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1. INTRODUCTION

IN THIS PAPER we study the existence of weak solutions of the problem
Ou + VG(u) = f(t, x) (t,x}eQ = (0,n) x (0,7)
u(t,x) =0 (t, x) e 0Q,

where O is the wave operator 6%/0t> — 02/0x?, G:R" — R is a function of class C? such that

VG(0) = 0 and f:Q — R" is a continuous function having first derivative with respect to t in
(L,())" and satisfying

(1.1)

f0,x) = f(n,x) =0 (1.2)

forall xe [0, x].
We assume that there exist two n x n real symmetric matrices 4 < B with eigenvalues
o, <o, €...<,and B, < B, <... < P, respectively, such that

<U [, ﬂi]) N{k? —j%kjeN} =& (1.3)
and
A < (0°G(w)/ou,0u) < B forall ueR" (1.4

Our main result is

TreorEM A. If (1.3) and (1.4) hold then (1.1) has a unique weak solution. In addition, such a weak
solution belongs to (H'(€))".

A result analogous to Theorem A was proved by Ahmad [1] (existence) and Lazer [2] (unique-
ness) for a second order system of ODEs.

Our interest in proving Theorem A came from noticing that a simple extension of the results
in [4] to systems, shows that (1.1) has a unique weak solution if there exist two real numbers p
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and g such that [p,q] n {k* —j*: k,je N} = ¢f and

pl < (0*G(u)/Oudu) < qI  forall ueR™ (1.4)

Unfortunately, the methods of [4] do not seem to extend to cover the case when we assume (1.4)
rather than (1.4').

Let us denote by R(O) and Ker(O) the range and kernal respectively of the operator
O: D(O) = (IHQ)" — (L,(Q))" with Dirichlet boundary condition. We prove Theorem A using a
Galerkin approximation procedure. At each finite dimensional step we prove the existence of an
approximate solution by applying a minimax theorem due to Lazer-Landesman—Meyers [3].
Condition (1.4) allows us to give an a priori estimate in (L,(Q))" for the approximate solutions.
The fact that the operator (1 with Dirichlet boundary condition has a compact inverse on R(C)
gives us the existence of u € R(O) and v € Ker(O) so that u + v satisfies (1.1) in a weak sense.

The methods used here apply to (1.1) with other boundary conditions (Neumann, periodic,

mixed) with very little modification.

Finally we remark that if condition (1.4) is replaced by: there exists r > 0 such that

A< (PGw/oudu)<B  for |u] >r, (1.4)

then it can be proved that (1.1) has a solution. This solution is not necessarily unique and in
(H'(Q))". Assuming (1.4) rather than (1.4”) gives us the advantage of obtaining a much simpler
variational characterization of the approximate solutions which has numerical analytic implica-
tions (see [3, Section 7]).

2. NOTATIONS AND PRELIMINARY LEMMAS

Welet {a,;i=1,...,n}and {b;;i = 1,...,n} be orthonormal bases of R" such that
Aa; = o, Bb, = B.b, for i=1,...,n (2.1)

We denote by ¢,,:Q — R the function defined by o,(t, x) = (2/n) sin(ke) sin(lx). Clearly
{¢1> k, L € N} is a complete orthonormal set in L (Q). Moreover, {¢,,; k = 1,2,...} is a complete
orthonormal set in Ker([).

For each positive integer N we define

Xy = {Z Paa®ubs 1 <i<nk? — 17 > B |k* — 2| < N,k* € N,umeR},

ik,

Yy = {Z g 1 <i<nk? — 12 < B, |k* — )] < N,k* < N, ,u,.kleR},

ikl
Zy= {Z HigPuai 1 Si<nk? — 2 <o, [k* ~ P < N,k? < N,ui,deR},
il

and

By = { S bucui I = P < N2 < Moy 2
k.1
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Clearly Xy® Yy = Ey and |J E, is dense in (L,(Q))". We let ¢, >, and || |, denote the usual

N=1 o
inner product and norm in (L,(Q))", respectively, and let || ||, denote the norm in (H'(Q))" given
by [[v]? = f.\ (|ﬁ1’/ﬁr|2 + |ﬁ1*/(7x|2\

et MYESY
We will need the main result of [3] restated here as:
LeMMA 2.1. Let j be a C? functional on a Hilbert space H. Suppose X and Z are closed subspaces

of H (not necessarily orthogonal) so that X is finite dimensional and H = X @ Z. If there exist
constants m,, m, > 0 such that

(D*j(uw, wy = m,|w|[*  and
<

(D, vy < —my,lv|? forall ueH,weZ,velX,
then there exists a unique u, € H such that Vj(u,) = 0 and j(u,) = max min j(x + y).
xeX yelZ

Define the functional J: (H'(Q))" — R by

J(w) = | [(Ou/ox, du/dx) — (dufdt, du/ot)]/2 + G(u) — (f, w).

Q
where ( , ) denotes the usual inner product in R”". Since we are assuming that G is of class C* and
that (6>G(u)/0u,0u;) is uniformly bounded it follows that J is of class C*. We observe that if J
denotes the restriction of J to E, then

VI, v) = j (0u/ox, 0vjox) — (Ou/dt, ov/ot) + (VG(u), v) — (f,v) (2.3)
o

for allu, v € E,, where { , ) denotes the duality pairing. We denote by D*J (u) the Hessian of J,
at u.

