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Synopsis

Mathematics has often been referred to as an art. For some it is “the purest of
the arts”, where the mathematicians’ art is “asking simple and elegant questions
about our imaginary creations, and crafting satisfying and beautiful explanations”.
Yet with classroom time given primarily to “covering the curriculum”, testing,
and practicing problem-solving procedures, students’ opportunities to appreciate
the aesthetic dimension of mathematics are often limited. To promote a respon-
sive environment in an effort to enable students to become artists of their own
mathematics experience, | consider in this paper two facets of the mathematics
classroom. Content-wise | make the argument that students need to see problem-
clarifying strategies in conjunction with problem-solving techniques, as the former
are essential for making progress when engaging a mathematics problem where an
explicit solution is not apparent. The other facet aiming to promote student agency
is providing them opportunities to work with their own practical /professional con-
cerns as students so as to become more creative and productive artists of their
mathematics experience.

1. The Underlying Problem

Mathematics is often referred to as an art. Halmos [11]| locates the “art of
mathematics” with its “counterpart in painting”; Hardy [13] with poetry; while
Russell [22] sees its “austere beauty” most closely related to sculpture. For
Lockhart it is “the purest of the arts”, where the mathematicians’ art is “ask-
ing simple and elegant questions about our imaginary creations, and crafting
satisfying and beautiful explanations” [15, page 4]. And Neale believes most
all students of mathematics can appreciate mathematics’ aesthetic dimension.
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She shares that “school students can have just the same experience |as uni-
versity students|: when they’re given the opportunity to engage with rich
questions, when they can play with mathematical ideas, when they have the
chance to experience multiple strategies to the same question rather than just
getting the answer in the back of the textbook and moving on” [19, page 1].

Yet with mathematics culture committed to an aesthetic of concision (“less
is more”, as Neale notes), mathematics textbooks tend to be filled with tech-
niques, definitions, and proofs, and often lack discussion regarding the ratio-
nales for decisions made. This cultural practice tends to preclude textbooks
from promoting students’ “play|ing| with mathematical ideas” or having the
“experience [of applying| multiple strategies to the same problem”. The austere
view extends to the classroom when teachers follow the textbook with dedi-
cation, and that practice may well begin quite early in students’ mathematics
experience. For example, “findings [of students ages 6 to 13| suggest that chil-
dren do mathematics without much thought or opportunity to discuss what it
actually might be” [28, page 588]. And as is well recognized, the experience
of mathematics for many is often quite a struggle, often lacking any aesthetic
rewards, as students try to make sense of a discipline having associated with
it a literal phobia and a commitment to brevity in its expression.

Research suggests that textbooks are not as helpful as one would hope. “Among
the obstacles for learning are mathematical texts, especially the economical
style of presenting mathematical content in introductory textbooks, which
abandons the context of discovery in favour of the context of justification, as
well as the very common focus on a correct solution” |20, page 354]. Such
a limited and limiting view negatively impacts student experience. For “how
textbooks are designed provides a window into the nature of mathematics
that students are expected to learn. They characterise not only the content
but also advocate what students are to be able to do with that content —
what mathematics and behaviours are to be encouraged” [23, page 143|. The
extent of the problem is considerable. “Studies have shown that the majority
of mathematics teachers in secondary schools follow the prescribed textbook
when planning and implementing their mathematics programs” [24, page 183].

Yet what is recommended by the NCTM could not be more different:

“Students should engage in making conjectures, proposing approaches
and solutions to problems, and arguing about the validity of partic-
ular claims ... they should be the audience for one another’s com-
ments ... discourse should be focused on making sense of mathe-
matical ideas ... and solving problems” [18, page 45].
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To promote a responsive environment in an effort to enable students to be-
come artists of their own mathematics experience, I consider in this paper
two facets of the mathematics experience. Content-wise, I make the argu-
ment that mathematics textbooks need to provide greater discussion of and
opportunities for students to work with problem-clarifying strategies, heuris-
tics, along with the traditional problem-solving techniques. Problem-solving
techniques tend to fill mathematics textbooks providing procedures for ready
solution regarding classes of problems (word problems, systems of equations,
series convergence, etc.), while problem-clarifying strategies such as “taking
the problem apart”, “tinkering”, and “generalizing” often tend to go unmen-
tioned even though these are productive means for gaining perspective about
making progress with problems when it is not clear how to proceed directly to
solution.

