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Abstract

This paper describes a methodology for analyzing X chromosome data to establish
biogeographical contributions to the author's X chromosome. We present an ex-
position of how Hidden Markov Modeling (HMM) can be used as a black box for
ancestry analysis and focus on a set of conditions that are not universal but fairly
common. The first condition is that the ancestral populations are drawn from
regions that have had very little or no contact with each other since prehistoric
times. The second condition is that the number of possible ancestral populations
is small. In this analysis, we assume that the ancestral populations are Native
North American, Northwestern European, and West African. We compare the
result of our analysis with the analyses carried out by the companies 23andMe
and deCODEme for the same data. Finally, we point to a mechanism for reducing
noise by adjusting the data before applying HMM.

This paper describing the author’s analysis of his X chromosome is the
result of a marriage between two spheres. The author is a mathematician and
an avid genealogist. His formal education is in pure mathematics,
having written a PhD dissertation in that domain, which was followed
by a period in academia conducting related research. However, he spent
the last 25 years of his career before retirement applying mathematics to
cryptanalysis and cryptographic design at the National Security Agency.
The year before his retirement he wrote an in-depth paper on Hidden Markov
modeling (HMM) that covered in gory detail, with all the derivations and
proofs, everything from the alpha-pass to the Baum-Welch convergence.!

!This was an internal NSA paper but is available upon request from the author.
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The current article is a byproduct of that paper and introduces a more so-
phisticated approach to handling the population data when applying HMM to
ancestry analysis.

Initially, the author’s pursuit of family history employed conventional ge-
nealogical tools, and he was able to trace the presence of his ancestors in North
America to the 1700s in the colonies (eventually states) of Virginia and North
Carolina, specifically the Piedmont regions of those states. When direct-to-
the-consumer DNA analysis became available, he had been doing conventional
genealogy for two decades. For the past ten years, DNA-related tools have
been a welcome addition to oral history and document sleuthing.

Let’s set the stage. Among the products that these companies provide is a
biogeographical breakdown of contributions to the customer’s genome from
various regions around the globe. This paper will apply HMM to that prob-
lem, specifically the author’s X chromosome, the analysis of which showed,
among other things, a large contribution from a Native American ancestor or
ancestors. Further, the X chromosome for men does not require any effort to
tease apart the father’s contribution from the mother’s contribution. That is
to say that no phasing is required, which removes a difficult challenge.

The X chromosome differs from the autosomal chromosomes (chromosomes
1 through 22) in that a rather restricted set of ancestors are potential con-
tributors. Males receive an X chromosome only from their mothers. This
is in contrast to females, who receive an X chromosome from each parent.
What is just as interesting is that the male passes his X chromosome to his
offspring effectively without recombination being a part of the process. As
a result, distant ancestors on the X chromosome “glide path” have a greater
chance of keeping in play a contribution to a descendant on the X chromo-
some than they have on the autosomal chromosomes. Figure 1 displays the X
chromosome contributors for four ancestral generations. Note that although
we have sixteen 2" great grandparents, only five of them could possibly be
contributors to our X chromosome. In the author’s case, Native American
ancestry is disproportionately represented on his X chromosome by an order
of magnitude, with well over 40% of the chromosome reflecting Native Ameri-
can contribution versus just a bit more than 3% overall contribution of Native
American ancestry to his genome. We will eventually reach the conclusion
that there is no European contribution to the author’s X chromosome, despite
the author having a far larger European contribution across the genome than
Native American contribution.
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Figure 1: Six generations of the X chromosome inheritance tree (in red) for a male. The
letters in black represent the maternal ancestors that cannot contribute. No paternal an-
cestors contribute to a male’s X chromosome and for sake of simplicity the paternal branch
is not shown. (Circles-female, Squares-male).

By the way, many readers will recognize that we have the first few terms of the
Fibonacci sequence in the column on the right: 1, 1, 2, 3, 5, 8. The number
of “X chromosome” 3" great grandparents is 8 = 5 + 3. There are 13 ( 8+5)
4*™h great grandparents in this category.

Figure 2 shows two analyses of the author’s X chromosome, one at the test-
ing company 23andMe (Mountain View, California, USA) and one using the
same raw data file processed by the deCODEme service (deCODE genetics,
Reykjavik, Iceland; the deCODEme feature was discontinued in 2013). The
centromere is a region of the chromosome for which data were unavailable.