Lemma 2.2: For each positive integer N there exists a unique u, € E, such that VJ,(u,) = 0.
Moreover,

Jy(uy) = max min J(x + z).

xeXn zeZn

Proof. Fixue Ey; thenforeachw = Y p, éb.a,€Zy
ik, 1
(D] (Ww, w) = j |ow/ox|* — |dw/ot|* + ((0>G(u)/du,0u;)w, w) (2.4)
Q

ZJ |ow/ox|? — |ow/ot]* + (Aw, w)
= Y (P =k + auiy = my|wl
ikt

where m;, = min{l* — k> + a1 <i<n LkeN,I* — k¥ + «, > 0}. Similarly, for v € X,
Do, vy < Y, (12— K + B)ug, < —my,lo)3 (2.5)

ik,
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where m, = min{k* ~ 1> — B:1<i<n, LkeN, > — k* + B, < 0}. From this we conclude

that Xy n Zy = {0}. It is easy to see that dim Z, = dim Y, and so Ey = X ® Z,. In addition,

(2.4) and (2.5) show that the hypotheses of Lemma 2.1 are satisfied, which completes the proof.
We now write uy = uy + u} with uy € X, and u} € Z,. By Lemma 2.2 we have

0 = VJ luy), uy — “§/>

= I (Ouy/0x, Ouy/0x) — (Quy/dt, Duy/Ot) — (Ous/Ox, dub/Ox) + (Quk/ot, dus/ot)
Q

+ (jl (0*G(suy)/0u,0u Juy ds, (uy — uf,)) — (fuy — up)

0
< J (Quy/0x, Ouy/0x) — (Quy/0t, duy/0t) — (Oul/ox, dul/Ox) + (Ouk/Ot, Oul/ot) + (Buy, uy)
Q
— (Aug, ug) + Iflo (unllo + llulo)

< =myfuyl§ = mafuil + 1 olluxllo + fuzllo) (2.6)

where m; and m, are as in Lemma 2.2. Since m, and m, are positive and independent of N
inequality (2.6) proves that {u,}, is bounded in (L,(Q))".

It is well documented that for each h € R(Q) there exists a unique w in the orthogonal comple-
ment of Ker( O) which is a weak solution of Ou = h in Q, u = 0 on éQ. Moreover, w € (H(Q))"
and there exists a constant ¢ > 0 such that

Wl < cllhlle 27

Now we write uy = vy, + wy with vy e R(O) and w,, € Ker(O). We let Q,, denote the orthogonal
projection onto Ey n R(0). Because of Lemma 2.2 we have vy = Q\(f — VG(uy))in Q, vy =0
on JQ. Hence by (2.7), we have

)

ok < (1l +
< 1l + sopfla] gl 8l N = 1.2,
= K. (2.8)

ij](azG(suN)/ﬁuiauj)uN ds
o

3. PROOF OF THEOREM A

First we claim that {uy}, is bounded in (HY(Q))". To show this, by (2.8) it is sufficient to prove
that {wy}, is bounded in (H'(Q))". To do so we write wy = wy + wy, where wy € Xy and
wy € Zy. Since v = 0w} /o> — 8*wy /0t* € Ey n Ker([), by Lemma 2.2 we have

0= j (VGluy), v) — (). (3.1)
Q

Therefore, integrating by parts, using (1.2)and VG(0) = 0and noting that [|dw,/dt|, = |[dwy/dx(,
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we have

lajoelolwalls + Twyll) = f ((0*Glu)/0u,0u;)(0uy/0t1), dwy [0t — owy /01)

—C,|lwyll; + j (Adwy /01, dwy /0t) —f (Bdwy /0t, dwy /0t)
Q

= Cyfwally + Callwy 7 + Cslwa 7, (32)

where C, comes from the facts that (0*G(u)/du,éu;) and {|v,||,}, are uniformly bounded,
2C, mln{a,,a >0} and 2C, = mm{ BB, < 0} From (3.2) it is clear that {||uy],} is
bounded Let (vy, wo) € (HY Q)" x (H'(Q))" be such that some subsequence {( Uy W ,»} converges
weakly in (H(Q))" x (H(Q)" to (vy, w,).

We claim that u, = v, + w, is a weak solution of (1.1). Let ¢:Q — R" be any C* function

with compact support in €. Let ¢; be the orthogonal projection of ¢ on E, . Since U Ey 18

=1
dense in (L,(Q))" we see that ¢, —» ¢ in (L,(Q))" and O¢; »0¢ in (L,(Q)" Therefore using
Lemma 2.2 we have

J (v, 00) + (VGluo), ) — (f. ¢)
Q

= f (too0(P — 8) + (VG(u) ¢ — ¢) — (£,¢ — ¢)

+ (VGlug) — VGloy, + wy ), ¢)) + (vg — vy ,06). (3.3)

It is clear that the right-hand side of (3. 3) tends to zero as j tends to infinity. Hence u, is a weak
solution of (1.1) which by construction is in (H*(Q))" and this proves the existence part of Theorem
A.

Finally, we prove that (1.1) has at most one weak solution. Suppose that u! and u? are two
such solutions. For i = 1, 2, let uy = xN + zN be the projection of ¥’ onto E,, where xi € X,
and zy € Z,. Let vy = x) — x2, wy = z}, — z5. We have

f {(ul — w3, 0(vy — wy) + (fl (0°G(? + s(u' — u?))/oudu)(u' — u?)ds, vy — WN)}
o )

0

0

= f {(L‘N + wy Oy — wy)) + <f1 (%G + s(u' — u?))/ou,0u)(vy + wy)ds, vy — wN>
+ (L (0°G(u* + s(u' — u?))/0u,0u,)
W' —uy + uf — uP)ds, vy — wN>}

< J‘ {@vy + Buy,vy) — @wy + Awy, wy)} + C(H“I - “I{IHO + ““2 - uif”o)
Q

s - mz””z\r”(z) - mlﬂwnllé + C(”“I - ”}v”o + ““2 - “1%«'”0)-

Consequently, vy and wy, tend to zero as N — oo, and so u' = u?
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