It is of course valuable for mathematics students to learn problem-solving
techniques, including algorithms and theorems, so as to build a collection of
productive means for resolving problematic mathematical situations. But it
is often not an appreciative understanding that mathematics students have
secured but a collection of limited techniques they’ve memorized for solving
particular classes and cases of problems. How to factor, solve a system of equa-
tions, determine whether an infinite series converges or not, etc., are valuable
procedures. Yet what the mathematician and educator Alfred North White-
head lamented eighty years ago in his An Introduction to Mathematics, still
seems to be the case: “The unfortunate learner finds himself struggling to ac-
quire a knowledge of a mass of details which are not illuminated by any general
conception ... . Here lies the road to pedantry” [27, page §|.

More recently, Fan and Zhou in examining mathematics textbooks for lower
secondary school found “the majority of problems in the US books . .. were rou-
tine, traditional, and moreover of single-step” [8, page 69]. But the problem is
not isolated. Hussain, via questionnaires and group interviews in 112 Bahraini
primary government schools, came to find that “the most dominant teaching
style [in mathematics classrooms] is explaining-then-drilling. The authoritative
voices of the teachers dominate what is going on ... the mathematics teacher
is the ultimate source of the knowledge which is involved in mathematics text-
books and students’ participation is constrained from learning together or to
gain active epistemic roles in knowledge construction” |14, page 287|. The
problem seems pervasive. Gravemeijer and collaborators share that “Since
Dutch teachers follow their textbooks very conscientiously and typically do
not transcend what textbooks offer, the result [on a national exam| was that
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the 12t grade students did not reach proficiency on the level of more advanced
conceptual understandings” [10, page 39]. The authors then make the point
that the outcome was consistent with the goals of the mathematics textbook
“which showed a lack of attention for more advanced conceptual mathematical
goals and a tendency to aim for algorithms as potential end points” [10, page
40].

We can readily recognize the distinction when mathematics students, having
learned some technique(s), are presented with a problem that requires more
than their blanket application. In an effort to motivate their students, the
mathematics teacher may well urge them to “think!”, but their faces make clear
that all they can think about is the stress they are experiencing, as they have no
idea as how to proceed toward problem resolution. In Section 2 I will consider
further how to repair and transcend this problematic and disturbing reality so
that a growing number of mathematics students are actually more capable of
dealing with complexity, of being able to engage in essence a blank canvas more
creatively. The distinction to be made more explicit is between “experience
guided by intelligent habit, rather than merely routine habit — [the former| is
experience characterized by resourcefulness, inventiveness, ingenuity, tenacity,
efficiency ...” [5, page 256].

The other issue that deserves consideration in helping students have a more re-
warding mathematics classroom experience is creating opportunities for them
to uncover and work with their own concerns, that is, the development of a
behavioral curriculum, with regard to their mathematics development. Along
with broadening their mathematical understanding by including problem-cla-
rifying strategies, we need to help students become more capable of working
with personal (and essential) qualities of practice that shape their mathemat-
ics experience (such as becoming more patient; reflecting more on their work;
catching errors of hasty judgement). We need to provide students psycho-
logical and practical means of dealing more effectively with the challenge of
learning mathematics, and enable them to be more connected to the creative
effort of doing mathematics. For many students it is often only the terror of
the “terror and triumph” [21] Polya recognized in engaging mathematics that
is experienced. Helping students develop their art and craft through their own
thoughtful decision-making would naturally require their personal /professional
development as they have an opportunity to make their mathematical experi-
ence more likely to be productive and appreciated. Our discussion of this issue
will follow the first, the intentional focus on problem-clarifying strategies with
the aim to create a more productive, more satisfying mathematical experience.
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2. Developing Students’ Aesthetic Sensibilities Through Heuristics

