with Hurst parameter less than 1
2”. In: Stochastic Processes and their

Applications 86.1 (2000), pp. 121–139.
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Probability and Statistics 41.4 (2005), pp. 781–806.

[14] Gustaf Gripenberg and Ikka Norros. “On the Prediction of Fractional Brownian Motion”. In:

Communications of Mathematical Physics 33.2 (1996), pp. 400–410.

[15] Leonard Gross. “Potential Theory on Hilbert Space”. In: Journal of Functional Analysis 1.2

(1967), pp. 123–181.

[16] Zhengji Guo and Henry Schellhorn. “A Full Asymptotic Series of European Call Option Prices

in the SABR Model with Beta = 1”. In: Applied Mathematics 10.6 (2019), pp. 485–512.

[17] Patrick Hagan et al. “Managing Smile Risk”. In: Wilmott Magazine 1 (Jan. 2002), pp. 84–108.

[18] Espen Gaardner Haug. The Complete Guide to Option Pricing Formulas. McGraw-Hill Pro-

fessional, 2007.

[19] Takeyuki Hida et al. White Noise: An Infinite Dimensional Calculus. Springer Netherlands,

1993.

[20] Helge Holden et al. Stochastic Partial Differential Equations: A Modeling, White Noise Func-

tional Approach. Springer, 2010.

[21] H.E. Hurst. “Long-term Storage Capacity in Reservoirs”. In: Proceediungs of the Institutions

of Civil Enginers 5 (5 1951), pp. 519–543.

115



BIBLIOGRAPHY

[22] H.E. Hurst, R.P. Black, and Y.M. Simaikah. Long Term Storage in Reservoirs: An Experimen-

tal Study. 1965.

[23] Peter Imkeller et al. “A note on the Malliavin-Sobolev spaces”. In: Statistics and Probability

Letters 109 (2016), pp. 45–53.

[24] Wolfram Research Inc. Mathematica, Version 12.3.1. Champaign, IL, 2021. url: https://

www.wolfram.com/mathematica.

[25] Sixian Jin, Qidi Peng, and Henry Schellhorn. “A Representation Theorem For Smooth Brow-

nian Martingales”. In: Stochastics 88.5 (2015), pp. 651–679.

[26] Sixian Jin, Qidi Peng, and Henry Schellhorn. “Fractional Hida-Malliavin Derivitives And Series

Representations Of Fractional Conditional Expectations”. In: Communications of Stochastic

Analysis 9.2 (2015), pp. 213–238.

[27] Sixian Jin and Henry Schellhorn. “Semi-Group Solution of Path-Dependent Second Order

Parabolic Partial Differential Equations”. In: International Journal of Stochastic Analysis 2017

(2016), pp. 1–1.

[28] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus. Springer-

Verlag, 1991.

[29] Davar Khoshnevisan. Anaysis of Stochastic Partial Differential Equations. American Mathe-

matical Society, 2014.

[30] H. Kunita. Stochastic Flows and Stochastic Differential Equations. Cambridge: Cambridge

University Press, 1990.

[31] Hui-Hsuing Kyo. Gaussian Measures in Banach Spaces. Springer-Verlag Berlin Heidelberg,

1975.

[32] Jorge León and David Nualart. “An Extension of the Divergence Operator for Gaussian Pro-

cesses”. In: Stochastic Processes and their Applications 115.3 (2005), pp. 481–492.

[33] Jorge León and David Nualart. “Clark-Ocone Formula for Fractional Brownian Motion with

Hurst Parameter Less Than 1/2”. In: Stochastic Analysis and Applications 24.2 (2006), pp. 427–

499.

116



BIBLIOGRAPHY

[34] Paul Malliavin and Anton Thalmaier. Stochastic Calculus of Variations in Mathematical Fi-

nance. Heidelberg: Springer Verlag, 2005.
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