Of course, one notices immediately that the results are not the same.
There is a significant segment of European ancestry found by deCODEme,
while Europe was a no-show in the 23andMe results. We should note that
in the graphic representing the deCODEme analysis, the green segments were
actually assigned to an umbrella category that the company simply called
“Asian.” This category included the indigenous North American population.
In an earlier incarnation of the 23andMe analysis, half of what the graphic
shows as Native American was given the designation “Mongolian.’
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Figure 2: X chromosome biogeographical analyses by 23andMe and deCODEme. Color
coding indicates the biogeographical origins of the segments.

Distinguishing Native American contributions from Asian contributions has
been quite a challenge for every company the author has dealt with. Recently,
23andMe improved their approach and this segment on the X chromosome is
now entirely Native American according to their analysis.

The author was motivated to take on the problem himself using 23andMe’s
raw data. Only three reference populations were used: Amerind, Northwest
European, and West African. We saw no reason to burden the model with pop-
ulations that with near certainty did not contribute to the author’s genome.
We suspect that deCODEme used too few populations, and that Asian was an
inadequate proxy for Native American. On the other hand, it would appear
that 23andMe includes so many populations in their modeling that their anal-
ysis suffers under the weight. The population data sets used for this paper
were available in Stanford University and University of Michigan databases.

So, what are the components of the model? As stated above, the underlying
states are Amerind, Northwestern European, and West African. We need
to introduce some language at this point. A single nucleotide polymorphism
(SNP) is a base-pair position that is known to exist in the human population
in at least two of the four possible nucleotides (adenine, cytosine, guanine, or
thymine; A, C, G, T).
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At each sampled position of the X chromosome, we know what version of the
SNP the author had and the frequencies at which this version occurred in each
of the three populations. Table 1 displays a sampled segment of the author’s
observed (O) SNP data aligned with the frequencies at which the version occurs
in each sample of the three populations. The leftmost column provides the
position number on the X chromosome for each SNP. The notation P(A|B)
denotes the probability of A given B. For example, we write P(O|Amer)
to represent the frequency with which an observed version was found in the
sample population of Native Americans.

Position Author P(O|Amer) P(O|Afr) P(O|Eur)

31443128 A 0.43 0.151 0.028
31444181 G 0.961 0.663 0.959
31450161 C 0.469 0.488 0.096
31453286 T 0.969 0.919 0.932
31464466 A 0.477 0.442 0.11
31470405 C 0.438 0.14 0.041
31482315 A 0.477 0.369 0.097
31487383 A 0.477 0.302 0.151
31511118 A 1 0.953 1
31512758 A 0.422 0.209 0.068
31520996 T 0.883 1 0.795
31531590 G 0.961 0.791 0.904
31544013 A 0.484 0.488 0.137
31566212 G 0.484 0.407 0.164
31574736  C 0.484 0.581 0.164
31579369 G 0.453 0.209 0.151
31580472 T 1 0.942 0.932
31586017 G 0.883 0.57 0.575
31591291 A 0.969 0.942 0.918
31600900 T 0.477 0.558 0.164
31602710 A 0.469 0.267 0.164
31606813 A 0.422 0.081 0.068
31611420 G 1 1 0.965
31624915 T 0.938 0.872 0.904
31642017 A 0.891 1 0.836
31647484 C 0.563 0.686 0.205
31648155 A 0.492 0.105 0.112
31652167 T 0.492 0.128 0.11
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0.391
0.977
0.445
0.875

0.767
0.826
0.442
0.628

0.247
0.918
0.301
0.616
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Table 1: Data for a small segment of the author’s X
chromosome with position numbers, author’s version and
the frequencies at which the author’s version occurred in
each of the populations under consideration.

We had a total of 12491 sampled positions ranging from one end of the X
The task was to divine the probability of the
underlying biogeographical ancestry (state) at each observed position given
all 12491 observations. Call this probability P,;(State.Position). When this
was done, the above section was determined to be Amerind. The value of
P.in(Amerind.Position) ranges from 0.90 to 0.999 in this section. See Table 2

chromosome to the other.

below.

