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A Primer of Swarm Equilibria∗

Andrew J. Bernoff† and Chad M. Topaz‡

Abstract. We study equilibrium configurations of swarming biological organisms subject to exogenous and
pairwise endogenous forces. Beginning with a discrete dynamical model, we derive a variational
description of the corresponding continuum population density. Equilibrium solutions are extrema
of an energy functional and satisfy a Fredholm integral equation. We find conditions for the extrema
to be local minimizers, global minimizers, and minimizers with respect to infinitesimal Lagrangian
displacements of mass. In one spatial dimension, for a variety of exogenous forces, endogenous
forces, and domain configurations, we find exact analytical expressions for the equilibria. These
agree closely with numerical simulations of the underlying discrete model. The exact solutions
provide a sampling of the wide variety of equilibrium configurations possible within our general
swarm modeling framework. The equilibria typically are compactly supported and may contain
δ-concentrations or jump discontinuities at the edge of the support. We apply our methods to
a model of locust swarms, which in nature are observed to consist of a concentrated population
on the ground separated from an airborne group. Our model can reproduce this configuration;
quasi-two-dimensionality of the model plays a critical role.

Key words. swarm, equilibrium, aggregation, integrodifferential equation, variational model, energy, minimizer,
locust
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1. Introduction. Biological aggregations such as fish schools, bird flocks, bacterial colo-
nies, and insect swarms [2, 29, 30] have characteristic morphologies governed by the group
members’ interactions with each other and with their environment. The endogenous inter-
actions, i.e., those between individuals, often involve organisms reacting to each other in an
attractive or repulsive manner [10, 27] when they sense each other either directly by sound,
sight, smell, or touch, or indirectly via chemicals, vibrations, or other signals. A typical mod-
eling strategy is to treat each individual as a moving particle whose velocity is influenced
by social (interparticle) attractive and repulsive forces [25, 28]. In contrast, the exogenous
forces describe an individual’s reaction to the environment, for instance a response to gravity,
wind, a chemical source, a light source, a food source, or a predator. The superposition of
endogenous and exogenous forces can lead to characteristic swarm shapes; these equilibrium
solutions are the subject of our present study.
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Figure 1. Numerical simulation of the two-dimensional locust swarm model of [34], given by (1.1). The
downwind coordinate is x and the vertical (above-ground) coordinate is z. (a) The simulation begins with a
randomly distributed initial state. (b) With gravity but no wind (U = 0), the swarm’s equilibrium is a bubble-
like shape on the ground, consisting of a dense, grounded group of locusts and an airborne group. The two are
separated by a gap that is void of insects. (c) For the full simulation with wind, by the time t = 2, the swarm
again coheres into a bubble and travels to the right with a rolling motion. Individuals in the back of the swarm
take off to join the flying group and individuals reaching the front of the flying swarm land on the ground, where
they remain motionless until taking off again. (d) The trajectory of one individual locust from t = 0 to t = 20
demonstrates the periodic landing and takeoff. The parameters in (1.1) are N = 200, G = 0.5, L = 10, g = 1,
and U = 1.

More specifically, our motivation is rooted in our previous modeling study of the swarming
desert locust Schistocerca gregaria [34]. In some parameter regimes of our model (presented in
a moment), locusts self-organize into swarms with a peculiar morphology, namely a bubble-like
shape containing a dense group of locusts on the ground and a flying group of locusts overhead;
see Figure 1(b)–(c). The two groups are separated by an unoccupied gap. With wind, the
swarm migrates with a rolling motion. Locusts at the front of the swarm fly downwards and
land on the ground. Locusts on the ground, when overtaken by the flying swarm, take off
and rejoin the flying group; see Figure 1(c)–(d). The presence of an unoccupied gap and the
rolling motion are found in real locust swarms [1, 37]. As we will show throughout this paper,
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214 ANDREW J. BERNOFF AND CHAD M. TOPAZ

features of swarms such as dense concentrations and disconnected components (that is, the
presence of gaps) arise as properties of equilibria in a general model of swarming.

The model of [34] is

ẋi =

⎛⎝ N∑
j=1

q(|rij |) rij
|rij |

⎞⎠ − gêz + U êx, i = 1, . . . , N,(1.1a)

q(r) = Ge−r/L − e−r, rij = xj − xi,(1.1b)

which describes N interacting locusts with positions xi. The direction of locust swarm migra-
tion is strongly correlated with the direction of the wind [31, 37] and has little macroscopic
motion in the transverse direction, so the model is two-dimensional; i.e., xi = (xi, zi), where
the x coordinate is aligned with the main current of the wind and z is a vertical coordinate.
As the velocity of each insect is simply a function of position, the model neglects inertial
forces. This so-called kinematic assumption is common in swarming models, and we discuss
it further in section 2.1.

The first term on the right-hand side of (1.1) describes endogenous forces; q(r) measures
the force that locust j exerts on locust i. The first term of q(r) describes attraction, which
operates with strength G over a length scale L and is necessary for aggregation. The second
term is repulsive, and operates more strongly and over a shorter length scale in order to
prevent collisions. Time and space are scaled so that the repulsive strength and length scale
are unity. The second term on the right-hand side of (1.1) describes gravity, acting downwards
with strength g. The last term describes advection of locusts in the direction of the wind with
speed U . Furthermore, the model assumes a flat impenetrable ground. Since locusts rest and
feed while grounded, their motion in that state is negligible compared to their motion in the
air. Thus we add to (1.1) the stipulation that grounded locusts whose vertical velocity is
computed to be negative under (1.1) remain stationary.

As mentioned above, for some parameters, (1.1) forms a bubble-like shape. This can occur
even in the absence of wind, that is, when U = 0; see Figure 1(b). The bubble is crucial,
for it allows the swarm to roll in the presence of wind. As discussed in [34], states which
lack a bubble in the absence of wind do not migrate in the presence of wind. Conditions for
bubble formation, even in the equilibrium state arising in the windless model, have not been
determined; we will investigate this problem.

Some swarming models adopt a discrete approach—as in our locust example above—
because of the ready connection to biological observations. A further advantage is that sim-
ulation of discrete systems is straightforward, requiring only the integration of ordinary dif-
ferential equations. However, since biological swarms contain many individuals, the resulting
high-dimensional systems of differential equations can be difficult or impossible to analyze.
Furthermore, for especially large systems, computation, though straightforward, may become
a bottleneck. Continuum models are more amenable to analysis. One well-studied contin-
uum model is that of [8], a partial integrodifferential equation model for a swarm population
density ρ(x, t) in one spatial dimension:

(1.2) ρt + (ρV )x = 0, V (x) =

∫
R

q(x− y)ρ(y) dy.

D
ow

nl
oa

de
d 

06
/1

2/
13

 to
 1

34
.1

73
.1

30
.9

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A PRIMER OF SWARM EQUILIBRIA 215

The density ρ obeys a conservation equation, and V is the velocity field, which is determined
via convolution with the antisymmetric pairwise endogenous force q, the one-dimensional
analogue of a social force like that in (1.1).

The general model (1.2) displays at least three solution types, as identified in [9]: Popula-
tions may concentrate to a point, reach a finite steady state, or spread. In [23], we identified
conditions on the social interaction force q for each behavior to occur. These conditions map
out a “phase diagram” dividing parameter space into regions associated with each behavior.
Similar phase diagrams arise in a dynamic particle model [14] and its continuum analogue [12].
Models that break the antisymmetry of q (creating an asymmetric response of organisms to
each other) display more complicated phenomena, including traveling swarms [26].

Many studies have sought conditions under which the population concentrates to a point
mass. In a one-dimensional domain, collapse occurs when the force q is finite and attractive
at short distances [9]. The analogous condition in higher dimensions also leads to collapse
[3, 4, 5, 6, 7]. One may also consider the case when the velocity includes an additional term
describing an exogenous force,

(1.3) V (x) =

∫
R

q(x− y)ρ(y) dy + f(x).

In this case, equilibrium solutions consisting of sums of point-masses can be linearly and
nonlinearly stable, even for social forces q that are repulsive at short distances [16, 17, 32].
These results naturally lead to the question of whether a solution can be continued past the
time at which a mass concentrates. Early work on a particular generalization of (1.2) suggests
that the answer is yes [21, 22]. For (1.2) itself in arbitrary dimension, there is an existence
theory beyond the time of concentration [11].

Some of the concentration solutions mentioned above are equilibrium solutions. However,
there may be classical equilibria as well. For most purely attractive q, the only classical
steady states are constant in space, as shown via a variational formulation of the steady
state problem [9]. However, these solutions are nonbiological, as they contain infinite mass.
There do exist attractive-repulsive q’s which give rise to compactly supported classical steady
states of finite mass. For instance, in simulations of (1.2), we found classical steady-state
solutions consisting of compactly supported swarms with jump discontinuities at the edges of
the support [23]. In our current work, we will find equilibria that contain both classical and
nonclassical components.

Many of the results reviewed above were obtained by exploiting the underlying gradient
flow structure of (1.3). There exists an energy functional

(1.4) W [ρ] =
1

2

∫
R

∫
R

ρ(x)ρ(y)Q(x− y) dx dy +

∫
R

F (x)ρ(x) dx,

which is minimized under the dynamics. This energy can be interpreted as the continuum
analogue of the summed pairwise energy of the corresponding discrete (particle) model [8, 11,
39]. We will also exploit this energy to find equilibrium solutions and study their stability.

In this paper, we focus on equilibria of swarms and ask the following questions:
• What sorts of density distributions do swarming systems make? Are they classical or

nonclassical?
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216 ANDREW J. BERNOFF AND CHAD M. TOPAZ

• How are the final density distributions reached affected by endogenous interactions,
exogenous forces, boundaries, and the interplay of these?

• How well can discrete and continuum swarming systems approximate each other?
To answer these questions, we formulate a general mathematical framework for discrete, in-
teracting swarm members in one spatial dimension, also subject to exogenous forces. We then
derive an analogous continuum model and use variational methods to seek minimizers of its
energy. This process involves solution of a Fredholm integral equation for the density. For
some choices of endogenous forces, we are able to find exact solutions. Perhaps surprisingly,
they are not always classical. In particular, they can involve δ-function concentrations of mass
at the domain boundary.

The rest of this paper is organized as follows. In section 2, we create the mathematical
framework for our study, and derive conditions for a particular density distribution to be an
equilibrium solution and to be stable to various classes of perturbations.

In sections 3 and 4, we demonstrate different types of swarm equilibria via examples.
In section 3, we focus on purely repulsive endogenous interactions. We consider a bounded
domain with no exogenous forces, a half-line subject to gravitational forces, and an unbounded
domain subject to a quadratic exogenous potential, modeling attraction to a light, chemical,
or nutrient source. For all three situations, we find exact solutions for swarm equilibria. For
the first two examples, these equilibria consist of a density distribution that is classical in
the interior of the domain but contains δ-functions at the boundaries. For the third example,
the equilibrium is compactly supported with the density dropping discontinuously to zero
at the edge of the support. For all three examples, we compare analytical solutions from
the continuum framework to equilibria obtained from numerical simulation of the underlying
discrete system. The two agree closely even for small numbers of discrete swarm members.
Section 4 is similar to section 3, but we now consider the more complicated case of endogenous
interactions that are repulsive on short length scales and attractive over longer ones; such
forces are typical for swarming biological organisms.

