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Abstract 

Investigation of Neutrophil-Like HL-60 Cell Migration in a 3D Collagen Matrix 

By 

Pouye Sedighian 

Claremont Graduate University and California State University-Long Beach: 2022 

 

It is known that cell migration in innate and adaptive immune system plays a fundamental role in 

human health. Among the immune cells, neutrophils are one of the most essential cells in 

protecting the body against invading pathogens. In the presence of chemoattractants, these cells 

are the first responders that start a directed migration toward the injured area. As neutrophils 

approach the site of infection, they transmigrate to the tissue and follow the chemoattractant 

concentration gradient to locate and eliminate the invading pathogens. Understanding the patterns 

and mechanism of neutrophil migration in the presence of chemoattractants could possibly play an 

important role in discovering new treatments for various immune dysfunction diseases such as 

sepsis or severe COVID-19. 

Here, to study cell migration patterns, we designed a 3D hydrogel model to create a concentration 

gradient inside a collagen gel that contained neutrophil-like (dHL-60) cells. Our experimental 

setup and computational analysis allowed us to study the cell migration indicators such as 

percentage and velocity of motile cells in a 3D environment. Evaluating these cell migration 

features showed 10 nM Formyl-Met-Leu-Phe (fMLP) was the most suitable initial concentration 

among 0, 10, and 100 nM fMLP to maximize the cell activity. In addition, as fMLP was invisible 

under the microscope, we performed experiments with a fluorescent dye that had a similar 

molecular weight as fMLP to estimate the chemoattractant concentration and its gradient with high 



spatiotemporal resolution at any location and time inside the collagen gel. Next, we analyzed the 

correlation between the cell migration patterns and the chemoattractant concentration and its 

gradient over time. The results showed that the highest levels of cell motility, measured by a variety 

of indicators, occurred at moderate fMLP concentrations (5 to 7 nM fMLP) and, counterintuitively, 

not at the highest concentrations. In summary, the combination of our novel experimental design 

and computational analysis allowed us to improve on previous studies by correlating the dHL-60 

migration indicators to the local chemoattractant concentration at the cell location over time, 

painting a more complex picture of cell migratory behavior in a 3D environment.   
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Chapter 1.  Introduction 

Neutrophils are one of the most abundant and vital white blood cells in the innate immune system 

as they maintain and protect the body against bacterial and fungal infections. Upon the maturation 

of neutrophils in the bone marrow, they are released into the blood vessels to patrol the body 

against the invading pathogens. Once an injury occurs inside the body, the damaged cells start 

releasing molecules called chemoattractants to signal the immune cells to migrate toward the 

injured area. Neutrophils are the first responders to these signaling substances, where they use the 

chemoattractant concentration gradient to locate the direction of the infected area in a process 

called chemotaxis (1-4). As they approach the source of injury, they squeeze themselves in 

between endothelial cells to transmigrate to the tissue. Once arrived at the infected site, neutrophils 

either engulf the bacteria or form sticky webs called neutrophil extracellular traps (NETs) to 

prevent the pathogens from spreading to other parts of the body (3). However, sometimes presence 

of high amounts of chemoattractants in the body causes neutrophils to damage various organs or 

even cause death in patients (1, 5-7). For example, sometimes despite the presence of infection, 

the recruitment of neutrophils toward the site of infection is inadequate compared to a healthy 

body (8). Thus, because of the reduced neutrophil presence at the site of infection, pathogens grow 

and spread more easily throughout the body (8). As a result, damaged cells produce more 

chemoattractants to recruit the immune cells toward the damaged area, leading to unusual  

neutrophil behavior such as higher percentage of random migration (chemokinesis) than directed 

migration (chemotaxis) (9) or creation of excessive NETs (10, 11), which could contribute to tissue 

destruction and organ failure (10-13). This impaired behavior of immune cells responding to 

infections is one of the characteristics of sepsis (8, 9, 13-15).  



2 

 

In August 1991, sepsis was formally defined by American College of Chest Physicians (ACCP) 

and Society of Critical Care Medicine (SCCM) consensus conference as an inflammatory response 

to infection and since then researchers have been coming up with new definitions of sepsis over 

the years, with the latest definition in 2018 (16-18). With every hour passed since sepsis is 

developed in the patient, the mortality rate increases (19). Thus, when sepsis starts developing, the 

person must go to the hospital right away. But unfortunately, the self-diagnosis of sepsis is a 

difficult task because the symptoms are similar to COVID-19, flu, or a cold, which include fever, 

chills, shortness of breath, rapid breathing, pale and discolored skin, and confusion (14). Sepsis 

has negatively impacted the health of millions of people all around the world, causing one out of 

three deaths in hospitals, making it the leading cause of death in hospitals (12, 14, 20).  

As mentioned above, neutrophils play an important role in effectively combating pathogens. 

However, under certain conditions they might contribute to organ damage in patients. Neutrophil 

migration studies could give us an insight into the complex behavior of neutrophils in fighting 

pathogens. There is still a lot that is unknown about the chemotaxis of neutrophils. For example, 

it could be beneficial to study the pattern of cell migration at different chemoattractant 

concentrations and their gradients in a 3D in-vitro environment over time, or to study the optimum 

chemoattractant concentration and its gradient to maximize the number of migrating cells and the 

velocity at which they migrate toward the chemoattractant source in a 3D collagen matrix. A 

deeper understanding of the pattern and mechanism of neutrophil migration in the presence of 

chemoattractants could potentially facilitate the development of new treatments for impaired 

immune cell behavior in various diseases such as sepsis (4, 5, 10, 16, 21), Chronic obstructive 

pulmonary disease (COPD) (22-25), or severe COVID-19 (26-28) . 
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Many of the previous studies on cell migration have been restricted to one- or two-dimensional 

experimental setups while calculating the cell migration indicators such as velocity and speed of 

motile cells (29-36). Although these cell migration experimental setups have been commonly used, 

they restrict the full 3D cell movements and the physical shape change of neutrophils that occurs 

in-vivo, making it difficult to translate the findings to cell behavior in the human body.  

In addition, previous studies only correlated cell migration indicators (percentage of active cells 

and their velocities) with the chemoattractant concentration at the source. While these 

investigations were able to find the optimal initial chemoattractant source concentration required 

to activate a large percentage of cells, they were unable to correlate the pattern of cell migration 

to the concentration and its gradient at the exact cell location over time. This limits the amount of 

information we could gain from observing cell motility over time. Here in our study, we improved 

the previous designs to quantify the patterns of migrating cells in a high spatiotemporal resolution 

of concentration and its gradient over time. Below, we present a summary of our experimental and 

computational study design. 

To create a chemoattractant concentration gradient inside the collagen and study the migration of 

cells in a 3D environment, we designed a 3D chamber using polydimethylsiloxane (PDMS) mold 

with similar measurements as in previous studies (37, 38). Our chamber contained three 

compartments where the side compartments were designed to hold the chemoattractant and the 

media and the middle compartment was intended to hold the collagen gel containing cells. Before 

each experiment, we allowed the chemoattractant in the side compartment to diffuse through the 

collagen. We then used confocal microscopy to capture the cell movements in a three-dimensional 

space over time. To analyze the collected data, we created a computational model to automatically 
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detect the cell centers in each time frame and then track the cells using Kalman filtering algorithm 

over time.  

Furthermore, as mentioned above, we were interested in finding a correlation between the patterns 

of cell movement and our chemoattractant concentration and its gradient over time. To calculate 

the chemoattractant concentration inside the collagen over time, we had to estimate its diffusion 

coefficient. But because our selected chemoattractant, Formyl-Met-Leu-Phe (fMLP) was invisible 

under the microscope, we performed diffusion experiments using a fluorescent dye with a similar 

molecular weight as fMLP. We estimated the dye diffusion coefficient, hence the fLMP diffusion 

coefficient, in our collagen matrix using image processing techniques and partial differential 

equations (PDEs). Calculating the diffusion coefficient of our chemoattractant allowed us to 

simulate its diffusion throughout the collagen matrix, revealing the concentration and 

concentration gradient in our proposed model with a much higher in a high spaciotemporal 

resolution compared to other studies (30, 35, 39). Finally, the combination of our novel 

experimental design and our computational methodology allowed us to study the most suitable 

initial concentration to activate a high percentage of cells. In addition, we investigated the 

dependence of cell migration behavior on chemoattractant concentration and its gradient at any 

location and time inside the collagen matrix. 

Each chapter of this thesis explains the details of experimental procedures and data analysis in the 

study. Here, we present a summary of the contents of each chapter:  

Chapter 2 provides an introduction to neutrophils, HL-60 cells, flow cytometry technique, confocal 

microscopy, and data analysis methods used in the computational model. The chapter first starts 

by introducing neutrophils, and their important properties when invading pathogens are present in 
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the body. This chapter then explains the difficulties working with neutrophils in in-vitro 

experiments and it introduces an alternative cell line, HL-60 cells, to study the migration properties 

of primary neutrophils. Later in the chapter, the flow cytometry technique used in the experiments 

to confirm the differentiation of HL-60 cells into neutrophil-like cells is discussed. The chapter 

then introduces confocal microscopy and its applications in 3D imaging of cells. Next, the details 

of the Otsu’s method, an algorithm to estimate the minimum value of a function, is described. This 

algorithm was used in estimating the diffusion coefficient of the chemoattractant. Finally, a brief 

description of the Kalman filtering algorithm, which was used in tracking cells inside collagen, is 

presented. 

Chapter 3 first describes the design of our 3D chamber and the measurements used in the 

experimental setup. It then illustrates the details of preparing the experimental setup using 

polydimethylsiloxane (PDMS) mold and covers the required steps to prepare mold without any 

bubbles. 

Chapter 4 first describes the details of sample preparation for the fluorescent dye experiments and 

setup for confocal microscopy. It then explains the details of data analysis in order to compute the 

dye diffusion coefficient using image processing techniques and partial differential equations. 

After the estimation of the dye diffusion coefficient, the theoretical results are compared with the 

experimental data to examine the goodness of the fit in dye concentration profile inside the 

collagen. 

Chapter 5 covers the steps to grow, culture, and differentiate HL-60 cells to neutrophil-like (dHL-

60) cells. Next, the process of cell differentiation validation experiments is explained by checking 
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the upregulation of an antigen using flow cytometry. At the end of the chapter, the process of data 

analysis and results from performing flow cytometry experiments is demonstrated. 

Chapter 6 first describes the details of preparing the cells, collagen, and our chemoattractant for 

confocal microscopy. In section 6.3. , first the steps of noise reduction in images in explained. 

Next, the image processing techniques applied to detect the cell centers each 3D image is briefly 

described. These detected centers were then used as the inputs of  Kalman filtering algorithm to 

track each cell over time. The cell tracks allowed us to classify the cell movements and analyze 

their patterns. In the last subsection of the chapter the results of comparing the cell motilities with 

different initial chemoattractant concentrations are explained. In addition, the details of more in-

depth analysis to understand the patterns of cell migration as a function of chemoattractant and its 

gradient are described. 

