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Synopsis

| investigate with examples limitations that mathematicians accept in research:
aesthetic, scientific, and practical, in particular, on what bases such choices are
made. Discussion is partly in terms of the ideal agents that Philip Kitcher and
Brian Rotman used to analyse mathematical writing.

1. Introduction

There is an insulting expression “not playing with a full deck,” which one
would hardly apply widely to research mathematicians. But it is common in
research to accept limitations, sometimes severe, on the means to be used.
This report is the result of my inquiring why this should be so, initially
thinking of constructive mathematics but with the topic of the final section
also in mind. I set out to find facts, and I am intending to indicate what I
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and "Hépital references to Jeanne Peiffer. Thanks also to Douglas Bridges, Julian Cole,
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annual meeting in Regina of the Canadian Society for History and Philosophy of Science
in May, 2018, and Sections 2, 3, and 6 were presented at the annual meeting in Montréal
of the Canadian Society for History and Philosophy of Mathematics in June, 2018.
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found rather than to prove any point. I have found three different kinds of
limitation that mathematicians accept in research, finding different reasons
why they are acceptable to some. These kinds and reasons are aesthetic,
scientific, and practical. Making no claim to be exhaustive, I hope that
others will be interested enough to find other kinds and more easily other
examples of my kinds.

An interest that I find in these limitations is the reasons for them, and I am
going to use the word “justify” for the relation between a reason and a lim-
itation. I am specifically not intending philosophical justification, whatever
that would mean.? I mention philosophical justification, however, because
Helen Billinge [5] shows that the constructivism of Errett Bishop |6, 8] is not
philosophically justified by him, and much the same question is still being
addressed about constructivism [18].

In order to discuss limitations, it will be convenient to use the a term intro-
duced by Philip Kitcher [28] and refined and elaborated by Brian Rotman
[46]. A lot of mathematics concerns what can be done. The classic example
is the use of straightedge and collapsing compasses in Euclidean geometry.
Humans cannot draw Euclidean lines or circles, and one can think of an
ideal agent that can do these things with the required (exact) precision.
Such agents are plainly non-human and disconnected from the mathematical
reader (or writer for that matter). A writer, on the other hand, may have
an ideal engaged reader in mind, to whom sentences like “Consider trian-
gle ABC” are addressed. It is not the non-human agent that considers the
triangle; its job is to draw it, and it responds to its instructions. I shall men-
tion this ideal reader occasionally; assumptions may be made of the reader
by the writer. Both receive instructions in a typical piece of mathematics.
A piece of intuitionistic mathematics may be written by a non-intuitionist
assuming that the engaged reader is an intuitionist and so cares about intu-
itionistic proof. It is the presumed reader that needs to be an intuitionist,

2 Justification is used with different meanings in two famous sayings from the Renais-
sance, “Justification by faith alone” from Martin Luther and “justify God’s ways to man”
from John Milton. Luther’s justification is making one to be just or righteous, a divine
action consequent upon faith, whereas Milton’s justification is only to show to men that
God’s ways are just not to make them just. The difference is between the act of making
right and demonstration of being right. This difference is so large and there are so many
sorts of justification in between that the notion needs a book not a footnote.
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not the writer.® Restrictions are placed on presumed readers and on ideal
agents in much mathematical writing. Such restrictions have always been
part of geometry, the only old mathematics sufficiently formalized to con-
sider in this way. The early books of Euclid’s Elements allow the agent the
use of only straightedge and collapsing compasses in a context where famous
problems like the duplication of the cube could be solved by other means.
Having been done for ever is a reason for this particular restriction and po-
tentially for other such restrictions. A significant amount of mathematics is
the fairly systematic exploration of the effects of such restrictions, often by
choice of axioms, which usually restrict the agent, and of reasoning style,
which usually applies to the reader. This seems to be how we explore the
wisdom of time-honoured restrictions.

In the Elements, Euclid allows the agent to draw circles, given centre and a
point on the circumference, and to join points with straight lines and extend
them. When you think of what you can do with an idealized pencil, that is
amazingly restrictive.* And those restrictions have to be relaxed in the later
three-dimensional books. It is customary to misstate these capacities of the
agent in terms of existence. “There is a line between or through two points,”
and “there is a circle through a given point with a given centre”. But the
constructions require not just that these things exist but also that they can
be drawn. A goal of the Elements is the polyhedron constructions of Book
XIII.

I think that restrictions on the reader alone were not contemplated until
the twentieth century. Brouwer both restricted the reader with intuitionistic
logic and allowed it (she or he?) to produce choice sequences, rendering his
intuitionism incompatible with mainstream mathematics. As well as a philo-
sophical stance, Brouwer gave rise to intuitionistic mathematics, which one
need not be an intuitionist to find interesting to study. There is the exam-
ple of Philip Scowcroft [47, 48|, who both studied intuitionistic mathematics

3Rotman calls the engaged reader the “subject” in his detailed analysis of mathematical
writing. According to Stephen Pollard [41, page 92|, Moritz Pasch as long ago as 1919
[36, page 21| wrote in the as-if mode of Hans Vaihinger [62] of an idealized combinato-
rial reasoner blessed with “eternal life and unlimited memory” with which to discuss the
possibility of certain constructions as expressed by his axiom systems [37, 38|.