As noted, problem-solving techniques have value. What I argue here is that
were mathematics textbooks also to promote and elucidate problem-clarifying
strategies, including valuable mental actions such as “visualizing”, “looking for
a pattern”, and “using simpler numbers”’, there would naturally be less stu-
dent confusion regarding how to make progress while engaging with a math-
ematics problem when a direct path is not apparent. Given the pressures
associated with mathematics teachers’ concern to “cover the curriculum” and
with mathematics textbooks illogically eschewing dialogue with readers, the
focus tends to be on techniques being presented and logical arguments being
demonstrated, not strategies being discussed. Yet were we to appreciate the
observation of Keith Devlin that making the problem simpler is “how we do
mathematics”,then heuristics would be an essential element in both mathe-
matics classrooms and textbooks.

When attempting to work on relatively challenging mathematics problems
(with no technique coming readily to mind) it is problem-clarifying strategies
that enable one to find a way out of the darkness into the light. And the con-
fusion may well not be one requiring sophisticated mathematics for resolution,
but just effective means to simplify the situation so students would be able to
see and think more clearly. Here is an example problem from a community
college remedial mathematics course on which I worked with students as a
tutor in the college learning center.

“A road 7/8 mile long is under repair. The crew working on the
problem can repair 1/56 of a mile in an hour. How many hours
would it take to repair the road?”

The associated quantities apparently made students uncomfortable, so much
so that their stress left them quite confused as how to proceed. When the
conversation turned to making the problem simpler, we resolved to “choose
easier numbers”, and the problem became available for their solution. That
is, when we revisited the problem with the road being 20 miles long, and the
crew rate of repair 2 miles an hour, the students readily saw what they had to
do. The problem-clarifying strategy transformed the problem into their seeing
that dividing a fraction by a fraction was required.

Visualizing is another valuable problem-clarifying strategy (recall Bhaskara’s
“Behold!”) that could well help students engage with some problem(s) more
readily. It would be a good idea for mathematics textbooks to demonstrate
this problem-clarifying strategy and to offer opportunities for application.
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For example, consider the context of finding relationships between infinite
sets. Consider an instructor drawing the Cartesian coordinate plane on the
board along with the line y = x, and then informing students that they can
now claim the set of all the real numbers represented by the closed interval
[0, 1] is equipotent to those in the interval [1,00). The question students will
naturally come upon is: Why is the line y = = so special? They can recognize
that that line actually divides the first quadrant in half, as the angle associated
with the line is 45°. This awareness implies that all the lines passing through
the origin starting at the line y = 0z (the z-axis) and rotating to the line
y = lx have coeflicients from 0 to 1, and so constitute all the real numbers
from 0 to 1. And the other half of the first quadrant would contain all the
lines from y = 1x to the y-axis, which represents a line with infinite slope.

A commitment to include problem-clarifying strategies as an integral element
of students’ mathematica development could impact exams as well, where
the focus would be broader than determining the extent to which students
have command of the relevant problem-solving techniques. Both problem-
solving techniques and problem-solving strategies could be incorporated into a
single question if one were to be intentional about things. Here’s one instance.
Standard questions involving linear equations include variations of:

“If 2x + 3y = 15, determine the z- and y-intercepts, and use your
findings to draw the given line.”

Figure 1 would be a demonstration that a student could solve that problem.

\ sl

2x+3y=15

Figure 1: Sample solution for the given linear equation.
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For students who have been engaged in learning and applying problem-clarifying
strategies, a second part to the problem can be given:

“What could you say about the measure of the smaller angle the
line makes with the z-axis? Explain your findings.”

When confronted with this problem, students who had come to appreciate
the idea of making the problem simpler, have drawn a right triangle with the
vertical and horizontal segments 5 units in length, along with the angle of 45°
(see Figure 2).