Chapter 7  first summarizes the results from the analysis of the collected data at different initial 

chemoattractant concentrations: 0, 10 and 100 nM fMLP. It then explains our interpretations of 

our final results and our contributions to the study of cell migration.  

Chapter 8 summarizes the entire thesis from the experimental and computational design of our 

study to reviewing our findings and contribution to the study of cell migration. At the end of the 

chapter, the limitations of our study and the possible improvements for future studies based on our 

learnings from our experiments are described.    
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Chapter 2.  Background 

2.1.  Neutrophils 

Neutrophils are the most abundant white blood cells in the innate immune system that are produced 

and matured in bone marrow. Mature cells are released into the blood vessels to circulate and 

patrol the body against any invading pathogens. Neutrophils are one of the most essential cells in 

the immune system as they maintain and protect the body against bacterial and fungal infections. 

They are the first cells that respond to inflammation and start migrating toward the site of infection 

to combat with pathogens (2, 40). Neutrophils either engulf and digest the bacteria or they form 

sticky webs to prevent them spreading to other parts of the body (3, 4). However, the assistance of 

neutrophils in killing pathogens can also be damaging and create organ failures and autoimmune 

diseases (1, 6, 7, 41). Hence, understanding the behavior of neutrophils in the presence of 

infections, play an important role in developing treatments in different infectious and autoimmune 

diseases (1, 10).  

The migration of neutrophils starts rapidly upon an occurrence of an injury in the body. This 

process is started by the damaged cells releasing signaling substances called chemokines, a type 

of chemoattractant, to direct the neutrophils toward the damaged region. These chemoattractants 

flow in the bloodstream in hope of finding neutrophils. Once the chemoattractant reaches a 

neutrophil, it binds to one of the receptors located on the cell membrane. This process leads to 

chemical reactions inside the cell, polarizing the round shaped cell and causing pseudopods in the 

front and a knob-like shape called uropod in the back (42). Within a few minutes, a large number 

of neutrophils start their migration. Using the gradient of the released chemokine to find their path 

toward the infection. As they become closer to the site of injury, they slow down and start sticking 
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and rolling into the walls of blood vessels. Then, they start transmigrating to the tissue by 

squeezing themselves in-between endothelial cells. Neutrophils continue migrating toward the 

higher concentration of chemoattractant to find and kill the invading pathogens. This process of 

directed migration toward chemoattractant gradient is called chemotaxis (2, 43, 44).  In the case 

of uniform chemoattractant concentration, neutrophils move in random directions. This non-

directional movement of the cells is called chemokinesis (2). 

 

 

 

Upon the arrival at the site of injury, early recruited cells also start producing secondary 

chemoattractants to amplify a more robust chemotaxis toward the pathogens. One of the 

chemokines that is released in this stage is called leukotriene B4 (LTB4) which has been shown to 

enhance the sensitivity of cells toward the primary chemoattractant (45). This phase of large 

Figure 2.1. The process of directed migration in neutrophils toward the site of infection. 
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recruitment neutrophil is crucial in making sure that cells can kill and prevent the pathogens in 

overgrowing in the body.  

Once neutrophils locate the pathogens, they start engulfing and ingesting the pathogens to clear 

the area. This process of intracellular killing is called phagocytosis (10). In addition to the 

phagocytosis behavior of cells, neutrophils form a sticky web called neutrophil extracellular traps 

(NETs) to trap the pathogens and prevent them from spreading to other parts of the body. First, an 

enzyme called PAD4 inside a cell becomes activated and as a result NETs that are made of 

neutrophil DNA strands interconnected to antimicrobial peptides and proteins will be created and 

released (3, 6).  

To resolve the inflammation caused by an injury, neutrophils are required to clear the area to 

prevent tissue and organ damage. It has been shown that a large number of cells make U-turns by 

reversing the polarity inside and enter the blood vessels or the lymphatic system (46, 47). The 

reason of reverse migration of neutrophils is caused by different mechanisms. For example, there 

might be other chemoattractants present in the vasculature causing the neutrophils to prioritize 

them over the chemoattractants at the wound. Another possible reason is the release of 

chemorepellent at the site of infection causing the cells to leave the area. Lastly, the reverse 

migration of the cells might happen because of the chemoattractant concentration reduction at the 

area (1). While as mentioned above, some cells reverse their migration and enter the vasculature, 

some act as a sink and upregulate the CC-chemokine receptor 5 (CCR5) to remove the chemokines 

from the environment to prevent recruiting more neutrophils toward the location. Neutrophils then 

start shrinking and lose their shape to start the process of death called apoptosis. In this stage, 

macrophages start phagocytosing the dead neutrophils and clearing the area (48-50). 
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Figure 2.2. Neutrophils combat bacteria in two different ways: 1- They engulf and digest the pathogens to clear the 

area. This process is called phagocytosis. 2- They release Neutrophil Extracellular Traps (NETs) to trap the pathogens 

from invading to other parts of the body.  

 

2.2.  HL-60 Cells 

Neutrophils are the fastest cells arriving at the site of an injury to fight with pathogens. These cells 

become activated in the presence of chemoattractants and start a directed migration toward the 

damaged area. Understanding the behavior properties of neutrophils in presence of pathogens 

guides us in developing treatments for different diseases. Neutrophils are short lived cells, and 

they cannot be cultured in-vitro. To perform chemotaxis experiments, researchers are required to 
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find various donors, draw blood, and isolate the primary neutrophils from the rest of the cells. 

After all of these steps, they will only have a limited time to perform the experiment and study the 

cell migrations. Thus, this makes it difficult to work with neutrophils in in-vitro experiments. As 

an alternative, many studies use HL-60 cell line to study the mechanical properties of primary 

neutrophils (34, 51-53). HL-60 is a human cell line derived from a 36-year-old woman who 

suffered from acute promyelocytic leukemia in 1977 (54-56). HL-60 cells grow in vitro with 

simple maintenance, and they double in suspension culture every 36 to 48 hours. Around 5 to 10% 

of HL-60 cells spontaneously differentiate and represent the same properties of granulocytes such 

as chemotactic responses to chemokines. But with the help of some reagents, HL-60 cells stop 

proliferating and start differentiating to various cell lineage such as granulocytes, monocytes, 

macrophage-like, and eosinophils cells (55, 57-59). To promote cell differentiation, 1-1.5% 

Dimethyl sulfoxide (DMSO) is suggested to be added to the cell growth medium in a period of 5 

to 7 days (53, 60). As cells start differentiating, they start expressing new receptors such as CD11b, 

CD68, and CD88 on their membrane (61, 62). To confirm the successful differentiation of HL-60 

cells, the expression level of the new receptors is tested by flow-cytometry.  

 

2.3.  Flow Cytometry 

Flow cytometry is a technique that analyzes different cell characteristics such as shape, size, and 

other properties. This device uses laser beams to excite each cell that is passing through the 

instrument and collects the light scattered from fluorescence emissions to analyze the cells 

properties. Flow cytometry also allows us to study the receptor expression on the cell surface by 

measuring the fluorescence intensity of antibodies bound to those receptors (63, 64). 
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Figure 2.3. Cell sample is labeled with florescent antibodies in the dark for 1 to 2 hours. After the preparation of 

sample, the tube is placed inside the flow cytometer to analyze the properties of the cells. 

 

To study the properties of the cells, first cells are mixed with FACS buffer (:1X phosphate buffered 

saline (PBS), fetal bovine serum (FBS), and sodium azide) with the appropriate antibody 

conjugated to a fluorophore. Once the sample tube is prepared and placed inside the flow 

cytometer, a nozzle goes into the sample tube and sucks up the cell solution to the device. The 

cells are then mixed with sheath fluid made of saline solution to go through a narrowing nozzle 

that allows cells to pass through one by one. Each cell then passes through a laser beam with a 

correct wavelength of laser light (65). Photomultiplier tube (PMT) or photodiodes (APD) collects 

the scattered emission light from the excited labeled cells with a fluorophore in two different 

locations. One PMT located along the same axis as the laser beam collects the forward scatter 

(FSC) light and one located at a 90° angle of the laser light collects the side scatter (SSC) light. 

FSC provides an estimation of the cell’s size and SSC gives information about the granularity of 

the cells (65, 66). Each detector converts the collected scatter lights into an electrical impulse 
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which is proportional to the amount of fluorophores bound to cells. These electrical pulses are then 

translated into numerical signals in the computer (64). These recordings allow researchers to 

measure different statistics of their samples.  

 

 

Figure 2.4. Sample cells get mixed with sheath fluid and then line up one by one in a narrow nozzle to go through the 

laser beam. The emission light is collected using two detectors one placed in the same axis and the other one 

perpendicular to laser beam.  
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2.4.  Confocal Microscopy 

Confocal scanning microscopy is a type of fluorescent microscopy developed by Marvin Minsky 

in 1955. This type of microscopy captures high resolution images from different z-slices of a 

specimen and creates 3D images by combining the slices together in a thick samples (67). Confocal 

microscopy uses laser power to excite the fluorophores inside a thin layer of the sample. The laser 

beam rapidly and sequentially illuminates the area of interest point by point until the whole X-Y 

plane is covered. The light from the laser excites the electrons within the fluorescent molecules, in 

turn producing emission light collected through a pinhole (68). The pinhole aperture only allows 

the emission light from the illuminated focal point to pass through. Other lights coming from the 

outside of the focal point gets rejected by the device. (69). Next, a photomultiplier tube amplifies 

and translate the emission light into a signal which later is converted to a digital image where the 

pixel values represent light intensities (67). The below figure represents a simplified version of a 

confocal microscopy. 
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Figure 2.5. In confocal microscopy a laser excites the fluorophores within the sample and then collects the emission 

light through a pinhole to generate a high-resolution image. 
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2.5.  Data Analysis  

2.5.1.  Optimization by Nelder-Mead Method 

Nelder-Mead Simplex algorithm is a heuristic numerical method that finds the minimum of any 

given function. In a n-dimensional space, this optimization method defines a simplex around an 

initial guess using n+1 test points. The algorithm iteratively keeps replacing the initial guess based 

on the function values for each test point until the local minima is found or the maximum number 

of the iterations is met. Nelder-Mead method does not guarantee convergence as it sometimes gets 

stuck in a flat surface and cannot update the guess to a better answer (70-72). 

Here is an example of the steps in finding an estimate of the minimum value in a two-dimensional 

space: 

1. Sort: Select 3 points (a, b, c) to build a simplex and sort them according to their function 

values in an increasing order: f(a) < f(b) < f(c) 

2. Reflect: assume f(c) gives us the maximum value among all the selected three point. Find 

the centroid of ab and then find reflection of c based on the selected centroid and call it d. 

If f(d) is smaller than f(b) but not f(a), accept the new reflected point. 

 

 

Figure 2.6. Accepting the reflection point (d) as the new estimate of c when f(d) < f(b) and f(d) > f(a). 



17 

 

 

3. Expand: If the f(d) is better than both f(a) and f(b), then it means that the selected direction 

is giving us the best answer. Thus, moving toward that direction even furthermore might 

help finding the minimum value. As a result, we extend the reflected point toward the same 

direction by half of the cd distance and evaluate the function value of the new point (e). If 

the new expanded point gives us a better answer, we accept it (Figure 2.7). If not, we reject 

it and keep our reflected point (d).  