In section 5, we revisit locust swarms, focusing on their bubble-like morphology as de-
scribed above and on the significance of dimensionality. In a one-dimensional model corre-
sponding to a vertical slice of a wide locust swarm under the influence of social interactions
and gravity, energy minimizers can reproduce concentrations of locusts on the ground and a
group of locusts above the ground, but there cannot be a separation between the two groups.
However, a quasi-two-dimensional model accounting for the influence of the swarm’s horizon-
tal extent does, in contrast, have minimizers which qualitatively correspond to the biological
bubble-like swarms.

2. Mathematical formulation.

2.1. Discrete model. Consider N identical interacting particles (swarm members) in one
spatial dimension with positions xi. Assume that motion is governed by Newton’s law, so
that acceleration is proportional to the sum of the drag and motive forces. We will focus on
the case where the acceleration is negligible and the drag force is proportional to the velocity.
This assumption is appropriate when drag forces dominate momentum, commonly known in
fluid dynamics as the low Reynolds number or Stokes flow regime. In the swarming literature,
the resulting models, which are first-order in time, are known as kinematic. Kinematic models
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have been used in numerous studies of swarming and collective behavior, including [13, 15,
18, 19, 20, 27, 28, 34, 35, 36, 38]. While neglecting inertia is at best qualitatively correct
for insect flight, the resulting kinematic models do reproduce many morphological features of
locust swarms [34].

We now introduce a general model with both endogenous and exogenous forces, as with
the locust model (1.1). The endogenous forces act between individuals and might include
social attraction and repulsion; see [28] for a discussion. For simplicity, we assume that the
endogenous forces act in an additive, pairwise manner. We also assume that the forces are
symmetric; that is, the force induced by particle i on particle j is the opposite of that induced
by particle j on particle i. Exogenous forces might include gravity, wind, and taxis towards
light or nutrients.

The governing equations take the form

dxi
dt

= Vi(x1, . . . , xN ),(2.1a)

Vi(x1, . . . , xN ) =
N∑
j=1

j �=i

mq(xi − xj) + f(xi), m = M/N.(2.1b)

Eventually we will examine the governing equations for a continuum limit of the discrete
problem. To this end, we have introduced a social mass m which scales the strength of the
endogenous forces so as to keep them bounded for N → ∞. M is the total social mass of
the ensemble. Equation (2.1b) defines the velocity rule; mq is the endogenous velocity that
one particle induces on another, and f is the exogenous velocity. From our assumption of
symmetry of the endogenous forces, q is odd and in most realistic situations is discontinuous
at the origin.

Each force, f and q, can be written as the gradient of a potential under the relatively minor
assumption of integrability. As pointed out in [28], most of the specific models for mutual
interaction forces proposed in the literature satisfy this requirement. Many exogenous forces—
including gravity and common forms of chemotaxis—do so as well. Under this assumption,
we rewrite (2.1) as a gradient flow,

(2.2)
dxi
dt

= Vi(x1, . . . , xN ) ≡ −∇iW(x1, . . . , xN ),

where the potential W is

W(x1, . . . , xN ) =
1

2

N∑
i=1

N∑
j=1
i �=j

mQ(xi − xj) +

N∑
k=1

F (xk),(2.3a)

Q(z) = −
∫ z

q(s) ds, F (z) = −
∫ z

f(s) ds.(2.3b)

The double sum describes the endogenous forces, and the single sum describes the exogenous
forces. Also, Q is the mutual interaction potential, which is even, and F is the exogenous
potential. The flow described by (2.2) will evolve towards minimizers of the energy W.
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218 ANDREW J. BERNOFF AND CHAD M. TOPAZ

Up to now, we have defined the problem on R. In order to confine the problem to a
particular domain Ω, one may use the artifice of letting the exogenous potential F tend to
infinity on the complement of Ω.

While this discrete model is convenient from a modeling and simulation standpoint, it is
difficult to analyze. Presently, we will derive a continuum analogue of (2.1). This continuum
model will allow us to derive equilibrium solutions and determine their stability via the calculus
of variations and integral equation methods.

2.2. Continuum model. To derive a continuum model, we begin by describing our evolv-
ing ensemble of discrete particles with a density function ρ(x, t) equal to a sum of δ-functions.
(For brevity, we suppress the t dependence of ρ in the following discussion.) Our approach here
is similar to that of [8]. These δ-functions have strength m and are located at the positions
of the particles:

(2.4) ρ(x) =

N∑
i=1

mδ(x− xi).

The total mass is

(2.5) M =

∫
Ω
ρ(x) dx = mN,

where Ω is the domain of the problem. Using (2.4), we write the discrete velocity Vi(x1, . . . , xN )
in terms of a continuum velocity V (x). That is, we require Vi(x1, . . . , xN ) = V (xi), where

(2.6) V (x) =

∫
Ω
q(x− y)ρ(y) dy + f(x).

By conservation of mass, the density obeys

(2.7) ρt + (ρV )x = 0,

with no mass flux at the boundary. We now introduce an energy functional W [ρ], which is
analogous to the discrete potential W in (2.3a):

(2.8) W [ρ] =
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)Q(x − y) dx dy +

∫
Ω
F (x)ρ(x) dx.

This expression follows from the discrete potential,

(2.9) W [ρ] = mW(x1, . . . , xN ),

remembering the δ-function definition of the density (2.4). The rate of energy dissipation is

(2.10)
dW [ρ]

dt
= −

∫
Ω
ρ(x) {V (x)}2 dx,

where we assume that there is no mass flux at the boundary of Ω. A consequence of this
boundary condition is that, under some conditions, mass may concentrate at the boundary of
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the domain, and we will later see this manifest. Since energy is dissipated, we conclude that
stable equilibria correspond to minimizers of W .

Imagine now that the energy (2.8) is defined for any density distribution ρ, not just
ensembles of δ-functions. We will find minimizers for the continuous energy (2.8) and show
that they approximate solutions to the discrete problem in the limit of large N . To establish a
correspondence between the two frameworks, consider a continuous distribution ρc with total
mass M . Define the cumulative density function

(2.11) Ψc(x) =

∫ x

x0

ρc(s) ds,

where the dummy coordinate x0 is taken to the left of the support of ρc. We seek a discrete
approximation of N δ-functions,

(2.12) ρd(x) =
N∑
i=1

mδ(x − xi).

The associated cumulative density function Ψd is

(2.13) Ψd(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, x < x1,

m[1/2 + (i− 1)], x = xi, i = 1, . . . , N,

im, xi < x < xi+1, i = 1, . . . , N − 1,

M, x > xN ,

where we have used the convention that integrating up to a δ-function yields half the mass
of integrating through it. To establish our correspondence, we require that Ψc(xi) = Ψd(xi),
which in turn determines the particle positions xi. As N → ∞ for fixed M , this step function
Ψd converges uniformly to Ψc. The correspondence goes in the opposite direction as well.
We can begin with an ensemble of δ-functions ρd placed at the positions of discrete swarm
members, as shown in Figure 2(a). We can find the corresponding cumulative density Ψd via
(2.13) and interpolate to construct the continuum cumulative density Ψc. The functions Ψd

and Ψc are shown as the dotted step function and the solid curve, respectively, in Figure 2(b).
We may then differentiate to find an approximation ρc, as shown in Figure 2(c). We use this
correspondence in sections 3 through 5 to compare analytical results for the continuum system
(2.7) with numerical simulations of the discrete system (2.1).

We close this subsection by reiterating why we have made a correspondence between
the discrete and continuum systems. We use the continuous framework to find equilibrium
solutions analytically via variational and integral equation methods. The correspondence
above allows a direct comparison to numerical simulation of the discrete system.

2.3. Local and global minimizers. We use a variational calculation to determine condi-
tions for a density distribution to be a minimizer of W . Our starting point is the energy
functional (2.8) subject to the mass constraint (2.5). Let

(2.14) ρ(x) = ρ̄+ ερ̃(x).
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Figure 2. Schematic correspondence between discrete and continuum systems in one spatial dimension.
(a) Positions of individual swarm members, modeled as a sum of δ-functions per (2.12). (b) Cumulative density
distributions. The discrete cumulative density Ψd(x) appears as a step function (dotted curve) per (2.13). The
continuum cumulative density Ψc(x) (solid curve) is obtained by interpolating Ψd(x) such that the two agree
at the positions of the swarm members (dots). To enable closer viewing of part of the graph, the inset shows
a blow-up of the boxed area. (c) Continuum density ρc(x) corresponding to (a), obtained by differentiating the
cumulative density Ψc(x) in (b).

Here ρ̄ is an equilibrium solution of mass M and ερ̃ is a small perturbation of zero mass, so
we have ∫

Ω
ρ̄(x) dx = M,(2.15a) ∫

Ω
ρ̃(x) dx = 0.(2.15b)
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Inspired by biological observations of swarms, we focus on equilibria with finite extent and
take the support of ρ̄ to be a finite subset of the domain Ω. We refer to the support of ρ̄ as
Ωρ̄. This assumption, combined with the fact that the density is nonnegative, restricts the
perturbation ρ̃ to be nonnegative on Ωρ̄

c, the complement of Ωρ̄.
We write

(2.16) W [ρ] = W [ρ̄] + εW1[ρ̄, ρ̃] + ε2W2[ρ̃, ρ̃],

where W1 and W2 are the first and second variations, respectively. This expression is exact
because W is quadratic in ρ (see (2.8)). We analyze these variations to determine necessary
and sufficient conditions for a candidate solution ρ̄ to be a minimizer of W .

Our strategy is to consider two classes of perturbations ρ̃. First, we consider perturbations
whose support lies in Ωρ̄. In order for ρ̄ to be extremal, W1 must vanish. For it to be a
minimizer, W2 must be positive. Since (2.16) is exact, W2 > 0 guarantees that ρ̄ is both a
local and global minimum with respect to this first class of perturbations.

The second class of perturbations we consider (of which the first class is a subset) consists
of perturbations on the entire domain Ω. As mentioned above, these perturbations must be
nonnegative in Ωρ̄

c in order to maintain positivity of ρ. A necessary condition for ρ̄ to be a
local minimizer is that W1 ≥ 0 for this class of perturbations. If, in addition, W2 remains
positive for this larger class of perturbations, then ρ̄ is a global minimizer as well.

We derive the first variation W1 by substituting (2.14) into (2.16) and expanding to first
order in ε, which yields

(2.17) W1[ρ̄, ρ̃] =

∫
Ω
ρ̃

[∫
Ω
Q(x− y)ρ̄(y) dy + F (x)

]
dx.

Consider the first class of perturbations, whose support lies in Ωρ̄. As the perturbation ρ̃ is
arbitrary and of zero mass, for the first variation W1 to vanish it must be true that

(2.18)

∫
Ωρ̄

Q(x− y)ρ̄(y) dy + F (x) = λ for x ∈ Ωρ̄.

The same result can be found by a Lagrange multiplier argument including the constant mass
as a constraint. The multiplier λ has a physical interpretation; it is the energy per unit mass
that an additional test mass would feel due to the exogenous potential and the interaction
with ρ̄.

