
Claremont Colleges Claremont Colleges 

Scholarship @ Claremont Scholarship @ Claremont 

CGU Theses & Dissertations CGU Student Scholarship 

Summer 2023 

Lattice Extensions and Zeros of Multilinear Polynomials Lattice Extensions and Zeros of Multilinear Polynomials 

Maxwell Forst 
Claremont Graduate University 

Follow this and additional works at: https://scholarship.claremont.edu/cgu_etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Forst, Maxwell. (2023). Lattice Extensions and Zeros of Multilinear Polynomials. CGU Theses & 
Dissertations, 586. https://scholarship.claremont.edu/cgu_etd/586. 

This Open Access Dissertation is brought to you for free and open access by the CGU Student Scholarship at 
Scholarship @ Claremont. It has been accepted for inclusion in CGU Theses & Dissertations by an authorized 
administrator of Scholarship @ Claremont. For more information, please contact scholarship@claremont.edu. 

https://scholarship.claremont.edu/
https://scholarship.claremont.edu/cgu_etd
https://scholarship.claremont.edu/cgu_student
https://scholarship.claremont.edu/cgu_etd?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.claremont.edu%2Fcgu_etd%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@claremont.edu


Lattice Extensions and Zeros of Multilinear
Polynomials

BY

Maxwell Forst

Claremont Graduate University
2023



© Copyright Maxwell Forst, 2023.
All Rights Reserved



Approval of the Dissertation Commitee

This dissertation has been duly read, reviewed, and critiqued by the Committee listed
below, which hereby approves the manuscript of Maxwell Forst as fulfilling the scope
and quality requirements for meriting the degree of Doctor of Philosophy in Mathe-
matics.

Lenny Fukshansky, Chair
Claremont McKenna College
Professor of Mathematics

Michael Orrison
Harvey Mudd College

Professor of Mathematics

Allon Percus
Claremont Graduate University

Professor of Mathematics

Jeffrey D. Vaaler
University of Texas at Austin

Professor Emeritus



ABSTRACT

Lattice Extensions and Zeros of Multilinear Polynomials

by

Maxwell Forst

Claremont Graduate University: 2023

We treat several problems related to the existence of lattice extensions preserving

certain geometric properties and small-height zeros of various multilinear polynomials.

An extension of a Euclidean lattice L1 is a lattice L2 of higher rank containing L1

so that the intersection of L2 with the subspace spanned by L1 is equal to L1. Our

first result provides a counting estimate on the number of ways a primitive collection

of vectors in a lattice can be extended to a basis for this lattice. Next, we discuss

the existence of lattice extensions with controlled determinant, successive minima

and covering radius. In the two-dimensional case, we also present some observations

about the deep holes of a lattice as elements of the quotient torus group. Looking for

basis extensions additionally connects to a search for small-height zeros of multilinear

polynomials, for which we obtain several results over arbitrary number fields. These

include bounds for a system of polynomials under appropriate hypotheses, as well

as for a single polynomial with some additional avoidance conditions. In addition to

several height inequalities that we need for these bounds, we obtain a new absolute

version of Siegel’s lemma which is proved using only linear algebra tools.
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Chapter I

Introduction
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1.1 Lattice extensions

Let V be a real m-dimensional vector space and let r > 0, define BV (r) to be the

open ball of radius r in V centered at 0. Write ωm for the volume of the unit ball

BV (1) so that vol(BV (r)) = ωmr
m.

A lattice Λ is a subgroup of V that satisfies two geometric properties: Λ is discrete

in that there exists ϵ > 0 so that for any x,y ∈ Λ,x ̸= y

(x+BV (ϵ)) ∩ (y +BV (ϵ)) = ∅;

and Λ is co-compact in that there exists a compact set C ⊂ V with vol(C) > 0 so

that ⋃
x∈Λ

(x+ C) = V.

Lattices can be define in terms of a basis of linearly independent vectors a1, . . . ,am

where

Λ = spanZ{x1, . . . ,xm}

= {a1a1 + . . .+ amam : a1, . . . , am ∈ Z}.

Equivalently, Λ can be defined in terms of a basis matrix:

Λ = AZm

where A is the full rank n×m matrix

A = (a1 . . .am).
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With this we can define the determinant of Λ as

det Λ =
√

| det(ATA)|.

Two n×m basis matrices A,B define the same lattice if and only if A = BU for some

U ∈ GLm(Z). For this reason the determinant of Λ does not depend on a particular

choice of basis.

We also define two equivalence relations on lattices. Two lattices L and L′ in Rn

are isometric if there exists an n×n orthogonal matrix U so that L = UL′. Likewise,

two lattices are said to be similar if there exists orthogonal matrix U and non-zero

scalar s so that L = sUL′.

We will now recall several definitions from the geometry of numbers (see [37] for

a more detailed exposition). A given set F ⊂ spanR(Λ) is said to be a fundamental

domain of Λ if

spanR(Λ) =
⋃
x∈Λ

x+ F,

and (x+ F ) ∩ (y + F ) = ∅ for all x,y ∈ Λ,x ̸= y. If F is a fundamental domain of

Λ, then the volume of F in spanR(Λ) equals det(Λ). Thus det(Λ) is also referred to

as the co-volume of Λ in spanR(Λ). Often the most useful fundamental domains are

fundamental parallelepipeds. If {x1, . . . ,xm} is a basis for Λ where m = rankΛ, we

can define a fundamental parallelepiped as

P =

{
m∑
i=1

aixi : ai ∈ [0, 1) ∀i

}
.

Let Λ be a lattice of rank m, then the successive minima of Λ are ordered

positive real numbers

0 ≤ λ1(Λ) ≤ . . . ≤ λm(Λ),
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such that

λi(Λ) := inf{r ∈ R : dimR spanR(Λ ∩BV (r)) ≥ i} 1 ≤ i ≤ m.

A vector x ∈ Λ is said to correspond to the i-th successive minima if ∥x∥ = λi(Λ).

In this section, ∥ · ∥ refers to the standard Euclidean norm on Rn and | · | refers to

the sup-norm (maximum of the absolute values of the coordinates). The product of

the successive minima is bounded by Minkowski’s successive minima theorem:

2m

m! det(Λ)
≤ ωm

m∏
i=1

λi(Λ) ≤
2n

det(Λ)
.

The packing radius of Λ in a vector space V is defined as

sup
{
r ∈ R≥0 : x+BV (r)

⋂
y +BV (r) = ∅

}
,

for all x,y ∈ Λ,x ̸= y. It is easy to see that the packing radius of Λ is equal to

1
2
λ1(Λ).

The covering radius, also called the inhomogeneous minimum, of a full rank

lattice Λ in a vector space V is defined as

µ(Λ) = inf

{
r ∈ R :

⋃
x∈Λ

(x+BV (r)) = V

}
.

There is a classical inequality of Jarnik that asserts

µ(Λ) ≤ 1

2

m∑
i=1

λi(Λ).

Now, let L1, L2 be lattices in Rn of rank m1,m2 respectively so that L1 ⊂ L2 and
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1 ≤ m1 < m2 ≤ n. L2 is said to be an extension of L1 if

L2 ∩ spanR L1 = L1.

This is equivalent to saying that the quotient

L2/L1
∼= Zm2−m1 ,

i.e. L2/L1 is torsion free. Alternatively, L2 is an extension of L1 if there exists a

basis of L2, {a1, . . . ,am1 , . . .am2}, so that {a1, . . . ,am1} is a basis for L1. If L2 is an

extension of L1, then L1 is said to be extendable to L2. If L1 is extendable to L2

and {a1, . . . ,am1} is a basis for L1 then the collection of vectors a1, . . . ,am1 is said

to be primitive in L2. In the case that a1, . . . ,am is primitive in Zn we will simply

say the collection is primitive.

Lattice extensions have been implicitly used in a variety of contexts such as in

the construction of laminated lattices (see [16], [47]) which are studied in the context

of lattice packings and coverings, and in the construction of Minkowski or HKZ re-

duced bases (see [37], [47]). However, we are unaware of any explicit study of lattice

extensions similar to the approach we take in this paper.

Given a lattice Ω in Rn of rank m < n with basis {a1, . . . ,am} we are interested

in constructing a lattice Λ as an extension of Ω, so that one of the above geometric

invariants of Λ is controlled in relation to geometric invariants of Ω. We do this by

selecting vectors y1, . . . ,yd ∈ Rn for 1 ≤ d ≤ n − m so that the augmented set

{x1, . . . ,xm,y1, . . . ,yd} is a basis for Λ. Depending on the particular property we

are interested in, we may require y1, . . . ,yd to be elements of some fixed full rank

ambient lattice.

Let Ω ⊂ Zn be a lattice of rank m ≤ n so that Ω is extendable to Zn. The

first of our results asymptotically estimates the number of ways to extend a primitive
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collection of vectors a1, . . . ,am with 1 ≤ m < n to a basis of Zn by selecting vectors

b1, . . . , bd, 1 ≤ d ≤ n−m so that a1, . . . ,am, b1, . . . , bd is again primitive and so that

each |bi| is bounded for 1 ≤ i ≤ d.

Theorem 1.1.1. Let a1, . . . ,am ∈ Zn be a primitive collection of vectors.

1. if m < n−1, the number of vectors b ∈ Zn with |b| ≤ T such that the collection

a1, . . . ,am, b is again primitive is equal to Θ(T n) as T → ∞.

2. if m = n− 1, the number of vectors b ∈ Z with |b| ≤ T such that the collection

a1, . . . ,am, b is a basis for Zn is equal to Θ(T n−1) as T → ∞.

As a result, for any 1 ≤ k < n − m there exist Θ(T nk) collections of vectors

b1, . . . , bk ∈ Zn with |bj| ≤ T, 1 ≤ j ≤ k, such that {ai, bj : 1 ≤ i ≤ m, 1 ≤ j ≤ k} is

again primitive. Further, there are Θ(T n2−nm−1) such collections {b1, . . . , bn−m} so

that

Zn = spanZ{a1, . . . ,am, b1, . . . , bn−m}.

The constants in the Θ-notation depend on the vectors a1, . . . ,am, n and m.

More generally, since any full rank lattice Λ in Rn is of the form Λ = UZn for

some full rank n×n matrix U and therefore bases of Λ are in bijective correspondence

with bases of Zn, we can generalize Theorem 1.1.1 to arbitrary lattices.

Corollary 1.1.2. Let a1, . . . ,am be a primitive collection of vectors in a full-rank

lattice Λ ⊂ Rn with 1 ≤ m ≤ n. Then there exist

Θ
(
T n+min{0,n−m−2})

vectors b ∈ Λ with |b| ≤ T so that the collection a1, . . . ,am, b is again primitive

in Λ, and hence for any 1 ≤ k ≤ n − m there exist Θ(T nk) collection of vectors

b1, . . . , bk ∈ Λ with |bi| ≤ T, 1 ≤ i ≤ k, such that {ai, bj : 1 ≤ i ≤ m, 1 ≤ j ≤ k} is
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again primitive. Further, there are Θ(T n2−nm−1) such collections {b1, . . . , bn−m} so

that

Λ = spanZ{a1, . . . ,am, b1, . . . , bn−m}.

The constants in the Θ-notation depend on the lattice Λ and the vectors a1, . . . ,am,

n and m.

Theorem 1.1.1 and Corollary 1.1.2 will be proved in Section 2.2. There we will

also discuss the Θ constants in Theorem 1.1.1 and in Lemma 2.2.1.

Theorem 1.1.1 can also be interpreted as a statement on unimodular matrices.

An n ×m integer matrix A is said to be unimodular if there exists an n × n −m

integer matrix B so that the augmented matrix (A B) ∈ GLn(Z). Alternatively A is

unimodular if the columns of A are a primitive collection of vectors. Thus Theorem

1.1.1 estimates the number of ways to augment a unimodular matrix A by a bounded

integer matrix B so that (A B) is again unimodular.

The next result deals with the construction of an integer lattice extension with

small determinant.

Theorem 1.1.3. Let x1, . . . ,xm be linearly independent vectors in Zn and let

Ω = spanZ {x1, . . . ,xm} ⊂ Zn

be the sublattice of rank m spanned by these vectors. Then there exists an extension

Ω′ of Ω in Zn so that

detΩ′ = gcd(x1 ∧ · · · ∧ xm).

Further, if m = n− 1 then there exists y ∈ Zn so that Ω′ = spanZ {Ω,y} and

∥y∥ ≤

{(
gcd(x1 ∧ · · · ∧ xm)

detΩ

)2

+ µ2

}1/2

,
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where µ is the covering radius of Ω and ∧ is the Grassmann wedge product (see section

1.3)

We will prove this theorem in Section 2.1 and we will also explain how it can be

generalized to sublattices of an arbitrary full rank lattice Λ in Remark 2.1.1.

Let Ω be a lattice of rank m in Rn with m ≤ n and let Λ be an extension of Ω. Λ

is said to be a successive minima extension of Ω if the first m successive minima

of Λ agree with the successive minima of Ω, that is

λi(Ω) = λi(Λ) ∀1 ≤ i ≤ m.

In general it is easy to construct a successive minima extension of Ω in Rn. Simply

choose a vector u ∈ Rn so that u is orthogonal to Ω with ∥u∥ ≥ λm(Ω) so that

spanZ{Ω,u} is a successive minima extension. A more interesting case is when u is

drawn from a fixed ambient lattice. The next theorem proves the existence of such

successive minima extensions that are bounded in terms of the base lattice and the

ambient lattice.

Theorem 1.1.4. Let Λ ⊂ Rn be a lattice of full rank, and let Lk ⊂ Λ be a sublattice

of rank 1 ≤ k < n. There exists a sublattice Lk+1 ⊂ Λ of rank k + 1 such that

Lk ⊂ Lk+1, λj(Lk+1) = λj(Lk) for all 1 ≤ j ≤ k and

λk+1(Lk+1) ≤
λk(Lk)(v

2
∗ +

√
1− v2∗)√

1− v4∗
+ 2µ, (1.1)

where µ is the covering radius of Λ and v∗ is the smallest root of the polynomial

p(v) =

(
µ2

λ2
k

(1− v4)− v2(v4 − v2 + 1)

)2

−
(
2µ2

λ2
k

v(1− v4) + 2v4
)2

(1− v2)

in the interval (0, 1): such v∗ necessarily exists.

Theorem 1.1.4 as well as Corollary 1.1.2 will be proved in Section 2.3.
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The results of this section as well as Chapter II are based on joint work with L.

Fukshansky and were originally presented in [19] and [20].
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1.2 Planar Lattices

This section presents lattice extension results that are specific to planar lattices

or only partially generalize to higher dimensions.

Let e1 denote the vector (1, 0)
T in R2. Let E1 denote the lattice e1Z. Planar lattice

extensions of E1 can then be constructed by selecting a vector v ∈ R2 so that e1,v

are linearly independent. Define such a lattice extension as E1(v) = spanZ{e1,v}.

Define the set

F = {(a, b) ∈ R2 : 0 ≤ a < 1/2, b > 0, a2 + b2 ≥ 1}. (1.2)

If v ∈ F then e1,v are vectors corresponding to the first and second successive minima

of E(v) respectively. Moreover, if {e1,v} is a basis for Λ with v ∈ F , then {e,v} is

a minimal basis for Λ, that is

λ1(Λ) = ∥e1∥ = 1, λ2(Λ) = ∥v∥. (1.3)

The set F parameterizes all planar lattices up to similarity class. There is a par-

ticular advantage to working with planar lattices in that a pair of minimal vectors

corresponding to the first and second successive minima are always guaranteed to

be a basis. Moreover, these minimal vectors can always be chosen so that the angle

between minimal vectors is in (π/3, π/2].

Planar lattices also have connections to other branches of mathematics, for in-

stance planar lattices have a natural correspondence with elliptic curves (see [58]).

Another such connection is to Farey fractions which in turn, has a natural connection

to our results in Theorem 1.1.1. We will discuss this connection in detail in Section

3.1.

Let Λ ⊂ Rn be a rank m + k lattice extension of the rank m lattice Ω with

10



1 ≤ m < m + k ≤ n. Λ is said to be an equal covering extension of Ω if

µ(Λ) = µ(Ω). In dimension 2 we can explicitly construct all equal covering extensions

of E1.

Theorem 1.2.1. A lattice Λ ⊂ R2 is an equal covering extension of E1 if and only if

Λ = Λ(α) :=

 α α− 1
√
α− α2

√
α− α2

Z2 (1.4)

for some real number 0 < α < 1. More generally, a lattice Λ ⊂ Rn of rank 2 is an

equal covering extension of a rank-one lattice L ⊂ Λ if and only if it is isometric to

some lattice of the form det(L)Λ(α), where Λ(α) is as in (1.4).

This theorem partially generalizes to higher dimensions:

Theorem 1.2.2. Let Λk ⊂ Rn be an orthogonal lattice of rank k < n. There exists an

orthogonal lattice Λk+1 ⊂ Rn of rank k + 1 so that Λk ⊂ Λk+1 and µ(Λk+1) = µ(Λk).

Further, if z is a deep hole of Λk it is also a deep hole of Λk+1.

The construction used in Theorem 1.2.2 mirrors the construction of laminated

lattices (see [16]) and thus relies on the structure of the deep holes of Λk. Let Λ be a

lattice in Rn, a vector z ∈ Rn is said to be a deep hole of Λ if

min
x∈Λ

∥z − x∥ = µ(Λ).

Our examination of deep holes led to a particularly interesting result that we report

in Section 3.2.

Proofs of Theorems 1.2.1 and 1.2.2 will be presented in Chapter III. The results

of this section as well as Chapter III are based on joint work with L. Fukshansky and

were originally presented in [19] and [20].

11



1.3 Height Functions

For the next two sections as well as Chapters IV and V we will need to introduce

the notion of height functions. Additional properties of heights specific to Chapters

IV and V will be presented in Sections 4.1 and 5.1 respectively. Additionally, the

Grassmann wedge product which we also introduce here is used in Chapters II and

III.