 

Figure 2.7. Accepting the expansion point (e) as the new estimate of c when f(e) < f(d), f(d) < f(a), and f(d) < f(b). 

 

4. Contract: If the f(d) is worse than both f(a) and f(b), connect c to d to create a line. Select 

two points each ¼ distance away from each ending of the created line. Evaluate the value 

of the function for the two selected points and then select the one with minimum value 

(Let’s assume it is f). If f(f) < f(c), accept it and replace c, the worst point, with this new 

point.  
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Figure 2.8. Accepting f as the new estimate of c if f(f) < f(c). 

 

5. Shrink: If none of the above steps are correct, shrink the simplex toward the best 

performing point by replacing each of the remaining two points, a and b, with points that 

are halfway between themselves and the best performing point, a. 

 

Figure 2.9. Shirking b and c toward the point with the lowest function value (a). 

 

As we continue to repeat the above steps, function values at the n+1 points become closer and 

closer to each other. As a result, the standard deviation of the function values at these points 

becomes closer to zero. Therefore, to estimate whether the convergence has met, we compare the 

standard deviation with a set threshold. So, when it becomes smaller than our pre-defined threshold 

we stop the algorithm (70, 72). 
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2.5.2.  Kalman Filter Algorithm 

Kalman filtering algorithm is a well-known recursive method that has many applications in 

different fields such as computer vision (73-75). Kalman filter could automatically track objects 

in a video by predicting their locations in the next frame based on the tracks from the previous 

frames (75-77). Tracking multiple objects in general is a very hard task because occlusions might 

happen during recording the video. For example, sometimes objects get very close to each other 

and merge into one object making it difficult to differentiate them from one another for a 

consecutive number of frames (76).  

This algorithm requires setting up multiple initial assumptions for the objects to track: First, it 

assumes objects move with either constant velocity or constant acceleration. Second, it presumes 

there is Gaussian noise in both the detected centers and the predicted tracks in the model. To start 

tracking the objects in the first frame, as the algorithm has no information on the patterns of the 

object movements, it relies on its initial assumptions to predict the location of each object in the 

second frame. The Kalman filter then selects the closest detected center to its prediction and 

assigns the labels to those centers. For the rest of the frames, the algorithm uses two main steps to 

track the objects: 1- At each time frame ti, the algorithm uses the gained information on the tracks 

at ti-1 to predict the state of an object (its position). 2- In the second step, Kalman filter compares 

the predicted states with the observed data (centroids) and labels the closest object as its track. It 

then updates its parameters to minimize the error of its future predictions (76). In the incidents 

where an object disappears, the algorithm keeps its label and its past information of its tracks for 

a fixed number of the frames. If the object appears again, the algorithm assigns its new location to 

its tracking label. But if the object is not found during this time, the algorithm deletes its label 

assuming that it has left the field of view. After all the tracks are assigned, Kalman filter gives new 
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labels to the unassigned detected objects assuming they have just entered the field of view (75, 

76). 
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Chapter 3.  Experimental Design 

3.1.   The 3D Design and Measurements 

To study the chemotaxis in a 3D environment, we used similar measurements as (37, 38). For each 

experiment, a 3D chamber was made using a polydimethylsiloxane (PDMS) mold. This chamber 

had three compartments separated from each other using coverslips. To ensure the exact 

measurements of the compartments for each experiment, we designed a 3D model using 

SolidWorks shown in Figure 3.1 and then printed the design by a 3D printer. The 3D prints were 

carefully washed to remove any residuals left from the machine. For each experiment, a 

polydimethylsiloxane (PDMS) mold was made using 3D prints.  

 

 
Figure 3.1. Top and side views of the designed 3D model in SolidWorks. We used a 3D printer to print the design 

and then washed and removed the residuals.  

 

 

 

The measurements of the designed 3D chamber are shown in figure 3.2. As mentioned above, the 

middle compartment contained collagen seeded with cells and the source compartment contained 

the chemoattractant solution. The sink compartment having the same volume as source held the 

cell media. 
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Figure 3.2. Top and side views inside the PDMS mold where the collagen, chemoattractant, and media are added. The 

total size of the system was 10x6x4 mm where the collagen with length 5.32 mm was located in the middle. The 

volumes of the side compartments were equal to each other. 

 

3.2.  PDMS Mold Preparation 

First a ratio of 1:10 curing agent and silicone elastomer base was mixed together in small plate. 

Then, the mixture was placed in a vacuum for one hour to remove the bubbles trapped inside the 

solution shown in figure 3.3. This process was very important because bubbles tend to get trapped 

under 3D prints causing the final PDMS mold to have many tiny holes. Some of these holes could 

create multiple problems. For example, a hole could cause a diffusion leakage to the collagen and 

as a result it could reduce the accuracy in our analysis. Another problem would be leakage of the 

collagen gel to some of the holes before it is completely formed. This results in gels formed with 

different shapes or volumes. Figure 3.4 shows the results of taking different step to create PDMS 
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molds. As it is presented in the figure, the third strategy worked the best in creating bubble-free 

molds. 

 

 

Figure 3.3. The process of vacuuming the PDMS solution to remove the bubbles. 

 

 

Figure 3.4: a. Vacuuming the PDMS solution with the 3D print inside. b. Letting the PDMS solution form without 

any vacuuming. b. Placing the PDMS solution on a large plate and vacuuming it for about one hour until all the trapped 

bubbles are released. And then place the 3D prints into small plates and very slowly pour the vacuumed bubble-free 

solution. During this stage we made sure to not create any bubbles and if any are created, we took them out using a 

narrow stick. 
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After the removal of the bubbles in the solution, the mixture was left at room temperature for 48 

hours to form a solid structure. Then, the 3D print mounted to the PDMS mold was carefully 

removed. The cured PDMS mold was cut on the sides to ensure the proper fit in the final setup. At 

the end, the mold was washed and cleaned of the small residuals from the cutting. Figure 3.5. 

shows the steps preparing the cured PDMS molds for the experiments. 

 

 

Figure 3.5. The process of removing the 3D prints and cutting the extra edges from the PDMS mold. 

 

 

3.3.  Assembly of The PDMS Mold  

To finalize the setup, we needed to secure the bottom of the mold and also separate the 

compartments from each other. Therefore, silicon glue was used to attach a glass coverslip of size 

55x24 mm with the thickness of 0.13 to 0.17 mm to the bottom of the PDMS mold to create a 

leakage free system. In addition, measured coverslip cuts were inserted into the slits of the PDMS 

mold to separate the compartments from each other. To cut the coverslips, we used a coverslip 

from the same batch when securing the bottom of the PDMS mold and created a reference cut 
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rectangle of size 24x9 mm using a caliper and a diamond scribe with a 60-degree angle. We then 

used our reference cut coverslip to cut the rest of the pieces with the diamond scribe. 

 

 

Figure 3.6. The process of cutting the cover glasses into smaller sizes. 

 

 

 

Figure 3.7. To set up the PDMS mold for an experiment, we first attached the PDMS mold to a glass coverslip using 

a silicon glue. Next, we used small cut coverslips to separate the compartments from each other. We then added the 

collagen mixture to the middle compartment and let it form in the incubator. 
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Chapter 4.  Fluorescent Dye Experiments 

In our study, we designed a 3D system similar to (38) that consisted of three compartments 

allowing us to make collagen in the middle and have chemoattractant on the sides. We used our 

system to create diffusion from the side compartments to the middle compartment to record the 

cell migration in the collagen using time lapse imaging in confocal microscopy. One of our 

questions in our study was finding a correlation between chemotaxis and concentration gradient 

of our chemoattracts. Therefore, to answer this question, we had to estimate the diffusion 

coefficient of our chemoattractant. But because the chemoattractants are invisible under the 

microscope, calculating its concentration gradient at any location and time becomes impossible. 

As a result, we selected a fluorescent dye, Rhodamine B (RhoB) (ex/em: 553/627) (Sigma-Aldrich, 

cat. no. 83689), with almost the same molecular weights as fMLP and performed the same 

diffusion experiments with them. We calculated the diffusion coefficients in our dye experiments 

and checked the accuracy rate from our theoretical calculations.  

 

Name Molecular Weight 

Rhodamine B (RhoB) 479.01 

N-Formyl-Met-Leu-Phe (fMLP) 437.55 
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4.1.  Experimental Setup 

4.1.1.  Sample Preparation 

10X PBS-glucose solution: to maintain cell viability, we added glucose to all of our cell 

experiments. Thus, to stay consistent with our cell experiments, we also added the same amount 

of glucose to collagen and both side compartments in our dye experiment to create 400 mg/dL 

glucose. To do that, we mixed 247.4 mg glucose with a 10 mL 10X PBS tube and used that solution 

for all the following preparations. 

Collagen: To prepare a sample for imaging, a prepared PDMS mold was placed in a petri dish 

inside a biohood with a UV light on for 30 mins. Next, based on the instructions given on the 

ThermoFisher website, 30 μL 10X PBS-glucose, 5.5 μL 1N NaOH, 220 μL collagen type I, rat tail 

(ThermoFisher Scientific, cat. no. A1048301), and 44.5 μL cell growth medium (CGM) were 

mixed together to create a 2.2 mg/mL collagen. Lastly, the final collagen mixture was added to the 

middle compartment of the mold and then the sample was placed in an incubator for 40 minutes 

at 37º C and 5% (vol/vol) CO2 until a firm gel was formed.  

Sink compartment solution: For the side sink mixture, sterile deionized (DI) water was mixed 

with 10X PBS-glucose and CGM. The concentration of CGM and glucose in both side 

compartments were exactly the same as the concentrations inside the collagen to create an 

equilibrium in the system. 

Fluorescent dye: To run the dye diffusion experiments, a 5 μM RhoB fluorescent dye was made. 

To do that, first, a stuck solution with a concentration of 1 mM in 1X PBS was made. Next, we 
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used the equation below to estimate the needed volume from the stuck solution to create 20 mL of 

our desired concentration, 5 μM, of Rhodamine for our experiments: 

CsVs = CdVd 

1000*Vs = 5*20 μL 

Vs = 100 μL 

Where: 

Cs = stuck concentration, Cd = desired concentration, Vs = stuck volume, Vd = desired volume 

The calculated Vs was then mixed with a solution of 1X PBS-glucose and 14.8% (2.96 mL) CGM 

inside.  

4.1.2.  Confocal Microscopy 

After the collagen was made, the stage heater was turned on and placed on the confocal 

microscopy’s stage.  A microscope stage heater (AmScope TCS-100 Microscope Temperature 

Control Stage Slide Warmer) was used to ensure the temperature was maintained at 37 °C in the 

collagen. After the temperature was reached to our set number, the sample was placed and secured 

to the stage using a tape preventing any small movements over time. Then, the coverslips in-

between the compartments were carefully removed using a tweezer. After the preparation of the 

setup on the confocal microscopy’s stage, the diffusion started by filling both of the side 

compartments simultaneously by a multichannel pipette. The time of dye insertion was recorded 

using a timer to be used in the later data analysis. To avoid evaporation of the collagen and dye 

over time, an aluminum cap was then placed on top of the sample. The stage was then moved in a 
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way to have the edge of the collagen/dye on top of each frame. The time of the moment the 

Confocal microscopy started to collect the images was recorded to adjust the delay between the 

insertion of the fluorescent dye and first recorded image.  