Thus far, we have shown that a necessary condition for ρ̄ to be an equilibrium solution is
that it satisfies the Fredholm integral equation of the first kind for the nonnegative density ρ̄,

(2.19) I[ρ̄(x)] = λ− F (x), I[ρ̄(x)] ≡
∫
Ωρ̄

Q(x− y)ρ̄(y) dy,

as well as the mass constraint (2.15a).
In order for ρ̄ to be a minimizer with respect to the first class of perturbations, the second

variation must be positive. Substituting (2.14) into (2.16) yields

(2.20) W2[ρ̃, ρ̃] =

∫
Ωρ̄

∫
Ωρ̄

Q(x− y)ρ̃(x)ρ̃(y) dx dy.
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The sign of W2 can be assessed in a number of ways.
We first derive a sufficient condition on the Fourier transform ofQ forW2 to be nonnegative

for the first class of perturbations. Define the Fourier transform

(2.21) Q̂(k) =

∫ ∞

−∞
Q(x)e−ikx dx.

Then we have

W2[ρ̃, ρ̃] =

∫
Ωρ̄

∫
Ωρ̄

Q(x− y)ρ̃(x)ρ̃(y) dx dy(2.22a)

=

∫ ∞

−∞

∫ ∞

−∞
Q(x− y)ρ̃(x)ρ̃(y) dx dy(2.22b)

=

∫ ∞

−∞
ρ̃(x) [Q(x) ∗ ρ̃(x)] dx(2.22c)

=
1

2π

∫ ∞

−∞
|̂̃ρ(k)|2Q̂(k) dk.(2.22d)

We have used the fact that ρ̃ is compactly supported to extend the range of integration to
infinity. We have also used the convolution theorem, Parseval’s theorem, and the fact that ρ̃
is real. We see, then, that Q̂(k) > 0 is a sufficient condition for W2 > 0 (assuming a nontrivial
perturbation). As shown in [23], this condition is actually equivalent to that for the linear
stability of a constant density state in the absence of exogenous forces.

A necessary and sufficient condition for W2 > 0 for the first class of perturbations comes
from considering the spectrum of I in Ωρ̄. Note that (2.20) may be written as

(2.23) W2[ρ̃, ρ̃] =

∫
Ωρ̄

I[ρ̃]ρ̃(x) dx ≡ 〈ρ̃,I[ρ̃]〉,

where the angle brackets denote the usual L2 inner product on Ωρ̄. If the eigenvalues of the
integral operator I are positive, then W2 > 0 (again assuming a nontrivial perturbation).

We now turn to the second class of perturbations, which have support in Ω and which are
positive in Ωρ̄

c. To analyze these perturbations, we extend the definition of the constant λ to
a function Λ(x) that is defined over all of Ω. We set

(2.24) Λ(x) ≡
∫
Ωρ̄

Q(x− y)ρ̄(y) dy + F (x).

The quantity Λ(x) extends the definition of λ, the energy per unit mass that an additional
test mass would feel due to the exogenous potential and the interaction with ρ̄, to outside the
support of ρ̄.

Trivially from (2.18), Λ(x) = λ for x ∈ Ωρ̄. We now rewrite the first variation as

(2.25) W1[ρ̄, ρ̃] =

∫
Ω
ρ̃(x)Λ(x) dx,
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directly from (2.17). Remembering that ρ̃ ≥ 0 in Ωρ̄
c and that ρ̃ has zero mass in Ω, we see

that a necessary and sufficient condition for W1 ≥ 0 is Λ(x) ≥ λ in Ωρ̄
c, that is,

(2.26) Λ(x) ≡
∫
Ωρ̄

Q(x− y)ρ̄(y) dy + F (x) ≥ λ for x ∈ Ωρ̄
c.

Physically, this guarantees that a parcel of mass transported from Ωρ̄ to its complement
increases the total energy.

If we wish for ρ̄ to be a minimizer with respect to the second class of perturbations,

it suffices for W2 > 0 (for example, by having Q̂(k) > 0). However, this condition is not
necessary. The necessary condition is that W1[ρ̄, ρ̃]+W2[ρ̃, ρ̃] > 0 for nontrivial perturbations,
which follows from (2.16) being exact.

To summarize, we have obtained the following results:
• Equilibrium solutions ρ̄ satisfy the Fredholm integral equation (2.19) and the mass

constraint (2.15a).
• The solution ρ̄ is a local and global minimizer with respect to the first class of pertur-

bations (those with support in Ωρ̄) if W2 in (2.20) is positive.
• The solution ρ̄ is a local minimizer with respect to the second (more general zero-

mass) class of perturbations if ρ̄ satisfies (2.26). If, in addition, W2 is positive for
these perturbations, then ρ̄ is a global minimizer as well.

In practice, we solve the integral equation (2.19) to find candidate solutions. Then, we com-
pute Λ(x) to determine whether ρ̄ is a local minimizer. Finally, when possible, we show the
positivity of W2 to guarantee that ρ̄ is a global minimizer.

2.4. Swarm minimizers. As the continuum limit replaces individual particles with a den-
sity, we need to make sure the continuum problem inherits a physical interpretation for the
underlying problem. If we think about perturbing an equilibrium configuration, we note that
mass cannot “tunnel” between disjoint components of the solution. As such we define the
concept of a multicomponent swarm equilibrium. Suppose that the swarm’s support can be
divided into a set of m disjoint, closed, connected components {Ωi}; that is,
(2.27) Ωρ̄ = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm, Ωi ∩Ωj = ∅, i = j.

We define a swarm equilibrium as a configuration in which each individual swarm component
is in equilibrium,

(2.28)

∫
Ωi

Q(x− y)ρ(y) dy + F (x) = λi for i = 1, . . . ,m.

We can still define Λ(x) in Ω,

(2.29) Λ(x) = I[ρ̄(x)] + F (x) =

∫
Ωρ̄

Q(x− y)ρ̄(y) dy + F (x),

but now Λ(x) = λi in Ωi. We can now define a swarm minimizer. We say that a swarm
equilibrium is a swarm minimizer if Λ(x) ≥ λi for some neighborhood of each component Ωi

of the swarm. In practice this means that the swarm is an energy minimizer for infinitesimal
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224 ANDREW J. BERNOFF AND CHAD M. TOPAZ

redistributions of mass in the neighborhood of each component. This might also be called
a Lagrangian minimizer in the sense that the equilibrium is a minimizer with respect to
infinitesimal Lagrangian deformations of the distributions.

It is crucial to note that even if a solution ρ̄ is a global minimizer, other multicomponent
swarm minimizers may still exist. These solutions are local minimizers, and consequently a
global minimizer may not be a global attractor under the dynamics of (2.7).

3. Examples with a repulsive social force. In this section we discuss the minimization
problem formulated in section 2. It is helpful for expository purposes to make a concrete
choice for the interaction potential Q. As previously mentioned, in many physical, chemical,
and biological applications, the pairwise potential Q is symmetric. Additionally, repulsion
dominates at short distances (to prevent collisions), and the interaction strength approaches
zero for very long distances. A common choice for Q is the Morse potential with parameters
chosen to describe long-range attraction and short-range repulsion [28]. For the remainder of
this section, we consider a simpler example where Q is the Laplace distribution

(3.1) Q(x) = e−|x|,

which represents repulsion with strength decaying exponentially in space.
When there is no exogenous potential, F (x) = 0, and when the domain is infinite, e.g.,

Ω = R, the swarm will spread without bound. The solutions asymptotically approach the
Barenblatt solution to the porous medium equation, as shown in [23]. However, when the
domain Ω is bounded or when there is a well in the exogenous potential, bounded swarms are
observed both analytically and numerically, as we will show. Figure 3 shows solutions ρ̄(x)
for three cases: a bounded domain with no exogenous potential, a gravitational potential on
a semi-infinite domain, and a quadratic potential well on an infinite domain. In each case, a
bounded swarm solution is observed, but the solutions are not necessarily continuous and can
even contain δ-function concentrations at the boundaries.

We discuss these three example cases in detail later in this section. First, we will formulate
the minimization problem for the case of the Laplace potential. We will attempt to solve the
problem classically; when the solution has compact support contained within the domain we
find solutions that are continuous within the support and may have jump discontinuities at
the boundary of the support. However, when the boundary of the support coincides with
the boundary of the domain, the classical solution may break down, and it is necessary to
include a distributional component in the solution. We also formulate explicit conditions for
the solutions to be global minimizers. We then apply these results to the three examples
mentioned above.

3.1. Classical solutions to the integral equation. Recall that for ρ̄ to be a steady solution,
it must satisfy the integral equation (2.19) subject to the mass constraint (2.15a). For ρ̄(x)
to be a local minimizer, it must also satisfy (2.26),

(3.2) Λ(x) ≡
∫
Ωρ̄

Q(x− y)ρ̄(y) dy + F (x) ≥ λ.

Finally, recall that for a solution ρ̄ to be a global minimizer, the second variation (2.20) must
be positive. We saw that if Q̂(k) > 0, this is guaranteed. For (3.1), Q̂(k) = 2/(1+ k2), and so
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Figure 3. Schematic solutions of the minimization problem defined by (2.19) and (2.15a) when the potential
Q(x) is chosen to be the purely repulsive Laplace potential (3.1). The total mass is M . Minimizers ρ̄(x) are
shown in (a), (b), (d), (e), and two exogenous potentials F (x) are shown in (c), (f). (a) The minimizer for the
bounded domain Ω = [−d, d] with F (x) = 0 is a constant internal density distribution with δ-functions at the
boundary. See section 3.3. (b) The minimizer for the unbounded domain Ω = R with an exogenous quadratic
potential F (x) of strength γ is a compactly supported, downward-facing parabola section. See section 3.5.
(c) The quadratic potential F (x) corresponding to (b). (d) The minimizer for the half-line Ω = [0,∞] with
an exogenous gravitational potential F (x) = gx is a δ-function at the origin for sufficiently large gravity g.
(e) Like (d), but for smaller g, in which case the minimizer is a δ-function at the origin, is linear for a finite
interval connected to the origin, and drops discontinuously to zero outside of that interval. See section 3.4.
(f) The gravitational potential F (x) corresponding to (d) and (e).

for the remainder of this section we are able to ignore the issue of W2. Any local minimizer
that we find will be a global minimizer.

Additionally, for the remainder of this section, we restrict our attention to cases where the
support of the solution Ωρ̄ is a single interval in Ω; in other words, the minimizing solution
has a connected support. The reason that we are able to make this restriction follows from
the notion of swarm minimization, discussed above. In fact, we can show that there are no
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226 ANDREW J. BERNOFF AND CHAD M. TOPAZ

multicomponent swarm minimizers for the Laplace potential as long as the exogenous potential
F (x) is convex, that is, F ′′(x) ≥ 0 on Ω. To see this, assume that we have a swarm minimizer
with at least two disjoint components. Consider Λ(x) in the gap between two components so
that x ∈ Ωρ̄

c. We differentiate Λ(x) twice to obtain

(3.3) Λ′′(x) ≡
∫
Ωρ̄

Q′′(x− y)ρ̄(y) dy + F ′′(x).

Note that Q′′(x−y) > 0 as x = y in Ωρ̄
c. F ′′(x) ≥ 0 by assumption. Consequently, Λ′′(x) > 0

in Ωρ̄
c, and so Λ(x) is convex upward in the gap. Also, Λ(x) = λi at the endpoints of the gap.