For integers 1 ≤ d ≤ n, let [n] := {1, . . . , n} and define

J (n, d) := {I ⊆ [n] : |I| = d},

to be the set of size d subsets of [n], so that |J (n, d)| =
(
n
d

)
. For an n× d matrix A

with coefficients in a number field K, we define AI , I ⊆ [n] to be the |I|×d submatrix

of A so that the rows of AI are the rows of A indexed by I. When A is a full rank

n× d matrix we define the Grassmann/Plücker coordinates of A with

(det(AI))I∈J (n,d),

the vector of the determinants of the d × d minors of A. Likewise, if B is a d × n

matrix with coefficients in K we define BI , I ⊆ [n] to be d × |I| submatrix of B so

that the columns of BI are the columns of B indexed by I, and if B is full rank,

define the Grassmann coordinates of B to be the vector

(
det(BI)

)
I∈J (n,d)

.

For a set of column vectors a1, . . . ,ad ∈ Kn we identify the Grassmann/Exterior

wedge product

a1 ∧ . . . ∧ ad

12



with the Grassmann coordinates of the n× d matrix

A = (a1 . . .ad).

Remark 1.3.1. Throughout this paper we will largely be unconcerned with the sign

and order of the Grassmann coordinates. However, for the sake of concreteness we

will order each I ∈ J (n, d) in ascending order and order J (n, d) in lexicographic

order.

When U is an n×m matrix with rational integer coefficients we will define gcd(U)

to be the greatest common divisor of the entries of U . Likewise for x ∈ Zn we will

define gcd(x) as the g.c.d. of the coordinates of x.

One tool that we will need is the Brill-Gordan duality principle (see [36], as well

as Theorem 1 on p. 294 of [41]; see also proof of Theorem 4.3 of [26], as well as [40],

[6] for more contemporary accounts of this principle).

Lemma 1.3.1. (Duality Principle). Let 1 ≤ m < n, and let A,B be respectively

n×m and (n−m)× n integer matrices such that

AZm = {x ∈ Zn : Bx = 0}.

Let I ∈ J (n, d) and let I ′ = [n] \ I Then

detAI = (−1)i1+...+imγ detBI′ (1.5)

for an appropriate constant γ ∈ Q, where i1, . . . , im, im+1, . . . , in = 1, . . . , n. If column

vectors of A and row vectors of B can be extended to a basis of Zn, then γ = 1.

Now let K be a number field of degree d := [K : Q] ≥ 1 and let r1, r2 be the

numbers of real and conjugate pairs of complex embeddings of K, respectively, so

13



that

d = r1 + 2r2.

Let ∆K be the discriminant of K, and write M(K) for the set of places of K. For

each v ∈ M(K) let dv = [Kv : Qv] be the local degree. Then for each u ∈ M(Q),∑
v|u dv = d. We normalize the absolute value at each place so that for each nonzero

x ∈ K we have the product formula:

∏
v∈M(K)

|x|dvv = 1.

Let n ≥ 2, and for any place v ∈ M(K) and x = (x1, . . . , xn) ∈ Kn define the

corresponding sup-norm

|x|v = max{|x1|v, . . . , |xn|v}.

If v | ∞, we also define the Euclidean norm

∥x∥v =

(
n∑

i=1

|xi|2v

)1/2

.

For more on absolute values see [56].

Remark 1.3.2. In Chapters II and III we will be working over the real numbers rather

than a number field, as such the only norms we will use are | · |∞ and ∥ · ∥∞. For

clarity of notation in these chapters we will write | · | for | · |∞ and ∥ · ∥ for ∥ · ∥∞.

We then define two projective height functions H,H : Kn → R≥0 as follows:

H(x) =

 ∏
v∈M(K)

|x|dvv

1/d

, H(x) =

∏
v∤∞

|x|dvv ×
∏
v|∞

∥x∥dvv

1/d

.

These heights are absolute, meaning that they are the same when computed over
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any number field K containing the coordinates of x. This is due to the normalizing

exponent 1/d in the definition. Further, for each nonzero x ∈ Kn,

1 ≤ H(x) ≤ H(x) ≤
√
nH(x). (1.6)

We also define the inhomogeneous or Weil height h : Kn → R≥1 to be

h(x) = H(1,x) ≥ H(x)

for every n ≥ 1, thus including a height on algebraic numbers. We also write H(A)

and h(A) for the projective and inhomogeneous heights, respectively, of an m × n

matrix A viewed as a vector in Kmn and H(F ), h(F ) for the respective heights of the

coefficient vector of a polynomial F over K.

We also define the Schmidt/Arakelov height on the subspaces of Kn as follows:

Let x1, . . . ,xm ∈ Kn,m ≤ n and let V = spanK{x1, . . . ,xm} be the m-dimensional

subspace of Kn spanned by x1, . . . ,xm. The wedge product of these basis vectors

x1 ∧ · · · ∧xm can be viewed as a vector in K(n
m) under lexicographic embedding: this

is a vector of the Grassmann coordinates of V . Define

H(V ) = H(x1 ∧ · · · ∧ xm).

The product formula along with the square-free property of the Grassmann wedge

product guarantees that this definition is independent of the choice of a basis for V .

We also define the Arakelov height on matrices as follows: for an n × m matrix A

over K, 1 ≤ m ≤ n we let

H(A) = H (spanK {a1, . . . ,am}) ,
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where a1, . . . ,am are the columns of A. If m > n, we define H(A) to be H(A⊤).

Suppose the m-dimensional vector subspace V ⊂ Kn is described as

V = {Ax : x ∈ Km} = {y ∈ Kn : By = 0} ,

for the n×m matrix A and (n−m)×n matrix B over K, respectively. Then Lemma

1.3.1 states that

H(A) = H(B) = H(V ). (1.7)

We also review here several additional properties of height functions: If 1 ≤ J < L

then a generalization of Hadamard’s determinant inequality asserts that

H
(
ξ1 ∧ ξ2 ∧ · · · ∧ ξL

)
≤ H

(
ξ1 ∧ ξ2 ∧ · · · ∧ ξJ

)
H
(
ξJ+1 ∧ ξJ+2 ∧ · · · ∧ ξL

)
.

(1.8)

Alternatively, let Y and Z be the N × J and N × (L− J) matrices

Y =
(
ξ1 ξ2 · · · ξJ

)
, and Z =

(
ξJ+1 ξJ+2 · · · ξL

)
.

Then (1.8) is also the inequality

H(X) = H(Y Z) ≤ H(Y )H(Z) (1.9)

for a partitioned matrix. By repeated application of this inequality we get

H(Z) = H(X) ≤
L∏

ℓ=1

H(ξℓ). (1.10)

In the special case L = N we have

det
(
ξ1 ξ2 · · · ξN

)
= ξ1 ∧ ξ2 ∧ · · · ∧ ξN

16



In this case (1.10) becomes

∣∣det(ξ1 ξ2 · · · ξN
)∣∣ ≤ N∏

n=1

H(ξn
)
, (1.11)

which is Hadamard’s upper bound for a determinant. As the origin of (1.8) and (1.9)

is somewhat obscure, we will follow the terminology used in [18] and refer to all of

these as Hadamard’s inequality.

There is another type of inequality that is satisfied by the Arakelov height on

subspaces. Let Z ⊆ KN and Y ⊆ KN be K-linear subspaces, and let ⟨Z,Y⟩ be the

subspace spanned over K by Z ∪Y . Of course Z ∩Y is also a subspace of KN . Then

these four subspaces satisfy the inequality

H
(
⟨Z,Y⟩

)
H(Z ∩ Y) ≤ H(Z)H(Y). (1.12)

This was proved in [59, Theorem 1], and it was proved independently and at about the

same time by W. M. Schmidt. An immediate consequence of (1.12) is the inequality

H(Z ∩ Y) ≤ H(Z)H(Y). (1.13)
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1.4 A New Version of Siegel’s Lemma

The name Siegel’s lemma is usually attributed to results on small-size nontrivial

solutions to under-determined systems of homogeneous linear equations over a field

or a ring of arithmetic interest. The original Siegel’s lemma asserts that given an

integer M ×N matrix A, M < N , there exists a nonzero x ∈ ZN such that Ax = 0

and

|x| ≤ 2 + (N |A|)
1

N−M , (1.14)

where |A| here denotes the sup-norm of the matrix A. This result was originally used

in transcendental number theory by Thue [60] and Siegel [57]. The exponent 1
N−M

in (1.14) is known to be the best possible, however this bound lacks invariance under

linear transformations: indeed, for any M ×M integer matrix U ,

(UA)x = Ax = 0,

however |UA| and |A| can be very different. It therefore makes sense to rephrase

this fundamental principle as a result on the existence of points of bounded size in

a vector space, i.e. the L-dimensional null-space of the given N ×M linear system,

where L = N −M . In this context, “size” is usually measured via a suitable height

function.

The first subspace version of Siegel’s lemma over an arbitrary number field k, pro-

viding a full small-height basis, was established by Bombieri and Vaaler in [8]. It as-

serts that, given an L-dimensional subspace V of kN there exists a basis {x1, . . . ,xL}

for V such that
L∏
i=1

h(xi) ≤ NL/2

((
2

π

)r2

|∆k|
) L

2d

H(V ), (1.15)

where d = [k : Q], r2 is the number of pairs of complex conjugate embeddings of k,

∆k is the discriminant of k.
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Our goal is to establish a new version of Siegel’s lemma with somewhat different

bounds on the maximum heights of the basis vectors, independent of the field of

definition. Throughout this section, we assume that k is an algebraic number field

and work in the k-linear space of N × 1 column vectors kN . More generally, we

could also work in an intermediate field K such that Q ⊆ K ⊆ Q where it may

happen that K/Q is an extension of infinite degree. However, we are interested in

simultaneous solutions to finitely many linear equations having algebraic numbers as

coefficients. Such systems involve only finitely many algebraic numbers and these

generate a finite extension of Q. Several inequalities in the literature (for example,

[8, Theorem 8 and Theorem 9] and [62, Theorem 1, and Theorem 2]) that bound

the height of solutions to simultaneous systems of linear equations with coefficients

in a number field k contain constants that depend on k. Usually these constants

depend on the discriminant of k, as in (1.15) above. An exception to this situation

can be found in the striking results of Roy and Thunder [53], and [54], on absolute

forms of Siegel’s lemma. Analogously to (1.15), they prove the existence of a basis

{x1, . . . ,xL} for an L-dimensional subspace V ⊂ QN
with

L∏
i=1

H(xi) ≤
(
2

L(L−1)
2 + ε

)
H(V ), (1.16)

for any ε > 0 (the choice of the basis depends on ε). While their bound does not

depend on any number field, the vectors x1, . . . ,xL are also not guaranteed to lie over

a fixed number field.

Similar to the work of Roy and Thunder, we establish the existence of a small-

height basis for an L-dimensional subspace of kN (i.e., the space of solutions to a

system of simultaneous linear equations), and the inequalities we prove are free of

constants that depend on a number field. While we bound the individual heights

of the vectors instead of the product, our basis lies over a fixed number field k and
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our bound is particularly simple. In fact, we prove more than just the existence of a

small-height basis for a subspace. Here is our main result.

Theorem 1.4.1. Let Z ⊆ kN be a subspace of dimension L where 1 ≤ L < N . There

exists a basis {
ω1,ω2, . . . ,ωL

}
for Z over k with the following property: if I ⊆ {1, . . . , L} is a nonempty subset, and

YI = spank

{
ωi : i ∈ I

}
(1.17)

is the k-linear subspace spanned by the basis vectors that are indexed by the elements

in I, then

H(YI) ≤ H(Z). (1.18)

In particular, max1≤i≤L H(ωi) ≤ H(Z). Moreover, if I1 ⊊ I2 ⊆ {1, . . . , L}, then

H(YI1) ≤ H(YI2) (1.19)

Observe that, while our result does not imply the bounds (1.15) and (1.16), those

bounds do not imply our result either. Further, notice that in situations when the

height of the subspace Z is dominated by the constant depending on N and k in (1.15)

or on L in (1.16) our bound may be better. In fact, the constant in (1.15) has

been improved in [62], but even this optimal constant depends on a power of ∆k.

Additionally, our bound can be preferable in some applications due to its simplicity.

Our proof of this new form of Siegel’s lemma does not use the Dirichlet box

principle which was exploited in the earlier work of Baker [4], Roth [52], Siegel [57],

and Thue [60]. Our approach also does not use methods from the geometry of numbers

which were introduced in [8]; it is based solely on linear algebra. One application of

our Theorem 1.4.1 together with a previous version of Siegel’s lemma and certain
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results on integer sensing matrices (see [23], [44], [45]) is the following observation.

Theorem 1.4.2. Let Z ⊆ kN be a subspace of dimension L where 1 ≤ L < N . For

each integer M > L there exists a collection of vectors

S(M) = {y1, . . . ,yM} ⊂ Z

with the following properties:

1. Every subcollection of L vectors from S(M) forms a basis for Z,

2. For every yi ∈ S(T ),

H(yi) ≤ L3/2(2M)
L−1
L min

{
H(Z)L, γk(L)

L/2H(Z)
}
,

where γk(L)
1/2 is the generalized Hermite’s constant discussed in Chapter IV.

We present the proofs of Theorems 1.4.1 and 1.4.2 in Section 4.1

The results of this section as well as Chapter III are based on joint work with L.

Fukshansky and J. Vaaler and will also be presented in [22].
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1.5 Multilinear Forms

Hilbert’s 10th problem asks for an algorithm to decide whether a given Diophan-

tine equation has an integer solution. By a celebrated result of Matiyasevich [48],

such an algorithm does not exist in general. On the other hand, for linear Diophan-

tine equations solutions are classically given by the Euclidean algorithm. Further,

there are also known algorithms for quadratic polynomials (see, for instance [38]).

An important approach to the problem of finding such algorithms for different classes

of polynomials is through the use of search bounds, as described in [46]. Suppose we

can prove that a given equation has integer solutions if and only if it has a solution

of norm bounded by some explicit function of the coefficients of this equation. Then

a search through a finite set of all integer points with norm bounded by this function

provides an algorithm that decides whether a solution exists and finds at least one

such solution if it exists.

In fact, search bounds for zeros of polynomial equations have been studied quite

extensively over more general rings and fields as well: in these more general situations

the role of a norm guaranteeing the finiteness of a searchable set is played by a height

function. The subject of search bounds for quadratic polynomials has been started

by a classical theorem of Cassels [15]; see [25] for a detailed overview of a large

body of work on various extensions and generalizations of this important theorem.

Additionally, there are search bounds for integral cubic forms in a sufficient number

of variables [12], as well as for systems of integral forms under certain technical non-

singularity conditions [42].

The results in this section investigate bounds on height of “small” solutions

to polynomial equations, linear in some of the variables, over number fields. Let

F (x1, . . . , xn) ∈ K[x1, . . . , xn] and let 1 ≤ k < n. Let I = {i1, . . . , ik} ⊂ [n], and
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I ′ = [n] \ I. Let xI′ = (xj)j∈I′ . We will say that F is linear in I-separated variables if

F (x1, . . . , xn) =
k∑

j=1

xijFj(xI′) + Fk+1(xI′), (1.20)

where Fj(xI′) ∈ K[xI′ ] for 1 ≤ j ≤ k + 1 are any polynomials in n − k variables

indexed by I ′ with coefficients in K. For a polynomial F (x1, . . . , xn) ∈ K[x1, . . . , xn],

we define its zero-set over K:

ZK(F ) = {z ∈ Kn : F (z) = 0} .

We also write N (F ) for the number of nonzero monomials of F . With this notation,

we can state our first main result.

Theorem 1.5.1. Let I be as above and let

Fl(x1, . . . , xn) =
k∑

j=1

xijFl,j(xI′) + Fl,k+1(xI′), 1 ≤ l ≤ k

be polynomials over K of respective degrees m1, . . . ,mk linear in I-separated variables

as in (1.20). Consider the inhomogeneous system

F1(x1, . . . , xn) =
∑k

j=1 xijF1,j(xI′) + F1,k+1(xI′) = 0

...

Fk(x1, . . . , xn) =
∑k

j=1 xijFk,j(xI′) + Fk,k+1(xI′) = 0

 (1.21)

of linear equations in the variables xi1 , . . . , xik with coefficients Fl,j(xI′), 1 ≤ l ≤ k,

1 ≤ j ≤ k+1. Assume that the matrix F := (Fl,j(xI′))1≤l≤k,1≤j≤k of the corresponding

homogeneous system has the same rank as the coefficient matrix of inhomogeneous

system, i.e., F augmented by the column (Fl,k+1(xI′))1≤l≤k. Then
⋂k

l=1 ZK(Fl) ̸= ∅
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and there exists a point z ∈
⋂k

l=1 ZK(Fl) with

h(z) ≤ kk+1|∆K |
1
d

(
D + 2

2

)2km+1

(NH)2k ,

where

D =
k∑

l=1

ml, m = max
1≤l≤k

ml,

N = max
1≤l≤k

N (Fl), H = max
1≤l≤k

h(Fl).

We prove this theorem in Section 5.2, where we also show how our method of proof

leads to an explicit algorithm for finding a simultaneous zero of the polynomial system

in question. Our main tools are the Bombieri–Vaaler Siegel’s lemma (Theorem 1.15), a

non-vanishing lemma for polynomials related to Alon’s Combinatorial Nullstellensatz

(Lemma 5.1.4) and a collection of height inequalities that we discuss in Sections 1.3

and 5.1. One of these height inequalities that we prove, a bound on the height of the

inverse of a nonsingular matrix (Lemma 5.1.1), is of some independent interest and

may have other applications in Diophantine geometry.

In the case of a single polynomial, we can prove a similar result but with additional

avoidance conditions.