45°
10

] 45° ] 30°

Figure 2: Making the problem simpler by comparing right triangles.

Noting the horizontal segment determined by the given line was greater than
5 units (7.5), the thinking was that the angle had to be smaller than 45°.
Other students working in groups and with the idea of making the problem
simpler found other pathways. A number of students drew a 30-60-90 degree
triangle with the vertical segment still 5; but the hypotenuse was included,
being 10. Realizing that would mean the horizontal segment would be 5/3,
they determined that that length was greater than 8 units. So, the angle had
to be between 30 and 45 degrees. Some of the students left their answer as
a value bounded by those two degree measures. A few others (having made
a hasty decision) found the average. Others working in small groups realized
that as 7.5 was closer to 5v/3 than to 5, decided that the angle measure would
have to be closer to 30° than to 37.5°. They then chose various values closer
to 30° than to 37.5°, given their imaginative sizing up of the situation. As
part of the concluding conversation, a natural consequence of their working
on the problem was students wondering aloud if there was a way to find what
exactly the angle measure was. Here finally I began a discussion of inverse
trigonometric functions — something the students wanted to know about.
And when it was determined that the angle was 33.7°, to the nearest tenth,
there were expressions of real satisfaction.
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In the absence of problem-clarifying strategies, students’ experience in the
mathematics classroom often demonstrates that it is the ingenuity of the most
innately talented that makes progress possible [26, page 115|. The other stu-
dents often find themselves making dedicated effort to lessening the felt tension
by engaging in counterproductive behaviors, such as telling themselves they
can’t do the problem so as to end the discomfort as soon as possible. Boaler
relates: “One of the biggest mistakes students make with math problems is
that they often rush in and do something ... without really considering what
is being asked of them, whereas successful problem solvers spend some time
really thinking about the problem” [3, page 186; italics in original]. And the
insecurity is not ameliorated when mathematics students are presented with
techniques without any explanation. Sharing their confusion, they wonder
“how would anyone know to do that?”, and “why does that work?”

With teachers following the explicit procedures that most mathematics text-
books focus on, it is not difficult to imagine an inverse relationship between
the teacher’s confidence with clearly presenting a technique, and students’ con-
fusion while making efforts to practice and memorize the procedure. We can
appreciate Moise’s observation that “it is simplistic to suppose that people
remember what they are told, and understand the things that are explained
to them clearly” [17, page 471]. And he didn’t think “that we ought to feel
complacent about our present lack of an adequate theory of teaching [mathe-
matics|. One of the tasks of the coming generation is to create one” [17, page
473|. Halmos, at the same panel, shared that “mathematics is really all about
solving problems” and, with Polya, stated that “our job as teachers ... is to
teach how to ask questions” [12, page 467]. Both these quotes seem to pro-
mote the idea that productive questioning ought to be a primary consideration
of mathematics educators and textbooks. In order to promote that possibil-
ity with greater regularity and with a growing student participation, students
should be given ample opportunities to draw upon problem-clarifying strate-
gies to inform their investigating, so as to encourage them to develop their
artistry in asking good questions. Instances follow.

3. Toward a More Aesthetic Mathematics Engagement

Students of mathematics are well aware of textbook demonstrations to solve
a quadratic equation by setting one side equal to 0. Factoring then becomes
the problem focus involving a collection of similar quadratic equations. Yet,
the process of setting one side equal to 0 wasn’t used to solve linear equations;
why now?
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Students may well learn a procedure but miss something deeper. Were there
discussion acknowledging that solving most quadratic equations can be quite a
challenge, unlike linear equations, with the terms on different sides of the equal
sign (e.g., “Find the value(s) of x that satisfy 2? = —4x +21”), attention would
naturally turn to the compelling question: how to “make the problem simpler”.
From this vantage point, students can appreciate that when a product has a
value of zero, one or the other(s) of the product factors must be zero; while
with any product having a value other than zero, there would be an infinite
number of possible values. So when one side of the quadratic equation is set
equal to 0, the focus is to try to express the other side as a product of factors.