We conclude from the convexity that Λ(x) must be less than λi near one of the endpoints. This
violates the condition of swarm minimization from the previous section, and hence the solution
is not a swarm minimizer. Since swarm minimization is a necessary condition for global
minimization, we now, as discussed, restrict our attention to single-component solutions.

For concreteness, assume that the support of the solution ρ̄ is Ωρ̄ = [α, β]. We transform
the integral equation (2.19) for ρ̄ into a differential equation by noting that Q(x) is the Green’s
function of the differential operator L ≡ ∂xx − 1, so that LQ(x) = −2δ(x), where δ(x) is the
Dirac δ-function. Applying L to both sides of (2.19) yields the Dirac δ-function under the
integral. Integration and the sifting property of the δ-function lead to

(3.4) ρ̄(x) = ρ̄∗(x) ≡ −1

2
L[λ− F (x)] =

λ

2
− 1

2

[
F − F ′′(x)

]
in Ωρ̄.

Equation (3.4) is a necessary condition on a solution ρ̄(x) but not sufficient. In fact,
to verify the candidate solution (3.4), we must substitute back into the governing integral
equation (2.19). We find

I[ρ̄∗(x)] ≡
∫
Ω
e−|x−y|

{
λ

2
− 1

2

[
F (y)− F ′′(y)

]}
dy(3.5a)

= λ− F (x) +
eα−x

2
[F (α)− F ′(α)− λ](3.5b)

+
ex−β

2
[F (β) + F ′(β)− λ],

where the terms other than λ−F (x) must vanish for (3.4) to be a solution. These error terms
are spanned by {ex, e−x}, which is the null space of L. The constraint that these terms must
vanish leads to the conditions

(3.6) F (α) − F ′(α) = λ, F (β) + F ′(β) = λ.

For a given F (x), both these conditions will be satisfied only for particular choices of α and β.
The allowed α and β then specify λ, which in turn determines the mass M through (2.15a).
As we discuss below, the solution derived here is sometimes, but not always, a true minimizer
of the energy W .
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3.2. Functional minimization viewpoint and nonclassical solutions. What we have pre-
sented above is the classical view of the solution of (2.19). The difficulty with this calculation
is that we expect on physical grounds that for every mass M and interval α < x < β there
should be a minimizer. It is easy to see that if F and Q are bounded from below, the energy
W is bounded from below also. Let

(3.7) Fmin = min
x∈Ω

F (x), Qmin = min
x≥0

Q(x).

Then, directly from (2.8),

(3.8) W ≥ 1

2
M2Qmin +MFmin.

Since W is bounded from below, solutions to the minimization problem exist in the space
of measure valued functions [39]. Sometimes these solutions are not classical; when there is
finite attraction at small distances, mass can concentrate in a δ-function [9, 11]. For the more
biologically relevant case of repulsion at short scales, in free space and in the absence of an
external potential, solutions are classical for all time [9].

3.2.1. Absence of δ-concentrations interior to a domain. We now show that (under suf-
ficient hypotheses) a δ-function cannot occur in the interior of Ωρ̄. Though we have restricted
ourselves (above) to considering the Laplace potential (3.1), this is true more generally.

In fact, suppose that at a point x0 in the interior of Ω,
• the exogenous potential F (x) is twice-differentiable in a neighborhood of x0,
• Q(x) is twice-differentiable for x > 0,
• Q(x) has nonzero repulsion at short distances; that is,

(3.9) lim
x→0±

q(x) = ±K.

Then a minimizer does not contain a δ-function at x = x0.
To see this, we will compare the energy of a density containing a δ-function at x = x0

to one where the δ-function has been replaced by a narrow, unit mass top-hat distribution
δε(x− x0),

(3.10) δε(x) =

{
1/(2ε), |x| < ε,

0, |x| ≥ ε,

and show that the energy is reduced by O(ε).
Consider a candidate distribution with a δ-function of mass m at x0, ρ(x) = ρ0(x) +

mδ(x− x0). Define the change of energy

(3.11) ΔW = W [ρ̄0 +mδε(x− x0)]−W [ρ̄0 +mδ(x − x0)].

By direct calculation using (2.8),

ΔW =
m2

2

∫
Ω

∫
Ω
δε(x− x0)Q(x− y)δε(y − x0) dx dy − m2Q(0)

2
(3.12)

+m

∫
Ω

∫
Ω
ρ0(y)Q(x− y)[δε(x− x0)− δ(x− x0)] dx dy

+m

∫
Ω
F (x) [δε(x− x0)− δ(x − x0)] dx.
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Note that near x = 0, Q(x) = Q(0)−K|x|+O(x2) and F (x) = F (x0)+F ′(x0)(x−x0)+O(x2).
Expanding to O(ε2), only the first term of (3.12) persists, yielding

(3.13) ΔW = −Km2

2

1

4ε2

∫ ε

−ε

∫ ε

−ε
|x− y| dx dy +O(ε2) = −1

3
εm2K +O(ε2).

For K > 0, corresponding to nonzero repulsion at short distances, ΔW < 0, indicating that
the energy is reduced by replacing the δ-function with a narrow top-hat.

We conclude that δ-functions may not occur in the interior of Ω under the assumed con-
ditions. However, the above reasoning breaks down for δ-functions on the domain boundary,
where they may not be replaced by a narrow, symmetric top-hat distribution.

3.2.2. δ-concentrations on a domain boundary. Based on the result above, we introduce
a candidate solution

(3.14) ρ̄(x) ≡ ρ̄∗(x) +Aδ(x − α) +Bδ(x− β) in Ω,

where A and B are to be determined. The classical solution ρ̄∗ is supplemented with δ-
functions at the boundary of Ωρ̄. We will show, in agreement with the calculation above, that
A and B must vanish unless the boundary of the support, Ωρ̄, coincides with the boundary of
the domain, Ω.

We verify the new candidate solution (3.14) by substituting back into the governing equa-
tion (2.19). We find

I[ρ̄(x)] ≡
∫
Ω
e−|x−y| {ρ̄(y) +Aδ(y − α) +Bδ(y − β)} dy(3.15a)

= λ− F (x) +
eα−x

2
[2A+ F (α)− F ′(α) − λ](3.15b)

+
ex−β

2
[2B + F (β) + F ′(β)− λ],

where the terms other than λ−F (x) must vanish for (3.14) to be a solution. This constraint
leads to the following conditions on A and B, the coefficients of the nonclassical parts of the
solution:

(3.16) A =
λ− F (α) + F ′(α)

2
, B =

λ− F (β)− F ′(β)
2

.

Because λ is undetermined as of yet, we can find a solution for any mass M . Substituting the
solution ρ̄(x) into the mass constraint (2.15a) yields

M =

∫
Ωρ̄

ρ̄(x) dx(3.17a)

= A+B + λ
(β − α)

2
− 1

2

∫
Ωρ̄

F (x) dx+
1

2
[F ′(β)− F ′(α)](3.17b)

= λ

(
1 +

(β − α)

2

)
− 1

2

[
F (α) + F (β) +

∫
Ωρ̄

F (x) dx

]
.(3.17c)
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Solving for λ in terms of M yields

(3.18) λ =
2M + F (α) + F (β) +

∫
Ωρ̄

F (x) dx

2 + β − α
.

We have shown that for any Ωρ̄ = [α, β] and any mass M we can find a solution to (2.19)
with ρ̄(x) smooth in the interior and with a concentration at the endpoints. However, we
haven’t yet addressed the issue of ρ̄(x) being nonnegative, nor have we considered whether it
is a minimizer.

We next consider whether the extremal solution ρ̄ is a minimizer, which involves the study
of (3.2). We present a differential operator method that allows us to compute Λ(x) and deduce
sufficient conditions for ρ̄ to be a minimizer.

We start by factoring the differential operator L ≡ ∂xx − 1 = D+D− = D−D+, where
D± = ∂x ± 1. Applying these operators to the interaction potential Q, we see that

(3.19) D+Q(x− y) =

{
2ex−y, y > x,

0, y < x,
D−Q(x− y) =

{
0, y > x,

−2ey−x, y < x.

Substituting ρ̄ in (3.14) into our definition of Λ(x) in (3.2) yields

(3.20)

∫
Ωρ̄

Q(x− y)ρ̄(y) dy +AQ(x− α) +BQ(x− β) + F (x) = Λ(x).

Now consider applying D− to (3.20) at a point x in Ωρ̄. We see that

(3.21) −2

∫ x

α
e(y−x)ρ̄(y) dy − 2Aeα−x +D−[F (x)] = D−[λ],

where we have used the fact that Λ(x) = λ in Ωρ̄. If we let x = α + z and let z decrease to
zero, the integral term vanishes and

(3.22) −2A+ F ′(α) − F (α) = −λ.

Solving for A yields the first half of (3.16). A similar argument near x = β yields the value
of B.

Assuming that α does not coincide with an endpoint of Ω, we now consider the region
x < α, which is to the left of the support Ωρ̄. Again, applying D− to (2.19) simplifies the
equation; we can check that both the integral term and the contribution from the δ-functions
are annihilated by this operator, from which we deduce that

(3.23) D−[F (x)− Λ(x)] = 0 ⇒ F (x)− Λ(x) = Cex,

where C is an unknown constant. A quick check shows that if F (x) is continuous, then Λ(x)
is continuous at the endpoints of Ωρ̄, so that Λ(α) = λ. This in turn determines C, yielding

(3.24) Λ(x) = F (x) + [λ− F (α)]ex−α for x ≤ α.
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230 ANDREW J. BERNOFF AND CHAD M. TOPAZ

A similar argument near x = β yields

(3.25) Λ(x) = F (x) + [λ− F (β)]eβ−x for x ≥ β.

As discussed in section 2.3, for ρ̄(x) to be a minimizer we wish for Λ(x) ≥ λ for x ≥ β and
x ≤ α. A little algebra shows that this is equivalent to

F (x)e−x − F (α)e−α

e−x − e−α
≥ λ for x ≤ α,(3.26a)

F (x)ex − F (β)eβ

ex − eβ
≥ λ for x ≥ β.(3.26b)

If α and β are both strictly inside Ω, then (3.26) constitutes sufficient conditions for the
extremal solution ρ̄ to be a global minimizer (recalling that W2 > 0). We may also derive
a necessary condition at the endpoints of the support from (3.26). As x increases to α, we
may apply l’Hôpital’s rule, and this equation becomes equivalent to the condition A ≤ 0, as
expected. A similar calculation letting x decrease to β implies that B ≤ 0. However, since ρ̄
is a density, we are looking for positive solutions. Hence, either A = 0 or α coincides with the
left endpoint of Ω. Similarly, either B = 0 or β coincides with the right edge of Ω. This is
consistent with the result (3.13), which showed that δ-functions cannot occur in the interior
of Ω.

In summary, we come to two conclusions:
• A globally minimizing solution ρ̄ contains a δ-function only if a boundary of the support

of the solution coincides with a boundary of the domain.
• A globally minimizing solution ρ̄ must satisfy (3.26).

We now consider three concrete examples for Ω and F (x).

3.3. Example: Bounded interval. We model a one-dimensional biological swarm with
repulsive social interactions described by the Laplace potential. We begin with the simplest
possible case, namely no exogenous potential, F (x) = 0, and a finite domain which for con-
venience we take to be the symmetric interval Ω = [−d, d]. As F ′′(x) = 0, we know from
(3.3) that the minimizing solution has a connected support; i.e., it is a single component. We
will see that the minimizing solution has an equipartition of mass between δ-functions at the
boundaries of the domain and a constant solution in the interior, as shown schematically in
Figure 3(a).