All the images were recorded using Confocal microscopy model Olympus Fluoview FV1000. We 

used a 4X air objective (Plan Fluor, NA 0.13, WD 17 mm) and excited the dye with green/yellow 

diode laser (559 nm) laser. The images of size 512 × 512  pixels (3175 × 3175 μm) were recorded 

every 30 sec for a duration of 2 hours. 

 

 

Figure 4.1 An image of a sample when live imaging was done using confocal microscopy. Using tape, the sample 

was secured to the stage to prevent small movements over time. In addition, an aluminum foil cover was used to 

prevent the collagen and media from evaporating during the two hours of imaging. 
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4.2.  Data Analysis 

After we repeated each fluorescent dye experiments three times, we processed and analyzed all the 

recorded images in MATLAB (64-bit, version 2019b). Here we assumed the change of the dye 

concentration profile over time inside the collagen was the same as the change of the pixel values 

in the collected images. But because for each experiment we had 240 images and the size of each 

image was 512 x 512 pixels, processing all the pixels was computationally very expensive. As a 

result, we selected fifteen vertical points and calculated the change of their values over time. To 

select these points, two important notes needed to be considered: 

1. Because there was always a time delay between the beginning of the diffusion and the start 

time of the first collected image, the pixel values at the top of the image, close to the dye 

source, were already relatively saturated and did not change much over time. Hence, we 

focused our analysis on the pixel values that were further away from the diffused parts 

located on top of the images. To do this, we first found the boundary of the “saturated” 

region in the first image and selected several equally spaced points below this boundary 

and monitored the pixel values at these points over time. 

2. Due to the inherent uneven brightness in images caused by the optical aberration of the 

microscope, areas closer to the edges and corners generally appeared darker than the center 

of the image. We avoided these darker areas by selecting points along the image vertical 

midline.  

To select our 15-pixel points, first all the images were filtered and normalized. Next, the dye 

diffusion boundary in the first collected image was detected in each experiment followed by the 
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selection of evenly spaced vertical points. Lastly, the change of pixel values in these points was 

used to estimate the dye diffusion coefficient in the experiments. 

4.2.1.  Noise Filtering and Normalization 

After converting the images into gray scales, we applied the average filtering algorithm to remove 

the noise and smooth the images. The average filtering technique defines a small moving window 

that goes through the image pixel by pixel and replaces each pixel value by the average value of 

the neighboring pixels. This algorithm reduces the intensity variation in the neighboring pixels by 

smoothing the image. Figure 4.2 shows an example of smoothing a pixel value in an image. 

 

 

Figure 4.2. An example of applying average filtering of size 3x3 to a pixel in an image. 

 

 Next, to normalize the data correctly, we needed to divide all the pixel values by the intensity 

value of the fluorescent dye inside the side compartment. The simplest answer is moving the 

objective to the side compartment and taking one image from the side compartment with the dye 
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and then calculate the average pixel value in that image as the representation of maximum 

concentration of the dye at time zero. Then divide all the pixel values by this selected number. 

This solution had a few issues: 

1. Moving the objective to the side compartment and taking an image creates a delay in 

imaging the diffusion of collagen.  

2. In addition, it does not guarantee that the calculated number is correct as the objective has 

moved and the setup has changed slightly.  

3. Lastly but most importantly, the laser intensity needs to be set up to view the diffusion in 

the collagen. Thus, this requires increasing the laser intensity to see the dye correctly. This 

might cause saturating the pixel values inside the dye compartment. Therefore, even 

moving the objective to the side compartment and taking an image, does not help the 

calculations.  

To solve the problem of normalization, different numbers starting from 100 to 500 with an 

increment of 10 were selected to find an estimate of the average pixel value of the initial 

concentration of the fluorescent dye. Using each selected number, the whole process of 

approximating the dye diffusion coefficient was processed and the average error between the 

estimated theoretical dye concentration profile inside the collagen at different time points was 

compared with the data from the collected images. Among all the answers, the number that gave 

the minimum error value was selected in the normalization process. Figure 4.3 is an example of a 

plot to the sensitivity to normalization in an experiment. Here it is clear that 220 gives the minimum 

average NRSME among the rest. As a result, this number was selected in the process of 

normalization. 
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Figure 4.3. Sensitivity to image normalization is measured by calculating the normalized root mean square error 

(NRMSE) in diffusion profile between the images collected from experiments and theoretical calculations. As shown 

in this figure, 220 is an optimum value for the normalization step in the experiment. This number varies based on the 

experiments and the laser power setup when collecting the images. 

 

4.2.2.  Boundary Detection 

After all the pixel values were normalized, we simply needed to look at their change of value over 

time to estimate the dye diffusion coefficient. But because analyzing all the pixels was 

computationally expensive, we only selected 15 equally spaced vertical points under the diffusion 

boundary in the first collected image and applied them in our data analysis. 

To select the vertical points under the diffusion boundary, we first applied a series of following 

procedures on the first collected frame:  
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• Gaussian Filter: The image was first blurred by Gaussian filter with standard deviation of 

5. Similar to average filtering, the Gaussian smoothing kernel blurs the image, but instead 

of giving the same weight to the neighboring pixels, it employs a normal distribution 

function to give higher weights to the pixels close to the center than those further away 

when averaging out the image (78). Using this technique, we can remove the gaussian noise 

in the image. 

 

 

Figure 4.4. The result of applying Gaussian filter to an image to remove the noise. 

 

• Otsu's Method: The gray scale image was changed to a binary one to find a better estimation 

of the dye diffusion boundary. To change the image into a binary one, we need to select a 

threshold and change all the pixel values above that threshold to one (white) and the ones below 

to zero (black). To choose an optimal value for the threshold, different algorithms, such as 

Otsu’s method, can be used. Otsu’s method assumes the image consists of two regions, 
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foreground and background with two different distributions, one belonging to the brighter 

pixels and one to the darker ones (79-81). This algorithm selects a threshold that minimizes 

intra-class intensity variance between the two peaks of the distributions (82).  

 

 

 

Figure 4.5. Otsu's method is applied to find the best thresholding value in the given image. Please note that the second 

peak on the right side is much smaller than the one on the left. This is because the first collected image represents the 

beginning of the dye diffusion. As a result, the total number of brighter pixels become much smaller than the total 

number of the darker ones. 

 

Boundary Detection: After converting the first frame image for each experiment, the 

remaining small black holes in the white (diffused) parts were filled with white pixels to create 

a clear separation between the top (diffused) and bottom (undiffused) of the image (83). Next, 

the diffusion boundary was simply detected by tracing the exterior boundary of the white pixels 

in each binary image. Finally, we selected 15 evenly spaced vertical points below the detected 
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diffusion boundary and saved their pixel values over time as a representation of the dye 

concentration inside the collagen. We compared these values with the results from our PDE 

calculations to analyze the fit between the theory and experiments. The below figure represents 

an example of the resulting image after each step. 
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Figure 4.6. As the diffusion already started on top of the first collected image, to select 15 evenly spaced vertical 

points, we detected the dye diffusion boundary in each experiment. To do that the image was first blurred and changed 

into binary. Next, the exterior of white pixels was traced to find the diffusion boundary.  
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• Smoothing: In the final stage, robust- Locally Weighted regression Scatterplot Smoother 

(rlowess) method was applied to smooth the dye concentration in each selected pixel points 

over time. Robust-lowess is a regression technique that smooths a scatterplot using weighted 

least squares. This method first takes a subset of the dataset and then locally fits a first-degree 

polynomial function to the set (84, 85). To find the best fit in each selected neighborhood, 

rlowess algorithm assigns lower weights to the outliers (85). The below figure is an example 

of smoothing the dye concentration at one of the selected vertical points over time.  

 

 

 

Figure 4.7. Smoothing dye concentration at one point over time. 
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4.2.3.  Diffusion Coefficient Computation 

We used Fick’s first and second laws to build partial differential equations (PDEs) for each 

compartment. Because each side compartment was water based, we assumed that the concentration 

was the same in the entire compartment, but time-variant. To start, we had the below assumptions 

at t0 = 0: 

 

𝐶𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐶0,   𝐶𝑠𝑖𝑛𝑘 = 0,   𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 = [0, 0, 0, … ], 𝐷 = 𝐷0   

 

Where 𝐶𝑠𝑜𝑢𝑟𝑐𝑒, 𝐶𝑠𝑖𝑛𝑘, 𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 represented the dye concentration in the source, sink, and all the k 

points along the X axis in the collagen, respectively; C0 was the dye initial concentration, and D0 

was an initial guess for D.   

Next, at each time ti (i = 1,…,n) we first updated the concentration values in the collagen using the 

second Fick’s law: 

(1) 𝐹𝑖𝑐𝑘′𝑠 𝑆𝑒𝑐𝑜𝑛𝑑 𝐿𝑎𝑤:    
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
→

∆𝐶

∆𝑡
= 𝐷

∆2𝐶

∆𝑥2
 

 

To be able to calculate the spatial derivatives at time 𝑡 = 0 and at the collagen boundaries, we had 

to extend the 𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 array by a single value of 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 at the start and 𝐶𝑠𝑖𝑛𝑘 at the end of the 

array, increasing the length of 𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 from k to k+2 and thus defining the array 𝐶𝑎𝑙𝑙 =

[𝐶𝑠𝑜𝑢𝑟𝑐𝑒, 𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛, 𝐶𝑠𝑖𝑛𝑘]. Assuming ∆𝑡 =  𝑡𝑖+1 − 𝑡𝑖, we can write: 

(2)    𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛
𝑡𝑖+1 = 𝐷

∆2𝐶𝑎𝑙𝑙

∆𝑥2
∆𝑡 +    𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛

𝑡𝑖   
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In each time step, after calculating the new 𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛, we updated the 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 and  𝐶𝑠𝑖𝑛𝑘 by 

calculating, using the first Fick’s law, the flux out of the source and into the sink based on the first 

two elements (𝐶𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛(1)), and the last two elements (𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛(k) and 𝐶𝑠𝑖𝑛𝑘) of 𝐶𝑎𝑙𝑙: 

(3)    𝐹𝑖𝑐𝑘′𝑠 𝐹𝑖𝑟𝑠𝑡 𝐿𝑎𝑤:    𝐽 =  −𝐷
𝜕𝐶

𝜕𝑥
𝑎𝑛𝑑 𝐽 =  

∆𝑛

𝐴∆𝑡
→

∆𝑛

𝐴∆𝑡
= −𝐷

∆𝐶

∆𝑥
 

 

where ∆𝑛 is the number of particles entering or leaving the source/sink during the time period ∆𝑡, 

and 𝐴 is the cross-sectional area of the source/sink. In addition, the particles entering or leaving 

the source/sink result in a change in the source/sink concentration (∆𝐶𝑠 = 𝐶𝑠
𝑡𝑖+1