With this orientation, the practice of factoring deservedly gains appreciative
understanding (though limited in application as it is). In contrast, with the
focus on the technique of factoring, absent of discussion of making the prob-
lem simpler, mathematics students practice such procedures but with limited
awareness of the impetus for the practice. And such an isolated effort does not
help students see mathematics as an art, but instead as a collection of isolated
techniques, as Whitehead noted.

Another consideration: the problem-solving technique students are usually pro-
vided with when having to divide by a fraction is “invert and multiply”. Surely
the procedure is efficient; it’s been offered as the solution technique at least
from 1850 [5, page 61]. Yet ask students why it works, and often a blank
stare is the response. But ask them what would make the problem simpler;
agreement is soon reached that dividing by the number 1 would be ideal, as
the answer would be the numerator. So, with that goal in mind, students can
more appreciate the problem-clarifying process.

To divide by 1/4, for instance, students could consider adding 3/4, or multi-
plying by 4/1. Trying their first idea, including adding the same value to
the numerator, they would find it is not effective, as the result wouldn’t
make sense. (For example, when dividing 10 by 1/4, what is being deter-
mined is how many quarters in 10; but adding 3/4 to both the numera-
tor and denominator results in the answer being 10%.) But when multi-
plying by the reciprocal, both in the numerator and denominator, the an-
swer does make sense. (Students regularly suggest that what is done to the
denominator should be done to the numerator, their intuition acknowledg-
ing their aesthetic sensibility for “balance”.) The associated discussion makes
clear that multiplying both the numerator and denominator by the recipro-
cal, which makes the problem simpler, is actually “inverting and multiplying”.
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But here the solution procedure is not presented in its pristine expression to be
practiced, but as a meaningful expression of their resourceful thinking. Seen
in the light of that awareness it will more likely be appreciated by students.
And the positive energies as a direct consequence can most likely be further
drawn upon to foster other creative efforts. With similar experiences they can
become more the artists of their mathematics experience. And with enough
repetition, attempts at making the problem simpler when faced with mathe-
matical situations experienced as complicated would become a valued practice
for students, and so “pertinent questioning” and artistic resolution could well
become more the way things are in mathematics classrooms.

Yet it is not just procedures absent of explanation that cause students dif-
ficulty. Mathematics textbooks and teacher telling as the primary mode of
discourse rather than student exploration leading to the discovery of valid and
valued mathematics relationships keeps students at an unnecessary distance
from their mathematical experience.

Consider a situation where students are given the opportunity, for example,
to explore and determine how they would distinguish four-sided figures from
each other based on their investigations, rather than being presented with the
standard collection of quadrilaterals with their distinctive qualities. The for-
mer would more likely lead to students developing a more investigative and so
informed mathematical sensibility, as part of their growing imagination regard-
ing the different figures and the characteristics that they find distinguishes one
from the other. Here the focus is on an essential aspect of creative thinking —
an intuition becoming increasingly informed. And this will likely not happen
in a classroom where students’ naiveté is seen as a shortcoming. As Dewey
noted, we can think of immaturity not as an expression of ignorance but one of
open-mindedness [6]. And that perspective, concretized in classroom practice,
could well help promote students’ developing aesthetic as productive problem
solvers.

What if mathematics textbooks acknowledged students’ naive concerns, for
example, regarding why it is that a circle has 360°7 Is it that that number of
degree units happen to fit and fill the circle? This seems to me to be a perfectly
legitimate question, demonstrating thoughtful consideration and deserving ac-
knowledgement. In that pedagogical direction, it would seem reasonable, and
hopeful, were students to ask why m represents the slope of a line; doesn’t s
make more sense? And, what makes a right angle “right” — can’t it point to
the left? [9]
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Common mathematical statements such as these which tend to be presented as
givens to be memorized, and others similar to them (such as how would anyone
come up with the method of false position? or, with the idea of showing that
the harmonic series diverges by considering a different series?) may leave
students with an underlying state of confusion, especially for those who reflect
on the given material! Assuming it is acceptable in mathematics textbooks to
make such statements without discussion would seem to promote an alienating
distancing rather than an inviting engagement.