4See [49] for a careful examination of the agent’s restrictions in Book I-VI of the
Elements.
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without being an intuitionist and could make it interesting to an audience
of non-intuitionists (personal experience). One is not bound to mimic the
engaged reader to read a text any more than one inherits the powers or limits
of the implied agent.

In the twentieth century both Turing machines and actual physical digital
computers have been studied as obviously restricted agents. One scientific
interest in agents is the equivalence of powers of differently described agents.
As James Ladyman pointed out to me, a reason for so much interest in
Turing machines is that what they can do is provably equivalent to various
other agents’ capacities. Such equivalence classes have the characteristics
of natural kinds, perhaps more so than natural kinds. Likewise, what can
be found by constructions with straightedge and collapsing compasses in the
Euclidean plane is the same as what can be found with arithmetic and square
roots in the Cartesian plane. Again the equivalence-class boundary has been
studied a great deal with things proved to be inside or outside that common
capacity. Computer science is much concerned with the limitation embodied
in Turing machines; this seems to be an example of scientific interest in and
justification of those limitations (in the narrow sense I in which I am using
“justification”).

More generally, restrictions on what the implied agent can do with the math-
ematical objects involved, usually specified by axioms, and on the logic the
engaged reader can use are standard in the past century or so. In the early
nineteenth century an agent could manipulate symbols, but the symbols had
to represent numbers unless you were an advanced thinker like George Boole
[9]. As an editor, I run into the restriction to first-order logic all the time.
And group theory is a restriction of field theory; the agent can add or mul-
tiply but not both.

2. Aesthetics

I find a tension between two aesthetic attitudes to mathematics associated
with G. H. Hardy. He maintained that a pure mathematician is observing a
given landscape and notes down observations (proof is successfully pointing
to a feature) |20, page 18]. But on the other hand he also said that there
is no permanent place for ugly mathematics [21, page 85|. One can hardly
demand that the unalterable landscape one is observing has any particular
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attributes. As I have said elsewhere [58], the impermanent may last a very
long time if something ugly is sufficiently important. But Hardy’s ugliness
or beauty is that of the written/spoken/performed mathematics, not of the
landscape whose exploration is written up. There is fine travel writing about
unpleasant sights. It is unusual for the mathematical objects themselves to
be of interest for their beauty. An example is my (and others’) study of weav-
ing patterns [55, 56|. Escaping the landscape metaphor, I suggest that the
tension is between the curiosity and aesthetic motivations of the enterprise. If
one wants beautiful definitions, axioms, proofs, then one’s motivation is aes-
thetic, which may limit the landscape’s exploration. But if one explores the
landscape at all costs, then the costs may be aesthetic. These two projects
have quite distinct motivations beforehand and rewards afterwards. I want
to move now to the aesthetic way of looking at the matter, setting aside from
consideration that mathematics, as exploration and observation, satisfies cu-
riosity directly. This is to consider pure mathematics as an outlet for artistic
creativity satisfying aesthetic appreciation rather than the raw curiosity of
normal mathematical research, which of course it also satisfies.

As I said above, a non-intuitionist can require an intuitionist implied reader
that operates with intuitionistic logic. And a constructivist can recognize
a valid classical proof that uses the law of excluded middle (EM). In his
philosophical manifesto, Bishop [7] is quite clear about needing agency.

Our point of view is to describe the mathematical operations that
can be carried out by finite beings, man’s mathematics for short.
In contrast, classical mathematics concerns itself with operations
that can be carried out by God. ...The most solid foundation
available at present seems to me to involve the consideration of
a being with non-finite powers—call him God or whatever you
will—in addition to the powers possessed by finite beings. |7,

page 9|

Such an agent has always been necessary in geometry in view of our drawing
limitations, and it has been called upon in analysis more or less since its
invention. Euclid’s FElements’ agent selects by “drawing” circles and line
segments, selecting them from the infinite plane surrounding them. A far
cry from the axiom of choice, but still an infinite task. This is something
that Bishop does not seem to recognize. He ignores geometry and considers
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some classical analysis to be human mathematics supplemented by EM and
its consequence the limited principle of omniscience (LPO), “If {n;} is any
sequence of integers, then either n, = 0 for all k£ or there exists a k with
n, # 0,7 discoverable by the agent. To give a classical theorem A what
Bishop calls its “meaning,” he would say “LPO implies A” if LPO but not
EM has been used in its proof or “EM implies A”. I’'m not much concerned
with the practicalities of constructivism. What interests me here is motive.
It seems to me that Bishop’s reason for pursuing the style he adopted was
aesthetic. I formed this impression from his book and then had it confirmed
by this sentence in his manifesto. “My feeling is that it is likely to be worth
whatever extra effort it takes to prove ‘A’ rather than ‘LPO — A’ |7, page
14] This is aesthetic because it is an ascription of worth and is based on
feeling but is about something objective, namely the difference between the
proofs of A and of EM — A.°

It had seemed to me that Bishop’s restriction of means, to the extent that
it was reasonable, had to be aesthetically motivated, and so I was pleased
to find that he said so. It was a matter of choice of style. In his polemical
writing Bishop made out that it was more than that, as is indicated by the
title of what I have referred to as his manifesto, “Schizophrenia in contem-
porary mathematics.” [7] The agent is allowed by some mathematical styles
to complete infinite processes. This appears to be something Bishop was
reacting against. I take his restrictions to be not allowing the agent to com-
plete infinite processes nor the reasoning to use excluded middle. Reasons
for these restrictions appear to be

1. Compatibility with, indeed inclusion in, mainstream mathematics and

2. The feeling, at least of Bishop’s followers, that what is accomplished
within these voluntary restrictions is preferable to what is done outside—
rather like some others’ avoidance of the axiom of choice.