Theorem 1.5.2. Let n ≥ 2 and F (x) and P (x) be polynomials in n variables over

K of degrees g and m, respectively. Assume further that F is linear in at least one

of the variables and ZK(F ) ̸⊆ ZK(P ). Then there exists a point z ∈ ZK(F ) \ ZK(P )

such that

h(z) ≤ N (F )

(
m(2g − 1) + 2

2

)g+1

h(F ), (1.22)

where N (F ) is the number of monomials of F .

We prove this theorem in Section 5.3. Finally, we separately discuss the case of
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homogeneous multilinear polynomials. We refer to a homogeneous polynomial

F (x1, . . . , xn) ∈ K[x1, . . . , xn]

of degree g that is linear in every variable as an (n, g)-multilinear form over K. Such

forms have many zeros; in particular, they vanish on all sufficiently sparse vectors,

specifically on vectors with no more than g − 1 nonzero coordinates. We use this

observation to obtain the following search bounds which we prove in Section 5.4.

Theorem 1.5.3. Let V ⊆ Kn be an m-dimensional subspace and F a multilinear

(n, g)-form over K. Assume that m+ g− 1 > n and g > 1. Then V contains a basis

x1, . . . ,xm of vectors such that F (x1) = · · · = F (xm) = 0 and

H(xi) ≤ H(V ).

for each 1 ≤ i ≤ m. Further, suppose that P (x1, . . . , xn) ∈ K[x1, . . . , xn] is a polyno-

mial such that the dimension of the subspace of V that ZK(P, V ) := ZK(P )∩V spans

is

D(P, V ) := dim spanK ZK(P, V ) < m.

Then there exists a point z ∈ V \ ZK(P, V ) such that F (z) = 0 and

H(z) ≤
√
2m|∆K |

m+1
2d H(V ).

This theorem is a direct consequence of our new version of Siegel’s lemma (Theo-

rem 1.4.1).

The results of this section as well as Chapter V are based on joint work with L.

Fukshansky and will also be presented in [21].
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Chapter II

On Lattice Extensions
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This chapter deals with results related to the construction of lattice extensions.

The results in this chapter apply to lattices in an arbitrary dimension. For similar

results that are specific to planar lattices see Chapter III.

2.1 Small Determinant Extensions

We begin with a powerful tool to determine if a collection of vectors a1, . . . ,am ∈

Zn, 1 ≤ m ≤ n, is primitive. Such a collection is primitive if and only if

gcd(a1 ∧ . . . ∧ am) = 1.

This result follows directly from Lemma 2, p.15, [13].

Proposition 2.1.1. Let x1, . . . ,xm be linearly independent vectors in Zn and let

Lm = spanZ {x1, . . . ,xm} ⊂ Zn

be the sublattice of rank m spanned by x1, . . . ,xm, m < n. Then there exists a rank

n lattice extension, Ln, of Lm in Zn so that

detLn = gcd(x1 ∧ · · · ∧ xm).

Proof. Let Lm = Zn ∩ spanR Lm, then Lm ⊂ Zn is a sublattice of rank m containing

Lm such that Zn/Lm is torsion free. Hence any basis of Lm is extendable to Zn.

Let y1, . . . ,ym be a basis for Lm extended to a basis for Zn by ym+1, . . . ,yn. Since

x1, . . . ,xm and y1, . . . ,ym are two collections of integer vectors spanning the same

subspace of Rn, the vectors of Grassmann coordinates represent the same rational

projective point. Further, since the collection y1, . . . ,ym is extendable to a basis of
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Zn, the Grassmann coordinates of this collection must be relatively prime. Hence

x1 ∧ · · · ∧ xm = g (y1 ∧ · · · ∧ ym)

where g = gcd(x1 ∧ · · · ∧ xm). Define

Ln = spanZ
{
x1, . . . ,xm,ym+1, . . . ,yn

}
.

By the bi-linearity of the wedge product,

detLn = x1 ∧ · · · ∧ xm ∧ ym+1 ∧ · · · ∧ yn = g
(
y1 ∧ · · · ∧ ym ∧ ym+1 ∧ · · · ∧ yn

)
,

and since y1 ∧ · · · ∧ ym ∧ ym+1 ∧ · · · ∧ yn = detZn = 1, we have that detLn = g.

Corollary 2.1.2. Let the notation be as in Proposition 2.1.1 with m = n− 1. Then

there exists y ∈ Zn so that Ln = spanZ {Ln−1,y} and

∥y∥ ≤

{(
gcd(x1 ∧ · · · ∧ xm)

detLn−1

)2

+ µ2

}1/2

,

where µ is the covering radius of Ln−1.

Proof. Write A = (x1 . . .xn−1) for the corresponding basis matrix of Ln−1 and let

Ln be as given by Proposition 2.1.1. This means that there exists z ∈ Zn such that

Ln = spanZ{Ln−1, z}, so det(Ln) = gcd(x1∧ · · · ∧xm). Let ρLn−1 = A(A⊤A)−1A⊤ be

the orthogonal projector onto spanR Ln−1. Let

P =

{
n−1∑
i=1

aixi : 0 ≤ ai < 1 ∀ 1 ≤ i ≤ n− 1

}
,

P ′ = {u+ az : u ∈ P , 0 ≤ a < 1}
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be fundamental parallelepipeds for Ln−1 and Ln, respectively. Then

gcd(x1 ∧ · · · ∧ xm) = detLn = Voln(P ′)

= Voln−1(P)
∥∥(In − ρLn−1)z

∥∥
= detLn−1

∥∥(In − ρLn−1)z
∥∥ ,

hence ∥∥(In − ρLn−1)z
∥∥ =

gcd(x1 ∧ · · · ∧ xm)

detLn−1

.

On the other hand, ρLn−1z ∈ spanR Ln−1, and by definition of the covering radius µ

of Ln−1, there exists v ∈ Ln−1 such that ∥ρLn−1z − v∥ ≤ µ. Let y = z − v, then

y ∈ Zn and

ρLn−1y = ρLn−1z − ρLn−1v = ρLn−1z − v,

since v ∈ spanR Ln−1. Then (In − ρLn−1)y = (In − ρLn−1)z and

Ln = spanZ {Ln−1, z} = spanZ {Ln−1,y} .

Therefore, by Pythagorean theorem,

∥y∥2 =
∥∥(In − ρLn−1)y

∥∥2 + ∥ρLn−1y∥2

=
∥∥(In − ρLn−1)z

∥∥2 + ∥ρLn−1z − v∥2

≤
(
gcd(x1 ∧ · · · ∧ xm)

detLn−1

)2

+ µ2.

The result then follows.

Now Theorem 1.1.3 follows by combining Proposition 2.1.1 with Corollary 2.1.2.

Remark 2.1.1. Let Λ = AZn ⊂ Rk be a lattice of rank n ≤ k and let z1, . . . ,zm,m ≤

n, be linearly independent vectors in Λ. Then for each 1 ≤ i ≤ m, zi = Axi, where
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x1, . . . ,xm ∈ Zn are also linearly independent. Let

Ω = spanZ{x1, . . . ,xm} ⊂ Zn (2.1)

be the sublattice of rank n spanned by these vectors and let Ω′ be an extension of

Ω in Zn guaranteed by Proposition 2.1.1. Then AΩ = spanZ{z1, . . . ,zm} ⊆ Λ and

AΩ′ ⊆ Λ is an extension of AΩ with

detAΩ′ =
√
det(ATA) detΩ′ = detΛdetΩ′.

Further, if m = n − 1 then there exists y ∈ Zn so that AΩ′ = spanZ{AΩ, Ay} and

∥y∥ is bounded as in Corollary 2.1.2.

2.2 Counting Lattice extensions

The goal of this section is to prove Theorem 1.1.1 and Corollary 1.1.2. We will

approach this by breaking it into several steps, the first of which is to count the

number of ways to extend a primitive collection of m < n − 1 vectors in Zn by one

vector.

For a real number T > 0 define the integer n-cube centered at the origin with

sidelength 2T as

Cn(T ) := {x ∈ Zn : |x| ≤ T},

then |Cn(T )| = (2⌊T ⌋+ 1)n.

Lemma 2.2.1. Let 1 ≤ m < n− 1 and let a1, . . . ,am ∈ Zn be a primitive collection

of vectors. For T > 0, define

f(T ) = |{x ∈ Cn(T ) : a1, . . . ,am,x is primitive}|.
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Then as T → ∞,

f(T ) ≤ (ζ−1(n) + ϵ)(2T + 1)n, (2.2)

where ζ is the Riemann zeta-function, ϵ > 0. Additionally,

f(T ) ≤ β(n,m,A)T n, (2.3)

where β(n,m,A) is a constant depending only on n,m and the A.

Proof. Since the collection a1, . . . ,am is primitive, the corresponding n×mmatrixA =

(a1 . . .am) is unimodular.

By the primitivity criterion above, we want to count x ∈ Cn(T ) such that the

extended n× (m+ 1) matrix (A x) is still unimodular.

First notice that each x must itself be a primitive vector, as

gcd(x)| gcd (a1 ∧ . . . ∧ am ∧ x) .

Therefore the total number of such vectors x is no bigger than the number of

primitive vectors in Cn(T ). It is a well-known fact that the probability of a vector

in Cn(T ) being primitive is ζ−1(n) (this result has apparently first been proved by

E. Cesàro in 1884, but has been re-discovered several times since; see [49] for the

references). More specifically, a result of [51] asserts that

|{x ∈ Cn(T ) : x is primitive}| = ζ(n)−1T n +O(T n−1).

Taking any ϵ > 0 then guarantees (2.2) for all sufficiently large T .

Now, let Λ := AZm be a lattice of rank m. Since A is a unimodular matrix, there

exists an n×(n−m) integer matrix B so that the augmented matrix (AB) ∈ GLn(Z).

In fact, such B can be chosen so that
√

det(BTB) is bounded by a function of A, call
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it α(A): this can be done, for instance, by a repetitive application of the search-bound

presented in Section 1 of [11], after Theorem 1.3. Then

Ω := BZn−m ∼= Zn/Λ ∼= Zn−m

is a lattice, and

det(Ω) =
√

det(BTB) ≤ α(A), det(Λ) =
√
det(ATA). (2.4)

Then Zn = Ω⊕ Λ, so for every x ∈ Zn there exists a unique pair y ∈ Ω, z ∈ Λ such

that x = y+z, so |x| ≤ |y|+ |z|. Then x is such that (Ax) is unimodular if and only

if the corresponding y ∈ Ω is primitive, i.e. extendable to a basis of Ω. Let γ ∈ (0, 1]

and notice that

gγ(T ) := |{y + z : y ∈ Cn(γT ) ∩ Ω, z ∈ Cn((1− γ)T ) ∩ Λ}| ≤ f(T ),

where Ω′ stands for the set of primitive points in Ω. Now notice that

gγ(T ) = |Cn(γT ) ∩ Ω′ · |Cn((1− γ)T ) ∩ Λ|. (2.5)

Assume T ≥ max
{

(n−m) det(Ω)
2γ

, m det(Λ)
2(1−γ)

}
. Then Lemma 3.1 of [30] guarantees that

|Cn(γT ) ∩ Ω| ≥
(

2γT

(n−m) det(Ω)

)(
2γT

n−m
− 1

)n−m−1

, (2.6)

|Cn((1− γ)T ) ∩ Λ| ≥
(
2(1− γ)T

m det(Λ)
− 1

)(
2(1− γ)T

m
− 1

)m−1

. (2.7)

Again, by Cesàro’s Theorem the proportion of primitive points among all points in Ω

is ζ(n −m)−1. Combining this observation with (2.4), (2.5), (2.6), (2.7) and taking
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γ = 1/2, we obtain

f(T ) ≥ g1/2(T ) ≥ β(n,m,A)T n

for an appropriate constant β(n,m,A). This proves (2.3).

Next we prove a counting lemma on the number of integer lattice points in a

section of the cube Cn(T ) by a hyperplane, building on a previous result for a section

by a subspace. Let

L(x1, . . . ,xn) =
n∑

i=1

cixi ∈ Z[x1, . . . ,xn]

be a linear form in n ≥ 2 variables with coprime coefficients, and write c = (c1, . . . , cn)

for this coefficient vector. Let b ∈ Z and let T > 0 be a real number. Define the set

BL,b(T ) = {x ∈ Zn : L(x) = b, |x| ≤ T} = Cn(T ) ∩ {x ∈ Zn : L(x) = b}.

Since coefficients of L are coprime, the equation L(z) = b has infinitely many integer

solutions for any b ∈ Z, and so the set BL,b(T ) is not empty for a sufficiently large T .

We want to estimate the size of BL,b(T ) as a function of the coefficients of L, b and

T .

Theorem 2.2.2. For any T ,

|BL,b(T )| ≤
(
2(T +max{|L|, |b|}

|L|
+ 1

)
(2(T +max{|L|, |b|}) + 1)n−2, (2.8)

and for T ≥ max |L|, |b|

|BL,b(T )| ≤
(
2(T −max{|L|, |b|}

|L|
− 1

)
(2(T −max{|L|, |b|})− 1)n−2. (2.9)
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Therefore

|BL,b(T )| ∼
(2T )n−1

|L|
(2.10)

as T → ∞.

Proof. Let

Λ = {x ∈ Zn : L(x) = 0} = {x ∈ Zn : c · x = 0},

then Λ is a sublattice of Zn of rank n − 1. Further, if A is any basis matrix for Λ

then column vectors of A must be primitive, since Λ is the full intersection of Zn

with a subspace. We define the Grassmann coordinates of Λ to be the absolute values

of Grassmann coordinates of A. This definition does not depend on the choice of a

basis matrix for ΛL, since for any two such basis matrices A1, A2 there exists a matrix

U ∈ GLn−1(Z) such that A2 = UA1, where det(U) = ±1. Let us write ∆ for the

maximum of Grassmann coordinates of Λ, then by Lemma 1.3.1,

∆ = |c| = |L|. (2.11)

For a fixed integer b, let

ΛL(b) = {x ∈ Zn : L(x) = b},

so ΛL = ΛL(0) and BL,b(T ) = {x ∈ ΛL(b) : |x| ≤ T}. Pick any z ∈ ΛL(b), then it is

easy to notice that

ΛL(b) = {x+ z : x ∈ Λ}, (2.12)

i.e. x → x+ z is a bijective map between ΛL and ΛL(b) for any fixed z ∈ Λ(b). The

main Theorem of [10] guarantees that there exists z ∈ Λ(b) such that

|z| ≤ max{|L|, |b|}, (2.13)
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so from now on we use description (2.12) forΛ(b) with z satisfying (2.13). Hence for

any y = x+ z ∈ Λ(b),

|y| ≤ |x|+ |z| ≤ |z|+max(|L|, |b|).

Combining Theorem 4.2 of [10] with (2.11), we have

|BL,0(T )| ≤
(
2T

|L|
+ 1

)
(2T + 1)n−2, (2.14)

and combining Lemma 3.1 of [30] (see also equation (50)) with (2.11), we have for

every T ≥ |L|
2

|BL,0(T )| ≤
(
2T

|L|
− 1

)
(2T − 1)n−2. (2.15)

Suppose that y ∈ BL,b(T ), then |y| ≤ T and y = x+ z for a unique x ∈ Λ, so

|x| = |y − z| ≤ T + |z| = T +max{|L|, |b|}.

Therefore |BL,b(T )| ≤ |BL,0(T +max{|L|, |b|})|, and combining this observation with

(2.14), we obtain (2.8).

Next assume x ∈ BL,0(T − max{|L|, |b|}), which implicitly implies that T ≥

max{|L|, |b|}. Let y = x+ z ∈ BL,b(T ), then

|y| ≤ |x|+ |z| ≤ T,

and so

|BL,b(T )| ≥ |BL,0(T −max{|L|, |b|})|.

Then combining this observation with (2.15), we obtain (2.9), since we have T ≥

max{|L|, |b|} > |L|
2
.

Now notice that both, the upper bound (2.8) and the lower bound (2.9) when
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expanded under the assumption T → ∞ have the order of magnitude (2T )n−1

|L| +

o(T n−1). Thus

lim
T→∞

|BL,b(T )

(2T )n−1/|L|
= 1

which implies (2.10).

We are now ready to prove Theorem 1.1.1 and Corollary 1.1.2. To start with, let

n ≥ 2,a1, . . . ,an−1 ∈ Zn be a primitive collection of vectors, and let A = (a1 . . .an−1)

be the corresponding n × (n − 1) unimodular matrix. In how many ways can this

primitive collection be extended to a basis of Zn? More precisely, for a positive integer

T let

BA(T ) = {z ∈ Zn : Zn = spanZ{a1, . . . ,an−1, z}, |z| ≤ T}. (2.16)

We want to understand how big is the cardinality of this set, |BA(T )|, as a function

of A and T . Notice that z ∈ BA(T ) if and only if |z| ≤ T and

det(Az) = ±1.

For each 1 ≤ k ≤ n, let Ak be the (n − 1) × (n − 1) submatrix of A obtained by

deleting k-th row, then

LA(z) := det(Az) =
n∑

k=1

(−1)n+k det(Ak)zk,

which is a linear form in the variables z1, . . . ,zn. Since the collection of vectors

a1, . . . ,an−1 is extendable to a basis for Zn, it must be true that

gcd(det(A1), . . . , det(An)) = 1,
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and hence the equation LA(z) = ±1 has infinitely many integer solutions. Define

∆A := max | det(Ak)| : 1 ≤ k ≤ n,

then |LA| = ∆A ≥ 1, and so we can apply Theorem 2.2.2 with b = 1 and with b = −1

to obtain the following bound.

Corollary 2.2.3. For any T ,

|BA(T )| ≤ 2

(
2T

∆A

+ 3

)
(2(T +∆A) + 1)n−2,

and for T ≥ ∆A

|BA(T )| ≥ 2

(
2T

∆A

− 3

)
(2(T −∆A)− 1)n−2.

Therefore

|BA(T )| ∼ 2

(
(2T )n−1

∆A

)
as T → ∞.