I list these instances to suggest that students need to be provided the oppor-
tunity to express their naive but thoughtful perspective when engaging with
mathematics, including the most basic claims. Otherwise, there is little if
any opportunity for their developing aesthetic sensibilities, for in essence their
thinking has been denied, albeit often unconsciously.

Surely a circle can be divided into a collection of equal units to a different
number than 360 partitions. (The great mathematician Laplace wanted there
to be 400 such divisions.) As noted earlier by more than one mathematician,
the art of doing mathematics depends on asking good questions, and that
includes those from a naive perspective. This suggests it would be worthwhile
were mathematics textbooks and teachers to model that (naive, inquiring)
behavior. In doing so, students may well gain confidence in the realization
that the questions they have are legitimated by their teacher and textbook.

Additionally, efforts to be more able to stay with a challenging situation by
applying productive mental actions, considerations such as how to be more
patient, resilient, observant, productively self-critical, and taking other emo-
tionally productive actions deserve classroom attention. (Einstein claimed that
he wasn’t brilliant; rather his successful efforts were due to his patience.) The
psychological dimension deserves consideration in mathematics classrooms and
textbooks as well if the object is to help foster mathematics students’ greater
positive emotional energy. For in its absence, there is little chance of the requi-
site resilience and patience needed to deal well with complex situations. How
that can be promoted is the focus of the following section.

4. Mathematics Students’ Self-Development as Curriculum

Research reports that “the pupil’s voice is seen as increasingly important in
understanding schooling” [28, page 282]. And recent educational literature
given to mindfulness, growth mindset, and group projects, for example, makes
the argument that group projects offer exciting opportunities for mathematics
students to become more aware of the nature and focus of their own thinking.



Marshall Gordon 208

Taking advantage of these ideas might require more explicit attention. The
Assessment Standards for School Mathematics [18] make clear that students’
assessment of their own mathematical efforts is crucial to their development.

Such a focus could have a profound effect on students’ lives. How willing one is
to persist at challenging tasks and how well one can plan ahead, pay attention,
remember and follow instructions, and control impulses and emotions involve
the so-called executive functions. Also known collectively as self-regulation
or self-control, these have long been considered a key life skill. In that re-
gard, efforts toward developing student self-awareness as means to promote
their reflection so as to better cope with stress is gaining attention [3, 15].
More specifically, having students reflect on their behavior in engaging with
problems and having the opportunity to make needed changes from a con-
structive perspective could have profound gains both in the classroom and in
their future as citizens. Such considerations seem essential to a productive
engagement with any creative experience.

To give that effort direction and support in the mathematics classroom, it
would be valuable to give students the time to uncover what goal(s) they
believe would enable them to be more capable mathematics students [9]. With
those in mind there is the opportunity for discussions regarding what would be
effective means for their becoming more the mathematics student they want
to be. Such considerations clearly have psychological and social value. And
their sharing allows students to appreciate that their peers have the same
difficulties they have, and could well promote a dedicated collective effort,
providing additional support.

As Dewey noted, “social conditions obstruct the development of judgment and
insight or effectively promote it” [2, page 285]. That’s to say, how seriously
mathematics students take their development, in terms of becoming more ca-
pable, confident, and creative, is a function of how seriously their mathematics
teachers and textbooks do.

Our students need to appreciate that they, as all of us, are malleable material,
something that can be worked with. This truth can become clear to them
when they consider the fundamental role habits have played and do play in
their lives. Not only did habits make possible their being able to read, write,
and walk, they also shape presently how they think, do things, and feel |7,
page 25]. Once they come to realize the power of habit and appreciate the
possibility of change, students have the opportunity to ask themselves what
new habit(s) they want to secure, or what old habit(s) they want to discard.
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Through building new productive habits and dropping old unproductive ones,
they can become more capable and confident artists of their experience; they
themselves can make their experiences with mathematics much more authen-
tic and rewarding. We can and should help them by providing opportunities
to work at securing/omitting specific practices, in essence giving legitimacy to
their own emotional/behavioral curriculum relevant to their mathematics ex-
perience. Without such opportunities there’s little chance for many to change
so as to become more able and self-appreciative mathematics students.