The second reason is a good example of the aesthetic basis for some lim-
itations that mathematicians place on themselves in their research. Had
that been ackowledged instead of presenting constructivism as the cure for

5This is by no means to claim that Bishop thought of increased meaningfulness as an
aesthetic quality. He wanted the greater meaning. The reader may prefer Bishop’s stated
reason to my version.
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the maladies of mid-twentieth-century mathematics, it might have received
a better hearing. Most mathematicians did not feel diseased and were not
looking for a cure. It is a long time since [6], and in that time construc-
tivism has proved itself mathematically, as illustrated by Brian Davies [13],
not himself a constructivist.

3. Style: The musical analogy

If one considers a musical analogy for mathematics [3], it will not be as simple
as tunes for a penny whistle. More like instrumental music as a whole. As
soon as one looks at a whole art form like music or architecture, one realizes
that restrictions are inevitable. Just as when building a building one needs
a site and materials, if one is to write music one needs to consider what
medium one is writing for. Bach’s Art of the Fugue is unusual in being, I
understand, just notes (playable on a keyboard). Almost all music is written
for particular forces.

The musical analogy here is just that. It may be shallower than that to fic-
tion. I am not suggesting that there is much in common between composing
music and doing mathematical research. I have thought of just a few analo-
gies that I think are interesting. There seem to be a couple of similarites
where music has a name but mathematics does not. Genre is defined usually
by the instruments one writes for and then more finely. This corresponds
in mathematics to those choices such as Bishop’s to limit what one uses. In
both art forms such decisions do have to be made.

The vast differences between music and mathematics prevent any idea that
thinking about them can be blended. Music is about sound and mathematics
about ideas. The philosophical difference between them includes the freer
creative nature of musical composition, whereas mathematicians have this
idea that they are mapping terrain to which they have some mysterious
access. Even those more impressed negatively by the mystery than positively
by the access have to admit that the notion is borne out by one’s being able
to take up the work of others and extend it seamlessly. That does not happen
in music. It is serious work to take the gems of several mathematicians and
arrange them mosaic-like in a treatise,® but it is done, whereas composers do

SMario Bunge |11, page 111] (quoted [35]) points out that mathematicians do not put
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not weld smaller compositions of others into a symphony. Charles Avison’s
arrangement of Domenico Scarlatti’s harpsichord sonatas into concerti grossi
is a rare exception, and they are all by Scarlatti. What does get put together
is mostly folk melodies.

Another similarity is again where a musical term is standard and mathemat-
ics has only a tenuous grip on the idea. A piece of music is often arranged for
forces different from the original. For example a symphony can be reduced to
be played on the organ (for example, Dvotak’s New World Symphony). The
pieces of music are different but related in an obvious but imprecise way.
Mathematicians sometimes prove a theorem from systematically altered hy-
potheses. It is not the same theorem, but it may have a proof that one would
wish to call “the same.”” We have no standard term for doing this when it is
not generalizing.

There is some similarity between harmony in music and rigour in mathemat-
ics. The one that came instantly to my mind was that what is harmonious
and what is rigorous are far from constant over time. But being harmonious
is a restriction on what one can do as being rigorous is a restriction. In my
experience, only hymn tunes are rewritten to make them more harmonious.
After a century or so of much music without old-fashioned scales, the restric-
tion to standard keys has not disappeared but remains. If intuitionistic logic
had taken over, it would have been a rejection of the more freewheeling logic
of the twentieth century not altogether unlike a rejection of atonality, which
has also not happened.

Mathematics and music on the page are just symbols. In order to be what
they symbolize they both need to be lifted from the page by a person or
by persons in the case of compositions for a group of players.® It seems to
me to be easier to lift mathematics mentally than to do justice to a musical
score by reading it, but a musician might feel oppositely. Both mathematics
and music are best performed and need performance to be appreciated. This
is of course well-known for music, but I think that it is underappreciated

their personal stamp on their creations, thinking of mathematical systems, in spite of the
fact that solutions of individual problems have been held to have identifying features.
"Brian Davies [14] mentions generalizing Mercer’s theorem from kernels on a one-
dimensional interval using “the core of Mercer’s argument.” The “idea” of such a proof is
like a melody that can be moved around, even turned upside down.
8This has been noted by others, e.g., Marquis [35].



Robert S. D. Thomas 275

for mathematics. Mathematicians do themselves and their mathematics no
favours by paying so little attention to the fact that presentation matters.
Incomprehensible colloquia are inexcusable.

There is no question that in music—in principle—anything goes. One can
choose whatever forces one wishes and specify whatever notes are to be played
by them (subject to only physical limitations). But there are good reasons
for choosing combinations that “work,” a number of which are traditional. An
exact example: how many different instruments could replace the cello of a
string quartet and still produce sounds that many would be prepared to listen
to more than once? I heard the premiere and only performance of Canadian
composer Lawrence Ritchey’s duet for flute and bagpipe. He wrote it as a
joke, of course, because while the instruments could be played antiphonally,
one could not hear the flute if the bagpipe was playing too. When axioms
began to be taken seriously outside geometry in the nineteenth century, Au-
gustus De Morgan [15], following George Peacock [42] and followed by George
Boole [9], said that—in principle and in algebra—anything goes. The idea of
arbitrary axioms is accordingly very old as a logical possibility, but no one is
interested. The idea of arbitrary axioms is plain silly, which does not restrict
freedom.