Proof. Since

BA(T ) = BLA,1(T ) ∪ BLA,−1(T ),

we are applying Theorem 2.2.2 twice, with b = ±1, and adding the results. This

produces the factor of two in our bounds.

Now we combine Corollary 2.2.3 with Lemma 2.2.1 to prove Theorem 1.1.1.

Proof of Theorem 1.1.1. Parts (1) and (2) of the Theorem are given by Lemma 2.2.1

and Corollary 2.2.3, respectively. Let us prove that there exist Θ(T n2−nm−1) collec-

tions of vectors B1, . . . ,Bn−m ∈ Zn such that |Bi| ≤ T for each 1 ≤ i ≤ n − m and

{a1, . . . ,am,B1, . . . ,Bn−m} is a basis for Zn. Let us argue by induction on n−m ≥ 1.
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If n −m = 1, then we only need to add one vector to this primitive collection, and

by Corollary 2.2.3 there are Θ(T n−1) ways to do it. Notice that in this case

n2 − nm− 1 = n2 − n(n− 1)− 1 = n− 1,

so the result follows. Then assume n−m > 1, and a result is proved for n−m− 1,

i.e. for a primitive collection of m + 1 vectors. By Lemma 2.2.1 there are Θ(T n)

to extend this primitive collection by one vector. For each such vector, there are

Θ(T n2−n(m+1)−1) extensions to a basis by the induction hypothesis, and hence the

total number of extensions of our primitive collection is

Θ(T nT n2−n(m+1)−1) = Θ(T n2−nm−n−1+n) = Θ(T n2−nm−1).

Finally, the argument for extending the primitive collection {a1, . . . ,am} to a prim-

itive collection {ai,Bj : 1 ≤ i ≤ m, 1 ≤ j ≤ k}, 1 ≤ k < n − m, is the same as

above, but simpler: we do not need to account for the case of the last vector con-

tributing only Θ(T n−1) possibilities, and hence the total number is simply Θ(T nk).

This completes the proof.

We now extend these observations to general lattices.

Proof of Corollary 1.1.2. Let Λ be a lattice of full rank in Rn, and let

λ1(Λ) := min{|z| : z ∈ Λ \ {0}}

be the first successive minimum of Λ with respect to the sup-norm. By Minkowski

reduction (see, for instance, Theorem 2 on p.66 of [37] combined with Theorem 2 on
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p.62 of the same book), there exists a basis z1, . . . ,zn for Λ such that

1

n!
det(Λ) ≤

n∏
i=1

|zi| ≤
(
3

2

) (n−1)(n−2)
2

det(Λ).

Let U be the basis matrix for Λ with column vectors z1, . . . ,zn, ordered in order of

increasing sup-norm, so |U | = |zn|, and thus

(
det(Λ)

n!

)1/n

≤ |U | ≤
(
3

2

) (n−1)(n−2)
2 det(Λ)

λ1(Λ)n−1
. (2.17)

Let a1, . . . ,am be a primitive collection of vectors in Λ, 1 ≤ m < n. Then for each

1 ≤ i ≤ m,ai = Ua′i for some a′i ∈ Zn. Let us write A = (a1 . . .am), then there exists

an n× (n−m) matrix B such that

(AB)Zn = Λ = UZn,

hence U−1(AB) = ((U−1A)(U−1B)) ∈ GLn(Z), where a′
1, . . . ,a

′
m are the column

vectors of A′ := U−1A. This means that the collection of vectors a′
1, . . . ,a

′
m is

primitive in Zn, and hence we can apply Theorem 1.1.1 to it. By analogy with (2.16),

let

Bm
A′,Zn(T ) = {z ∈ Zn : a1, . . . ,am, z is primitive in Zn, |z| ≤ T},

Bm
A,Λ(T ) = {z ∈ Λ : a1, . . . ,am, z is primitive in Λ, |z| ≤ T}.

Suppose that B ∈ BA,Λ(T ). Then a′
1, . . . ,a

′
m,B′ is primitive in Zn, where B′ = U−1B,

and so

|B′| ≤ n|U−1||B| ≤ n|U−1|T.

Therefore

|Bm
A,Λ(T )| ≤ |Bm

A′,Zn(n|U−1|T )| = Θ
(
T n+min{0,n−m−2}) , (2.18)
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since min{0, n−m−2} = 0 if m < n−1 and min{0, n−m−2} = −1 if m = n−1. On

the other hand, assume that B′ ∈ BA′,Zn(T/n|U |). Then a1, . . . ,am,B′ is primitive in

Λ, where B = UB′, and so

|B| ≤ n|U ||B′| ≤ T.

Therefore

|Bm
A,Λ(T )| ≥ |Bm

A′,Zn(T/n|U |)| = Θ
(
T n+min{0,n−m−2}) . (2.19)

Combining (2.18) and 2.19 and applying an argument identical to the one in the proof

of Theorem 1.1.1 above yields the corollary. Since we choose U to be a Minkowski

reduced basis for Λ with sup-norm bounded as in (2.17), the constants in Θ-notation

depend intrinsically on Λ, not on the choice of a basis for Λ

2.3 Successive minima extensions

In this section, we prove Theorem 1.1.4. Let Λ be a full rank lattice in Rn. Our

goal is to construct a sublattice Lk+1 ⊂ Λ of rank k + 1 such that Lk ⊂ Lk+1,

λj(Lk+1) = λj(Lk) for all 1 ≤ j ≤ k and λk+1(Lk+1) is as small as possible. To prove

the theorem, we first need an auxiliary lemma. Write λ1, . . . , λk for the successive

minima of Lk and let Vk = spanR Lk, θ ∈ (0, π/2], and

Cθ(Vk) = {x ∈ Rn : a(x,y) ∈ [θ, π − θ] ∀ y ∈ Vk} , (2.20)

where a(x,y) stands for the angle between two vectors.

Lemma 2.3.1. If x ∈ Cθ(Vk) and

∥x∥ ≥ λk(cot θ cos θ + 1)√
1 + cos2 θ

,

then ∥x+ y∥ ≥ λk for every y ∈ Vk.
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Proof. For x ∈ Cθ(Vk) and y ∈ Vk, define

f(x,y) = ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ cosa(x,y).

We want to guarantee that f(x,y) ≥ λ2
k for all y ∈ Vk. Let us write t = ∥x∥,

z = ∥y∥, and notice that

f(x,y)− λ2
k ≥ g(t, z) := t2 + z2 − 2tz cos θ − λ2

k.

Thus we want to find a lower bound on t that would guarantee g(t, z) ≥ 0 for all

z > 0. In other words, we want

t ≥ h(z) := z cos θ +
√

λ2
k − z2 sin2 θ

for all z > 0. Notice that h(z) is real-valued if and only if z ≤ λk

sin θ
, then let us find

the value of z that maximizes h(z). Differentiating h(z) and setting the derivative

equal to zero, we obtain

z∗ =
λk cot θ√
1 + cos2 θ

,

the point at which h(z) assumes its maximum value of

h(z∗) =
λk(cot θ cos θ + 1)√

1 + cos2 θ
.

Thus, taking t = ∥x∥ to be greater than or equal to this value ensures that ∥x+y∥ ≥

λk for every y ∈ Vk, as required.

Proof of Theorem 1.1.4. Let us write Bn(r) for the ball of radius r > 0 centered at

the origin in Rn. Let θ ∈ (0, π/2] and

r(θ) =
λk(cot θ cos θ + 1)√

1 + cos2 θ
. (2.21)
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Then Lemma 2.3.1 guarantees that for any vector x ∈ Λ ∩ (Cθ(Vk) \Bn(r(θ))) the

lattice M = spanZ {Lk,x} satisfies λj(M) = λj(Lk) for all 1 ≤ j ≤ k and λk+1(M) ≤

∥x∥. Hence we want to minimize

λk+1(θ) := min {∥x∥ : x ∈ Λ ∩ (Cθ(Vk) \Bn(r(θ))}

as a function of θ.

Let µ be the covering radius of Λ, then any translated copy B′
n(µ) of the ball of

radius µ in Rn must contain a point of Λ. Let us choose θ ∈ (0, π/2] such that

B′
n(µ) ⊂ (Cθ(Vk) ∩Bn(r(θ) + 2µ)) \Bn(r(θ)),

then Cθ(Vk) \Bn(r(θ) would be guaranteed to contain a point x of Λ with

∥x∥ ≤ r(θ) + 2µ, (2.22)

so that we can take Lk+1 = spanZ {Lk,x}. For this to be true, we need the line

segment from 0 to the center of the ball B′
n(µ) to be of length r(θ) + µ and to make

the angle π/2− θ with any line in the boundary of Cθ(Vk) emanating from the center

and tangent to the ball B′
n(µ). These conditions result in a right triangle with legs

r(θ) + µ and µ and the angle π/2− θ opposite to the second leg (see Figure 2.1 for a

graphical illustration of this argument). Hence we have the equation

tan(π/2− θ) =
µ

r(θ) + µ
.

Using (2.21), along with the fact that tan(π/2− θ) = cot θ, writing v = cos θ and
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Figure 2.1: Cone construction with the lattice point (in blue) caught in the ball (red)
of covering radius.

simplifying, we obtain the following relation in terms of v:

µ
(√

1− v2 − v
)
=

λk

(
v2 +

√
1− v2

)
v

√
1− v4

,

which transforms into the following polynomial equation:

(
µ2

λ2
k

(1− v4)− v2(v4 − v2 + 1)

)2

=

(
2µ2

λ2
k

v(1− v4) + 2v4
)2

(1− v2). (2.23)

It follows from our construction that this equation has at least one solution v in the

interval (0, 1). Then r(θ) as a function of v becomes

r(v) =
λk(v

2 +
√
1− v2)√

1− v4
,

which is an increasing function of v in the interval (0, 1). Hence, to minimize the

bound (2.22), we can pick v∗ to be the smallest root of the equation (2.23) in the

interval (0, 1). The inequality (1.1) follows.

Remark 2.3.1. This result can be loosely compared to the construction of a canonical

filtration of a lattice as originally defined by Grayson and Stuhler (see Casselman’s
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survey paper [13] for a detailed discussion). This is a unique flag of sublattices

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn = Λ

in a lattice Λ such that rk(Λk) = k and det(Λn)
1/n > det(Λk)

1/k for every k < n,

where

det(Λk) = min {det(Ω) : Ω ⊂ Λ, rk(Ω) = k} .

A lattice Λ is called semi-stable if the canonical filtration is Λ0 ⊂ Λn, i.e. if for each

sublattice Ω ⊆ Λ,

det(Λ)1/ rk(Λ) ≤ det(Λ)1/ rk(Ω). (2.24)

This family of lattices is important in reduction theory. Y. Andre explains in [2]:

Reduction theory aims at estimating the length of short vectors, and more gen-

erally the (co)volumes of small sublattices of lower ranks, of lattices of given rank

and (co)volume, and at combining lower and upper bounds to get finiteness results.

A better grasp on lower bounds comes from the more recent part of reduction theory

which deals with semistability and slope filtrations (heuristically, semistability means

that the Minkowski successive minima are not far from each other, cf. [9]).

On the other hand, our Theorems 1.1.3 and 1.1.4 give constructions of lattice ex-

tensions of a given sublattice within an ambient lattice with small determinant and

successive minima, respectively, while preserving the geometric properties of the sub-

lattice that is being extended.
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Chapter III

On Planar Lattices
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3.1 Farey Fractions

In this section we focus on the 2-dimensional case of the problem considered in

Theorem 1.1.1. Given a primitive vector in (a, b) ∈ Zn, in how many ways can it be

extended to a basis of Z2 by a vector (z1, z2) of sup-norm ≤ T? This is equivalent

to counting the number of integer solutions to

az2 − bz1 = ±1 (3.1)

with |z1|, |z2| ≤ T , i.e. the number of points in BA(T ) where A = (ab). Applying

Corollary 2.2.2, we have

4T

|A|
− 6 ≤ |BA(T )| ≤

4T

|A|
+ 6, (3.2)

where |A| = max |a|, |b|. Here we do not prove any new results, but instead show a

connection of this problem to Farey fractions and Diophantine approximation. The set

of rational numbers in the interval [0, 1] can be organized into Farey series as follows.

For each n ≥ 1, let Fn be the set of all rationals a/b ∈ [0, 1] with gcd(a, b) = 1 and

b ≤ n written in ascending order. For example,

F5 =

{
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5

}
.

The set Fn is called the Farey series of order n. The set Q∩ [0, 1] can then be viewed

as the limit of Fn as n → ∞, and this interpretation induces one possible enumeration

on Q ∩ [0, 1]. A good source of information on Farey series is Chapter 3 of Hardy

and Wright’s classical book [39]. On the other hand, reduced fractions correspond to

primitive integer points in the plane. Let

Z2
pr = {(x, y) ∈ Z2 : gcd(x, y) = 1}.
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Elements of this set are precisely primitive vectors in Z2, sometimes also called vis-

ible lattice points, the second name alluding to the property that the line segment

connecting (x, y) to the origin contains no other lattice points on it, so (x, y) is not

obstructed by anything, hence visible from the origin. If a pair of vectors x1,x2 ∈ Zn

forms a basis for the lattice Z2, then they both must be contained in Z2
pr (we routinely

identify vectors with their endpoints).

Lemma 3.1.1. Let x1 = (a, b) and x2 = (c, d) be in Z2
pr and let n = max{b, d}.

Then x1,x2 form a basis for Z2 if and only if a
b
and c

d
are consecutive elements in

the Farey series Fn; we call such elements Farey neighbors.

Proof. First notice that x1,x2 form a basis for Zn if and only if

∣∣∣∣∣∣∣det
a c

b d


∣∣∣∣∣∣∣ = |ad− bc| = 1.

Now, suppose that a
b
and c

d
are Farey neighbors in the Farey series Fn. Then Theorem

28 of [39] guarantees that

bc− ad = 1,

and so x1,x2 are a basis for Z2. In the reverse direction, assume x1,x2 are a basis

for Z2. Assume without loss of generality that a
b
< c

d
. Then a

b
, c
d
∈ Fn, and we only

need to prove that there does not exist some h
k
∈ Fn such that

a

b
<

h

k
<

c

d
.

Let P be the parallelogram spanned by the vectors bx1,x2, then the vertices of P

are (0, 0), (a, b), (c, d), (a+ c, b+ d) and the area of P is the determinant bc− ad = 1.

Further, P does not contain any integer lattice points in its interior, in particular

(a + c, b + d) is also a primitive lattice point. But since b + d > n, a primitive point
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(h, k) satisfying 3.1 would have to be in the interior of P , hence such a point cannot

exist. This proves the lemma.

Let

C(T ) =
{
z ∈ Z2

pr : |z|∞ ≤ T
}
.

We can subdivide C(T ) into eight pieces Q±
i (T ), where 1 ≤ i ≤ 4 indicates a quadrant

(numbered in the counterclockwise order) and ± indicates whether the region is above

or below the corresponding line y = ±x. For instance,

Q+
1 (T ) = {z ∈ C(T ) : 0 ≤ z1 ≤ z2}, Q−

2 (T ) = {z ∈ C(T ) : 0 ≤ z2 ≤ −z1}.

These pieces have equal cardinality, since they can be obtained from each other by

an appropriate reflection. For instance

−Q+
1 (T ) = {−z ∈ C(T ) : 0 ≤ z1 ≤ z2} = {z ∈ C(T ) : 0 ≤ −z1 ≤ −z2} = Q−

3 (T ).

It is then easy to see that if some (a, b) ∈ Q±
i (T ), then all the corresponding vectors

extending (a, b) to a basis of Z2 are contained in ±Q±
i (T ): this follows from (3.1). In

other words, BA(T ) ⊆ Q±
i (T )∪−Q±

i (T ), and |BA(T )∩Q±
i (T )| = |BA(T )∩−Q±

i (T )|.

Further, these cardinalities do not depend on which Q±
i (T ) the vector (a, b) belongs

to. Hence we can assume that (a, b) ∈ Q+
1 (T ), so |BA(T )| = 2|BA(T )∩Q+

1 (T )|. Then

the fraction a
b
belongs to the Farey series Fn for every n ≥ b. Further, in this case

(assuming T ≥ b)

|BA(T ) ∩Q+
1 (T )| = |{c/d ∈ Fn : b ≤ n ≤ T, a/b and c/d are neighbors in Fn}|.

Assume that a
b
and c

d
are neighbors in some Fn, then n < b+ d (Theorem 30 of [39])

and the next neighbor that will “squeeze in” between a
b
, c
d
will be a+c

b+d
(Theorem 29
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of [39]). When T ≫ b, new neighbors will appear every time n grows by another b,

and on this interval in n, say (k − 1)b ≤ n ≤ kb for some k, a
b
will acquire two new

neighbors: on the left and on the right. This means that

|BA(T ) ∩Q+
1 (T )| ∼

2T

b
,

and hence |BA(T )| ∼ 4T
b

as T → ∞. Since a ≤ b = |A|, this agrees with (3.2),

and also implies that the number of Farey neighbors of a given Farey fraction grows

linearly with the denominator.

Farey fractions are also related to Diophantine approximations. Dirichlet’s ap-

proximation theorem guarantees that for any irrational α ∈ R there exist infinitely

many primitive points (p, q) ∈ Z2 such that

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2
. (3.3)

Let

Dn(α) = {p/q ∈ Q : p/q satisfies (3.3), q ≤ n}

be the set of all Dirichlet approximations to α with denominator no bigger than

n. Farey fractions provide another method of approximating irrational numbers in

the interval (0, 1). Let 0 < α < 1 be irrational, and define the sequence of Farey

approximations for α in the following manner: F0(α) = 0
1
, F1(α) = 1

1
and for each

k ≥ 2, Fk(α) =
a+c
b+d

, where

a

b
= min

0≤j<k
{Fj(α) : Fj(α) > α}, c

d
= max

0≤j<k
{Fj(α) : Fj(α) < α}, (3.4)

and gcd(a, b) = gcd(c, d) = 1. Define

Fn(α) = Fn ∩ {Fk(α)}nk=0 (3.5)

49



to be the set of all Farey approximations to α with denominator less than or equal to

n. An element a
b
of Fn(α) is not guaranteed to satisfy (3.3), but is the best upper or

lower approximation to α with denominator ≤ b. Moreover, if c
d
∈ Fn is not a Farey

approximation, then there exists a
b
∈ Fn such that either c

d
< a

b
< α or α < a

b
< c

d
.