To support my students’ developing greater self-awareness and creative /critical
expression, I gave class time at the beginning of the school year for them to
think more about what changes in their practice might create opportunities
for them to engage with mathematics more satisfactorily and so enhance their
mathematics experience. Discussion included making clear that a goal without
an awareness of sign-posts of progress would likely have as much consequence
as making a wish. Wishing precludes volition, and so it isn’t generally a good
problem-solving strategy, except perhaps with regard to special days of the
year. Similarly, mathematics teachers telling students, for example, to “be
patient” may work for some, but likely not if it isn’t clear to them what signs
of being patient look like.

Making note of signs of progress is most important as they are the concrete
expression that thought and action are coming together, that growth is taking
place. Until those sign-post behaviors can be made clear and then integrated
into their practice as mathematics students, it is difficult to imagine much gain.
So, with regard to a student’s developing aesthetic of becoming, for example,
more patient, resilient, thoughtful, and so on, when working on mathematics
problems, discussion of explicit practices, in textbooks and in the classroom,
can well serve as a guide and gauge for them as to how things are developing.
(For most students, such an effort might deserve as much recognition as a test
score recorded on a report card.)

It is here we find an opportunity for mathematics to work for the public good.
With students developing productive behaviors and valuable attitudes and dis-
positions as a consequence of their learning mathematics, the public is clearly
“getting their money’s worth”. For such development represents personal and
professional growth. Students increase their awareness of what they can do to
make a problematic situation more open to investigation and successful resolu-
tion; in short they learn to think and act more constructively. The mathemat-
ics classroom, where imagination, experimentation, and reflection are essential
components, is a perfect setting for their developing aesthetic.
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The possessor of those life-enriching behaviors would be in a relatively ideal
position to gain a valuable mathematics education and be more successful in
general. This is to say, enabling mathematics students to get in touch with
what really concerns them with regard to their more complete development in
dealing with challenging situations in mathematics, and what they really want
to be able to do as part of their mathematichlal experience, is of significant
value, and as such, deserves the consideration of mathematics teachers and
textbooks.

Just as an artist steps back and decides what is needed to make their dedicated
effort more satisfying, more cohesive, students need time and opportunity to
take seriously their developing artistry in shaping their mathematics experi-
ence. To support and codify that effort beyond providing emotional support, I
asked my students to think about and write down three behaviors that would
serve as sign-posts, signs demonstrating that they are making progress to-
ward a new practice they wish to have or an old practice they want to rid
themselves of. This provided them a personal/professional checklist to keep
in mind, something concrete to hold onto that both supported their effort and
desire. This kind of activity is especially important for those students who are
trying to change some counter-productive reactions they’ve developed in re-
sponse to prior stressful experiences in mathematics classrooms. For students
who bring old feelings of discomfort when engaging with new problems can
find themselves falling into old counterproductive behaviors. At the extremes,
such behavior might involve either freezing mentally, being so insecure about
how to proceed, or acting frenetically and claiming whatever came to mind
first is the answer to alleviate the stress. But such defensive responses are
surely not what they as students or we as their teachers hope would actually
be the learning outcome. So having those sign-post behaviors close by when
studying can serve as gentle reminders to keep their eyes on the prize. And
the more they can see or be helped to see signs of their aesthetic development
of course, the better.