Turning back to the matter of mathematical genre, if one thinks of that anal-
ogy, one no more needs to apologize for working for one set of instruments
or from one set of axioms than from another. The only thing that mat-
ters is whether the mathematics produced in the genre is of value, chiefly,
in my opinion, of interest. A whole genre, even an important one, may be
of no interest to someone. The widespread lack of interest in set theory
among mathematicians in general has somehow generated a vague hostility
to set theorists. This cries out for study and understanding, not to men-
tion correction. Bishop showed that with his forces he could do a lot of
interesting mathematics. As a result his constructivism has or should have
greater respectability than Brouwer’s intuitionism, from which Bishop dis-
tanced himself, especially in view of his offering classical proofs preferable
at least aesthetically to non-constructive proofs.” What is hard to justify is

9Beyond the aesthetic value of constructivism, constructive proofs have a scientific value
as informative. Benedict Eastaugh has pointed out to me that in proof theory Kreisel had
a programme that is called “unwinding” in which nonconstructive proofs are turned into
constructive ones to extract computational content, “allowing one to compute explicit
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that constructivism, for example, should ultimately be the norm.'® Bishop
probably did want to do that, and he couldn’t. It was Bishop’s inclination
not his mathematics that lacked not just philosophical justification but any
justification. The very idea that his style had or required justification comes
from his mistakenly seeking it.

4. Scientific Reasons for Limitations

A reason that has been given for some restrictions, for instance that to three
dimensions in geometry, is that mathematicians explore a given (though inac-
cessible) Platonic realm sending back reports of what is discovered. This sort
of realism, associated with Frege, imports to mathematics whatever preju-
dices are operative in its practitioners. While this can be presented as philo-
sophical justification for specific axiom systems (all of which limit in some
way |20, page 19]), its historical effect has often been to block the exploration
of what has been deemed outside the realm. Such attitudes hampered the
study of negative and complex numbers for centuries and probably geometry
of more than three dimensions. Intellectual progress is better directed by
mathematical and scientific (i.e., broadly pragmatic) imperatives. The idea
that the restriction to two and three dimensions is not a restriction but is
in any sense natural for geometry has now been out of date for two hundred
years; they are, to be sure, natural foci of interest. That’s what is natural.
Two-dimensional geometry is easier than three-dimensional geometry, easier
in turn than four-dimensional geometry; so there is a pedagogical progression
that is also as natural as inclusion.

The applied-mathematical example that raised the question of limitations in
my mind is the ancient text Spherics, which exists only in a second-century
BCE version |23, 12, 63, 60|, which date just indicates when it stopped being

witnesses or bounds on the growth of a function from a result that was apparently purely
existential in character” (personal communication, May 4, 2018). A leading exponent of
this programme is Ulrich Kohlenbach [29].

10Tn the preface of his [6], Bishop referred to his “ultimate goal—to hasten the inevitable
day when constructive mathematics will be the accepted norm.” He did not claim, however,
that “idealistic mathematics is worthless from the constructive point of view” because
“le]very theorem proved with idealistic methods presents a challenge: to find a constructive
version, and to give it a constructive proof.” (page x)
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worked on because it was superseded, except as introductory, by the invention
of trigonometry. The treatise is centuries older, being called upon in Euclid’s
Phenomena [4] and probably Elements. Spherics is quite strictly deductive
but appears to be pre-axiomatic since no axiom is stated or mentioned. The
deductions help themselves to whatever results of plane or solid geometry
are needed, so long as they do not pertain to spheres. The subject is the
parallel circles on the celestial sphere that are paths of stars and some great
circles including the reader’s horizon and the ecliptic, that is, the daily path
of the Sun. Books II and III contain this material applicable to the spherical
astronomy of the stars (no planets).

The constructions used in their proofs require occasionally, in order for the
agent to draw parallel circles, its finding the pole of a circle (i.e., the point on
the surface used with compasses to draw the circle) and frequently drawing a
great circle. In preparation for these activities of the treatise’s agent, Book I
shows how the agent can do both of these things with compasses and straight-
edge, almost like Elements I (but the compasses must not be collapsing as
they are used to transfer distances). What matters here is how Book I proves
things. The agent practises, as it were, the constructions to be used in Books
IT and III as one would expect, because the constructions have to be proved
effective. The reader meanwhile performs what my friend Bob Alexander
characterized for me as thought experiments, virtual constructions, which
need to be thought about but need not be performed, allowing the reader
to see geometrical facts. The first proposition is as good as any to illustrate
this.