We now proceed with calculating the solution. From (3.4), we find that

(3.27) ρ̄∗(x) =
λ

2
.

The nonclassical solution is

(3.28) ρ̄(x) = ρ̄∗ +Aδ(x+ d) +Bδ(x− d) in Ωρ̄.

Equation (3.18) gives λ as

(3.29) λ =
M

1 + d
.
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x

ρ

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6
(b)

x

ρ

x

ρ

Figure 4. Comparison of numerical and exact solutions of the minimization problem (2.19) and (2.15a)
when the potential Q(x) is the repulsive Laplace potential (3.1). The total mass is M = 1. Dots correspond to
equilibria of numerical simulations of the underlying discrete system (2.1) with N = 40 swarm members. The
density at the location of each swarm member is estimated using the correspondence of section 2.2, visualized
in Figure 2. The solid curves represent exact solutions. (a) Bounded domain Ω = [−1, 1] with no exogenous
potential, i.e., F (x) = 0. Cross-hatched boxes indicate the domain boundaries. The “lollipops” at each end are
drawn at an arbitrary height and represent δ-functions each of mass 10/40 in the exact continuum solution,
and a superposition of 10 swarm members each in the simulation. See section 3.3 and Figure 3(a). (b) The
half-line Ω = [0,∞] with an exogenous gravitational potential F (x) = gx, g = 0.5. The δ-function at the origin
has mass 28/40. See section 3.4 and Figure 3(e) and (f). (c) Unbounded domain Ω = R with an exogenous
quadratic potential F (x) = γx2, γ = 1. The compactly supported solution drops discontinuously to zero, and the
vertical axis is broken for convenience of visual display. See section 3.5 and Figure 3(b) and (c). Our method
for comparing discrete numerical solutions and continuum solutions is summarized in Figure 2.

Equation (3.16) specifies A and B as

(3.30) A = B =
M

2(1 + d)
.

Since Ω = Ωρ̄, it follows that Λ(x) = λ and W1 vanishes according to (2.25). Therefore, the
solution is a global minimizer.

The solution ρ̄(x) is shown schematically in Figure 3(a). Figure 4(a) compares analytical
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232 ANDREW J. BERNOFF AND CHAD M. TOPAZ

and numerical results for an example case where we take the total mass to be M = 1 and
the finite domain to be Ω = [−d, d] with d = 1. Cross-hatched boxes indicate the boundary
of the domain. The solid line is the classical solution ρ̄. Dots correspond to the numerically
obtained equilibrium of the discrete system (2.1) with N = 40 swarm members. The density
at each Lagrangian grid point is estimated using the correspondence discussed in section 2.2
and pictured in Figure 2. Each “lollipop” at the domain boundary corresponds to a δ-function
of mass 10/N ·M = 1/4 in the analytical solution, and simultaneously to a superposition of
10 swarm members in the numerical simulation. Hence, we see excellent agreement between
the continuum minimizer and the numerical equilibrium even for this relatively small number
N = 40 of Lagrangian points.

3.4. Example: Gravitational potential on the half-line. We now consider repulsive social
interactions and an exogenous gravitational potential. The spatial coordinate x ≥ 0 describes
the elevation above ground. Consequently, Ω is the semi-infinite interval 0 ≤ x < ∞. Then
F (x) = gx with g > 0, shown in Figure 3(f). As F ′′(x) = 0, we know from (3.3) that the
minimizing solution has a connected support; i.e., it is a single component. Moreover, trans-
lating this component downward decreases the exogenous energy while leaving the endogenous
energy unchanged. Thus, the support of the solution must be Ωρ̄ = [0, β], potentially with
β = 0. In fact, we will see that there are two possible solution types depending on g. For
strong enough values of g, β indeed equals zero, and the mass accumulates on the ground
x = 0, as shown schematically in Figure 3(d). For weaker g, the mass is partitioned between
a δ-function on the ground and a classical solution for x > 0, as shown in Figure 3(e).

We now proceed with calculating the solution. From (3.4), we find that

(3.31) ρ̄∗(x) =
λ− gx

2
.

The nonclassical solution is

(3.32) ρ̄(x) = ρ̄∗ +Aδ(x) +Bδ(x− β) in Ωρ̄.

Equation (3.18) gives λ as

(3.33) λ =
2M

2 + β
+

gβ

2
.

Equation (3.16) specifies A and B as

(3.34) A =
M

2 + β
+

g

2
, B =

M

2 + β
− g

4
(2 + β).

For ρ̄ to be a global minimizer, it must be true that B = 0, as shown in section 3.2. Solving,
we find that β = 2

√
M/g − 2.

For M > g, we see that β > 0, in which case the minimizing solution is

(3.35) ρ̄(x) =

{√
gM − g

2 (1 + x) +
√
gMδ(x), 0 ≤ x ≤ 2

√
M/g − 2,

0, x > 2
√

M/g − 2.
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It follows directly that ρ̄(x) ≥ 0. Figure 3(e) shows a schematic drawing of this solution.
We still must consider the condition (3.26b). To see whether it is satisfied, first note that

λ = g(β + 1). Then (3.26b) becomes

(3.36)
F (x)ex − F (β)eβ

ex − eβ
≥ g(1 + β).

We note by l’Hôpital’s rule that equality is obtained as x → β. To show that the inequality
holds for x > β let x = ln s and β = ln r (so s > r > 0). The inequality becomes

(3.37)
sF (ln s)− rF (ln r)

s− r
≥ g(1 + β) for s > r.

We can interpret the left-hand side as the slope of a chord connecting the points (r, rF (ln r))
and (s, sF (ln s)). Consequently, if the function sF (ln s) is concave upward, the slope of the
chord will be increasing as s increases away from r, and the inequality will hold. Recalling
that F (x) = gx, we compute [sF (ln s)]′′ = g/s, which is positive, and hence the solution is
globally stable.

For M ≤ g our previous calculation naively implies β ≤ 0. Since β cannot be negative,
the minimizer in this case is a δ-function at the origin, namely ρ̄(x) = Mδ(x), shown in Figure
3(d). In this case, λ = M from (3.33), and Λ(x) = Me−x + gx from (3.25). It follows that

(3.38) Λ(x) = Me−x + gx ≥ M(1− x) + gx = M + (g −M)x ≥ M for x ≥ 0.

The first inequality follows from a Taylor expansion. The second follows from our assumption
M ≤ g. Since Λ(x) ≥ λ, the solution is a global minimizer.

In summary, there are two cases. When M ≤ g, the globally stable minimizer is a δ-
function at the origin. When M > g, there is a globally stable minimizer consisting of a
δ-function at the origin which is the left-hand endpoint of a compactly supported classical
swarm. The two cases are shown schematically in Figures 3(d) and (e). Figure 4(b) compares
analytical and numerical results for the latter (M > g) case with M = 1 and g = 0.5. We use
N = 40 swarm members for the numerical simulation. The numerical (dots) and analytical
(line) ρ̄∗ agree, as does the nonclassical part of the solution, pictured as the lollipop, which
represents a superposition of 28 swarm members in the numerical simulation having total
mass 28/N ·M = 0.7, and simultaneously a δ-function of mass

√
gM = 1/

√
2 ≈ 0.707 in the

analytical solution.

3.5. Example: Quadratic potential on the infinite line. We now consider the infinite
domain Ω = R with a quadratic exogenous potential well, pictured in Figure 3(c). This choice
of a quadratic well is representative of a generic potential minimum, as might occur due to
a chemoattractant, food source, or light source. Thus F (x) = γx2, where γ > 0 controls
the strength of the potential. As F ′′(x) = 2γ > 0, we know from (3.3) that the minimizing
solution is a single component. We take the support of the solution to be Ωρ̄ = [α, β]. We will
find that the compactly supported density is classical and has an inverted parabolic shape,
shown in Figure 3(b).

Our calculation proceeds as follows. We know from section 3.2 that, because α and β are
assumed to be finite, A = B = 0 and so the solution is classical. From (3.4), we find that

(3.39) ρ̄ = ρ̄∗(x) =
λ+ 2γ − γx2

2
,
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and, from (3.16),

(3.40) A =
λ− γα2 + 2γα

2
= 0, B =

λ− γβ2 − 2γβ

2
= 0.

Eliminating λ from these equations and recalling that β ≥ α, it follows that α = −β. Hence,
the solution is symmetric around the center of the potential. For convenience, we now define
β = −α = H.

Equation (3.18) gives λ in terms of the mass M as

(3.41) λ =
M + γ

(
H2 +H3/3

)
1 +H

.

However, from the second half of (3.40) we know that

(3.42) λ = γ(H + 1)2 − γ.

Equating these two expressions for λ yields that

(3.43) H =

(
3M

2γ
+ 1

)1/3

− 1.

Note that H increases monotonically from 0 with increasing M .
Finally, writing the solution ρ̄ in terms of M , we have

(3.44) ρ̄(x) =

⎧⎪⎨⎪⎩
γ
2

[(
3M
2γ + 1

)2/3
+

(
1− x2

)]
, |x| ≤

(
3M
2γ + 1

)1/3 − 1,

0, |x| >
(
3M
2γ + 1

)1/3 − 1.

It follows directly that ρ̄(x) ≥ 0 and that there is a discontinuity at the edge of the support.
We now must show that the candidate ρ̄ is a global minimizer, which is done by demon-

strating (3.26). By the same argumentation used for the right endpoint in section 3.4, it
suffices to show that sF (ln s) is concave upward for s > eH , which follows directly from
algebra. Hence, the solution is a global minimizer.

The solution ρ̄ is shown schematically in Figure 3(b). Figure 4(b) compares analytical
and numerical results for the case with M = 1 and γ = 1, with N = 40 swarm members used
for the numerical solution. The numerical (dots) and analytical (line) ρ̄ agree closely.

4. Examples with a Morse-type social force. In many physical, chemical, and biologi-
cal applications, the pairwise potential Q is isotropic, with a repulsion dominating at short
distance and the interaction strength approaching zero for very long distances. A common
choice for Q is the Morse potential

(4.1) Q(x) = −GLe−|x|/L + e−|x|,

with appropriately chosen parameters. Here, x is the distance between particles, L > 1 is the
characteristic length scale of attraction, and G < 1 is the characteristic velocity induced by
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attraction. We have scaled the characteristic repulsive strength and length scale to be unity.
In this section we are concerned with the solution of (2.15a) and (2.19) with Q given by (4.1).

The Morse potential has been studied extensively and has become a canonical model for
attractive-repulsive interactions [14, 24, 28, 34]. A key characteristic of the potential (4.1) is
whether or not the parameters G,L are chosen to be in the H-stable or the catastrophic regime;
see [33] for a review. Consider (2.1) with F (x) = 0. If the parameters G,L are chosen in the
H-stable regime GL2 < 1, then as the number of particles N increases, the density distribution
of particles approaches a constant, as does the energy per particle. Stated differently, the
particles form a crystalline lattice where the nearest-neighbor distance is approximately equal
for all particles (excluding edge effects). As more individuals are added to the group, the
interorganism spacing is preserved, and the group grows to cover a larger spatial region.
If the parameters are chosen outside of the H-stable regime, i.e., GL2 > 1, the system is
catastrophic. In this case, the energy per particle is unbounded as N → ∞, and particles
pack together more and more closely as N increases.