Student efforts along these lines should be noted in conversations and incor-
porated more completely into evaluations. In this way we acknowledge our
students’ development toward becoming the artists they want to be as for-
mally and institutionally important, which of course it ought to be. The ex-
clusion of such concerns regarding students’ developing aesthetic sensibilities
and principles from conversations about and evaluations of their mathematics
experience is indeed a major omission in school practice, at least from the
perspectives of the student and society. In their absence we can expect that
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whatever poor habits students enter our mathematics class regarding their
thinking and acting and emotional responding will most likely still be there
when they graduate, and so persist as they continue to live on as adults. That
absence of development represents a great loss of opportunity for them and
for all of us.

Thus we should make and take the opportunity to encourage our students in
these efforts. In order to promote more cohesive and dedicated effort, class
discussion could include mentioning that the later we wait with regard to
looking at how things are going and deciding what we would want to happen
the more difficult it naturally is for valuable change to occur. To help students
in that realization I found it valuable to suggest more than once that they
take seriously Aristotle’s understanding that “it is a matter of real importance
whether our early education confirms us in one set of habits or another. It
would be nearer the truth to say that it makes a very great difference indeed.
In fact all the difference in the world” [1, page 1103b1-25]. Anecdotally I have
often noted the unfortunate thinking of many of the relatively older students
along the lines of: “Since I made it this far doing what I do, why do I need
to introduce or stop anything now?” So having this conversation as early as
possible is quite important.

To help students appreciate the effort needed, I have often shared reflections by
significant others. Dewey’s observation that “the self is not something ready-
made, but something in continuous formation through choice of action” pro-
vides a good starting point for the discussion. While a number of students
think, as noted, that by their “advanced” age, the way they do things is “writ-
ten in stone”, they need to come to see that it’s not. They need to appreciate
that looking at how they do things and deciding if there is something they
could improve on is an essential aspect of their mathematics education and,
more completely, of their developing aesthetic of who they want to be. The
second quotation I refer to on how best to proceed is Socrates’ observation that
“the nearest way to glory — a short cut as it were — is to strive to be what you
wish to be thought to be”. Here the point made is that they can decide how
they want others as well as themselves to think about them as a mathematics
student and as a thoughtful and capable person, and then make decisions so
that actual person comes more and more into focus. And here is one from the
musician Miles Davis: “Sometimes you have to play a long time before you
sound like yourself”. That’s to remind them that their aesthetic development
toward doing things better takes time, and effort, and “mistakes”, of course.
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To finally convince them to make the effort, I explicitly point out that this
isn’t just another school year coming up; it’s a year of their life, and time is not
a renewable resource. And hopefully, they appreciate the special opportunity
and effort required to be artists of their own lived experience.

With their mathematics teacher expressing concern and interest individually
and collectively regarding how they are doing, students have an opportunity
to appreciate that their personal and professional development is being taken
seriously. In the absence of that concerted focus displayed early in the school
year, students get caught up in being students, routinely doing what is being
asked of them by others. In this taken-for-granted way they lose sight of what
they were asking of themselves, and how very important it was. Instead, they
tend to become other-directed, and so their personal aesthetic concerns tend
not be given the energies they deserve. Having them write about their efforts
from time to time helps to serve as gentle reminders; keeping a journal has
proven valuable for promoting reflection and thoughtful evaluation, as many
mathematics educators have discovered.

5. Concluding Remarks

As can be appreciated, working with students’ developing aesthetic is not an
easy activity to keep alive in the mathematics classroom as “real mathematics
learning” usually means focusing on “covering a curriculum”. But if students
can develop themselves as creative problem solvers as they gain familiarity
with problem-clarifying means for making problems simpler, and if they are
able to work on those emotional behaviors that have made their mathematics
learning problematic, so that they can finally become the mathematics student
they truly want to be, the social and political implications suggest themselves:
a more thoughtful populace open to and capable of dealing with difficult is-
sues becomes a more realistic goal. If mathematics textbooks and classroom
activities demonstrate a recognition that “the capability and willingness to as-
sess their own progress and learning is one of the greatest gifts [mathematics]
students can develop” [25, page 8|, the aesthetic quality of the mathematics ex-
perience will be eminently available for the student, with positive consequences
for society as well.
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