On the surface of a sphere, the plane through three points A, B, G—deter-
mining a plane according to the Flements—cuts the surface of the sphere in
a circle. To prove this, the reader imagines (as I am conceptualizing what
is going on) a perpendicular dropped from the centre C' of the sphere to the
plane at D and sphere radii C'A and C'B and what will turn out to be circle
radii DA and DB. In right triangles ACD and BC'D, C'D is common and
the sphere radii C'A and CB are equal; so the third sides DA and DB are
equal to each other and to DG, which is any other radius of what is by now
obviously a circle. While there is no way in space to join C'A much less to drop
a perpendicular from C' to D, this is all imagined by the reader with no action
taken by the agent with the compasses, but that’s good enough it seems to
me. One can discuss this in terms of two agents, one to do these improbable
and unnecessary things [50, 57| while saving the other to wield compasses
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and straightedge later as required. In that case one has unrestricted and
restricted agents (imagination and construction agents).!! In my view the
reader has to have imagination, but otherwise has no restrictions at all. The
point being made here is that, whichever way you conceptualize the agent or
agents, restrictions on agents have always been with us, since those in the
Elements are well known.'?

(This is what the more restricted agent does [59]. The basic construction
is to find the diameter of a circle on the surface of the sphere, given three
points on it, say A, B,G. It cleverly makes use of the fact that a circle is
a planar figure as well as a spherical figure and transfers the distances AB,
BG, GA, to a plane as ab, bg, ga with the non-collapsing compasses acting
as dividers. It draws the triangle abg with the straightedge and constructs
perpendiculars at b and ¢ inward to meet at d, which is the other end of
diameter ad of the circumcircle of the triangle abg, equal to the circle on the
sphere. Line segment ad is a diameter because a diameter is what subtends
right angles, and ad subtends right angles at b and g¢.)

Restrictions on agents are so old a feature of mathematics as to be (in part)
definitive of it. Yehuda Rav points out in his famous paper “Why do we
prove theorems?” [43] that we would not need to prove theorems if we could
somehow be told which statements are true. Ignorance is the great given hu-
man limitation. Without chosen limitations, mathematics would be reduced
by our physical limitations to adding and multiplying whole numbers. The
restriction “Smaller from larger” is introduced with subtraction.

Spherics illustrates one sort of restriction of mathematical work—to the lim-
ited mathematics needed for natural science. I now give a second example

HTwo agents of differing powers may be more common than the Kitcher-Rotman analy-
sis suggests. If one is a numerical analyst considering rational arithmetic, one is going to do
so in a context of real numbers, that is, where one can call upon an agent to make the sum
of root two and root three meaningful. Or if one is going to prove that one cannot trisect
an angle with arithmetic and square roots, one is going to think in the standard Cartesian
plane and just restrict to the determinable points. An increasing amount of mathematics
has to do with such matters, which can be thought of in terms of non-absolute Tharp
modality, discussed shortly.

12Tt is of course agency that is plainly present in the Elements, joining points, extending
lines, and drawing circles, with no agent mentioned. Andrei Rodin’s recent discussion [44]
of the Elements makes much of agency but without an agent.



Robert S. D. Thomas 279

because it is so very different and yet illustrates scientific reasons for using
weaker than normal axioms. Weaker axioms authorize weaker agents.

5. Scientific Interest in Mathematics Itself: Reverse Mathematics

I have already mentioned the study of agents of power equivalent to Turing
machines. Other agents can be studied too. In the simplest model of ordinary
mathematics, one takes axioms and a style of inference and deduces theorems
from the axioms. Number theory is in principle the collection of theorems
one can deduce from the first-order Peano Axioms (PA), where the induction
axiom is actually a scheme of many axioms, one for each formula ¢(n):

[p(0) AVR(p(n) = @(n +1))] = Ynp(n).

This system is an example of axioms of the self-evident variety, which we
use because we believe in them. The language of PA includes the constant
0, variables, function symbols, =, logic symbols including universal and exis-
tential quantifiers, and parentheses with which to make terms, formulas, and
equations. For example, subtraction of less from greater is possible:

(VO)(Vg > 0)(3d) +d = g.

We call d the difference g—/¢; it is something that the agent here can find. For
what I want to say, the quantifiers are important because it is possible to re-
cast well-formed statements into a different-looking special form. The special
form, unlike what one might call the more natural form I've set out above,
has all the quantifiers at the beginning alternating between universal (V) and
existential (3) so that there are two forms possible beginning with either a
universal or existential quantifier. If there are m quantifiers, the first class is
called TI%, and the second X2 . The size of m is a measure of the complexity
of the property defined by the m quantifiers and the quantifier-free formula
at the end. Unsurprisingly, there are properties definable in X9 41 that are
not definable in X2 . We are now able to return near to Bishop'® because

13Reverse mathematics has also been done constructively. That and other aspects of
constructive mathematics are discussed in [10]. Incidentally, Bishop was very much in
favour of formalizing his mathematics for two reasons, for humans to understand it more
precisely and for computers to be able to do it at all [7, page 14].
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sets of integers that are computable are defined by X{ statements. One of
Bishop’s ideas seems to have been to stick to the computable, although he
hampered critics by failing to specify what he meant by “computable.”'* In
terms of agents, Bishop wanted them to be of human powers; exactly what
that entails needs to be made more precise to be studied. The quantifiers
seem to have interpretation in terms of agents. The existential quantifier
for Bishop must mean that his agent can find the item quantified, and the
universal quantifier must indicate “for any that the agent can find.”