− 𝐶𝑠
𝑡𝑖) following 

the equation ∆𝑛 =  ∆𝐶𝑠𝑉𝑠, where 𝑉𝑠 is the volume of the source/sink. Assuming the source/sink 

has height ℎ, width 𝑤, and length 𝑙, its volume can be expressed as 𝑉𝑠 = ℎ𝑤𝑙. Therefore, equation 

(3) can be re-written as:  

   

(4)    
∆𝑛

𝐴∆𝑡
=

∆𝐶𝑠𝑉𝑠

𝐴∆𝑡
=  

∆𝐶𝑠ℎ𝑤𝑙

ℎ𝑤∆𝑡
=

∆𝐶𝑠𝑙

∆𝑡
= −𝐷

∆𝐶𝑠
𝑡𝑖

∆𝑥
 

 

where 
∆𝐶𝑠

𝑡𝑖

∆𝑥
 is the spatial concentration gradient at the source/sink at time 𝑡𝑖, with ∆𝐶𝑠

𝑡𝑖 calculated 

by: 

(5)     ∆𝐶𝑠𝑜𝑢𝑟𝑐𝑒
𝑡𝑖 =  𝐶𝑎𝑙𝑙

𝑡𝑖 (2) −  𝐶𝑎𝑙𝑙
𝑡𝑖 (1)      𝑎𝑛𝑑       ∆𝐶𝑠𝑖𝑛𝑘

𝑡𝑖 =  𝐶𝑎𝑙𝑙
𝑡𝑖 (𝑘 + 2) − 𝐶𝑎𝑙𝑙

𝑡𝑖 (k + 1) 

 

Next, following equation (4) we can find the source/sink concentration at time 𝑡𝑖+1 by: 

 

(6)   ∆𝐶𝑠 =  −𝐷
∆𝐶𝑠

𝑡𝑖

∆𝑥
 ∗

∆𝑡

𝑙
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(7)   𝐶𝑠
𝑡𝑖+1

=  −𝐷
∆𝐶𝑠

𝑡𝑖

∆𝑥
 ∗

∆𝑡

𝑙
+  𝐶𝑠

𝑡𝑖 

 

Once the source/sink concentration was found for the latest time step using equation (7) above, the 

first and last element (𝐶𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐶𝑠𝑖𝑛𝑘) of 𝐶𝑎𝑙𝑙 were updated and used in equation (2) to find the 

𝐶𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 of the next time step. 

 

Nelder-Mead Simplex: As both the dye concentration and its diffusion coefficient (D) were 

unknown in our PDE, we started with an initial guess for D and calculated the dye concentration 

profile inside the collagen over time. Next, the initial estimate of D was iteratively changed to 

minimize the sum square error (SSE) between the estimated dye concentration profile inside the 

collagen using the PDE and our experimental data using the extracted pixel values. This process 

was done by first defining a function with D as the input and SSE as the output and then estimating 

its local minima using the Nelder-Mead Simplex method.  
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4.3.  Results: Estimation of Diffusion Coefficient 

In our experiments, because of the small size of the source and the sink compartments, their 

concentrations were time dependent. As a result, instead of solving our PDE analytically, we 

solved it numerically. Our assumption for the dye concentration in side compartments was against 

the hypothesis used in an earlier study (37, 38). Therefore, we calculated the diffusion coefficient 

based on this earlier study’s hypothesis to compare their result with ours. We calculated the 

normalized root mean square error (NRMSE) of theoretical and experimental diffusion profiles 

over time for each model. To calculate NRMSE, we first calculated the root of MSE and then 

divided the result by the difference between the maximum and minimum concentration values of 

our experimental data. While the NRMSE was very high in the previous method, our results 

showed that our assumption in time dependency of source and sink concentrations were correct. 

Thus, the agreement between the theoretical and experimental diffusion profiles in our model 

showed the suitability of our proposed system to study cell migration in the presence of 

chemoattractants. 
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Figure 4.8. Difference between the theoretical and experimental diffusion profiles over time.  
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Chapter 5.  Preparation of Neutrophil-Like Cells 

After estimating the chemoattractant diffusion coefficient in dye experiments, we started our cell 

chemotaxis experiments. We first grew and cultured HL-60 cells and then differentiated them into 

dHL-60 cells by adding 5% DMSO to the CGM. The cells stayed in the DMSO-CGM solution in 

the incubator for 6 days. On day 6th, the percentage of differentiation was confirmed using one of 

the new up-regulating receptors, CD11b, by cell sorter device. Finally, after differentiation 

validation, we prepared the setup for confocal microscopy.  

 

5.1.  HL-60 Cell Culturing and Differentiation 

Materials: The human promyelocytic leukemia cell line HL60 were purchased from ATCC 

(Manassas, VA, cat. no. CCL-240). The cells were cultured in complete growth medium (CGM) 

consisting of 79% Iscove's Modified Dulbecco's Medium (IMDM) (ATCC, Manassas, VA, cat. 

no. 30-2005), 20% Fetal Bovine Serum (ATCC, Manassas, VA, cat. no.  30-2020), and 1% of 

penicillin/streptomycin (ThermoFisher Scientific, cat. no. 15070063). 

Culturing: Upon the arrival of the frozen cryovial, the vial was first warmed up in a 37°C water 

bath for about 2 minutes and then sprayed and cleaned with 70% ethanol. HL-60 cells were 

transferred to a centrifuge tube that contained 9.0 mL prewarmed CGM and spun at 200 × g for 7 

minutes. Supernatant was removed and the cell pellet resuspended in 10 mL CGM. Next, based on 

the counted number of cells using a hemocytometer, the cell density was reduced to a number 

between 2×105 and 5×105 viable cells/mL. The divided cells were transferred to 75-cm2 Coring 

cell culture flasks (T75) containing prewarmed incubated CGM, which allowed the pH level to 

reach an appropriate level for cells to survive and grow.  
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Every two to three days, 4 to 5 mL fresh CGM was added to each plate until their concentration 

reached 1×106 cells/mL. After the desired density was reached, the cell-media was centrifuged, 

and the resulting cell pellet diluted in fresh CGU and then divided in new T75 flasks for culturing 

continuation (53).   

Freezing: After the first few weeks of cell culturing, we used some of the flasks containing cells 

and changed their density to 2×106 - 5×106 cells/mL and froze them.  The cells were placed into 

cryovial of 1mL of CGM with 5% DMSO and left in a –80º freezer for 24 hours. The vials were 

then transferred into liquid nitrogen for later experiments.  

Differentiation: We created DMSO-CGM solution by adding 625 μL (1.25%) DMSO to a 50 mL 

CGM tube. We transferred the growing HL-60 cells to centrifuge tubes and spun them at 200 × g 

for 7 minutes. The supernatant was removed, and the pellet was mixed with our DMSO-CGM 

solution. The cell-media was then transferred to an incubator with 5% CO2 at 37°C. We added 

fresh DMSO-CSM solution to each flask every 2-3 days and waited for 6 days to verify the cell 

differentiation.  



46 

 

 

Figure 5.1. An example of HL-60 cells under transmission light microscopy. 

 

5.2.  Flow Cytometry Experiments 

Previous studies on HL60 cells discuss that HL60 cells start up-regulating different antigens such 

as CD11b, CD68, and CD88 when they are treated with 1-1.5% DMSO for 5-7 days (34, 61, 86, 

87). In our study, we compared untreated HL-60 cells with 6-day DMSO treated cells to calculate 

the percentage of CD11b antigen using Sony Cell Sorter SH800. The results from flow cytometry 

allowed us to confirm the differentiation of HL-60 cells into, neutrophil-like, dHL-60 cells. As 

mentioned above, CD11b was chosen as an expression of cell surface differentiation marker in our 

flow cytometry experiments, and the reason of this selection was because our selected 

chemoattractant, fMLP, binds to CD11b (30, 52, 61). Therefore, confirming the percentage of 

CD11b surface expression was important in our cell migration experiments. 
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Materials: the following materials were purchased to perform each experiment: FACS tubes: 

polypropylene 9×75 tubes (Fisher Scientific, cat. no. 14-956-3B), CD11b Monoclonal Antibody-

FITC (ThermoFisher Scientific, cat. no. CD11b01), Mouse IgG1-FITC (ThermoFisher Scientific, 

cat. no. MG101).  

Procedure: the following instructions were then followed to prepare the samples for flow 

cytometry:  

1. Centrifuge 7.5×105 viable cells of each group: untreated and 6-day treated HL-60 cells. 

Resuspend each tube in 500 μL FACS buffer (:1X PBS, 4% FBS, 0.05% sodium azide). 

2. Split each tube into three 100 μL in FACS tubes. Note: each cell culture was divided to 

three groups: control, isotype control, and antibody stained. We used the isotype control 

samples to determine the level of nonspecific binding in the experiment. 

3. Take two of the FACS tubes of each category and mix one with 1 μL anti-CD11b-FITC 

and one with Isotype-FITC. 

4.  Incubate all the tubes on ice for 1 hour in dark. 

5. Centrifuge each FACS tube at 200 × g for 7 minutes. 

6. Remove the FACS buffer and resuspend each tube with 500 μL FACS buffer by vortexing. 

7. Repeat the wash by centrifuging each tube at 200 × g for 7 minutes. 

8. Resuspend each sample in 300 μL FACS buffer and then keep in the dark until ready for 

the flow cytometer.    
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5.2.1.  Data Analysis and Results 

We repeated each flow cytometry experiment three times and analyzed the collected data using 

flowJo software. We first separated the live cells from the debris using the gating strategy in the 

density plot of the side scatter (SSC) versus forward scatter (FSC) profile for each sample (88). 

We then separated the single cells using the forward scatter- height (FSC-H) and forward scatter-

area (FSC-A) density plot. Figure 5.2 represents an example of gating strategy separating the live 

cells from dead cells and subsequently selecting single viable cells in one of the experiments.  

 

 

Figure 5.2. The live cells (gated region) were first separated from the dead cells and artifacts in the side scatter (SSC) 

and forward scatter (FSC) plot. Later, the single cells were separated from the clumps in the forward scatter-height 

and area plot. 
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Next, the analysis of CD11b expression surface level for each category, untreated and 6-day treated 

HL-60 cells, were analyzed for each experiment. Figure 5.3. shows the histogram of florescent 

intensity values for each category based on the percentage of CD11b expression level. The results 

from three flow cytometry experiments showed that while the expression rate of CD11b in HL-60 

cells was only 26.6 ± 6.01%, CD11b expression rate in dHL-60 cells was 94.47 ± 1.5%. This 

showed a significant increase in the rate of CD11b expression when treating the cells with DMSO 

for 6 days, making them an ideal candidate for running the chemotaxis experiments. 