Our work in [23] classifies the asymptotic behaviors of the continuum problem (2.7) with
Morse-type interactions in the absence of an external potential, F (x) = 0, and on the real
line. In the H-stable regime, the continuum model displays spreading density profiles, while
in the catastrophic regime, it forms compactly supported steady states.

The distinction between catastrophic and H-stable behavior is related to the Fourier trans-
form of the potential Q(x). Note that (4.1) has Fourier transform

Q̂(k) =
2

1 + k2
− 2GL2

1 + (kL)2
(4.2a)

=
2[(1 −GL2) + L2(1−G)k2]

(1 + k2)(1 + (kL)2)
.(4.2b)

The condition for H-stability is equivalent to Q̂(0) = 2(1 −GL2) > 0. In this case, Q̂(k) > 0
for all k, and from section 2.3 this is sufficient for W2 > 0 or, equivalently, linear stability of
constant density states. In the catastrophic case, Q̂(0) < 0. Intuitively, in the catastrophic
case, the constant density state is unstable to long wave perturbations. The system is attracted
to states of finite extent shorter than the length scale of the instability. In the H-stable case,
the constant density state is stable to perturbations, and initial density profiles spread evenly
to become flat. We will now study minimizers for the case of Morse-type interactions and will
see qualitatively different solutions for the catastrophic and H-stable cases.

4.1. Classical and nonclassical solutions. We follow the procedure used in section 3;
namely, we first look for a classical solution on the interior of Ωρ̄ = [α, β] and then allow for
δ-functions at the boundaries. Once again, we will see that minimizers contain δ-functions
only when the boundary of the support, Ωρ̄, coincides with the boundary of the domain, Ω.

For convenience, define the differential operators L1 ≡ ∂xx − 1 and L2 ≡ L2∂xx − 1, and
apply −L1L2 to (2.19) to obtain

(4.3) ν(ρ̄∗)xx + ερ̄∗ = −L1L2[λ− F (x)], x ∈ Ωρ̄,

where

(4.4) ν = 2L2(1−G) > 0, ε = 2(GL2 − 1).
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Thus, we guess

(4.5) ρ(x) = ρ̄∗(x) +Aδ(x − α) +Bδ(x− β).

The full solution to the problem is obtained by substituting (4.5) into (2.15a) and (2.19),
which yields

(4.6)

∫ β

α
Q(x− y)ρ̄∗(y) dy +AQ(x− α) +BQ(x− β) = Λ(x)− F (x),

where Λ(x) = λ in Ωρ̄. We begin by considering the amplitudes A and B of the distributional
component of the solution. We factor the differential operators L1 ≡ ∂xx − 1 = P+P− =
P−P+, where P± = ∂x ± 1, and L2 ≡ L2∂xx − 1 = Q+Q− = Q−Q+, where Q± = L∂x ± 1.
Note that

(4.7) P−Q−Q(x− y) = 2L(G− 1)δ(x − y)− 2(L+ 1)
[
Ge(y−x)/L − ey−x

]
H(x− y),

where H is the Heaviside function. Now we apply P−Q− to (4.6) at a point x in Ωρ̄, which
yields

2L(G− 1)ρ̄∗(x)− 2(L+ 1)

∫ x

α

[
Ge(y−x)/L − ey−x

]
ρ̄∗(y) dy(4.8)

+AP−Q−Q(x− α) = P−Q−{λ− F (x)}.
Taking the limit x → α+ yields

(4.9) 2L(G− 1)ρ̄∗(α) + 2A(L+ 1)(1−G) = λ− P−Q−F (x)
∣∣
x=α

,

where we have used the fact that P−Q−λ = λ. A similar calculation using the operators
P+Q+ and focusing near x = β yields that

(4.10) 2L(G − 1)ρ̄∗(β) + 2B(L+ 1)(1 −G) = λ− P+Q+F (x)
∣∣
x=β

.

Equations (4.9) and (4.10) relate the amplitudes of the δ-functions at the boundaries to the
value of the classical solution ρ̄∗ there. Further solution of the problem requires F (x) to be
specified.

In the case where Ω = Ωρ̄, solving (4.3) for ρ̄∗(x) and solving (4.9) and (4.10) for A and B
yields an equilibrium solution. One must check that the solution is nonnegative and then
consider the solution’s stability to determine whether it is a local or global minimizer. In the
case where Ωρ̄ is contained in the interior of Ω, we know that A = B = 0, as discussed in
section 3.2.1. We consider this case below.

Suppose that Ωρ̄ is contained in the interior of Ω. Then A = B = 0. Following section 3.2,
we try to determine when Λ(x) ≥ λ in Ω and when W2 > 0, which constitute necessary and
sufficient conditions for ρ̄ to be a global minimizer. We apply P−Q− to (4.6) at a point x < α.
The integral term and the terms arising from the δ-functions vanish. The equation is simply
P−Q−{Λ(x)− F (x)} = 0. We write the solution as

(4.11) Λ(x) = F (x) + k1e
x−α + k2e

(x−α)/L.
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The two constants k1,2 are determined as follows. From (4.6), Λ(x) is a continuous function,
and thus

(4.12) Λ(α) = F (α) + k1 + k2 = λ.

We derive a jump condition on the derivative to get another equation for k1,2. We differentiate
(4.6) and determine that Λ′(x) is continuous. However, since Λ(x) = λ for x ∈ Ωρ̄, Λ

′(α) = 0.
Substituting this result into the derivative of (4.11) and letting x increase to α−, we find

(4.13) Λ′(α−) = F ′(α) + k1 + k2/L = 0.

The solution to (4.12) and (4.13) is

k1 =
1

L− 1

{
F (α)− LF ′(α) − λ

}
,(4.14a)

k2 =
L

L− 1

{−F (α) + F ′(α) + λ
}
.(4.14b)

Now that Λ(x) is known near x = α we can compute when Λ(x) ≥ λ, at least near the
left side of Ωρ̄. Taylor expanding Λ(x) around x = α, we find

(4.15) Λ(x) ≈ λ+
1

2L

{
P−Q−F (x)

∣∣
x=α

− λ
}
(x− α)2 + · · · .

The quadratic term in (4.15) has coefficient

P−Q−F (x)
∣∣
x=α

− λ

2L
(4.16a)

= (1−G)ρ̄∗(α) ≥ 0,(4.16b)

where the second line comes from substituting (4.9) with A = 0 and noting that the classical
part of the solution ρ̄∗(α) must be nonnegative since it is a density. Furthermore, since we
expect ρ̄∗(α) > 0 (this can be shown a posteriori), we have that the quadratic term in (4.15)
is positive.

A similar analysis holds near the boundary x = β. Therefore, Λ(x) ≥ λ for x in a
neighborhood outside of Ωρ̄. Stated differently, the solution (4.5) is a swarm minimizer;
that is, it is stable with respect to infinitesimal redistributions of mass. The domain Ωρ̄ is
determined through the relations (4.9) and (4.10), which, when A = B = 0, become

2L(G − 1)ρ̄∗(α) = λ− P−Q−F (x)
∣∣
x=α

,(4.17a)

2L(G − 1)ρ̄∗(β) = λ− P+Q+F (x)
∣∣
x=β

.(4.17b)

In the following subsections, we will consider the solution of the continuum system (2.19)
and (2.15a) with no external potential, F (x) = 0. We consider two cases for the Morse inter-
action potential (4.1): first, the catastrophic case on Ω = R, for which the above calculation
applies, and second, the H-stable case on a finite domain, in which case A,B = 0 and there
are δ-concentrations at the boundary. Exact solutions for cases with an exogenous potential,
F (x) = 0, can be straightforwardly derived, though the algebra is even more cumbersome and
the results unenlightening.
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4.2. Example: Catastrophic interactions in free space. In this case, F (x) = 0 in (2.19)
and GL2 > 1 in (4.1), so that ε > 0 in (4.3). The solution to (4.3) is

(4.18) ρ̄(x) = ρ̄∗(x) ≡ C cos(μx) +D sin(μx)− λ/ε,

where

(4.19) μ =

√
ε

ν
=

√
GL2 − 1

L2(1−G)
.

In the absence of an external potential, the solution is translationally invariant. Consequently,
we may choose the support to be an interval Ωρ̄ = [−H,H] which is symmetric around the
origin. Hence, by symmetry, D = 0. While the solution (4.18) satisfies the ordinary differential
equation (4.3), substituting into the integral equation (2.19) and the mass constraint (2.15a)
will determine the constants C, λ, and H. The integral operator produces modes spanned by
{cosh z, cosh z/L}. From these modes follow two homogeneous equations for C and λ, which
simplify to

2

1 + μ2
[cos(μH)− μ sin(μH)]C − 1

GL2 − 1
λ = 0,(4.20a)

2

1 + μ2L2
[cos(μH)− μL sin(μH)]C − 1

GL2 − 1
λ = 0.(4.20b)

For these equations to have a nontrivial solution for C and λ the determinant of the coefficient
matrix must vanish, which yields a condition specifying H,

(4.21) cot(μH) =
GL− 1√

(1−G)(GL2 − 1)
.

The mass constraint (2.15a) yields

(4.22)
2

μ
sin(μH)C − H

GL2 − 1
λ = M.

Solving (4.20a) and (4.22) for C and λ yields the full solution for the coefficients in (4.18) and
the half-width H of the solution,

H =
1

μ
cot−1

[0,π]

{
GL− 1√

(1−G)(GL2 − 1)

}
,(4.23a)

C =
M

2(H + L+ 1)

√
G(L2 − 1)

L(1−G)
,(4.23b)

λ =
M(1−GL2)

H + L+ 1
.(4.23c)

As we have shown in section 4.1, this solution is a swarm minimizer. In fact, the solution
is also a local minimizer. To see this, note from (4.11) and (4.14) that

(4.24) Λ(x) =

{
λ, |x| < H,
λ

L−1

[
Le(|x|−H)/L − e|x|−H

]
, |x| ≥ H.
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x

ρ

x

ρ

Figure 5. Comparison of numerical and exact solutions of the minimization problem (2.19) and (2.15a)
when the potential Q(x) is the Morse potential (4.1). The total mass is M = 1. Dots correspond to equilibria of
numerical simulations of the underlying discrete system (2.1) with N = 40 swarm members. The solid curves
represent exact solutions. (a) Unbounded domain Ω = R with parameters F = 0.5, L = 2 in (4.1), which is
in the catastrophic parameter regime. See section 4.2. (b) Bounded domain Ω = [−1, 1] with F = 0.1, L = 2,
which is in the H-stable parameter regime. The δ-functions at the boundary each have mass 10/40, and the
vertical axis is broken for convenience of visual display. See section 4.3.

Since λ < 0, we see that Λ(x) > λ for |x| > H, ensuring that the solution is a local minimizer.
While we suspect that ρ̄∗ is a global minimizer, this is not immediately apparent because

Q̂(k) in (4.2) has mixed sign in this catastrophic case, and hence W2 is of indeterminate sign.
To establish that ρ̄∗ is a global minimizer one might study the quantity W1 + W2, but we
leave this analysis as an open problem.