Very many mathematicians are interested in doing mathematics way beyond
what is in any sense computable, and still others are scientifically interested
in studying that mathematics for its properties. One of the simpler such
properties is just how far away results of analysis are from being computable.
Students of reverse mathematics use several axiom systems, of which one is
PA with two changes. The induction scheme, symbolically identical to that
of PA, is restricted to apply only to X? formulas (n),

[£(0) AVR(p(n) = @(n+ 1))] = Vnp(n),

and there is added, again only for p(n) in X9, what is called recursive com-

prehension:
Vn(p(n) < P(n)) = IXVn(n € X < ¢(n)),

where 1(n) is a II? formula and X is not a free variable in . This means
that if a property is definable in both of the forms I have mentioned, $¢ T19,
then there is a set of natural numbers satisfying the formula. The relevant
agent can pick out that set. RCAy, as this system is called,' is a very restric-
tive system in which little can be proved; not, for instance, that a monotone
bounded sequence of rational numbers has a limit (monotone-convergence
theorem [53, page 82|). One might easily say that it is not mathematically
justified, but it is scientifically justified by what else can be done with it.

H4f it is fair to say that the intuitionists find the constructive concept of a sequence
generated by an algorithm too precise to adequately describe the real number system, the
recursive function theorists on the other hand find it too vague.” [7, page 20|.

I5RCA is apparently not an abbreviation. RC of course abbreviates “recursive com-
prehension.” Writers in this subject use this symbol and another I’ll mention as system
names. At least one other system has as its name a symbol (WKL) that is an abbreviation
of something that is not an axiom system; so WKL is definitely not the abbreviation of
the name of the system.
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While on its own, among well-known theorems of analysis, it proves only
the intermediate-value theorem, it allows proofs that various other theorems
are equivalent to each other. For example, the monotone-convergence the-
orem is equivalent [53, page 82| to the Bolzano—Weierstraf theorem!® and
the extreme-value theorem!” is equivalent [53, page 107| to the Heine Borel
theorem.® So it is useful for comparing the strengths of theorems it cannot
prove. The study of reverse mathematics, which is only forty years old,'” has
also used stronger axiom systems than RCAg. Stronger systems are partic-
ularly important, including ACAy, in which many theorems of analysis can
be proved, and another (WKL) between RCAy and ACAq in strength and
characterized by an axiom equivalent to the Heine-Borel theorem. ACA,
and some others are characterized by stronger comprehension schemes than
the recursive.?® In each of them some theorems can be proved and some
pairs, unproved, can be proved to be logically equivalent to each other. I
don’t want to belabour this topic, but I do hope to have made my point
that an axiom system lacking mathematical justification can have justifica-
tion for the scientific study of mathematics. I shall finish these details with
two remarks. One is that the equivalence classes of theorems are surprisingly
large.?! Lastly, my chief sources for this material are a paper that I read
before its publication in Philosophia Mathematica [16] and a recent readable

16 An infinite set of numbers between two given real numbers has a limit point [53, page
57].

"Every continuous real-valued function on a finite interval has both a maximum and a
minimum on the interval [53, page 60].

18Every closed finite real interval is compact [53, page 59].

19This scientific interest in mathematics seems to have been initiated by the problem of
the parallel postulate. Euclid’s other postulates enabled the proof that the parallel pos-
tulate (one and only one parallel) is equivalent to Playfair’s axiom (at most one parallel,
1795). I owe this remark to Benedict Eastaugh. Such interest must have been stimu-
lated by Sierpinski’s work on the axiom of choice, showing what needed it and what was
equivalent to it in many papers.

20ACAq has the simpler but stronger arithmetical comprehension scheme:

IXVn(n € X < ¢(n)),

where X is a set of natural numbers and ¢ is definable in the language of PA.

210ther theorems equivalent to Heine-Borel over RCAg are that the limit of a sequence
of uniformly continuous functions on a closed interval is continuous, Brouwer’s fixed-point
theorem, the Jordan curve theorem, and the separable Hahn—Banach theorem.
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book by John Stillwell [53|, to which I have referred, the standard reference
being [51].

As usual, axiom systems clarify what we can say about our material without
saying what we are talking about, and these axioms are different from those
useful in natural science. But we can say more. I draw your attention to two
different situations.

1. Reverse mathematics studies pre-existing carefully axiomatized mathe-
matics to determine, for a result studied, exactly which hypotheses will not
just give a result but are equivalent to it. This is completely precise and is a
scientific justification for the mathematical axioms used.

2. The second is less precise, and so I'll use an analogy used by Frege [17]
and Hardy |20, page 18] for the result of the mysterious access to the terrain
of pure mathematics: one is sending back reports of mountain peaks that
one has spied in the distance. In terms of that metaphor, much constructive
mathematics studies just which peaks can be not just seen but climbed by
showing how to climb them.

One way to look at reverse mathematics is as determining how far from being
climbable various peaks are, how far from being constructive various non-
constructive theorems are [53, page 156]. The aim is a functioning climbing
map, a map of what can be climbed and with what equipment. Scientifically,
we are interested in what it is possible to do. Mathematically, we are inter-
ested primarily in doing it and secondarily in determining what in principle
is possible for various agents. How does all this possibility fit in??? Consider
a quotation from Leslie Tharp, who died in 1981.