 

 

Figure 5.3. An example of the results from flow cytometry detection of the cellular surface differential antigen CD11b 

for each category. 
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Figure 5.4. Comparison between the percentage of CD11 expression level of HL-60 cells and dHL-60 cells (6-day 

treated cells with DMSO). The results from a two sample one sided Welch’s t-test showed the percentages of CD11b 

expression levels in dHL-60 cells were significantly larger than CD11b expression in HL-60 cells. (p < 0.001)  
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Chapter 6.  Cell Migration Experiments 

6.1.  Sample Preparation 

10X PBS-glucose solution: to maintain cell viability, we added glucose when preparing a sample 

for confocal microscopy. To aim for 400 mg/dL of glucose in the collagen, we added 347.4 mg 

glucose to a 10 mL 10X PBS. The reason that we added 347.3 mg of glucose was that because we 

already had 52.61 mg/dL glucose in the collagen that came from 14.8 % CGM used in preparation 

of the collagen. CGM included 79% IMDM containing 450 mg/dL glucose (52.61 = 0.148 × 0.79 

× 450 mg/dL). Finally, to create equilibrium between all the three compartments, we used the PBS-

glucose solution instead of PBS for all their solution preparations. 

 dHL-60 cell staining: CellTracker Deep Red Dye (ex/em: 630⁄650) (ThermoFischer, cat. no. 

C34565) was used to stain the membrane of the cells. This fluorescent dye was a good candidate 

for tracking the cellular movements over time since it was nontoxic and kept its fluorescence 

property for hours.  

Before each experiment, we took out a CellTracker vial from a -20°C freezer and DMSO from the 

refrigerator. We allowed the dye and DMSO to warm up to room temperature. Next, we added 20 

µL melted DMSO to our vial to create a 1mM concentration. We diluted 5 µL of the solution with 

5 mL of 1X PBS-glucose solution and froze the rest of 15 µl in the freezer. We wrapped the tube 

that contained the dye solution in a foil and placed it in a water bath. At the same time, we took 

out the flask containing the cell-media from the incubator and transferred the culture to a conical 

centrifuge tube. The cells were centrifuged at 200 × g for 7 minutes and resuspended in the pre-

warmed dye solution. The cell-dye solution was then incubated in a 25 cm flask at 37°C. After for 

30 minutes, we centrifuged stained cells and resuspended the cells in CGM to create around 1.1-
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1.4×107 viable cells/mL. The cell-media was later used to create the collagen using the same 

procedure mentioned in chapter 4. 

Sink compartment solution: We mixed 100 μL 10X PBS-glucose, 148 μL CGM, and 742 μL DI 

water to create the solution for the sink solution.  

N-Formyl-Met-Leu-Phe (fMLP): We followed the below procedures to create 10 and 100 nM 

for the cell migration experiments: 

1. Take out the DMSO from the freezer and let it melt to room temperature.  

2. Mix 10 mg fMLP with 2.285 mL of DMSO to create a 10 mM fMLP solution. 

3. Mix 100 μL of the created solution and mix it with 900 μL DMSO to create a 1mM fMLP. 

4. Next, mix10 μL of the solution in the previous step with 990 μL DI water to make 10 μM 

fMLP. 

5. To change the concentration to 100 nM, mix 10 μL of 10 μM fMLP solution with 990 

μL PBS-CGM solution (100 μL 10X PBS, 148 μL CGM, 742 μL DI water, 347.6 mg 

glucose).  

6. To change the concentration to 10 nM, mix 10 μL of 10 μM fMLP solution from step 4 

with 900 μL DI water. This makes 1 μM fMLP solution.  Now, mix 10 μL of this solution 

with 990 μL PBS-CGM solution to create a 10 nM fMLP.  
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6.2.  Confocal Microscopy 

The stage setup for confocal microscopy for all the experiments was exactly the same as dye 

experiments mentioned in chapter 4. After everything was placed correctly,  we moved the stage 

to the edge of the collagen-chemoattractant compartment and found a z-slice of the collagen that 

contained at cells in our field of view. The moment we started recording, we also stopped the timer 

from when we poured the chemoattractant. We saved the duration between the insertion of 

chemoattractant and the start of data collection to estimate the correct concentration profile for our 

data analysis.  

All the images were collected with a 20X air objective (Plan S-Apo, NA 0.75, WD 0.65 mm) using 

a red diode (635 nm) laser. Every 3 mins, z-stack images of size 512 × 512  pixels (635 × 635 μm) 

were recorded for a duration of 2 hours. Each recorded z-stack contained 50 slice images with 1.22 

𝜇m between each slice. 

 

 

 

Figure 6.1. Graphical representation of collected z-stack images.  
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6.3.  Data Analysis 

As mentioned before, we performed cell migration experiments at three different initial 

chemoattractant concentrations: 0, 10, 100 nM fMLP. Each experiment was repeated at least three 

times and the recorded z-stack images were then processed and analyzed in MATLAB (64-bit, 

version 2019b). To correctly detect and track the movement of the cells, we first removed the shot 

noises in each image and then normalized the pixel values. Next, we automatically detected the 

cell centers using Otsu’s method. The cell centers were then used to track each cell over time using 

the Kalman filtering algorithm. Finally, because there was always a drift in the z-dimension,  we 

used the inactive cells that did not move throughout the experiments to calculate the amount of the 

drift in the z-dimension. We then adjusted the cell movements in the z direction based on our 

calculations. This adjustment allowed us to have a more accurate data analysis when estimating 

the cell velocities for each experiment. The details of each taken step in our data analysis is 

mentioned below. 

 

6.3.1.  Noise Filtering and Normalization 

We first uploaded the images into MATLAB and then used the pixel values in the red channel to 

convert them into two dimensional gray images. We then removed the shot noises by applying the 

median filtering technique. This method is one of the blurring techniques in computer vision that 

replaces each pixel value with the median value in a 3-by-3 matrix around the point. This pixel 

median value replacement reduces the intensity variation in the input picture. The below figure is 

an example of removing the shot noises in a Z-stack of an experiment using median filtering. To 
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create an easier visualization, all the Z-stack images at time zero are added together to create one 

single image. 

 

 

Figure 6.2. An example of removing the salt pepper noise in an image using the median filtering. 

 

Finally, all the pixel values in each image were normalized to a range of 0-1 by dividing each pixel 

by the maximum intensity value.  

 

6.3.2.  Cell Detection and Center Calculation 

The images were first changed into binary ones separating the cells from the background. The 

binary images were the results of changing the pixel values above an Otsu’s threshold to 1 and the 

rest to 0. Otsu’s algorithm separates the pixels into two foreground and background categories. It 
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looks at the histogram counts of the pixel values and automatically picks a point that separates the 

two peaks representing the foreground and background in the image. Using this selected point, we 

convert a gray scale image into a binary one by changing pixel values above this point to 1 and the 

ones below to 0. Here, we used one third of the calculated threshold to include the darker boundary 

parts of the cells creating the actual shape of the cells.  

 

 

Figure 6.3. The result of applying one third of Otsu's threshold in a blurred image. 

 

In the resulting binary images, the small bright spots from artifacts or particles from dead cells 

were eliminated. As the size of these artifacts were very small, first using the union-find algorithm 

the connected components were detected and then their total number of the white pixels were 

counted. Figure 6.4. shows an example of a binary image containing multiple connected 

components (cells). The union-find algorithm first assumes each white pixel is a separate cell by 

giving each pixel a unique label. It then starts scanning the image column wise and forming a 

union for any neighboring white pixels by connecting their unique labels into one common label. 
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In this example, the selected sub-image contains two separate cells, and the surroundings of the 

cells are just black pixels. Performing the union-find algorithm on this sub-image results in finding 

two labels (cells). 

 

 

Figure 6.4. An example of finding the connected components in a binary image. 

 

After applying the union-find method, the total number of white pixels in each connected 

component was counted and the ones that had less than 30 pixels were labeled as artifacts and 

removed from the images. Figure 6.5 represents an example before and after the removal of small 

white spots in a binary image. 
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Figure 6.5. An example of removing small bright spots that had less than 30 pixels in the binary image. 

 

The binary images belonging to the same z-stacks were then placed into 3D tensors to build the 

3D shapes of the cells. The surrounding white pixels around each pixel was searched to detect the 

connected components in the 3D space. Figure 6.6 is the graphical representation of the searched 

directions to create the cell shapes. After the detection of cell shapes, their centroids were 

calculated by taking the average value of the range of their pixel locations. These centroids were 

then used as the inputs of the cell tracker algorithm to trace the cell movements over time.  
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Figure 6.6. Any two pixels that are neighbors in one the three cases: faces, corners, or edges are considered part of the 

same cell. 

 

 

Figure 6.7. A visual representation of finding the cell centers from a Z-stack tensor. Here, to create an easier 

visualization, we have added all the Z-stack images at dt = 0 together to create a 2D view for the reader. 
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6.3.3.  Cell Tracking Algorithm 

The detected cell centroids from the previous step were used in Kalman filtering algorithm to track 

each cell over time (73, 75, 77, 89, 90). The Kalman filtering algorithm uses information from the 

past to predict the position of the cells in the next frame. The algorithm consists of two step 

processes: the first step predicts the location of the cells, and the second step uses the detected 

centroids to adjust the error in estimation of the cell location (75, 76, 90). As some cells leave and 

some enter the field of view during the imaging time, the algorithm keeps updating the tracks. If a 

cell is not found for four or more consecutive frames, the algorithm deletes its track assuming that 

the cell has left the field of view. After all the tracks are assigned, Kalman filter gives new labels 

to the unassigned detected centers assuming they have just entered the field of view. 

One of the parameters used in this method is the cost of forcing the algorithm to keep assigning 

the cell number over time. If this parameter is increased the rate of losing a cell increases but at 

the same time, if this number is lowered, then the rate of error in tracking increases. As a result, a 

balance between the two scenarios is required. In our dataset as we had many cells in the field of 

view where some kept leaving, entering, or disappearing for a few minutes, we increased the cost. 

This was done because the purpose of our study was just looking at the total movements not just a 

specific cell movement. 

As each experiment consists of 2000 images (40 frames and 50 Z-slice in each frame), each frame 

had more than 100 cells in it, labeling the cells manually was impossible. Therefore, calculating 

the exact accuracy rate of Kalman filtering algorithm was not feasible. As a result, we selected 40 

random cells in one of the 10 nM fMLP experiments (as 10 nM fMLP experiments had the most 
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active cells) and compared the assigned tracks manually. The results showed that the algorithm 

was able to correctly track the cells 92% of the time.  

 

6.3.4.  Cell Movement Classification 

Similar to other studies, we witnessed three types of movements in our cell migration experiments:  

• Inactive: Cells that stayed stationary at their place during the time of microscopy. A cell was 

labeled as inactive if its total movement in the XY plane was less than a pixel. The total amount 

of displacement in the Z coordinate was excluded in the calculations because we had small 

drifts in the Z direction while performing the experiments.  

• Lazy: Cells that moved less than a predefined threshold during the experiments.  

• Active: Cells that were our interest in analyzing their motility features as a function of 

chemoattractant concentration. These cells were divided into two subcategories: chemotaxis ( 

showing a general directed movement toward the chemoattractant source) and chemokinesis ( 

performing random movements inside the collagen).  