Since b, d ≤ n, ∣∣∣α− a

b

∣∣∣ > ∣∣∣ c
d
− a

b

∣∣∣ ≥ 1

n2
. (3.6)

Therefore

Dn(α) ⊆ Fn(α). (3.7)

Now, let α = [a0; a1, a2, ...] be the continued fraction expansion for α, and for each

n ≥ 1 let αn = [a0; a1, a2, ..., an] be its n-th convergent. It is well known that

αk
n
k=1 ⊆ Dn(α), (3.8)

and the convergents alternate in the following sense: αk−1 < α ⇔ αk > α. We can

now prove that, unlike the number of Farey neighbors of a given Farey fraction, the

number of Farey approximations of a given irrational number grows less than linearly

with the denominator.

Lemma 3.1.2. Let 0 < α < 1, α ̸∈ Q. Then

lim
n→∞

|Fn(α)|
n

= 0.

Proof. Let dk be the denominator of Fk(α) expressed in lowest terms, where d1 =

1, d2 = 1 corresponding to 0
1
, 1
1
∈ F1(α), respectively. Define a1 = 1, b1 = 1, then

dk+1 = ak + bk, and

ak+1 = dk+1, bk+1 = bk, (3.9)
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if Fk(α) > α, or

ak+1 = ak, bk+1 = dk+1, (3.10)

if Fk(α) < α, where ak is the denominator of min0≤j<k |{Fj(α) : Fj(α) > α} and bk

is the denominator of max0≤j<k{Fj(α) : Fj(α) < α}. Then observe that, with the

exception of the first and second terms, the sequence {dk} is strictly increasing and

the sequences {ak}, {bk} are non-decreasing. Observe also that

|Fn(α)| = |{dk : dk ≤ n}| = max{k : dk ≤ n}. (3.11)

For a fixed N ∈ Z>0, let l = |{dk : dk ≤ N}| and notice that for k > l

dk = ak−1 + bk−1 ≥ dk−1 +min{ak−1, bk−1} ≥ dl + (k − l)min{al, bl}. (3.12)

This implies

lim
n→∞

|{dk : dk ≤ n}|
n

= lim
n→∞

(
|{dk : dk ≤ N}|

n
+

|{dk : N < dk ≤ n}|
n

)
(3.13)

≤ lim
n→∞

(
l

n
+

n−N
min{al,bl}

n

)
=

1

min{al, bl}
. (3.14)

It remains to show that {ak}, {bk} are unbounded. Observe that ak increases whenever

Fk(α) > α and bk increases whenever Fk(α) < α, so we must show that Fk(α)

“switches sides” sufficiently often. By (3.8) and (3.7) we know that there exists a

sub-sequence {kj} such that αj = Fkj(α). Now,

Fkj(α) > α ⇒ Fkj+1
(α) < α ⇒ Fkj+2

(α) > α, (3.15)

since the continued fraction convergents alternate. By the recurrence relation on ak
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and bk, if Fkj(α) > α then

bkj+1
≥ (kj+1 − kj)akj + bkj ≥ fj, (3.16)

where fj is the j-th Fibonacci number. Likewise, if Fkj(α) < α then

akj+1
≥ (kj+1 − kj)bkj + akj ≥ fj. (3.17)

Combining these observations with (3.13), we conclude that

lim
n→∞

max{k : dk ≤ n}
n

≤ 1

min(akj , bkj)
≤ 1

fj
(3.18)

for any l > 0, and therefore

lim
n→∞

max{j : dj ≤ n}
n

= 0. (3.19)

This completes the proof of the lemma.

3.2 Deep Holes of Planar Lattices

We start this section with the following simple but useful technical lemma.

Lemma 3.2.1. Consider the m-dimensional simplex with vertices 0,x1, . . . ,xm in

Rn,m ≤ n. There exist points z ∈ Rn so that ∥z∥∞ = ∥z − xi∥∞ for all 1 ≤ i ≤ n,

and these points are solutions to


xT
1

...

xT
m

 z =
1

2


∥x1∥2∞

...

∥xm∥2∞

 . (3.20)

Proof. If z is equidistant from xi and 0 then z lies in the hyperplane orthogonal to
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xi that passes through the point (xi − 0)/2. That is

z · xi = projxi
(z) · x =

∥xi∥2∞
2

.

Since this is true for each 1 ≤ i ≤ n this gives the linear system in (3.2).

Our main goal here is to describe some properties of the deep holes of lattices,

focusing especially on the two-dimensional case. Our first basic observation is that

if z is a deep hole of a lattice Λ ⊂ Rn, then so is −z: this follows by the fact that

−Λ = Λ, since lattices are symmetric about the origin. Further, we have the following

observation.

Lemma 3.2.2. Let Λ ⊂ R2 be a lattice of rank 2 with minimal basis x,y and angle

θ ∈ [π/3, π/2] between these basis vectors. Write λ1, λ2 for the successive minima of

Λ, so that 0 < λ1 = ∥x∥∞ ≤ λ2 = ∥y∥∞. Then the fundamental parallelogram

P = {sx+ ty : 0 ≤ s, t < 1} (3.21)

contains two deep holes z1, z2 and bz1 + z2 ∈ Λ. If the angle θ = π/2, then z1 = z2

is the center of P, and we say that this deep hole has multiplicity 2.

Proof. Let us label the vertices of P as follows: O for the origin, X for the endpoint of

the vector x, Y for the endpoint of the vector y, and Q for the endpoint of the vector

x + y. The parallelogram P can be split into two congruent triangles: OXY and

QYX. Then the endpoints of the deep holes of Λ contained in P are the centers of the

circles circumscribed around these two triangles, call them Z1 and Z2, respectively,

and let z1, z2 be vectors with the endpoints Z1, Z2 (see [43]). The two triangles

are symmetric to each other about the center C of P , which means that reflection

with respect to C maps the line segment OZ1 onto the line segment QZ2. This

means that OZ1QZ2 is a parallelogram with OQ as its longer diagonal, and hence

53



Figure 3.1: Fundamental parallelogram P of Λ with deep holes Z1 and Z2.

the corresponding vector is the sum z1 + z2. Since its endpoint is Q, a vertex of P ,

this vector is in Λ (see Figure 3.1 for a graphical illustration of this argument). If

θ = π/2, then the deep hole of each of the triangles is in the center of the hypotenuse

of its corresponding right triangle, i.e. at the center point C of P ; in this case, the

two deep holes coincide, so Z1 = Z2 = C.

An immediate implication of Lemma 3.2.2 is that deep holes z1, z2 are each other’s

inverses in the additive abelian group R2/Λ. Further, z1 = z2 is an element of order

two in this group if and only if the angle θ = π/2. On the other hand, z1, z2 can be

elements of finite order in other situations too. For instance, in the hexagonal lattice

Lπ/3 =

1 1
2

0
√
3
2


the deep holes are z1 = (1/2, 1/(2

√
3)), z2 = (1, 1/

√
3) have order three in the group

R2/Lπ/3, while the lattice

L′ =

1 1
2

0
√
3

Z2

has deep a hole z1 = (1/2, 11
√
3/24) satisfying the condition

48z1 = 13(1, 0) + 22(1/2,
√
3) ∈ L′,

54



which makes z1 an element of order dividing 48 in the group R2/L′. These observa-

tions raise a natural question: when does a deep hole of Λ ⊂ R2 have finite order as

an element of the group R2/Λ?

Theorem 3.2.3. Let Λ ⊂ R2 be a full-rank lattice with successive minima λ1, λ2 and

corresponding minimal basis vectors x1,x2. A deep hole z of Λ has finite order in the

group R2/Λ if and only if Λ is orthogonal or there exist rational numbers p, q so that

pλ2
1 = x1 · x2 = qλ2

2. Moreover, if λ2
1, λ

2
2,x1 · x2 ∈ Z then the order of z in R2/Λ is

less than or equal to 12
√
3λ4

2.

Proof. As we discussed above, if Λ is orthogonal then the deep hole always has order

2 in R2/Λ, hence we assume Λ is not orthogonal. Further, we can assume that the

minimal basis vectors x1,x2 are chosen so that the angle θ between them satisfies

π/3 ≤ θ ≤ π/2. If z is the equidistant from x1,x2 and the origin then z is a deep

hole of Λ and is contained in the convex hull of {0,x1,x2}. By Lemma 3.2.2,

z · x1 =
λ2
1

2
, z · x2 =

λ2
2

2
. (3.22)

Now suppose that z has finite order in R2/Λ. Then there integers a, b, c so that c ̸= 0

and

ax1 + bx2 = cz.

In fact, the pairs z,x1 and z,x2 are linearly independent so a, b, c are all nonzero.

Taking scalar products of both sides of this equation with x1 and x2, and applying

(3.22), we obtain

aλ2
1 + bx1 · x2 = 2cλ2

1

aλ2
2 + ax1 · x2 = 2cλ2

2.
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Notice that since Λ is not orthogonal, x1 · x2 ̸= 0 and

x1 · x2 =
2c− a

b
λ2
1 =

2c− b

a
λ2
2. (3.23)

Now suppose that there are there are rational numbers p, q so that

pλ2
1 = x1 · x2 = qλ2

2.

Then, by (3.22), there exist rational, and hence integer solutions a, b, c to the linear

system 
ax1 · x1 + bx1 · x2 + cx1 · z = 0

ax1 · x2 + bx2 · x2 + cx2 · z = 0,

(3.24)

which factors as xT
1

xT
2

(x1 x2 x

)
a

b

c

 = 0 (3.25)

Since the matrix

xT
1

xT
2

 is of full rank, (a, b, c)T solves (3.25) if and only if it solves

(
x1 x2 x

)
a

b

c

 = 0 (3.26)

On the other hand, (a, b, c)T being an integer solution of (3.26) is equivalent to z

having finite order in R2/Λ. In fact, the order of z in R2/Λ is ≤ |c|∞. By combining
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(3.25) with (3.23), we obtain the linear system

 2λ2
1 2x1 · x2λ

2
1

2x1 · x2 2λ2
2 λ2

2



a

b

c

 = 0 (3.27)

If λ2
1, λ

2
2,x1 · x2 ∈ Z, then by Siegel’s lemma (1.14) there exists a nontrivial integer

solution to this system with

max{|a|∞, |b|∞, |c|∞} ≤ 3
√
3(max

{
2λ2

1, 2λ
2
2, |x1 · x2|∞

}
= 12

√
3λ4

2,

since λ2
1 ≤ |x1 · x2|∞ ≤ λ2

2.

3.3 Covering radius of planar lattices

In this section we investigate the covering radii of lattices in the plane, in particular

proving Theorem 1.3 and its corollaries. Let Λ ⊂ R2 be a lattice of rank 2 with

minimal basis x,y and angle θ ∈ [π/3, π/2] between these basis vectors. Then the

successive minima of Λ are

0 < λ1 = |x|∞ ≤ λ2 = |y|∞. (3.28)

See, for instance, [27] for the details on the existence of such a minimal basis.

Lemma 3.3.1. The covering radius of Λ is

µ =

√
λ2
1 + λ2

2 − 2λ1λ2 cos θ

2 sin θ
(3.29)

Proof. The vectors x,y correspond to successive minima in Λ, and hence form a

reduced basis. Then Theorem 3.2 of [43] asserts that the covering radius of Λ is equal
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to the circumradius of the triangle with sides corresponding to the vectors x and y.

The length of the third side of this triangle is

√
λ2
1 + λ2

2 − 2λ1λ2 cos θ (3.30)

and the area of this triangle is

A =
1

2
λ1λ2 sin θ. (3.31)

Now, the circumradius of a triangle with sides a, b, c and area A is given by the

formula

R =
abc

4A
. (3.32)

Putting together (3.30), (3.31) and (3.32) produces (3.29)

The similarity classes of WR lattices in the plane are parameterized by the angle

θ ∈ [π/3, π/2], and each similarity class is represented by

Lθ =

1 cos θ

0 sin θ

Z2.

The following corollary follows immediately from Lemma 3.3.1 by substituting λ1 =

λ2 = 1 into (3.29).

Corollary 3.3.2. The covering radius µ = µ(θ) of the lattices Lθ is a continuous

function on the interval [π/3, π/2], given by

µ(θ) =

√
1− cos θ√
2 sin θ

.

The endpoints of the interval are represented by the hexagonal lattice and the square

lattice Z2 with the covering radii 1/
√
3 and 1/

√
2, respectively.

58



We are now ready to prove Theorem 1.2.1. We first want to build an extension

E1 ⊂ Λ ⊂ R2 with rank (Λ) = 2 so that µ(Λ) = µ(E1). Our argument character-

izes all possible such extensions, showing that they must be rectangular lattices, i.e.

lattices containing an orthogonal basis.

Proof of Theorem 1.2.1. First notice that each Λ(α) as in (1.4) is a rectangular lattice,

thus its successive minima are

λ1,2 =
√
α,

√
1− α,

i.e. norms of the orthogonal basis vectors given in (1.4). By Lemma 3.3.1, the covering

of Λ(α) is

µ =

√
α + (1− α)− 2

√
α(1− α)cos(π/2)

2 sin(π/2)
=

1

2
.

In the reverse direction, assume Λ ⊂ R2 is a full rank lattice so that e1 ∈ Λ and

µ(Λ) = 1/2. The vector a := 1
2
e1 is a deep hole of E1. First we show that a is a deep

hole of the lattice Λ as well. Suppose not, then there exists a point x =

x1

x2

 ∈ Λ

such that

∥x− a∥∞ < 1/2.

Then the vector z = e1 − x =

1− x1

−x2

 is also in Λ, and

∥z − a∥∞ = ∥x− a∥∞ < 1/2.

The vectors x, z form a basis for Λ, and the triangle with sides corresponding to these

vectors is contained in the interior of the circle of radius 1/2 with center at a, thus

the circumradius R of this triangle is < 1/2. On the other hand, by Theorem 3.2 of

[43] the covering radius of Λ is equal to the circumradius of the triangle with sides
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corresponding to the shortest basis vectors, which has to be ≤ R. Hence µ(Λ) < 1/2,

which is a contradiction, so a is a deep hole of the lattice Λ. This means that there

exists a basis x, z ∈ Λ with |x|∞ = λ1, |z|∞ = λ2 so that the point a is the center

of the circle circumscribed around the triangle with sides x, z, meaning in particular

that

(1/2)2 = ∥x− a∥2∞ = (x1 − 1/2)22 + x2
2 = x2

1 + x2
2 − x1 + (1/2)2. (3.33)

Also, 2a = e1 is a diagonal of the fundamental parallelogram of Λ spanned by x, z,

meaning that

x+ z = e1.

Hence z =

1− x1

−x2

, and

cos θ =
x · z

∥x∥∞∥z∥∞
=

x1 − x2
1 − x2

2

λ1λ2

, (3.34)

where θ is the angle between x and z, which lies in the interval [π/3, π/2]. Hence

cos θ = 0 by (3.33). Letting x1 = α, we obtain

x2 =
√
α− α2,

and (1.4) follows by replacing z with −z. Next, suppose that L ⊂ Rn be a lattice

of rank 1 and let u ∈ Rn is such that L = Zu, so the covering radius of L is

µ = ∥u∥∞/2. Let Λ be a lattice of rank 2 in Rn containing L and let V = spanR Λ

be the 2-dimensional subspace spanned by this lattice. Applying a suitable isometry

of Rn, we can identify V with C2 := {x ∈ Rn : xi = 0∀2 < i ≤ n}. In fact, we can

choose such an isometry τ so that u maps to βe1 for β = ∥u∥∞. Then Λ′ = 1
β
τ(Λ)

is a lattice isometric to 1
β
Λ in Rn, and Λ′ contains e1. Identifying C2 with R2 we see
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that Theorem 1.2.1 implies that Λ′ is an equal covering extension of Ze1 in R2 if and

only if it is of the form (1.4). Finally, notice that

det(L) =
√
det(uTu) = ∥u∥∞ = β.

This completes the proof of the theorem.

Remark 3.3.1. An immediate implication of Theorem 1.2.1 is that the only well-

rounded equal covering extension of E1 is

Λ(1/2) =

1/2 −1/2

1/2 1/2

Z2, (3.35)

which is a square lattice in the plane containing Z2 as a sublattice of index 2. More

generally, a rank-two equal covering extension Λ ⊂ Rn of a rank-one lattice L ⊂ Λ is

well-rounded if and only if it is isometric to det(L)Λ(1/2). As in (1.2) the set of all

similarity classes of planar lattices is parameterized by

F = {(a, b) ∈ R2 : 0 ≤ a < 1/2, b > 0, a2 + b2 ≥ 1},

see Figure 3.2. The set of semi-stable classes (see Remark 2.3.1)in R2 contains the

WR classes: from (2.24) it follows that a lattice Λ in R2 is semi-stable if and only

if λ1(Λ) ≥ det(Λ)1/2 (see [28] for more details). Thus the only semi-stable equal

covering extensions are also those similar to Λ(1/2) as in (3.35), i.e. similar to Z2

as demonstrated in Figure 3.2. Let K = Q(
√
D) be a quadratic number field with

embeddings σ1, σ2 : K → C, and let ΣK : K → R2 be the Minkowski embedding of
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Figure 3.2: Similarity classes of planar lattices with Z2 representing the only equal
covering extension class that is WR and semi-stable.