We have claimed that the modal propositions of arithmetic are
primarily about concepts, and are about ordinary objects and ac-
tivities in the indirect sense that the concepts may be applied to
ordinary objects arising from ordinary activities, such as an actu-
ally constructed inscription. In particular, existential assertions
such as “there is a number...” may go far beyond anything hu-
manly feasible. The discomfort with modal treatments of math-
ematics is reminiscent of the everyday interchange of “can” and

221 can’t help mentioning the modal structuralism of Geoffey Hellman [24], but this is
not the place to discuss it.
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“may.” One sometimes says “Herr Schmidt can drive 150 kph on
the Autobahn” when he actually cannot (because, say, his Volk-
swagen won'’t go that fast). Obviously, what one means is that he
may, that is, the relevant rules permit such speed. We interpret
the mathematical modalities in such a “may” sense: one may con-
struct an inscription with 99% strokes—the concepts undeniably
permit it. [54, page 187]

Herr Schmidt is a Kitcher-Rotman agent.

I have observed a twentieth-century shift in mathematics toward considera-
tion of possibility and efficiency, what can be done and how well.?* The shift
seems to have begun very early in the century, since already the Académie
Francaise offered a grand prize in 1918, won by Gaston Julia, for an inves-
tigation of global properties of iterations of rational mappings in the plane.
Their exotic behaviour, now known as fractal, had already been written about
by Pierre Fatou in 1906. Emphasis on what can (and of course cannot) be
done takes mathematics back to its roots, if not in Europe, then elsewhere.
Much of our evidence of pre-Greek middle-eastern mathematics is of problem-
solving processes. Indian mathematics was focused on calculation. Chinese
mathematics was algorithmic when the ancient Greeks were thinking instead
of theorems; Chinese calculators invented matrices to solve linear equations
about two thousand years before Europeans |22]. Arabic mathematics in the
middle ages, despite being based on Greek theory, was sufficiently algorith-
mic to have given us the term. Once you shift your attention to how to do
things rather than reporting on geography, how well you can do what you
can do becomes of mathematical interest and studying it becomes justified
by the practical reasons for doing what you do, solving the problems that
you solve.

6. Practical Reasons

There is another kind of narrowing with reasons, which is a looser choice
than a restriction that anyone would try to suggest as imperative. This kind

23J. M. Landsberg [31, 32] has written about more efficient algorithms to multiply
n x n matrices. The definition requires n® multiplications, but the number of arithmetic
operations has been reduced to O(n?-38).
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of choice is that of a tool to use for whatever ends rather than a topic to
study by whatever means. (It is also a topic for study.) My observation of
mathematical practice is that this adoption of a tool to use is common and is
done with no thought that its use needs any sort of justification other than
its working.?* One does with it, in each application, what one can; perhaps
others will use it or something else more effectively later. One will move on
to another application or to learning how to use some other tool. Substantial
investment is involved; one can’t learn to use everything and then choose
what to do with it all. This is analogous to physicists, who have built a
cyclotron to perform certain experiments, continuing to use their cyclotron
to do other things simply because they have it and are experts on its use.
Not all momentum is physical.

Jean-Pierre Marquis, in a paper twenty years ago [34] and subsequently, has
discussed mathematical tools and machines, using as his main example in
[34] K-theory as a tool in a context of mathematical gadgets of two sorts,
instruments and tools. I have seen the value of this by thinking about exam-
ples that I understand better than his. While tools manipulate things, I take
instruments to be mainly denoters that say what you're looking at (even if
you don’t know exactly what it is). Letting z be the unknown quantity is
an important instrument. So I have two lists illustrating my interpretation
of this distinction; see Table 1 on the following page.

The last example is not a generally known technique but is mentioned by
Emiliano Ippoliti [27] (not knowing I studied it fifty years ago).

Since what I am calling an “instrument” specifies and represents what one
attends to, and what I'm calling a “tool” manipulates things identified by a
corresponding instrument, in order to use a tool one needs to understand its
use, and one also needs to have things represented in an appropriate way.
The tools that Marquis lists are more sophisticated than mine, “spectral
sequences, homology theories, cohomology theories, homotopy theories, K-
theories, sheaves, schemes, representation theory and character theory, com-
mutative algebra, graph theory in group theory, classical geometry in algebra,

24Knowing about Coxeter groups one might see how that knowledge can be applied to
solve problems about quivers. Or knowing about quivers one might apply them to cluster
algebras. As these examples illustrate, the same body of work can be either tool or target.
And of course learning can be of the tool as well as of the target.
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Instruments Tools
lettered diagram straightedge and compasses in

Euclidean geometry

rotation of plane curve to
produce surface of revolution

using a symbol for the ordinary arithmetic
unknown (becomes algebra)
letting € be an epsilon-delta proof

arbitrary real number

multi-digit numbers addition by successive adding of
(binary, decimal,. . .) up to three single-digit numbers

infinite-series approximations

matrices for systems of matrix manipulation to categorize
equations or inequalities and solve

cartesian co-ordinates solving simultaneous equations

to identify points and to find points of intersection

equations to identify loci

adjacency matricies contracting to produce minors
for graphs in graphs

growing subtrees of graph

closed braids for knots systematic manipulation of braids

Table 1: My interpretation of the distinction between instruments and tools.
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especially field theory, model theory in algebra, in combinatorics, and in anal-
ysis.” Since I studied only one of these, homotopy theory (not theories), as
either undergraduate or graduate student in the 1960s, I thought it might be
helpful to illustrate the idea with some older things at a lower level. Marquis
explained his list to me when I inquired about it.