To separate the active cells from the lazy ones, we first adjusted the Z-drifts in all the detected cell 

centers to minimize the error in our later calculations. As inactive cells stayed stationary in their 

place and as collagen was colorless under the confocal microscopy, they became the best and only 

candidates to find the amount of drift at each time point. Hence, for each time point, we calculated 

the average displacement of inactive cells from ti to ti+1 and subtracted the result from all the centers 

at time ti+1. The below figure represents the results before and after adjusting the centers in the 

inactive cells. 
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Figure 6.8. An example of drifts in inactive cells in the Z-direction and their adjusted centers. Each color represents a 

tracked cell center over time. As it is shown on the left figure, the cells are shifting down as time passes by. We 

adjusted the drifts in all the tracked cells to minimize the error in our calculations cells displacements and velocities 

in our later calculations. 

 

After correcting the Z-drifts in all the cell centers, the below steps were taken to label the rest of 

the cells: 

1. Each cell displacement excluding the inactive ones for all the experiments: Control, 10, 

and 100 nM fMLP, were calculated. 

2. The lowest 25% quantile displacement in 10 nM fMLP experiments (that had the highest 

activity level) was calculated and set as the global threshold. 

3. The cells with a higher movement above the threshold were labeled as active and the ones 

with a lower total displacement as lazy. 

4. The active cells were then divided to two subcategories: 
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a. An active cell was labeled as chemotaxis if its total movement toward the source 

was higher than the absolute value of total movement in the Y and Z directions: 

∑ (𝑥𝑡+1 − 𝑥𝑡) 𝑘−1
𝑡=𝑖 > max (| ∑ (𝑦𝑡+1 − 𝑦𝑡)𝑘−1

𝑡=𝑖 |, | ∑ (𝑧𝑡+1 − 𝑧𝑡)𝑘−1
𝑡=𝑖 |), assuming the 

cell was seen from time i to k. 

b. If the above condition was not met, the cell was labeled as chemokinesis 

(performing random movement). 

 

       

 

Figure 6.9. An example of a cell moving toward the fMLP source inside the collagen matrix. 
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6.4.  Results  

6.4.1.  Cell Motility as a Function of Initial Chemoattractant Concentration 

We compared the percentage of cells that belonged to active, chemotaxis, or chemokinesis groups 

in experiments with various initial concentrations (0, 10, and 100 nM fMLP). The results showed 

that the cell motility in 10 nM fMLP was the highest among control, 10 and 100 nM fMLP 

experiments (Figure 6.10). In addition, cells showed both more chemotaxis and chemokinesis 

behavior when the initial concentration of fMLP was 10 nM.  

 

Figure 6.10. The percentage of cell activity state in different fMLP concentrations (0, 10, and 100 nM). 
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fMLP 

Concentration 
Total 

 

Inactive 

 

Lazy Active Chemotaxis Chemokinesis 

Control 596 389 (65%) 145 (24%) 62 (10%) 13 (2%) 49 (8%) 

10 nM 1263 297 (23%) 184 (15%) 782 (62%) 206 (16%) 576 (46%) 

100 nM 788 254 (32%) 131 (17%) 403 (51%)  93 (12%) 310 (39%) 

Table 6.1. This table represents the total number of the tracked cells in n = 3 experiments for each initial fMLP 

concentration. The highest percentage (in green) of cell motility was in 10 nM fMLP, and the lowest percentage (in 

red) of activity was observed in control experiments. 

 

We performed a statistical significance test to determine the association between the concentration 

of chemoattractant (0, 10, 100 nM) and the activity state of cells (inactive, lazy, and active). Since 

the two variables in this test (concentration and activity state) are categorical, we performed the 

chi-square test (r × c contingency table) to assess the statistical significance. The test showed that 

the activity state of the cell is statistically significantly dependent on the concentration of 

chemoattractant (p < 0.001). 

In addition, we performed the chi-square test to evaluate the association between the concentration 

of chemoattractant (10, 100 nM) and the proportion of migration behavior of active cells 

(chemotaxis vs chemokinesis). We did not include the control cells (0 nM fMLP) in this test since 

the number of active cells in this category was very small (Table 6.1). The results showed that the 

migration behavior of cells (i.e., whether an active cell performs chemotaxis or chemokinesis) is 

not statistically significantly dependent on the concentration of chemoattractant (p = 0.2201). 
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Although the proportion of active cells that performed chemotaxis was not statistically 

significantly dependent on the concentration of fMLP, the results from Student’s two sample one 

sided t-test showed that the average velocity in the X-axis (toward the chemoattractant source) in 

10 nM fMLP was statistically significantly higher than 100 nM fMLP (p < 0.001) (Figure 6.11). 

 

 

Figure 6.11. Average velocity toward the chemoattractant source (X-axis) in cells performing chemotaxis. The result 

from Student’s two sample one sided t-test showed that the average velocity toward the chemoattractant source in 10 

nM fMLP was statistically significantly higher than the 100 nM in the chemotaxis group (p < 0.001). 
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Additionally, we performed Student’s two sample one sided t-test between the 10 and 100 nM 

fMLP in the chemokinesis group to check whether the average speed in 10 nM fMLP was also 

higher than 100 nM. Since chemokinesis involves movements in random directions, we focused 

on the cell speed rather than velocity in specific directions. The results showed that the average 

speed in 10 nM was statistically significantly higher than 100 nM fMLP in the chemokinesis group 

(p < 0.001) (Figure 6.12). 

 

 

Figure 6.12. Average speed in cells performing chemokinesis. The result from Student’s two sample one sided t-test 

showed that the average speed in 10 nM fMLP was statistically significantly higher than the 100 nM (p < 0.001). 
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6.4.2.  Chemotaxis as a Function of Chemoattractant Concentration Gradient 

As the cells were more active in 10 nM fMLP experiments, we selected the data from this group 

in the rest of the analysis. Since we calculated the fMLP diffusion coefficient using the dye 

experiments as discussed in Chapter 4. , we were able to calculate the concentration and 

concentration gradient of fMLP in the 3D collagen matrix at any location and time by solving the 

diffusion equation. This enabled us to estimate the concentration and its gradient at each cell’s 

location in every time frame, allowing studying the relationship between these quantities and cell 

motility. 

In the chemotaxis group, we measured the correlation between cell velocities toward the source at 

any time point and the concentration gradient of the chemoattractant. As shown in Figure 6.13, 

understanding the correlation was difficult due to the large number and the wide distribution of 

data points . As a result, we discretized the X-coordinate to four equal sized bins and calculated 

the percentage of cells in each bin that showed movement in the positive X direction (Vx > 0). The 

results showed that this percentage increases up to a peak with the increase of concentration 

gradient and then decreases at very high concentration gradients, which means that the percentage 

of cells moving toward the source is highest at moderate concentration gradients (Figure 6.13). 
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Figure 6.13. Velocity toward the source in the chemotaxis group. Each point on the left figure represents the velocity 

measurement in a single displacement from one time frame to the next frame where the cell was observed. The 

concentration gradient was discretized to four equal bins simplifying the pattern of velocities in the right figure. The 

percentage of positive velocities in each bin was calculated and plotted on the right figure. 

 

Because the concentration gradient inside the collagen during the experiment was time-correlated, 

we did not know if the correlation patterns seen in Figure 6.13 were due to time or concentration 

gradient. Therefore, we improved our analysis by binning the data based on time to minimize the 
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confounding effect of time on the correlation analysis. Figure 6.14 shows a heatmap of the 

percentage of cells with positive velocity toward the source where the two axes represent 

concentration gradient and time. Among all rows and columns in the heatmap, only the first row 

and first column contained data points in all bins. The results from the first column which excludes 

time as the confounding factor showed the same pattern seen in the 2D plot in Figure 6.13. 

Furthermore, the first row showed a steady decline in the percentage of positive velocities over 

time, indicating the effect of time on cell movements at that concentration gradient. 

 

Figure 6.14. Heatmap of percentage of positive velocity toward source in chemotaxis. We binned the data based on 

time to minimize the confounding effect of time. The first column shows that the percentage of movements toward 
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the source is highest at moderate concentration gradients similar to Figure 6.13. In addition, the first row shows that 

the percentage decreases over time at low concentration gradients. Note: the bins containing less than 10 counts were 

grayed out and excluded from the analysis. 

 

We also performed the same analysis for cell mean velocities in the X direction in the chemotaxis 

group (Figure 6.15 and Figure 6.16). Similar to the pattern of positive velocities, the results showed 

that average velocity was positively correlated with the concentration gradient in low to moderate 

gradient values.  

 

 

Figure 6.15. Average velocity in each concentration gradient interval in chemotaxis group. Each point on the left 

figure represents a velocity measurement in a single displacement from one time frame to the next frame where the 
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cell was observed. The concentration gradient was discretized to four equal bins simplifying the pattern of velocities 

in the right figure where the average velocity in each bin was plotted. 

 

 

Figure 6.16. Heatmap of mean velocity toward source in chemotaxis. We binned the data based on time to minimize 

the confounding effect of time. The first column shows that the average velocity toward the source is highest at 

moderate concentration gradients similar to Figure 6.15. In addition, the first row shows that the velocity in cells has 

an overall decreasing pattern at later times. Note: the bins containing less than 10 counts were grayed out and excluded 

from the analysis.  
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6.4.3.  Chemokinesis as a Function of Chemoattractant Concentration 

Next, we analyzed the correlation between speed and fMLP concentration in the cells performing 

chemokinesis. Since chemokinesis involves movements in random directions, we focused on the 

cell speed rather than velocity in specific directions. We first investigated the dependence of 

average speed on chemoattractant concentration (Figure 6.17, left). Due to the large number and 

wide distribution of data points, we discretized the concentrations into four bins and calculated the 

average speed in each bin (Figure 6.17, right) which showed the highest speed occurring at 

moderate concentrations. 

Because concentration inside the collagen during the experiment was time-correlated, we did not 

know if the correlation patterns seen in Figure 6.17 were due to time or concentration. Therefore, 

we improved our analysis by binning the data based on time to minimize the confounding effect 

of time on the correlation analysis. Figure 6.18 shows a heatmap of the average speed in cells 

where the two axes represent concentration and time. Among all rows and columns in the heatmap, 

only the first row and the second column contained data points in all bins. The results from the 

first column which excludes time as the confounding factor showed the same pattern seen in the 

2D plot in Figure 6.17. In addition, the second row showed an overall decline in the average speed 

at later times within that concentration bin. 
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Figure 6.17. Speed as a function of chemoattractant concentration in chemokinesis group. Each point on the left figure 

represents the speed in a single displacement from one time frame to the next frame where the cell was observed. In 

the right figure, we discretized the concentration to four bins and calculated the average speed for each bin. The results 

showed that average speed was maximized at moderate concentration and was the lowest at very low or very high 

concentrations. 
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Figure 6.18. Heatmap of average speed in chemokinesis group. We binned the data based on time to minimize the 

confounding effect of time. The first column shows that the average speed is maximized at moderate concentrations 

when excluding the effect of time. In addition, rows two and three show that the average speed is the highest at earlier 

time points of the experiment within each concentration bin. Note: the bins containing less than 10 counts were grayed 

out and excluded from the analysis. 
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Chapter 7.  Discussion 

In this study we aimed to understand neutrophil-like cell migration behavior in the presence of a 

chemoattractant in an in-vitro environment. We designed an experimental setup to allow cell 

migration in a 3D environment composed of three compartments: chemoattractant source and sink 

on the sides and a collagen matrix with seeded cells in the middle compartment. To identify the 

pattern of cell migration as a function of chemoattractant concentration and time, we aimed to 

calculate the chemoattractant concentration and its gradient at any location and time inside the 

collagen, which required an estimate of the diffusion coefficient of our chemoattractant, fMLP, 

inside the collagen matrix. To achieve this, we investigated the diffusion of a fluorescent dye with 

a similar molecular weight as fMLP in our 3D system, measured its diffusion coefficient, and used 

it to solve the diffusion equation to quantify the chemoattractant concentration at any location and 

time.  