K, defined for every x ∈ K as

ΣK(x) =

σ1(x)

σ2(x)

 ,

if the squarefree integer D > 0 and

ΣK(x) =

R(σ1(x))

F(σ1(x))

 ,

if D < 0. We write ΩK for the planar lattice ΣK(OK), where OK is the ring of

integers of the number field K.

Corollary 3.3.3. Assume D ̸≡ 1(mod 4). Then ΩK is an equal covering extension

of the rank-one lattice ZΣK(1 +
√
D).

Proof. If D ̸≡ 1(mod 4) then OK = Z[
√
D], and so

ΩK =

1
√
D

1 −
√
D

Z2 if D > 0,ΩK =

1 0

0
√

|D|

Z2 if D < 0.
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In either case, the lattice ΩK is rectangular. If D > 0, then λ1 =
√
2, λ2 =

√
2D, and

so (3.29) implies that µ(ΩK) =
√
D + 1/

√
2, while

ΣK(1 +
√
D) =

1 +
√
D

1−
√
D

 ,

and so µ
(
ZΣK(1 +

√
D)
)
=

√
D + 1/

√
2. If D < 0, then λ1 = 1, λ2 =

√
|D|, and so

(3.29) implies that µ(ΩK) =
√

|D|+ 1/2, while

ΣK(1 +
√
D) =

 1√
|D|

 ,

and so µ
(
ZΣK(1 +

√
D)
)
=
√

|D|+ 1/2.

Corollary 3.3.4. Assume D ≡ 1(mod4), then ΩK is not an equal covering extension

of any rank-one lattice.

Proof. If D ≡ 1(mod 4) then OK = Z
[
1+

√
D

2

]
, and so

ΩK =

1 1+
√
D

2

1 1−
√
D

2

Z2 if D > 0,ΩK =

1 1
2

0

√
|D|
2

Z2 if D < 0. (3.36)

In both cases it is not difficult to check that ΩK does not have an orthogonal basis,

and hence cannot be similar to a lattice of the form Λ(α) as in (1.4). The conclusion

follows from Theorem 1.2.1.

Finally, we discuss a construction of orthogonal equal covering extensions in any

dimension.

Proof of Theorem 1.2.2. We will argue by induction on k ≥ 1. Theorem 1.2.1 estab-

lishes the base of induction, so let k ≥ 2. Let {x1, . . . ,xk} ⊂ Rn be an orthogonal
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basis for Λk and let ek+1 ∈ Rn be a vector orthogonal to Λk. Let

Pk =

{
k∑

i=1

aixi : ai ∈ {0, 1}, 1 ≤ i ≤ k

}

be the set of vertices of the fundamental parallelepiped spanned by x1, . . . ,xk. The

circumcenter of this orthogonal parallelepiped is the point Z ∈ Rn which is equidistant

from the points of Pk by Lemma 3.2.1, and hence is a deep hole of Λk. Let

Bk = {y ∈ spanR{x1, . . . ,xk} : ∥y − z∥∞ = µ(Λk)}.

Let Λk−1 = spanZ{x1, . . . ,xk−1} and let

Pk−1 =

{
k−1∑
i=1

aixi : ai ∈ 0, 1, 1 ≤ i ≤ k − 1

}
.

Now define

Bk−1 = Bk ∩ spanR Λk−1. (3.37)

By construction, Pk−1 ⊂ Bk−1, while Bk−1 is the surface of (k−1)-dimensional ball in

a (k − 1)-dimensional subspace and the points of Pk−1 are elements of an orthogonal

lattice in that subspace. Let z′ be the orthogonal projection of z onto spanR(Λk−1).

Since {x1, . . . ,xk} is an orthogonal set, z′ = z−projxk
(z). Moreover, z is equidistant

from {x1, . . . ,xk}, so by Lemma 3.2.1


xT
1

...

xT
k

 z =
1

2

 ∥x1∥∞
...∥xk∥∞

 ,
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and therefore 
xT
1

...

xT
k−1

 z′ =
1

2

 ∥x1∥∞
...∥xk−1∥∞

 .

Then Z′ is equidistant from {x1, . . . ,xk−1} and Λk−1 is an orthogonal lattice contained

in the k-dimensional subspace V = spanR Λk−1, ek+1. By the induction hypothesis,

there exists a rank k orthogonal lattice Λ′
k ⊂ V so that Λk−1 ⊂ Λ′

k and z′ is a deep hole

of Λ′
k. Let y1, . . . ,yk be an orthogonal basis for Λ′

k so that y1, . . . ,yk are equidistant

from z′. Since z = z′ − projxk
(z), and xk is orthogonal to V,y1, . . . ,yk are also

equidistant from z. Let Λk+1 = spanZ{y1, . . . ,yk,xk}. Then Λk+1 is an orthogonal

lattice that contains Λk and



yT
1

...

yT
k

xk


z =

1

2



∥y1∥∞
...

∥yk∥∞

∥xk∥∞


,

Thus z is a deep hole of Λk.
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Chapter IV

On Heights and Siegel’s Lemma

66



4.1 Additional Properties of Heights

Let k be a number field and let U1, U2 be subspaces of k
N . Recall that from (1.11);

∣∣det(ξ1 ξ2 · · · ξN
)∣∣ ≤ N∏

n=1

H(ξn
)
.

A natural question suggested by the inequality (1.11) is this: if Z ⊆ kN is a

subspace of dimension L, does there exist a basis for Z such that there is nearly

equality in (1.11)? As explained in [8], an answer to this question is given by a result

that is dual to Siegel’s lemma. This was proved as [8, Theorem 8] using the Weil

height on vectors. An analogous result for the Arakelov height was proved as [62,

Theorem 2]. This later result asserts that there exists a basis η1,η2, . . . ,ηL for Z

such that
L∏

ℓ=1

H
(
ηℓ

)
≤ γk(L)

L/2H(Z), (4.1)

where γk(L)
1/2 is a positive constant that depends on the field k and the parameter

L. The field constant γk(L)
1/2 is a generalization of Hermite’s constant. It was first

defined and used by J. Thunder in [61].

For each positive integer L and each archimedean place v of k we define positive

real numbers

rv(L) =


π−1/2{Γ(L/2 + 1)}1/L if v is a real place

(2π)−1/2{Γ(L+ 1)}1/2L if v is a complex place,

and then we define

ck(L) = 2|∆k|1/2d
∏
v|∞

{rv(L)}dv/d,

where ∆k is the discriminant of k. The constant ck(L) is the normalized Haar measure

of a naturally occurring subset of the L-fold product of the adele ring kL
A, and appears
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in applications of the geometry of numbers over kL
A. In particular, it leads to the

simple upper bound for γk(L)
1/2 given by

γk(L)
1/2 ≤ ck(L). (4.2)

A more complicated lower bound was proved in [61, Theorem 2]. And it was shown

in [62, Theorem 3] that the constant γk(L)
L/2 which appears in (4.1) is best possible

for the inequality (4.1). From the lower bound proved in [61, Theorem 2] it follows

that for fixed d = [k : Q] and fixed L, the value of γk(L)
1/2 grows like a small positive

power of the absolute discriminant
∣∣∆k

∣∣. In particular, for fixed d = [k : Q] and fixed

L, there are only finitely many fields k such that γk(L)
1/2 is less than or equal to a

positive real number.

If we arrange the basis vectors η1,η2, . . . ,ηL in (4.1) so that

H
(
η1

)
≤ H

(
η2

)
≤ · · · ≤ H

(
ηL

)
,

we find that

H
(
η1

)
≤ γk(L)

1/2H(Z)1/L.

As the Arakelov height of a nonzero vector is always greater than or equal to 1, a

trivial consequence of (4.1) is the inequality

H
(
ηL

)
≤ γk(L)

L/2H(Z). (4.3)

However, if one works over the algebraic closure Q, then it follows from the results

of Roy and Thunder [53], [54], that the dependence on the number field k can be

removed. Suppose, for example, that Z ⊆ QN
is a Q-linear subspace of dimension L.

As a basis for Z requires only finitely many algebraic numbers as coordinates, there

exists a number field k and a collection of basis vectors for Z such that the basis
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vectors belong to kN . It follows that the Arakelov height of Z can be computed as

before by using such a number field k. Because of the way we normalize the absolute

values | |v, where v is a place of k, it follows in a standard manner that the Arakelov

height of Z does not depend on the choice of the field k. For such a subspace Z ⊆ QN

and ε > 0, it follows from [54, Theorem 1] that there exists a basis

{
ζ1, ζ2, . . . , ζL

}
⊆ Z, (4.4)

such that
L∏

ℓ=1

H
(
ζℓ

)
≤
(
exp(L(L− 1)/4) + ε

)
H(Z).

Again the basis vectors (4.4) can be arranged so that

H
(
ζ1

)
≤ H

(
ζ2

)
≤ · · · ≤ H

(
ζL

)
.

Then it follows as before that

H
(
ζ1

)
≤
(
exp(L(L− 1)/4) + ε

)1/LH(Z)1/L,

and

H
(
ζL

)
≤
(
exp(L(L− 1)/4) + ε

)
H(Z).

4.2 Proof of Theorem 1.4.1

Throughout this section let 1M denote an M ×M identity matrix for M > 0 and

let 0N×M denote anN×M matrix of all zeros for positive integersN,M . Additionally,

let [N ] = {1, . . . , N} and define:

J (N,M) = {I ⊆ [N ] : |I| = M} .
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For an N × M matrix A with coefficients in the number field k and for each I ∈

J (N,M) define AI to be the M × M minor of A whose rows are the rows of A

indexed by I.

Lemma 4.2.1. Let

A =


1M−1 0(M−1)×1

01×(M−1) 1

U V

 (4.5)

be an N ×M matrix with coefficients in k where U is a (N −M)×M matrix and V

is an (N −M)× 1 matrix over k. Let

A′ =


1M−1

01×(M−1)

U

 . (4.6)

Then

H(A) ≥ H(A′) (4.7)

with equality if and only if V = 0(N−M)×1.

Proof. We will first partition the Grassmann coordinates of A′ into two sets. Define

R′ = {I ′ ∈ J (N,M − 1) : M ̸∈ I ′}

and

T ′ = J (N,M − 1) \R′.

Define

A′
R′ = (detA′

I′)I′∈R′
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to be the vector of Grassmann coordinates of A′ indexed by R′. Likewise define

A′
T ′ = (detA′

I′)I′∈T

to be the vector of Grassmann coordinates of A′ indexed by T ′. Notice that the Mth

row of A′ is identically zero so det(A′
I′) = 0 if M ∈ I ′. Therefore for any I ′ ∈ T ′,

detA′
I′ = 0 and A′

T ′ = 0. Let (A′
R′ , A′

T ′) denote the vector formed by concatenating

the vectors A′
R′ and A′

T ′ , so that (A′
R′ , A′

T ′) is the vector of Grassmann coordinates

of A′. Since A′
T ′ is identically zero and appending additional zeros to a vector does

not affect the height we have

H(A′) = H((A′
R′ , A′

T ′)) = H(A′
R′)

We will similarly partition the Grassmann coordinates of A. Define

R = {I ∈ J (N,M) : M ∈ I} ,

S = {{1, 2, . . . ,M − 1, j} : M + 1 ≤ j ≤ N} ,

and

T = J(N,M) \ (R ∪ S)

Notice that for each I ′ ∈ R′ there exists I ∈ R such that I = I ′∪{M}. Therefore,

there is a one-to-one correspondence between elements of R′ and elements R. In

fact there is also a one-to-one correspondence between the Grassmann coordinates

of A′ indexed by R′ and the Grassmann coordinates of A indexed by R. Let I ′1 =

I ′∩{1, . . . ,M} be the set of indices of I ′ less than M and let I ′2 = I ′∩{M+1, . . . , N}
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be the set indices of I ′ greater then M so that

A′
I′ =

A′
I′1

A′
I′2

 .

Notice then that AI is of the form

AI =


A′

I′1
0|I′1|×1

01×M−1 1

A′
I′2

0|I′2|×1

 .

Then

detA′
I′ = ± detAI . (4.8)

Since multiplying the coordinates of a vector by ±1 does not affect the height, (4.8)

implies

H(A′
R′) = H(AR).

There is also a correspondence between the Grassmann coordinates of A indexed

by S and the entries of V . For each M + 1 ≤ i ≤ N and thus each I = {1, . . . ,M −

1, i} ∈ S, AI is of the form

AI =

 1M−1 0M−1×1

01×M−1 Vi−M

 ,

where Vi−M is the i−Mth coordinate of V . Thus detAI = Vi−M and

H(AS) = H(V ). (4.9)

Let (AR, AS, AT ) be the vector formed by concatenating AR, AS and AT so that
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H(A) = H((AR, AS, AT )). Then at each non-Archimedean place ν ∈ M(k)

|(AR, AS, AT )|ν = max {|AR|ν , |AS|ν , |AT |ν} ≥ |AS|ν = |A′
S′ |ν , (4.10)

and at each Archimedean place

∥(AR, AS, AT )∥2ν = ∥AR∥2ν + ∥AS∥2ν + ∥AT∥2ν ≥ ∥AS∥2ν = ∥A′
S′∥2ν , (4.11)

with equality in (4.11) if and only if ∥AS∥2ν = ∥AT∥2ν = 0.

Combining (4.10) and (4.11) gives (1.19) where equality implies V is identically

zero. As it is easy to verify that H(A) = H(A′) when V = 0N−M this completes the

proof.

Corollary 4.2.2. Let A be a full rank N ×M matrix with N > M and coefficients

in k. Let ω1 through ωM be the columns of A so that

A =

(
ω1 . . . ωM

)
,

and for some 1 ≤ i ≤ M let

A′ =

(
ω1 . . .ωi−1ωi+1 . . .ωM

)
,

be the N×M−1 matrix obtained by removing the i-th column of A. Let I ∈ J (N,M)

and suppose that AI is a permutation matrix. Then for any 1 ≤ i ≤ M

H(A) ≥ H(A′)

with equality if and only if ωi is a standard basis vector.
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Proof. Let Q be an M ×M permutation matrix so that

AQ =

(
ω1 . . . ωi−1 ωi+1 . . . ωM ωi

)
=

(
A′ ωi

)
.

Multiplying by an N × N permutation matrix P1 on the left we can permute the

rows of A so that rows of A indexed by I are swapped with the rows of A indexed by

{1, . . . ,M}. Then P1AQ is a matrix such that the first M rows form a permutation

matrix. Again by multiplying by an N × N permutation matrix P2 on the left we

can further permute the rows so that P2P1AQ is a matrix so that the first M rows

form an M ×M identity matrix and thus P2P1AQ is of the same form as the matrix

in (4.5) and

P2P1AQ =

(
P2P1A

′ P2P1ωi

)
. (4.12)

where P2P1A
′ is a matrix of the same form as (4.6). Thus we can apply Lemma 4.2.1

to show that

H(P2P1AQ) ≥ H(P2P1A
′) (4.13)

With equality if and only if ωi is a standard basis vector. Recall that multiplying be

a permutation matrix does not change the height of a matrix thus, (4.13) implies

H(P2P1AQ) = H(A) ≥ H(A′) = H(P2P1A
′)

which completes the proof.

We are now ready to prove Theorem 1.4.1.

Proof of Theorem 1.4.1. Let A be an N×M basis matrix for Z and let J ∈ J (N,M)

so that AJ is a full rank minor of A. Let X = AA−1
J = (ω1, . . . , ωm be another basis

matrix for Z and let ω1 through ωM the columns of X. By construction XJ , the
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M × M minor of X indexed by J is a permutation matrix and thus we can apply

Corollary 4.2.2 to X. In fact, for any I ⊆ {1, . . . ,M} define XI to the matrix whose

columns are the columns of X indexed by I, then XI will be a matrix such that

one of the |I| × |I| minors of XI will be a permutation matrix. Therefore, for any

I1 ⊊ I2 ⊂ [M ] we can construct a sequence of subsets

I1 = L1 ⊊ L2 ⊊ . . . ⊊ L|I2\I1| = I2,

where |Li+1 \ Li| = 1 for each 1 ≤ i < |I2 \ I1|. Then for each XLi we can apply

Corollary 4.2.2 to conclude that

H(XI1) = H(XL1) ≤ . . . ≤ H(XL|I2\I1|) = H(XI2),

With equality at each step if ωLi+1\Li
is a standard basis vector. Since H(YI1) =

H(XI1) and H(YI2) = H(XI2) this implies (1.19) which in turn implies (1.18) and

completes the proof.

Remark 4.2.1. The basis constructed in Theorem 1.4.1 satisfies an additional sparse-

ness property. We say that a vector x ∈ kn is s-sparse for some 1 ≤ s ≤ n if x has

no more than s nonzero coordinates. From the above proof, X = AA−1
J is a basis

matrix for Z. Notice that XJ = AJA
−1
J is the M ×M identity matrix. This means

that each column of X has at least M − 1 zero coordinates. Since the ωi vectors for

1 ≤ i ≤ M are the columns of X the basis constructed in Theorem 1.4.1 is a basis of

(N −M + 1)-sparse vectors.

We can additionally prove a relative version of Theorem 1.4.1, analogous to The-

orem 12 of [8]. Let K be a finite extension of the number field k with [K : k] = r ≥ 2.

Let F be a number field such that k ⊆ K ⊆ F , F is a Galois extension of k with

Galois group G(F/k) and F is a Galois extension of K with Galois group G(F/K).
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Then G(F/K) is a subgroup of G(F/k) of index r. Let σ1, . . . , σr ∈ G(F/k) be a set

of distinct representatives of the cosets of G(F/K) in G(F/k). If A is an M ×N ma-

trix with coefficients amn in K for 1 ≤ m ≤ M, 1 ≤ n ≤ N , define σi(A) = (σi(amn)).

Then define

A =


σ1(A)

...