The main point in the list that I gave was to underline how
widespread the phenomenon is in contemporary mathematics:
large portions of contemporary mathematics consists in building
the right tools, instruments and conceptual machines to explore
numbers and spaces. More generally, one sees in the 20th cen-
tury the development of a systematic technology in mathematics
(and I really want to make a close parallel with the role of scien-
tific technologies in the development of the sciences). (personal
communication, November 27, 2017)

My distinction is different from his since my tools manipulate objects, whereas
his (and the functors of Kromer’s book [30]) take things elsewhere the better
to study them.

My interest in this matter is in seeing the adoption of a particular tool or
more likely combination of tools and finding out what can be done with them
as analogous to a literary or other artistic genre, like string quartets. The
tools chosen define the genre, and the common justification of the tools—
which need not be at the level of sophistication of Marquis’ tools—and of the
genre produced is the interest that is found in what one can do. As there is
no reference to anything outside of mathematics in this process, it stands as
mathematical justification of the procedure.?®

Let us consider an example from my table, the tool analytic geometry. There
has, so far as I know, never been any suggestion that geometry ought to be
done as analytic rather than synthetic. When it became possible to prove

theorems analytically, this was done as an exploration of what the tool could
do. Both Nicolas Guisnée (d. 1718) [19] and I’'Hopital [26] wrote books doing

25The main article [2] in the April 2018 Notices of the American Mathematical Society
honours the wielding not building of Hodge theory in complex algebraic geometry by Claire
Voisin. It is quite explicit that what she has done so well is to solve problems with this
tool.
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proofs and constructions that had been done the other way by Euclid and
Apollonius. In the early eighteenth century, the justification of the analytic-
geometry tool consisted of what could be done with it that could already be
done and that some things could be done that had not previously been done,
including developing the new infinitesimal calculus.

No one has thought probably for centuries of justifying analytic geometry
because it was never put forward as exclusive, presumably on account of
the enormous prestige of Euclid’s synthetic approach. If one thinks of a
priori justifications, then the idea of constructions with entirely imaginary
compasses and straightedges is in serious need. A pluralism that has come
naturally to mathematics—first to geometry—mneeds to be extended to the
philosophy of the subject, as Reuben Hersh wrote in his [25]. He also showed
a way to do it.

As with musical composition, there may be scientific or other practical rea-
sons to work in a particular genre, and then the justification can be either
mathematical because the mathematical result is pleasing (like, for example,
a film score that is worth listening to elsewhere) or scientific or practical
because a need was fulfilled (a film score could be strikingly effective but
tied closely to the film). A mathematical example of the latter is linear pro-
gramming, which has had an enormous amount of effort put into it because
it is done so much, but has had little appeal to mathematicians. I shall be
interested to see further reasons for limitations, having made no claim to
being exhaustive.

While this paper was being considered for publication two more limitations
came to my attention at the same time in an opinion piece in the Notices
of the American Mathematical Society based on facts that it is an accessi-
ble source for.?® Jeremy Avigad [1] discusses the property of proofs called
“surveyability”—mainly being short enough that a human can view the whole
as one piece. The bounds of surveyability are being tested by the classifica-
tion of finite simple groups, which is expected to run to twelve volumes [52].
The obvious contrast is computer-aided proofs of which the first famous one
was the four-colour theorem. Hales’s proof of the Kepler sphere-packing con-
jecture is another. At first such computer-aided proofs were suspect, and so

26 Accessible in two senses in being both popular writing and in being freely available
from ams.org.
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the limitation was accepted by some to have nothing to do with them. The
philosophical aspect of such proofs was early discussed by Tom Tymoczko
[61]. To the extent that a computer proof is a black box, it is reasonable
to distrust it, and many do.?” There is a wild west of undependable ama-
teur computing that some think prove something. But this trouble has its
solution, it is widely held, in verification of the correctness of a computer-
aided proof. This has been done for the four-colour theorem and Hales’s
proof, among others. It is a small step to thinking that all proofs should
be so verified. If one takes up this view, then an almost opposite limitation
is set up: to nothing but computer-verified proofs. This limitation is also
embraced, for instance by the late Fields medallist Vladimir Voevodsky [64].
Both are avoiding the wild west of undependable computer proofs, and the
latter avoids also undependable surveyable proofs. (Voevodsky’s interest was
begun by publishing an error.) If the latter demand is only that computer
proofs need verification, then the two limitations do not conflict. As with
non-constructive proofs, the wild west creates raw material for seeking either
surveyable or verifiable proofs depending on which limitation is embraced.

Postscript

Because I regard mathematics as one of the humanities, I remember encour-
aging Alvin White in his work on the Humanistic Mathematics Network and
its newsletter, but my computer files do not go back that far. I contributed to
Newsletter Number 6 (1991) and then became busy with my own humanistic
endeavour, series three of Philosophia Mathematica, which I have edited since
1992. While I have done a little history of mathematics [4, 57, 60|, for most
of my life I have taught [59] and studied [55, 56| mathematics with latterly
occasional ventures in philosophy of mathematics [58]. Always appreciative
of thoughtful journalism, this is my first venture into that genre since junior
high school.

27 As managing editor of a journal, I rejected in 1979 a submission proving an inequality
involving the semi-perimeter s = (a+b+¢)/2 of an arbitrary triangle, angle bisectors, and
a median with computer help because an algebraic proof was available, which I provided
[39]. The reason for interest in the inequality was that it strengthened one found with a
computer check of 500 random triangles by J. Garfunkel and subsequently shown to be
correct.
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