Figure 5(a) compares analytical and numerical results for an example case with total
mass M = 1 and interaction potential parameters F = 0.5 and L = 2. The solid line is
the compactly supported analytical solution ρ̄. Dots correspond to the numerically obtained
equilibrium of the discrete system (2.1) with N = 40 swarm members.
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4.3. Example: H-stable interactions on a bounded domain. As described in [23], the
asymptotic behavior of (2.7) for the H-stable case is a spreading self-similar solution that
approaches the well-known Barenblatt solution of the porous medium equation. Hence, there
is no equilibrium solution for the H-stable case on an unbounded domain. (One can verify this
by considering the problem analogous to that of the previous section and showing explicitly
that there is no solution.) Here, we assume a bounded domain Ω = [−d, d]. As before,
F (x) = 0 in (2.19), but now GL2 < 1 in (4.1), so that ε < 0 in (4.3). The classical solution to
(4.3) is

(4.25) ρ̄∗(x) ≡ C cosh(μ̃x) +D sinh(μ̃x)− λ/ε,

where

(4.26) μ̃ =

√−ε

ν
=

√
1−GL2

L2(1−G)
.

We will again invoke symmetry to assume D = 0. The minimizer will be the classical solution
together with δ-functions on the boundary,

(4.27) ρ̄(x) = ρ̄∗(x) +Aδ(x + d) +Bδ(x− d).

Again by symmetry, B = A. Consequently, the solution can be written as

(4.28) ρ̄ = C cosh(μ̃x)− λ/ε+A[δ(x + d) + δ(x− d)].

Substituting into the integral equation (2.19) and the mass constraint (2.15a) will de-
termine the constants C, λ, and A. The integral operator produces modes spanned by
{cosh z, cosh z/L}. This produces two homogeneous linear equations for C, A, and λ. The
mass constraint (2.15a) produces an inhomogeneous one, namely an equation linear in C, A,
and λ for the mass. We have the three-dimensional linear system

(4.29)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1

2

{
eμ̃d

1− μ̃
+

e−μ̃d

1 + μ̃

}
1

2(1 −GL2)

−1
L

2

{
eμ̃d

1− μ̃L
+

e−μ̃d

1 + μ̃L

}
L

2(1 −GL2)

2
2 sinh(μ̃d)

μ̃

d

1−GL2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣AC
λ

⎤⎦ =

⎡⎣ 0
0
M

⎤⎦ .

The solution is

A =
μ̃2LM

[
(1 + μ̃)(1 + μ̃L)eμ̃d − (1− μ̃)(1− μ̃L)e−μ̃d

]
2Φ

,(4.30a)

C = − μ̃M(1− μ̃2)(1− μ̃2L2)

Φ
,(4.30b)

λ =
Mμ̃(1−GL2) [(1 + μ̃)(1 + μ̃L) + (1− μ̃)(1− μ̃L)]

Φ
,(4.30c)
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where for convenience we have defined

(4.31) Φ = (1 + μ̃)(1 + μ̃L)(μ̃L+ μ̃d+ μ̃− 1)eμ̃d − (1− μ̃)(1− μ̃L)(μ̃L+ μ̃d+ μ̃+ 1)e−μ̃d.

For this H-stable case, Q̂(k) > 0, which ensures that W2 > 0 for nontrivial perturbations.
This guarantees that the solution above is a global minimizer.

In the limit of large domain size d, the analytical solution simplifies substantially. To
leading order, the expressions (4.30) become

A =
μ̃LM

2d
,(4.32a)

C = −e−μ̃dM(1− μ̃)(1− μ̃L)

d
,(4.32b)

λ =
M(1−GL2)

d
.(4.32c)

Note that C cosh(μ̃x) is exponentially small except in a boundary layer near each edge of Ω,
and therefore the solution is nearly constant in the interior of Ω.

Figure 5(b) compares analytical and numerical results for an example case with a relatively
small value of d. We take total mass M = 1 and set the domain half-width to be d = 1. The
interaction potential parameters F = 0.5 and L = 2. The solid line is the classical solution
ρ̄∗. Dots correspond to the numerically obtained equilibrium of the discrete system (2.1) with
N = 40 swarm members. Each lollipop at the domain boundary corresponds to a δ-function
of mass 10/N ·M = 1/4 in the analytical solution, and simultaneously to a superposition of
10 swarm members in the numerical simulation.

5. Modeling a locust swarm: Examples with a gravitational potential. We now return
to the locust swarm model of [34], discussed also in section 1. Recall that locust swarms are
observed to have a concentration of individuals on the ground, a gap or “bubble” where the
density of individuals is near zero, and a sharply delineated swarm of flying individuals. This
behavior is reproduced in the model (1.1); see Figure 1(b). In fact, Figure 1(c) shows that
the bubble is present even when the wind in the model is turned off and only endogenous
interactions and gravity are present.

To better understand the structure of the swarm, we consider the analogous continuum
problem. To further simplify the model, we note that the vertical structure of the swarm
appears to depend only weakly on the horizontal direction, and thus we will construct a
quasi-two-dimensional model in which the horizontal structure is assumed uniform.

In particular, we will make a comparison between a one-dimensional and a quasi-two-
dimensional model. Both models take the form of the energy minimization problem (2.19)
on a semi-infinite domain, with an exogenous potential F (x) = gx describing gravity. The
models differ in the choice of the endogenous potential Q, which is chosen to describe either
one-dimensional or quasi-two-dimensional repulsion. The one-dimensional model is precisely
that which we considered in section 3.4. There we saw that minimizers of the one-dimensional
model can reproduce the concentrations of locusts on the ground and a group of individuals
above the ground, but there cannot be a separation between the grounded and airborne groups.
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We will show below that for the quasi-two-dimensional model this is not the case, and indeed,
some minimizers have a gap between the two groups.

As mentioned, the one-dimensional and quasi-two-dimensional models incorporate only
endogenous repulsion. However, the behavior we describe herein does not change for the more
biologically realistic situation when attraction is present. We consider the repulsion-only case
in order to seek the minimal mechanism responsible for the appearance of the gap.

5.1. The quasi-two-dimensional Laplace potential. We consider a swarm in two dimen-
sions, with spatial coordinate x = (x1, x2). We will eventually confine the vertical coordinate
x1 to be nonnegative, since it describes the elevation above the ground at x1 = 0. We assume
the swarm to be uniform in the horizontal direction x2, so that ρ(x1, x2) ≡ ρ(x1).

We construct a quasi-two-dimensional interaction potential,

(5.1) Q2D(|x1 − y1|) = −
∫ ∞

−∞
Q(|x− y|) dy2.

Letting z = x1 − y1 and s = x2 − y2, this yields

(5.2) Q2D(z) =

∫ ∞

−∞
Q(

√
s2 + z2) ds.

It is straightforward to show that the two-dimensional energy per unit horizontal length is
given by

(5.3) W2D[ρ] =
1

2

∫
Ω

∫
Ω
ρ(x1)ρ(y1)Q2D(x1 − y1) dx1 dy1 +

∫
Ω
F (x1)ρ(x1) dx1,

where the exogenous force is F (x1) = gx1 and the domain Ω is the half-line x1 ≥ 0. This
is exactly analogous to the one-dimensional problem (2.8), but with particles interacting
according to the quasi-two-dimensional endogenous potential. Similarly, the corresponding
dynamical equations are simply (2.6) and (2.7) but with endogenous force q2D = −Q′

2D.
For the Laplace potential (3.1), the quasi-two-dimensional potential is

(5.4) Q2D(z) =

∫ ∞

−∞
e−

√
s2+z2 ds.

This integral can be manipulated for ease of calculation,

Q2D(z) = −
∫ ∞

−∞
e−

√
s2+z2 ds(5.5a)

= 2

∫ ∞

0
e−

√
s2+z2 ds(5.5b)

= 2|z|
∫ ∞

0
e−|z|√1+w2

dw(5.5c)

= 2|z|e−|z|
∫ ∞

0
(1 + u)

e−|z|u
√
u2 + 2u

du(5.5d)

= −2|z|
∫ π/2

0
e−|z| sec θ sec θ dθ,(5.5e)
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Figure 6. Quasi-two-dimensional Laplace potential Q2D given by (5.4). Q2D is horizontal at z = 0 and
monotonically decreasing in |z|. There are inflection points at ±z∗ given by (5.8).

where (5.5b) comes from symmetry, (5.5c) comes from letting s = |z|w, (5.5d) comes from
letting

√
1 + w2 = u+ 1, and (5.5e) comes from the trigonometric substitution w = tan θ.

From an asymptotic expansion of (5.5d), we find that for small |z|,

(5.6) Q2D(z) ≈ 2 + (γ − 1/2 − ln 2) z2 + z2 ln |z|+O (
z4 ln |z|),

whereas for large |z|,

(5.7) Q2D(z) ≈
√

2π|z| e−|z|
[
1 +

3

8|z| −
15

128z2
+O

(
1

|z|3
)]

.

In our numerical study, it is important to have an efficient method of computing values of
Q2D. In practice, we use (5.6) for small |z|, (5.7) for large |z|, and for intermediate values of
|z| we interpolate from a look-up table precomputed using (5.5e).

The potential Q2D(z) is shown in Figure 6. Note that Q2D(z) is horizontal at z = 0 and
monotonically decreasing in |z|. The negative of the slope χ = −Q′

2D reaches a maximum of

(5.8) χmax ≈ 0.93305 at z∗ ≈ 0.59505.

The quantity χmax plays a key role in our analysis of minimizers below.
The Fourier transform of Q2D(z) can be evaluated exactly using the integral definition

(5.5c) and interchanging the order of integration of z and w to obtain

(5.9) Q̂2D(k) =
2π

(1 + k2)3/2
,

which we note is positive, so local minimizers are global minimizers per the discussion in
section 2.3.
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5.2. Gravitational potential on the half-line with the quasi-two-dimensional Laplace
potential. We model a quasi-two-dimensional biological swarm with repulsive social inter-
actions of Laplace type and subject to an exogenous gravitational potential, F (x) = gx.
The spatial coordinate x ≥ 0 describes the elevation above ground. Consequently, Ω is the
semi-infinite interval 0 ≤ x < ∞.

From section 3.4, recall that for the one-dimensional model,

(5.10) ρ̄(x) = Mδ(x)

is a minimizer for some M , corresponding to all swarm members pinned by gravity to the
ground. We consider this same solution as a candidate minimizer for the quasi-two-dimensional
problem. In this case, ρ̄ above is actually a minimizer for any mass M . To see this, we can
compute Λ(x),

(5.11) Λ(x) ≡
∫
Ω
Q(x− y)ρ̄(y) dy + F (x) = MQ2D(x) + gx.

Since Λ′(0) = g > 0, Λ increases away from the origin, and hence ρ̄ is at least a swarm
minimizer.

In fact, if M < M1 ≡ g/χmax, ρ̄(x) is a global minimizer because

(5.12) Λ′(x) = MQ′
2D(x) + g > g −Mχmax > 0,

which guarantees that Λ(x) is strictly increasing for x > 0, as shown in Figure 7(a). Because
it is strictly increasing, Λ(x) > Λ(0) = λ for x > 0. Given this fact, and additionally since
W2 > 0 as previously shown, ρ̄ is a global minimizer. This means that if an infinitesimal
amount of mass is added anywhere in the system, it will descend to the origin. Consequently,
we believe that this solution is the global attractor (though we have not proven this).