Position SNP P(Amer) P(Afr) P(Eur)
31443128 A 0.903177  0.081039 0.015784
31444181 G 0.92649 0.057352 0.016158
31450161 C 0.936347  0.06031  0.003343
31453286 T 0.93939 0.057384 0.003225
31464466 A 0.945719  0.053532 0.000749
31470405 C 0.982157  0.01777  0.000073
31482315 A 0.986096  0.013802 0.000102
31487383 A 0.991059  0.008782 0.000159
31511118 A 0.99113 0.00837  0.0005
31512758 A 0.995754  0.004165 0.000081
31520996 T 0.994838  0.004712 0.00045
31531590 G 0.995648  0.003882 0.000470
31544013 A 0.995943  0.003915 0.000142
31566212 G 0.996536  0.003294 0.00017
31574736  C 0.995879  0.003952 0.000169
31579369 G 0.998006  0.001827 0.000167
31580472 T 0.997813  0.001721  0.000466
31586017 G 0.998563  0.001112 0.000325
31591291 A 0.998446  0.001081 0.000473
31600900 T 0.998564  0.001264 0.000172
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Position SNP P(Amer) P(Afr) P(Eur)

31602710 A 0.999105  0.00072  0.000175
31606813 A 0.999781  0.00171  0.00048

31611420 G 0.999018  0.000200 0.000782
31624915 T 0.999053  0.000183 0.000764
31642017 A 0.99897 0.000561 0.000469
31647484 C 0.999134  0.000684 0.000182
31648155 A 0.99974 0.000183 0.000077
31652167 T 0.999758  0.000160 0.000082
31656866 A 0.998705  0.00098  0.000315
31656915 A 0.998702  0.000828 0.00047

31662790 T 0.998839  0.000823 0.000338
31663741 T 0.999057  0.000591 0.000353

Table 2: Results of the HMM probability analysis for the
segment in Table 1.

We shall view as close to unassailable the claim that as you traverse the chro-
mosome, once you move into a segment inherited from a given biogeographical
region, you will stay there “for a while.” This is our first tenet of faith. The
section in the example that we just discussed represents less than one third of
one percent of the chromosome. Now we add another tenet of faith: All mod-
els are wrong, but, despite this uncomfortable truth, some models are useful.
We believe, in particular, that HMM is.

It would be foolhardy to assume that all readers have a knowledge of the ins
and outs of Hidden Markov Modeling. We will attempt to use the technique
as a black box. Nonetheless, it would be helpful to provide some insight into
the mechanisms that are at play. Below we take a stab at describing a “model
of the model.” (See [1, 2, 3] for more on HMM.)

At each sampled position on the author’s X chromosome, we effectively have
for the SNP that is present at that position, the probability of that SNP given
the biogeographical region. What we want to know is the probability of the
biogeographical region being the contributor, given the SNP. The reader who
is familiar with Bayes’ theorem will not be surprised that this theorem is a
foundational piece in the rather elaborate machinery of HMM. In its design,
the process moves from one end of the chromosome to the other assessing the
probability of the biogeographical region at each sampled position, given all
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that has been observed prior to that position. The machinery then moves
from the opposite end back to the beginning, computing at each position
the probability of each biogeographical region being the contributor, given
everything that has been seen before and after each position.

One can imagine a passenger on a highway moving from east to west across
the country, attempting to establish the position of boundaries that occur
between rural, urban, and suburban regions, based on observations. Perhaps
the presence of a silo indicates that he is now moving through a rural area,
but where did the rural area begin? Perhaps the silo is simply a remnant that
indicates that the area was once rural, but now the silo stands on a small
vacant lot in suburbia. He then reverses his direction and moves east, making
observations and reconciling them with what was seen when moving west.
When the observer begins his round trip, he must make a guess as to which
type of region he finds himself in initially, with essentially no data. Knowing a
priori the probability of making a transition from one regional classification to
another would also be helpful. An initial guess of these transition probabilities
is all the observer has. At the end of the roundtrip, re-estimations of transition
probabilities and the initial state are made based on all that has been observed
during the round trip. Then a second roundtrip is made. If we can imagine
HMM being implemented in this process, it is an important feature of the
methodology that each successive roundtrip is guaranteed to give us better
results than the previous one, the improvement being based on a measure
called the score. The score is a probability, so it is bounded above by 1. That
forces a convergence to what will at least be a local maximum. This somewhat
tortured “model” of Hidden Markov Modeling might be useful for the reader
as we move through the analysis.