σr(A)

 . (4.14)

Theorem 4.2.3. Let F,K, k be number fields as above. Let A be an M ×N matrix

with rM < N and coefficients in K and define A as above. Suppose that rankA = rM

and let L = N − rM . Let Am denote the m-th row of A. Then Z := ker(A) ∩ kN is

an L-dimensional k-vector space so that

H(Z) = H(A) ≤
M∏

m=1

H(Am)
r. (4.15)

Moreover, there exists a basis

{
ω1,ω2, . . . ,ωL

}
for Z with the following property: if I ⊆ {1, . . . , L} is a nonempty subset, and

YI = spank

{
ωi : i ∈ I

}
is the k-linear subspace spanned by the basis vectors indexed by I, then

H(YI) ≤
M∏

m=1

H(Am)
r.

In particular, max1≤i≤LH(ωi) ≤
∏M

m=1H(Am)
r. Moreover, if I1 ⊊ I2 ⊆ {1, . . . , L},
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then

H(YI1) ≤ H(YI2).

Proof. Let {ζ1, . . . , ζr} be a k-basis forK. LetA = (amn) for 1 ≤ m ≤ M, 1 ≤ n ≤ N ,

where

amn =
r∑

j=1

a(j)mnζj,

where a
(j)
mn ∈ k for all m,n, j. For each 1 ≤ j ≤ r, let A(j) = (a

(j)
mn) and let

A′ =


A(1)

...

A(r)

 .

Then x ∈ kn solves Ax = 0 if and only if it solves A′x = 0, hence

V = kerk(A) = kerk(A
′).

Further, A′ is a full-rank matrix with coefficients in k so

H(Z) = H(A′).

Now let

Ω = (σi(ωj)1M)i=1,...,r
j=1,...,r

be an rM × rM matrix organized into M × M blocks so that the (i, j) block is

σi(ωj)1M . Then

ΩA′ = A.

Since Ω is a full-rank matrix,

H(A′) = H(A) = H(Z). (4.16)
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Writing Ai for the i-th row of A, we see that (1.11) gives

H(A) ≤
rM∏
i=1

H(Ai) =
M∏
i=1

r∏
j=1

H(σj(Ai)). (4.17)

Since H(σj(Ai)) = H(Ai) combining (4.16) with (4.17) gives (4.15). We can now

complete the proof by applying Theorem 1.4.1 to A.

4.3 Proof of Theorem 1.4.2

To prove Theorem 1.4.2, let us first recall some results on the existence of integer

sensing matrices. An L ×M integer matrix A, L < M , is called an integer sensing

matrix for L-sparse signals if every L×L submatrix of A is nonsingular. This notation

comes from the study of sparse signal recovery in the compressive sensing signal

processing paradigm: the defining condition for A ensures that for a vector x ∈ ZM

with no more than L nonzero coordinates (L-sparse), Ax = 0 if and only if z = 0,

which allows for a unique recovery of the original sparse signal from its image under

A. The problem of existence of such matrices A = (aij)1≤i≤L,1≤j≤M with bounded

sup-norm

|A| := max{|aij| : 1 ≤ i ≤ L, 1 ≤ j ≤ M}

and M as large as possible as a function of L and |A| has been considered recently

in [23] with further improvements in [44] and [45]. In particular, Theorem 2.2 of [23]

establishes the existence of an L ×M integer sensing matrix A for L-sparse signals

with |A| = T and

M ≥ CL
√
T (4.18)

for an absolute constant C. Theorem 1.3 of [45] then establishes existence of such

matrices with

M ≥ max

{
T + 1,

T
L

L−1

2

}
, (4.19)
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which is an improvement on (4.18) when L = o(
√
T ). Combining (4.18) with (4.19),

we obtain an L×M integer matrix A with

|A| = T ≤ min

{(
M

CL

)2

, (2M)
L−1
L ,M − 1

}
, (4.20)

so that any subcollection of L column vectors of A is linearly independent.

Proof of Theorem 1.4.2. Now, let the notation be as in the statement of Theorem 1.4.2

and let ω1, . . . ,ωL be a basis for Z, a specific choice will be made later. Dividing

by a nonzero coordinate, if necessary, we can assume that each ωi has a coordinate

equal to 1: this operation does not change the height of these basis vectors due to

the product formula. This implies that for each 1 ≤ i ≤ L,

∏
v∈M(K)

|(1,ωi)|
dv
d
v =

∏
v∈M(K)

|ωi|
dv
d
v ≤ H(ωi). (4.21)

Write W = (ω1 . . . ωL) for the corresponding basis matrix and let B = WA. Let

S(M) = {y1, . . . ,yM} ⊂ Z be the set of column vectors of B. Then conclusion (1)

of Theorem 1.4.2 are automatically satisfied, and we only need to prove (2). Notice

that for each 1 ≤ i ≤ M ,

yi =
L∑

j=1

aijωj,

where all aij ∈ Z with |aij| ≤ T . Then Lemma 2.1 of [24] combined with (4.21)

implies that for each 1 ≤ i ≤ M ,

H(yi) ≤ L3/2T

L∏
i=1

H(ωi). (4.22)

Making a choice of the basis ω1, . . . ,ωL as in Theorem 1.4.1, we obtain a bound

H(yi) ≤ L3/2TH(Z)L. On the other hand, making a choice of the basis as in (4.1),

we obtain a bound H(yi) ≤ L3/2γk(L)
L/2TH(Z). The result of Theorem 1.4.2 now
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follows by combining these observations with (4.20), where we are choosing the bound

(2M)
L−1
L for T since it is the smallest of the three for large M .

There are further results on L × M integer sensing matrix for s-sparse signals

where s < L. Specifically, Theorem 1.1 of [29] asserts that for all sufficiently large L

there exist L×M integer sensing matrices A for s-sparse signals with 1 ≤ s ≤ L− 1

such that |A| = 2 and

M ≥
(
L+ 2

2

)1+ 2
3s−2

.

Using the same reasoning as in our argument above with T = 2, we immediately

obtain the following observation.

Proposition 4.3.1. For sufficiently large integers L < N , any integer 1 ≤ s ≤ L−1,

and an L-dimensional subspace Z ⊆ kN , there exists a collection of vectors

S = {y1, . . . ,yM} ⊂ Z

with the following properties:

1. For every yi ∈ S,

H(yi) ≤ 2L3/2min
{
H(Z)L, γk(L)

L/2H(Z)
}
,

where γk(L)
1/2 is the generalized Hermite’s constant discussed in Section 1.3,

2. The cardinality of the set S is

M ≥
(
L+ 2

2

)1+ 2
3s−2

,

3. Every subcollection of s vectors from S is linearly independent.
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There is also a connection between integer matrices and the basis constructed in

Theorem 1.4.1.

Corollary 4.3.2. Let A be an L × M integer sensing matrix with L ≤ M . Let Z

be the subspace spanned by AT and let ω1, . . . ,ωM be the basis for Z constructed in

Theorem 1.4.1. Let YI be as in (1.17) for each I ⊆ [M ]. Then for every I1 ⊊ I2 ⊂ [M ]

H(YI1) < H(YI2).

Proof. As demonstrated in the proofs of Lemmas 4.2.1 and 4.2.2 if H(YI1) = H(YI2)

then there must exist an M × M minor of AT and thus of A of rank less than M .

This contradicts the fact that A is integer sensing.
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Chapter V

On Multilinear Forms
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5.1 Height Inequalities

Here we prove several height inequalities we will need. The first lemma gives a

bound on the height H of the inverse of a square nonsingular matrix (viewed as a

vector) in terms of the height of the matrix itself.

Lemma 5.1.1. Let A ∈ GLn(K), then

H(A−1) ≤
(√

nH(A)
)n−1

, (5.1)

and

h(A−1) ≤ nn|∆K |
1
dh(A)2n−1. (5.2)

Proof. Let us write a1, . . . ,an for the row vectors of A, and for each 1 ≤ j ≤ n let Aj

be the (n− 1)× n submatrix of A obtained by deleting the j-th row aj. For each j,

Vj = {x ∈ Kn : Ajx = 0}

is a 1-dimensional subspace. Let xj be any nonzero point in Vj and notice that

ajxj ̸= 0: if it was equal to 0, then Axj = 0, contradicting the assumption that A

is nonsingular. Then take bj =
1

ajxj
xj, then aibj = 0 for every i ̸= j and ajbj = 1.

Take B to be the n× n matrix whose columns are the vectors b1, . . . , bn, then AB is

the identity matrix, so B = A−1. Notice also that for every j,

H(bj) ≤ H(bj) = H(Vj) = H(Aj) ≤
n∏

i=1,i ̸=j

H(ai) ≤ n
n−1
2

n∏
i=1,i ̸=j

H(ai), (5.3)

by (1.7) combined with Lemma 1.11 and (1.6). Since H(B) = max1≤j≤nH(bj) and

H(ai) ≤ H(A) for every 1 ≤ i ≤ n, (5.1) follows.

To obtain the second inequality, we will use the Bombieri-Vaaler version of Siegel’s
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lemma (1.15) to choose a specific vector xj ∈ Vj such that

h(xj) ≤

((
2

π

)2r2

|∆K |

)1/2d

H(Vj) ≤ |∆K |
1
2dH(Vj). (5.4)

Now take bj =
1

ajxj
xj, then

h(bj) ≤ h

(
n∑

l=1

ajlxjl,xj

)
≤ h

(
n∑

l=1

ajlxjl

)
h(xj) ≤ nh(aj)h(xj)

2

≤ n|∆K |
1
dh(aj)H(Vj)

2, (5.5)

where the last inequality follows by (5.4). Combining (5.5) with (5.3) and observing

that h(B) = max1≤j≤n h(bj) and h(ai) ≤ h(A) for every 1 ≤ i ≤ n, we obtain (5.2).

Next we present a useful bound on the height of a vector whose coordinates are images

of a given point under a collection of polynomials.

Lemma 5.1.2. Let F1, . . . , Fk be polynomials of respective degrees m1, . . . ,mk in

K[x1, . . . , xn] and z ∈ Kn. Then

h(F1(z), . . . , Fk(z)) ≤ NHh(z)m, (5.6)

where N = max1≤i≤k N (Fi), H = max1≤i≤k h(Fi) and m = max1≤i≤k mi.

Proof. For each 1 ≤ i ≤ k, let us write

Fi(x) =
∑
J

fJx
J ,

where J = (j1, . . . , jn) is a multi-index with 0 ≤ jl ≤ mi for each 1 ≤ l ≤ n. Let
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z ∈ Kn, then for every v ∤ ∞ in M(K),

|Fi(z)|v ≤ max
J

{
|fJ |v

n∏
l=1

|zl|jlv

}
≤ max

J
{|fJ |v}max{1, |z1|v, . . . , |zn|v}mi ,

and for v | ∞ in M(K),

|Fi(z)|v ≤ N (Fi)max
J

{
|fJ |v

n∏
l=1

|zl|jlv

}
≤ N (Fi)max

J
{|fJ |v}max{1, |z1|v, . . . , |zn|v}mi .

Then

h(F1(z), . . . , Fk(z)) ≤
∏

v∈M(K)

max {1, |F1(z)|v, . . . , |Fk(z)|v}
dv
d

≤
(
max
1≤i≤k

N (Fi)

)(
max
1≤i≤k

h(Fi)

)
h(z)max1≤i≤k mi .

This is precisely (5.6).

The next lemma bounds the height of a polynomial under a linear transformation.

Lemma 5.1.3. Let F (x1, . . . , xn) ∈ K[x1, . . . , xn] be a polynomial of degree m and

let A be an n × k matrix over K. For a variable vector y = (y1, . . . , yk), define

G(y) = F (Ay⊤), then G is a polynomial in k variables over K of degree ≤ m.

Further,

h(G) ≤ kmN (F )h(F )h(A)m.

Proof. Write A = (aij)1≤i≤n,1≤j≤k and notice that

Ay⊤ =

(
k∑

j=1

a1jyj, . . . ,
k∑

j=1

anjyj

)⊤

.

Then G(y) = F
(∑k

j=1 a1jyj, . . . ,
∑k

j=1 anjyj

)
. Each linear form

∑k
j=1 aijyj has coef-
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ficient vector of inhomogeneous height ≤ h(A), and F has N (F ) monomials each of

degree no bigger than m and height no bigger than h(F ). Therefore

h(G) ≤ N (F )h(F )(kh(A))m,

where km is an upper bound on the binomial coefficients which occur when taking

m-th power of a linear form. This is precisely the result of the lemma.

The following lemma that will be quite important to us is a rigorous form of

the basic principle that a polynomial which is not identically zero cannot vanish

“too much”. Somewhat different formulations of this principle can be found in [14]

(Lemma 1 on p. 261) as well as in the context of N. Alon’s celebrated Combinato-

rial Nullstellensatz [1]. The following formulation, which is most convenient for our

purposes, follows easily from Lemma 2.2 of [26].

Lemma 5.1.4. Suppose P (x) ∈ K[x1, . . . , xn] is a polynomial of degree m which is

not identically 0. There exists a point z ∈ Zn such that P (z) ̸= 0 and

h(z) ≤ m+ 2

2
.

5.2 Zeros of multiple polynomials

The main goal of this section is to prove Theorem 1.5.1. Let the notation be as

in the statement of the Theorem.

Proof of Theorem 1.5.1. Let r be the rank of the linear system (1.21), which is the

same as the rank of the homogeneous system as in the statement of the theorem. If

r < k, then k− r equations of (1.21) are dependent on the rest of them, and so every

solution to the rest of the equations is automatically a solution to the whole system.

Since r equations are linearly independent, there must exist some r× r submatrix of
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the coefficient matrix of these equations with entries Fij(xI′) which is nonsingular for

some xI′ ∈ Kn−k, and hence the determinant of this matrix is not identically zero

as a polynomial in the variables of xI′ . We can set all the k − r variables xij not

corresponding to the columns of this submatrix equal to 0, and hence reduce to the

case of r equations in r variables. Hence we can assume without loss of generality

that r = k.

Let us rewrite (1.21) as

F(xI′)xI = f(xI′), (5.7)

where F(xI′) is the k × k matrix with entries Fij(xI′), f(xI′) is the k-dimensional

column vector with coordinates −Fi(k+1)(xI′) and xI = (xi1 , . . . , xik)
⊤ is the variable

vector. Then F(xI′) is nonsingular for some choice of xI′ ∈ Kn−k, hence P (xI′) :=

det(F(xI′)) is not identically zero as a polynomial in the variables xI′ . Notice that

deg(P ) ≤
∑k

i=1 deg(Fi) = D, and hence by Lemma 5.1.4 there exists a point zI′ ∈

Zn−k such that P (zI′) ̸= 0 and

h(zI′) ≤
D + 2

2
. (5.8)

Plugging in zI′ for xI′ into (5.7), we obtain a nonsingular linear system of k equations

in k variables, and hence have a unique solution zI = F(zI′)
−1f(zI′). Combining zI

with zI′ into appropriately indexed coordinates, we obtain a vector z ∈
⋂k

j=1 ZK(Fj)

and H(z) = H(zI , zI′).

We now estimate the height of zI . First notice that, by Lemma 5.1.1,

h(F(zI′)
−1) ≤ kk|∆K |

1
dh(F(zI′))

2k−1. (5.9)
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On the other hand,

h(F(zI′)) = H(1, F11(zI′), . . . , Fkk(zI′)) ≤ Nh(zI′)
m max

1≤i≤k
h(Fi), (5.10)

as well as

h(f(zI′)) = H(1,−F1(k+1)(zI′), . . . ,−Fk(k+1)(zI′)) ≤ Nh(zI′)
m max

1≤i≤k
h(Fi), (5.11)

both by Lemma 5.1.2. Combining (5.9), (5.10), (5.11) and (5.8), we obtain:

h(zI) = h
(
F(zI′)

−1f(zI′)
)
≤ kh

(
F(zI′)

−1)h(f(zI′))
)

≤ kk+1|∆K |
1
dh(F(zI′))

2k−1h(f(zI′))

≤ kk+1|∆K |
1
d

(
Nh(zI′)

m max
1≤i≤k

h(Fi)

)2k

≤ kk+1|∆K |
1
d

(
N
(
D + 2

2

)m

max
1≤i≤k

h(Fi)

)2k

. (5.12)

Now notice that

h(z) = H(1, zI , zI′) =
∏

v∈M(K)

max {1, |zI |v, |zI′|v}
dv
d

≤
∏

v∈M(K)

(
max {1, |zI |v}

dv
d max {1, |zI′ |v}

dv
d

)
= h(zI)h(zI′),

and hence the theorem follows from (5.8) and (5.12).

Remark 5.2.1. Our argument leads to an algorithm for finding a simultaneous zero z

of the polynomial system (1.21) under the assumption that it exists:

1. Compute P (xI′) = det(F(xI′)) as a polynomial in the variables xI′ .

2. Search through the set of integer points of sup-norm ≤ deg(P ) to find zI′ such

that P (zI′) ̸= 0.
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3. For this choice of zI′ , compute F(zI′) and f(zI′).

4. Compute F(zI′)
−1.

5. Compute zI = F(zI′)
−1f(zI′).

6. Combine zI and zI′ according to the indices of the coordinates to obtain the

vector z.

5.3 Zeros of one polynomial

In this section, we prove theexistence of a zero of bounded height for a polynomial

F , linear in at least one variable, outside of an algebraic set not containing the entire

zero locus of F . Our main goal is to prove Theorem 1.5.2.

Proof of Theorem 1.5.2. Assume without loss of generality that F is linear in xn.