Note that while the condition M < M1 is sufficient for ρ̄ to be a global minimizer, it is not
necessary. As alluded to above, it is not necessary that Λ(x) be strictly increasing, only that
Λ(x) > Λ(0) for x > 0. This is the case for M < M2 ≡ g/χ2, where χ2 ≈ 0.79870. Figure 7(b)
shows a case when M1 < M < M2. Although Λ(x) > Λ(0) for x > 0, Λ(x) has a local
minimum. In this situation, although the solution with the mass concentrated at the origin
is a global minimizer, it is not a global attractor. We will see that a small amount of mass
added near the local minimum of Λ(x) will create a swarm minimizer, which is dynamically
stable to perturbations.

Figure 7(c) shows the critical case when M = M2. In this case the local minimum of
Λ(x) at x = x2 ≈ 1.11436 satisfies Λ(x2) = Λ(0) and Λ′(x2) = 0. Figure 7(d) shows the case
when M > M2, and now Λ(x) < Λ(0) in the neighborhood of the minimum. In this case the
solution with the mass concentrated at the origin is only a swarm minimizer; the energy of the
system can be reduced by transporting some of the mass at the origin to the neighborhood of
the local minimum.

When M > M1 it is possible to construct a continuum of swarm minimizers. We have
conducted a range of simulations for varying M and have measured two basic properties of the
solutions. We set g = 1 and use N = 200 in all simulations of the discrete system. Initially, all
the swarm members are high above the ground, and we evolve the simulation to equilibrium.
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Figure 7. The potential Λ(x) in (2.24) associated with a δ-concentration on the ground z = 0 for various
total swarm masses M . We choose the half-line domain Ω = [0,∞], the exogenous gravitational potential
F (x) = gx with g = 1, and endogenous interactions given by the quasi-two-dimensional Laplace potential (5.4).
(a) M = 1 < M1, in which case the δ-concentration at x = 0 (represented by the dot) is a global minimizer
and (we believe) a global attractor. (b) M2 > M = 1.15 > M1, in which case the δ-concentration is a global
minimizer but not a global attractor. Another equilibrium solution can be found by transferring a small amount
of mass from the origin to the local minimum in Λ(x). (c) M = M2 ≈ 1.25204. This is the boundary case;
for M > M2, the δ-concentration at the origin is no longer a global minimizer, although it remains a swarm
minimizer. (d) M = 1.4 > M2, in which case the δ-concentration at the origin is now only a swarm minimizer.

Figure 8(a) measures the mass in the air as a percentage of the total swarm mass. The short,
horizontal dashed line indicates (schematically) that for M < M1 the equilibrium consists
of all mass concentrated at the origin; as discussed above, this state is the global minimizer
and (we believe) the global attractor. As mass is increased through M1, the equilibrium is
a swarm minimizer consisting of a classical swarm in the air separated from the origin and
some mass concentrated on the ground. As M increases, the proportion of mass located in the
air increases monotonically. Figure 8(b) visualizes the support of the airborne swarm, which
exists only for M > M1; the lower and upper data represent the coordinates of the bottom
and top of the swarm, respectively. As mass is increased, the span of the swarm increases
monotonically.D

ow
nl

oa
de

d 
06

/1
2/

13
 to

 1
34

.1
73

.1
30

.9
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

246 ANDREW J. BERNOFF AND CHAD M. TOPAZ

1.07 25 50 75 100
0

0.25

0.5

0.75

1
(a)

M

%
 o

f T
ot

al
 M

as
s 

in
 A

ir

1.07 25 50 75 100

0

10

20

30

(b)

M

S
up

po
rt

 o
f A

irb
or

ne
 S

w
ar

m

Figure 8. Numerical simulations of (2.1) for the half-line Ω = [0,∞] with exogenous gravitational potential
F (x) = gx and endogenous interactions given by the quasi-two-dimensional Laplace potential (5.4). (a) Mass on
the ground as a percentage of the total swarm mass. The short, horizontal dashed line indicates (schematically)
that for M < M1 the equilibrium consists of all mass concentrated at the origin. As mass is increased through
M1, a classical swarm exists in the air separated from the origin, and the proportion of mass located in the air
increases monotonically. (b) Support of the airborne swarm, which exists only for M > M1; the lower and upper
data represent the coordinates of the bottom and top of the swarm, respectively. The bottom of the swarm is
located a finite distance from the origin, which is represented as the horizontal dotted line. As mass is increased,
the span of the swarm increases monotonically, with the location of the bottom remaining constant within the
error of our Lagrangian numerical approximation. For all computations, we take g = 1 and N = 200 swarm
members in the discrete simulation. We use a linear spacing in M for larger values of M , but a logarithmic
spacing for values close to M1 in order to resolve the bifurcation.

As established above, when M > M1, swarm minimizers exist with two components. In
fact, there is a continuum of swarm minimizers with different proportions of mass in the air
and on the ground. Which minimizer is obtained in simulation depends on initial conditions.
Figure 9 shows two such minimizers for g = 1 and M = 15 > M2, and the associated values of
Λ(x) (each obtained from a different initial condition). Recalling that for a swarm minimizer
each connected component of the swarm, λ, is constant, we define Λ(x) = Λ(0) = λ0 for the
grounded component and Λ(x) = λ1 for the airborne component. In Figure 9(a) and (b),
29.5% of the mass is contained in the grounded component. In this case, λ0 < λ1, indicatingD
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Figure 9. Two example swarm minimizers for the quasi-two-dimensional Laplace potential (5.4) on the
half-line Ω = [0,∞] with exogenous gravitational potential F (x) = gx. We take g = 1 and N = 200 swarm
members for our simulations but choose different initial conditions. Each minimizer consists of two swarm
components, namely a concentration of mass at the origin and a finite-sized swarm separated from the origin by
a gap. In (a) and (b) 29.5% of the mass is in the grounded component. (a) Λ(x). The dot and cross-hatched
bar schematically indicate the support of the two components. Since λ0 ≡ Λ(0) < λ1, where λ1 is Λ(x) in the
airborne component, we conclude that the total energy could be reduced by transporting mass from the air to the
ground. (b) The swarm density ρ̄(x). The lollipop represents a superposition of 59 swarm members, having
total mass 59 · 1/200. Density within the airborne component is given only at the Lagrangian gridpoints. The
horizontal arrow helps demarcate its support. (c), (d) Like (a), (b), but here 32.5% of the mass is contained in
the grounded group. Since λ0 < λ1, the total energy could be reduced by transporting mass from the ground to the
air. Note that although both states could have their energy reduced by transporting mass between components,
each one is still a dynamically stable equilibrium. We believe that these are just two representative examples of
a continuum of dynamically stable swarm equilibria all with the same total mass.

that the total energy could be reduced by transporting swarm members from the air to the
ground. In contrast, in Figure 9(c) and (d), 32.5% of the mass is contained in the grounded
component. In this case, λ1 < λ0, indicating that the total energy could be reduced by
transporting swarm members from the ground to the air. Note that, by continuity, we believe
a state exists where λ0 = λ1, which would correspond to a global minimizer. However, this
state is clearly not a global attractor and hence will not necessarily be achieved in simulation.D
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We have demonstrated that for M > M1 one can construct a continuum of swarm mini-
mizers with a gap between grounded and airborne components, and that for M > M2 these
solutions can have a lower energy than the state with the density concentrated solely on the
ground. By contrast with the one-dimensional system of section 3.4, in which no gap is ob-
served, these gap states appear to be the generic configuration for sufficiently large mass in
the quasi-two-dimensional system. We conclude that dimensionality is a crucial element for
the formation of the bubble-like shape of real locust swarms.

While we have concentrated here on explaining the morphology observed in our earlier
studies [34] of a two-dimensional locust model, a quasi-three-dimensional system is more
realistic and biologically relevant. For this system, one must integrate over a plane to derive,
analogous to (5.4), the quasi-three-dimensional potential,

(5.13) Q3D(z) =

∫ 2π

0

∫ ∞

0
e−

√
s2+z2 ds dθ = 2π(1 + |z|)e−|z|,

where we have employed polar coordinates (s, θ). Note that for small |z|, Q3D(z) ∼ 2π(1 −
|z|2 +O(|z|3)), so the potential again has zero slope at the origin. The negative of the slope,
χ3D = −Q′

3D, increases to a maximum at z = 1 and then decreases to zero. Thus, the shape
of Λ(x) due to the superposition of a gravitational potential and a δ-concentration on the
ground is qualitatively similar to that observed in the quasi-two-dimensional case. However,
in the quasi-three-dimensional case, the repulsive potential Q3D(z) is too weak to prevent the
collapse of the airborne swarm into a δ-concentration. Steady swarm solutions consisting of
two δ-concentrations, one on the ground and one airborne, do exist. This situation leads to
the following question. In order to engineer a quasi-three-dimensional equilibrium composed
of a δ-concentration on the ground and a classical airborne swarm, what three-dimensional
repulsive potential must one choose? We leave this question for future investigation.

6. Conclusions. In this paper we have developed a framework for studying equilibrium
solutions for swarming problems. We related the discrete swarming problem to an associated
continuum model. This continuum model has an energy formulation which enables analysis
of equilibrium solutions and their stability. We derived conditions for an equilibrium solution
to be a local minimizer, a global minimizer, and/or a swarm minimizer, that is, stable to
infinitesimal Lagrangian deformations of the mass.

We found many examples of compactly supported equilibrium solutions, which may be
discontinuous at the boundary of the support. In addition, when a boundary of the support
coincides with the domain boundary, a minimizer may contain a δ-concentration there. For
the case of exogenous repulsion modeled by the Laplace potential, we computed three example
equilibria. On a bounded domain, the minimizer is a constant density profile with δ-functions
at each end. On a half-line with an exogenous gravitational potential, the minimizer is a
compactly supported linear density profile with a δ-function at the origin. In free space with
an exogenous quadratic potential, the minimizer is a compactly supported inverted parabola
with jump discontinuities at the endpoints. Each of the aforementioned solutions is also a
global minimizer.

To extend the results above, we also found analytical solutions for exogenous attractive-
repulsive forces, modeled with the Morse potential. In the case that the social force was in the
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catastrophic statistical mechanical regime, we found a compactly supported solution whose
support is independent of the total population mass. This means that within the modeling
assumptions, swarms become denser with increasing mass. For the case of an H-stable social
force, there is no equilibrium solution on an infinite domain. On a finite domain, mass is
partitioned between a classical solution in the interior and δ-concentrations on the boundary.

We recall that for the locust model of [34] (see Figure 1) a concentration of locusts occurs on
the ground, with a seemingly classical component above, separated by a gap. None of the one-
dimensional solutions (for the Laplace and Morse potentials) discussed above contain a gap,
that is, multiple swarm components that are spatially disconnected, suggesting that this con-
figuration is intrinsically two-dimensional. To study this configuration, we computed a quasi-
two-dimensional potential corresponding to a horizontally uniform swarm. We demonstrated
numerically that for a wide range of parameters there exists a continuous family of swarm min-
imizers that consist of a concentration on the ground and a disconnected, classical component
in the air, reminiscent of our earlier numerical studies of a discrete locust swarm model.

We believe that the analytical solutions found here provide a sampling of the rich tapestry
of equilibrium solutions that manifest in the general model we have considered and in nature.
We hope that these solutions will inspire further analysis and guide future modeling efforts.
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