To perform cell migration experiments, we used differentiated HL-60 (dHL-60) cells as an 

alternative of using primary neutrophils. Working with HL-60 cells is much simpler as they grow 

very quickly in-vitro with simple maintenance as opposed to short lived neutrophils that cannot be 

grown in-vitro. The cells were differentiated by adding DMSO to the cell-media for 6 days prior 

to performing the experiments. Using flow cytometry experiments, we showed that differentiating 

HL-60 cells upregulated the expression level of CD11b, the antigen that binds to fMLP. This result 

indicated that the selection of dHL-60 cells was an appropriate choice to study the cell migration 

in presence of fMLP. 

After differentiation of HL-60 cells to neutrophil-like (dHL-60) cells, we examined how much 

fMLP was needed to be added to the source to maximize the percentage of cell activity in the 
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experiments. Hence, we assessed cell experiments by adding three different initial fMLP 

concentrations (0, 10, and 100 nM) to the source and let it diffuse through the collagen with the 

seeded cells. We then automatically detected the cell centers and tracked the centers over time to 

calculate the total amount of displacement in each cell along each of the axes. Using the total 

amount of movements observed in each cell, we divided the cells into three different categories: 

inactive, lazy, and active. The percentage of active cells in each fMLP concentration (0, 10, and 

100 nM) experiment was then calculated and compared, showing that the initial concentration of 

10 nM fMLP at the source was optimal in creating cell motility.  

Next, we separated the behavior of the active cells into two subcategories: chemotaxis (general 

directed movements toward the source) and chemokinesis (random movement in the collagen). 

We examined the total percentage of cells in each subcategory in the experiments (0, 10, and 100 

nM fMLP) as well. 10 nM fMLP was again the winner in both of the subcategories representing 

that the experiments done in 10 nM concentration were the most suitable for studying both the 

chemotaxis and chemokinesis cell behaviors. 

In addition to comparing the total number of cells in each category, we were interested to see 

whether the initial fMLP concentration also had an effect on the velocity and speed in chemotaxis 

and chemokinesis groups, respectively. The results from calculating Student’s two sample one 

sided t-test showed that the average velocity in the X-axis (toward the chemoattractant source) in 

cells performing chemotaxis in 10 nM fMLP was statistically significantly higher than 100 nM 

fMLP (p < 0.0001). It is important to note that we excluded the control (0 nM fMLP) experiments 

in our analysis as the number of active cells in the control (0 nM) experiments was very low. We 

also analyzed the average speed in the cells performing chemokinesis in 10 and 100 nM fMLP 

using Student’s two sample one sided t-test. The results demonstrated that average speed in 10 nM  
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fMLP experiments were statistically significantly higher than 100 nM experiments. These findings 

indicated that releasing high amounts of chemoattractants from the source neither caused more 

cells to migrate nor caused the cells to migrate with a higher velocity or speed, implying that higher 

amounts of chemoattractant does not necessarily increase the cell motility. Moreover, based on the 

results, we concluded that the cell motility increases up to a point with the increase of fMLP 

concentration and then decreases at higher concentrations. This suggested that the peak of cell 

motility occurs below 100 nM fMLP. Thus, for future studies, we recommend choosing a 

concentration below 100 nM fMLP to obtain the highest cell motility in the environment. 

As 10 nM fMLP experiments showed the most suitable environment for cell activity, we selected 

the data from this group to look at the pattern of cell motility as a function of chemoattractant 

concentration and its gradient over time. In the chemotaxis group, the correlation between the 

concentration gradient of the chemoattractant and the cell velocities toward the source showed that 

the cells expressed higher positive velocity in the X-axis (moving toward the source) at the 

moderate concentration gradients. The result showed that at very high concentration gradients, not 

only a lower percentage of cells exhibit positive velocity toward the source, but they show a lower 

average velocity as well. Next, in the chemokinesis group, we analyzed the correlation between 

the fMLP concentration and the cell speeds in the 3D environment. These results also showed that 

cell speeds were maximized at moderate chemoattractant concentrations. All of our results agreed 

with our previous conclusion that in general, moderate fMLP concentrations (e.g., 10 nM) can lead 

to a higher cell activity level than high concentrations (e.g., 100 nM). 

Additionally, as the chemoattractant concentration during the experiments was time-correlated, we 

could not identify whether the decrease in cell activity at higher concentrations and its gradients 

were due to other underlying variables such as: the length of the experiments, or not having a 
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supply of CO2 during the experiments to maintain a balanced pH level in the collagen. Thus, to 

minimize the confounding effect of time on the analysis we binned the data based on time. The 

correlation analysis showed two different results: 

1. In the same time bin, all the cell activity indicators were maximized at moderate fMLP 

concentrations and its gradient. This result was consistent with our previous analysis when 

we compared the cell activity indicator with fMLP concentration and its gradient across all 

times. From these analyses we concluded that, even after excluding the effect of time, the 

higher amounts of chemoattractant and its gradient have a negative effect on the migration 

of the cells and they reduce the velocity toward the chemoattractant source and speed in 

the chemotaxis and chemokinesis groups, respectively. 

2. In the same concentration or its gradient bin, the results showed an overall decline in the 

average cell velocity in the chemotaxis and average cell speed in the chemokinesis groups. 

The exact reason for this finding is not clear. The decrease in cell activity indicators could 

have been due to the lack of CO2 supply during the experiments, or simply because the 

cells were in a suboptimal in-vitro environment for a long period of time, causing the loss 

of cell motility over time. 

In summary, although previous studies performed cell migration experiments and described the 

behavior of neutrophils or dHL60 cells in 1D or 2D assays in the presence of chemoattractants (2, 

30, 34, 35, 53), their design limited the full 3D cell movements in-vitro. In our experimental setup, 

we allowed cells to move and change their shape in a three-dimensional space, possibly revealing 

results more relevant to the in-vivo cell behavior. In addition, our computational model not only 

automatically detected and tracked the cells in the 3D environment, but it allowed us to study the 
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cell activity indicators with high spatiotemporal resolution of concentration and its gradient as 

well.   
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Chapter 8.  Conclusion  

Neutrophils, among all cells in the immune system, are the first to arrive at the site of infection to 

combat pathogens(1-4). In the presence of chemoattractants, these cells start a directed migration 

toward the damaged area. As they approach the injured area, they transmigrate to the tissue by 

squeezing in between endothelial cells and continuing migrating toward the higher chemoattractant 

concentrations to locate and destroy the invading pathogens. Therefore, understanding the 

neutrophil patterns of migration in presence of chemoattractants could ultimately lead to 

developing treatments for impaired immune cell diseases. 

In this study, we aimed in understanding the patterns of neutrophil migration in the presence of N-

Formyl-Met-Leu-Phe (fMLP) chemoattractant. But because neutrophils are short lived cells and 

they cannot be cultured in-vitro, we used HL-60 cells in our experiments. HL-60 cells grow in-

vitro and double in suspension every few days and they can show similar activity behaviors as 

neutrophils when differentiated. In our research, by performing flow cytometry experiments we 

showed that treated HL-60 cells with DMSO make a proper alternative to study cell migration. 

We designed a 3D chamber that contained three compartments creating a diffusion of fMLP from 

a side compartment to the middle compartment containing a collagen with seeded cells. Our 

experimental setup allowed us to create a concentration gradient in the environment to study the 

behavior of cells over time. In addition to creating 3D experimental setups, we designed a 

computational model that was able to automatically detect and track the cells in a 3D environment 

and predict the chemoattractant concentration and its gradient at any location and time. Both the 

experimental and computational designs allowed us to study the patterns of cell migration in a high 

spatiotemporal resolution of concentration and its gradient. 
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By analyzing our data, we divided the cells into inactive, lazy, and active cells and evaluated the 

association between the fMLP concentration (0, 10, 100 nM) and the cell activity state (inactive, 

lazy, and active). The results showed that the most suitable initial fMLP concentration for the 

active cells was 10 nM. At this concentration, not only the total number of active cells was 

maximized, but the cells also showed both the highest chemotaxis and chemokinesis behaviors. 

These results indicated that the initial concentration of 10 nM fMLP at the source was optimal in 

creating cell motility. In addition, further analysis of 10 nM fMLP experiments showed that as the 

fMLP concentration and its gradients increased up to moderate values (5 to 7 nM fMLP), the 

velocity in X-axis (toward the chemoattractant source) in the chemotaxis and speed in the 

chemokinesis groups also increased. However, at high amounts of chemoattractants, the velocity 

in X-axis in the chemotaxis and speed in the chemokinesis groups in the 3D environment decrease. 

This observation may perhaps point to the high amounts of chemoattractants present in the body 

as a possible cause of the inadequate neutrophil migration in severe sepsis. Furthermore, this 

suggests that levels of chemoattractants in the body might need to be moderated to have a 

beneficial impact in immune dysfunction diseases. Our results suggest that studying neutrophil 

migration as a function of chemoattractant concentrations could open a door to understand the 

neutrophil dysfunction in different diseases such as sepsis (8, 9), COPD (22-25), or severe COVID-

19 (26-28) and therefore possibly contribute to designing treatments in the future. 

Finally, we present possible improvements for future studies based on our learnings from our 

experiments: 

• The size of the chemoattractant sink and the source could be increased to maintain their 

concentrations constant over time. This will remove the time dependency of the 
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chemoattractant concentration profile and will significantly simplify the computational 

model. 

• Because of the lack of CO2 in our experimental setup, we could not determine the reason 

behind the decline of cell motility over time. Therefore, future studies could benefit from 

supplying CO2 to the environment during the experiments and validating the cell motility 

with and without CO2. 

• Future studies could perform similar experiments with primary neutrophils and compare 

the results with dHL-60 cells. This could confirm that dHL-60 could serve as an appropriate 

model to study neutrophil migration. 

• While applying the same computational model, future studies can modify our experimental 

model to investigate how cells behave in the presence of multiple chemoattractants in a 3D 

environment. For example, using multichannel pipettes, two chemoattractants can 

simultaneously be added to the two side compartments, diffusing through the collagen 

matrix located in the middle compartment while cell movements are being captured and 

analyzed in the collagen. 
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