Define x′ := (x1, . . . , xn−1), so x = (x′, xn). We can write

F (x1, . . . , xn) = xnF1(x1, . . . , xn−1) + F2(x1, . . . , xn−1),

where degF1 ≤ g−1, degF2 ≤ g and both of them are polynomials in n−1 variables

x′ with at least F1 not identically zero. Then we can describe ZK(F ) as the union

Z1
K(F ) ∪ Z2

K(F ), where

Z1
K(F ) = {z ∈ Kn : F1(z

′) = F2(z
′) = 0} ,

Z2
K(F ) = {z ∈ Kn : F1(z

′) ̸= 0, zn = −F2(z
′)/F1(z

′)} . (5.13)

Let Z2
K(F )′ = {z′ : z ∈ Z2

K(F )}, and define

Q(x′) = P

(
x1, . . . , xn−1,−

F2(x
′)

F1(x′)

)
F1(x

′)m.
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Since the degree of P is m, Q is a polynomial in n − 1 variables x′ on Z2
K(F )′. Let

us show that Q is not identically 0. Suppose it is, then P (Z2
K(F )) = 0. For each

z′ ∈ Z2
K(F )′ view P (z′, xn) as a polynomial in one variable xn. Since

xn = −F2(z
′)/F1(z

′)

is a root of this polynomial, the linear factor xn + F2(z
′)/F1(z

′) must divide it, and

since we are working over a field, we can say that F1(z
′)xn+F2(z

′) divides P (z′, xn) for

every z′ ∈ Z2
K(F )′. This implies that P (x) must be divisible by xnF1(x

′) + F2(x
′) =

F (x), and therefore ZK(F ) ⊆ ZK(P ). This is a contradiction, and hence there exists

z′ ∈ Z2
K(F ) such that Q(z′) ̸= 0. We want to find such z′ of bounded height. Notice

that

degQ ≤ m degF2 +m degF1 ≤ m(g + g − 1) = m(2g − 1).

By Lemma 5.1.4, there exists z′ ∈ Zn−1 such that Q(z′) ̸= 0 and

h(z′) ≤ degQ+ 1

2
=

m(2g − 1) + 2

2
. (5.14)

Then we can estimate the height of the corresponding point z =
(
z′,−F2(z′)

F1(z′)

)
. Notice

that

h(z) ≤ H(1, F1(z
′)z′, F2(z

′))

=
∏

v∈M(K)

max {1, |F1(z
′)z1|v, . . . , |F1(z

′)zn−1|v, |F2(z
′)|v}

dv
d

≤
∏

v∈M(K)

(max {1, |F1(z
′)|v, |F2(z

′)|v}max{1, |z1|v, . . . , |zn−1|v})
dv
d

≤ H (1, F1(z
′), F2(z

′))h(z′) ≤ N (F )h(F )h(z′)gh(z′), (5.15)

where the last inequality follows by Lemma 5.1.2. Combining (5.14) and (5.15)

yields (1.22).

90



Remark 5.3.1. Notice that description (5.13) immediately implies that ZK(F ) is not

empty, and therefore taking P to be a nonzero constant polynomial we see that F

has a zero z ∈ Kn with h(z) ≤ N (F )h(F ). Further, our argument allows for an

explicit algorithm to find the point z in question, similar to the procedure described

in Remark 5.2.1 for Theorem 1.5.1: here, we just need to do a finite search for an

integer point z′ so that Q(z′) ̸= 0 and define z =
(
z′,−F2(z′)

F1(z′)

)
.

One can further ask if a result similar to Theorem 1.5.2 holds with a restriction to

a subspace V of Kn. The problem here is that the restriction of our polynomial F to

V may no longer be linear in any of the variables. For example, if F (x1, x2) = x1x2

and V = K

1

1

 ⊂ K2, then the restriction of F to V is

FV (x) = F (x, x) = x2,

and hence is not linear. On the other hand, we can prove a simple lemma in case

dimK V = 1.

Lemma 5.3.1. Let F , P be as in Theorem 1.5.2 and suppose V is a one-dimensional

subspace of Kn such that

ZK(F, V ) := ZK(F ) ∩ V ̸⊆ ZK(P ).

Then there exists z ∈ ZK(F, V ) \ ZK(P ) such that

h(z) ≤

((
2

π

)2r2

|∆K |

)m+1
2d

N (F )
3
2h(F )H(V )m+1.

Proof. Now suppose that V is a one-dimensional subspace of Kn, i.e., ℓ = 1. Then

V = Ky for some vector y ∈ Kn and F (αy) = 0 for some α ∈ K such that

z := αy ̸∈ ZK(P ), since ZK(F, V ) ̸⊆ ZK(P ). By Theorem 1.15, we can choose y
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such that

h(y) ≤

((
2

π

)2r2

|∆K |

) 1
2d

H(V ). (5.16)

Then FV is a polynomial in one variable of degree ≤ m with

h(FV ) ≤ N (F )h(F )h(y)m ≤

((
2

π

)2r2

|∆K |

)m
2d

N (F )h(F )H(V )m, (5.17)

by Lemma 5.1.3 combined with (5.16). Let α1, . . . , αk be the roots of FV , k ≤ m,

with repetition if necessary. Then Lemma 2 of [63] combined with (1.6) guarantees

that
k∏

i=1

h(αi) ≤
√
N (F )h(FV ). (5.18)

Observing that max1≤i≤k h(αi) ≤
∏k

i=1 h(αi) and combining (5.17) with (5.18), we

obtain

max
1≤i≤k

h(αiy) ≤ h(y) max
1≤i≤k

h(αi) ≤

((
2

π

)2r2

|∆K |

)m+1
2d

N (F )
3
2h(F )H(V )m+1,

which is the bound of the lemma. This completes the proof.

5.4 Zeros of multilinear forms

In this section we prove Theorem 1.5.3. For n ≥ 2, let n ≥ g ≥ 1 and let

F (x1, . . . , xn) ∈ K[x1, . . . , xn] be a multilinear (n, g)-form, which is not identically

zero.

Lemma 5.4.1. There exists a nonzero point z ∈ Kn such that F (z) = 0 and

H(z) ≤ H(F ). (5.19)
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Proof. We argue by induction on n. If n = 2, then

F (x1, x2) = ax1 + bx2, or F (x1, x2) = cx1x2,

for some a, b, c ∈ K. In the first case, F (−b, a) = 0, and in the second F (0, 1) = 0.

In either case, the nontrivial zero z = (−b, a) or z = (0, 1) satisfies the bound (5.19).

Suppose now n > 2. If n = g, then

F (x1, . . . , xn) = cx1 · · · xn,

and so F (0, . . . , 0, 1) = 0. Hence assume n > g, then for some 1 ≤ i ≤ n we can write

F (x1, . . . , xn) = xiF1(x
′
i) + F2(x

′
i),

where

x′
i = (x1, . . . , xi−1, xi+1, . . . , xn)

is the vector of n− 1 variables excluding xi and F1, F2 are multilinear forms in n− 1

variables, not identically zero. By the induction hypothesis, there exists a nonzero

point z′ ∈ Kn−1 such that F2(z
′) = 0 satisfying (5.19). Define z by inserting 0 for

the i-th coordinate in z′, then F (z) = 0 and z satisfies (5.19).

On the other hand, if V ⊆ Kn is a subspace of Kn, then F may not necessarily

have nontrivial zeros on V . Indeed, the form x1 + x2 has no nontrivial zeros on the

subspace {(a, 2a) : a ∈ Q} of Q2. There are, however, some situations when F is

guaranteed to have nontrivial zeros on V , and then we can find such zeroes of small

height.

Lemma 5.4.2. Assume g > 1 and let F be a multilinear (n, g)-form over K and

x ∈ Kn a (g − 1)-sparse vector. Then F (x) = 0.
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Proof. The vector x has no more than g − 1 nonzero coordinates. Hence F (x) = 0,

since every monomial of F has degree g and is linear in each variable, hence is a

product of g > 1 distinct variables.

Corollary 5.4.3. Let V ⊆ Kn be an m-dimensional subspace of Kn and F a multi-

linear (n, g)-form over K. Assume that m+ g − 1 > n and g > 1. Then V contains

a basis x1, . . . ,xm of vectors such that F (x1) = · · · = F (xm) = 0 and

H(xi) ≤ H(V ). (5.20)

for each 1 ≤ i ≤ m.

Proof. By Theorem 1.4.1, see Remark 4.2.1, V contains a basis x1, . . . ,xm of (n −

m + 1)-sparse vectors satisfying (5.20). Since m + g − 1 > n, these vectors have no

more than g − 1 ≥ n − m + 1 nonzero coordinates, and hence F (xi) = 0 for each

1 ≤ i ≤ m.

Corollary 5.4.4. Let V ⊆ Kn be an m-dimensional subspace of Kn and F a multi-

linear (n, g)-form over K. Assume that m+ g − 1 > n and g > 1. Suppose also that

P (x1, . . . , xn) ∈ K[x1, . . . , xn] is a polynomial such that D(P, V ) < m. Then there

exists a point z ∈ V \ ZK(P, V ) such that F (z) = 0 and

H(z) ≤
√
2m|∆K |

m+1
2d H(V ).

Proof. Let x1, . . . ,xm be the (n − m + 1)-sparse basis for V guaranteed by Theo-

rem 1.4.1 and Remark 4.2.1. Since m + g − 1 > n, we see that g > n − m + 1

and hence F (xi) = 0 for each 1 ≤ i ≤ m, by the same argument as in the proof of

Corollary 5.4.3. Since D(P, V ) < m, at least one of these vectors is not in ZK(P, V ).

Call this vector z, and the result follows.
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Proof of Theorem 1.5.3. The theorem now follows by combining Corollaries 5.4.3

and 5.4.4.

The case g = 1 of linear forms has to be considered separately: this is just a simple

case of Theorem 1.4 of [24], which we present here in a simplified form. Suppose that

F (x1, . . . , xn) =
n∑

i=1

aixi ∈ K[x1, . . . , xn],

and V ⊆ Kn is an m-dimensional subspace.

Lemma 5.4.5. Let V ⊆ Kn be an m-dimensional subspace with 2 ≤ m ≤ n. Then

there exists 0 ̸= z ∈ V such that F (z) = 0 and

H(z) ≤

((
2

π

)2r2

|∆K |

) 1
2d (√

nH(V )H(F )
) 1

m−1 . (5.21)

Further, if P (x1, . . . , xn) ∈ K[x1, . . . , xn] is a polynomial such that D(P, V ) < m− 1,

then there exists a point z ∈ V \ ZK(P, V ) such that F (z) = 0 and

H(z) ≤
√
n

((
2

π

)2r2

|∆K |

)m−1
2d

H(V )H(F ). (5.22)

Proof. Define

U(F ) = {x ∈ Kn : F (x) = 0} ,

then, by (1.7),

H(U(F )) = H(F ) ≤
√
nH(F ), (5.23)

where H(F ) is the H height applied to the coefficient vector of F , which has n

coordinates. This is an (n− 1)-dimensional subspace of Kn and dimV ≥ 2, hence

ℓ := dim(V ∩ U(F )) ≥ m− 1 ≥ 1.
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By Theorem 1.15, there is a basis x1, . . . ,xℓ ∈ V ∩ U(F ) such that

ℓ∏
i=1

H(xi) ≤

((
2

π

)2r2

|∆K |

) ℓ
2d

H(V ∩ U(F ))

≤

((
2

π

)2r2

|∆K |

) ℓ
2d

H(V )H(U(F )), (5.24)

by Lemma 1.13. Then (5.21) follows by combining (5.23) with (5.24) and taking z

to be the vector with smallest height among x1, . . . ,xℓ. Since D(P, V ) < m − 1, at

least one of these vectors is not in ZK(P, V ), and this implies (5.22).

We will finish with a partial result on a special class of multilinear forms referred

to as strong multilinear forms. Let [n] := {1, . . . , n} and for an integer 1 ≤ d ≤ n and

let Jd(n) := {J ⊆ [n] : |I| = d}. An (n, d) multilinear form F is said to be strongly

multilinear if there exists a partition {x1, . . . , xn} =
⊔d

k=1 Xk such that F is linear

with respect to each partition treated as a vector Xk. For each partition subset Xk

let nk = length(Xk) and index the elements of Xk = {xk1 , . . . , xknk
}

Strongly multilinear forms are of the form

F (x1, . . . , xn) = F (X1, . . . , Xd) =

n1∑
i1=1

. . .

nd∑
id=1

fIxi1 . . . xid

where I = {i1, . . . , id} and fI ∈ Z.

Alternatively

F (X1, . . . , Xd) = AT ⊗X1 ⊗ . . .⊗Xd

where A is an appropriately sized coefficient tensor. For the sake of convenience we

represent X1 ⊗ . . .⊗Xd as an
∏d

i=1 ni column vector.

We now recall that any m× n matrix A put into Smith normal form:

A = QAP−1, (5.25)
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Where Q ∈ GLm(Z), P ∈ GLn(Z) and A′ is of the form

A′ =




d1

. . .

dr


0


,

Such that d1, . . . , dr > 0 and for 1 ≤ i < j ≤ r di|dj. For more information on Smith

normal form as well as an algorithm to find Smith normal form of a matrix see section

12.4 [3].

This leads to the corollary:

Corollary 5.4.6. Let A be an m × n matrix with integer coefficients. Then there

exists y ∈ Zn such that gcd(Ay) = gcd(A).

Proof. We begin by showing d1 = gcd(A). Define A′ and d1, . . . , dr as in Theo-

rem 2.1. Since d1|di for all i, d1|A′. Then d1|Q−1A′P = A. Then d1| gcd(A).

Likewise, gcd(A)|A = Q−1A′P . gcd(A) cannot divide Q−1 or P as these matri-

ces are in general linear groups over Z therefore they must have primitive columns

and therefore gcd(P ) = gcd(Q−1) = 1. Therefore gcd(A)| gcd(A′) which implies

gcd(A)| gcd(A′) = d1. Therefore gcd(A) = d1.

Now let y = P−1
1 be the first column of P−1 and let Q−1

1 be the first column of

Q−1. Let e1(n) denote the first standard basis vector of Zn Then

Ay = Q−1A′PY = Q−1A′e1(n) = Q−1d1e1(m) = d1Q
−1
1

Finally note that gcd(Q−1
1 ) = 1 since Q−1 ∈ GLm(Z).

We are now ready to prove a result on strong integer multilinear forms:
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Theorem 5.4.7. Let F (X1, . . . , Xd) be an (n1 . . . nd, d) strongly multilinear form

with coefficients in Z. Then for any b such that gcd(F ) divides b, there exists

y = (y1, . . . ,yd) such that F (y) = b.

Proof. By induction on the degree d:

Suppose that d = 1. Then F is a linear form and F represents gcd(F )Z by the

Euclidean algorithm. This establishes the base of induction.

Now suppose that d > 1 and that nd = length(Xd) = 1. Then xd1 divides every

monomial in F . Set yd = 1 then F ′ = F (X1, . . . , Xd−1,yd) is an (n1 . . . nd−1, d − 1)

strongly multilinear form with gcd(F ′) = gcd(F ).

Finally, suppose that d > 1 and nd > 1. Then factor F as

F (X1, . . . , Xd) = (X1⊗, . . . ,⊗Xd−1)
TAXd

Where A is the n1 . . . , nd−1 × nd coefficient matrix for F . Then by Corollary 5.4.6

there exists Yd such that gcd(Ayd) = gcd(A). Then F ′ = F (X1, . . . , Xd−1,yd) is an

(n1 . . . nd−1, d − 1) strongly multilinear form with gcd(F ′) = gcd(F ). Thus by the

induction hypothesis there exist y1, . . . ,yd−1 so that F (y1, . . . ,yd) = b.

Unfortunately, we are currently unable to bound the size of y in Theorem 5.4.7.

This is due to the use of Smith normal form as we cannot currently bound the sizes

of Q and P−1 in (5.25). Theorem 5.4.7 can be generalized to multilinear forms with

coefficients in a PID but not to an abitrary ring of algebraic integers as Smith normal

form is only defined for PIDs.
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[18] E. Fischer, Über den Hadamardschen Determinantensatz, Arch. Math. (Basel),

13, (1908), 32–40.

[19] M. Forst and L. Fukshansky. Counting basis extensions in a lattice. Proc. Amer.

Math. Soc., 150(8):3199–3213, 2022.

[20] M. Forst and L. Fukshansky. On zeros of multilinear forms. J. Number Theory,

245:169–186, 2023.

[21] M. Forst and L. Fukshansky. On lattice extensions. in submission.

[22] M. Forst, L. Fukshansky and J. Vaaler. On a new absolute version of Siegel’s

lemma. in preparation.

[23] L. Fukshansky, D. Needell, and B. Sudakov. An algebraic perspective on integer

sparse recovery. Appl. Math. Comput., 340:31–42, 2019.

101



[24] L. Fukshansky. Algebraic points of small height missing a union of varieties. J.

Number Theory, 130 (2010), no. 10, pp. 2099–2118.

[25] L. Fukshansky. Heights and quadratic forms: Cassels’ theorem and its gener-

alizations. Diophantine methods, lattices, and arithmetic theory of quadratic

forms, 77–93, Contemp. Math., 587, Amer. Math. Soc., Providence, RI, 2013.

[26] L. Fukshansky. Integral points of small height outside of a hypersurface. Monatsh.

Math., 147 (2006), no. 1, pp. 25–41.

[27] L. Fukshansky. Revisiting the hexagonal lattice: on optimal lattice circle packing.

Elem. Math., 66(1):1–9, 2011.

[28] L. Fukshansky, P. Guerzhoy and F. Luca. On arithmetic lattices in the plane.

Proc. Amer. Math. Soc., 145(4):1453–1465, 2017.

[29] L. Fukshansky and A. Hsu. Covering point-sets with parallel hy-

perplanes and sparse signal recovery. Discrete Comput. Geom., 2022,

https://doi.org/10.1007/s00454-022-00375-y.

[30] L. Fukshansky and G. Henshaw. Lattice point counting and height bounds over

number fields and quaternion algebras. Online J. Anal. Comb., 8 (2006), 20 pp

[31] L. Fukshansky and D. Kogan. On the geometry of nearly orthogonal lattices.

Linear Algebra Appl., 629:112–137, 2021.

[32] F. R. Gantmacher, The theory of matrices. Vol. 1. Chelsea Publishing Co., New

York 1959
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