What we initially have is simply the data described above. We do not know
the probability of making a transition on the chromosome from a segment con-
tributed from one biogeographical region to a segment contributed by another.
This gets codified in what is called the state-transition matriz. Further, we
do not know what biogeographical region contributed the first segment that
we encounter. One of the strengths of HMM is that we can make an initial
estimate of these parameters and then allow the re-estimation machinery of
the model to modify them for the better. The values that we have when we
converge to equilibrium are the ones that we will have to live with. We are at
equilibrium when the score no longer improves, the score being a measure of the
probability of the sequence of 12491 observations. For computational reasons,
we actually use the logarithm (base 10) of the score, instead of the score itself.
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Since the scores are less than 1, the logarithm of the score is negative. The
closer the score is to zero, the better it is. For instance, -1000.5 is better than
-2103.2. Figure 3 represents the result that we get using HMM.

. West Africa . Centromere
I Northwest Europe
I North America

Figure 3: Result of X chromosome biogeographical analysis using HMM for author’s X
chromosome. Color coding indicates the biogeographical origins of the segments.

We list below some of the choices that we made for the initial state-transition
matrices along with the number of iterations to equilibrium. To provide ori-
entation, the entry in the kth row and the jth column is the probability of
transitioning from the jth state at position n to the kth state at position n+1.
The means that the matrices are necessarily column stochastic (columns add
to 1).

Each initiation with an arbitrarily chosen state-transition matrix led to the
same score, P, (State.Position) values and final state-transition at equilibrium.
In all cases the initial probability for each population was taken to be 1/3. (We
do not show the 12491 probability assignments, but most assignments were
made based on the P,y (State.Position) being greater than 0.90. See Table
2.) A matrix is said to be symmetric if the value in row j and column £ is
always the same as the value in row k£ and column j. The iterations given in
Tables 3 and 4 represent the number required to converge to equilibrium. Our
symmetric matrices are column stochastic and so the column values must sum
to 1. As a result, the symmetric matrices we use are of the form:

—_

—a

1—a
2
a

| Do

—_
s]

i
Nl
e e
e

2 v

2

where 0 < a < 1.
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Most of the initial states that we ran with our model were with symmetric
matrices, because that allows us to initiate without a bias toward any re-
gion. However, all the initiations that we ran with non-symmetric matrices
converged to the same result.

The model was tested under the following conditions.

a iterations
0.990 46

0.340 74

0.100 109

0.005 1&4

Table 3: Model trials.

The model with a non-symmetric matrix such as

0.6 0.5 0.7
0.3 0.2 0.1
0.1 03 0.2

was also run with 75 iterations, with similar results.

Although there is nothing in the methodology of HMM that guarantees that
we have found the maximum score, choosing such a disparate set of initial
conditions and finding that they all result in the same score after convergence
to equilibrium provides a level of confidence that we have in fact succeeded in
doing precisely that.

Author Amerind West African NW European
Amerind 0.9792 0.006653 0.019388

West African  0.01304 0.99029 0.011955

NW European 0.007412  0.003061 0.96866

Table 4: Consensus for all initiations (12,491 observa-
tions), Score: 2403.80695324, state-transition matrix at
equilibrium.
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Since this analysis is not time-dependent, one might wonder about the ar-
bitrariness of starting the analysis at one end of the chromosome versus the
other. The result in Table 4 shows the case when we start from the short-arm
end of the chromosome. Table 5 shows what we get when we feed in the data
starting from the long-arm end of the chromosome.

Author Amerind West African NW European
Amerind 0.9792 0.00697 0.01801
West African  0.01245 0.99029 0.01333
NW European .00836 0.002744 0.96866

Table 5: Starts on the long arm of the chromosome.
Score: -2403.8076461, initial state-transition matrix was
symmetric with 0.99 on the diagonal; 47 iterations.

Note that the diagonals and the score are essentially identical to what we got
when we fed in the data starting from the other end of the chromosome. Most
importantly, the P,;(State.Position) values that we found are also identical
at every position, so the biogeographical assignments are unchanged. What
about the off-diagonal values in the transition matrix? After a moment’s re-
flection, we realize that we should expect these values to be different, because
the probability of transitioning from one state to another is naturally order-
dependent for the object that we are analyzing. The values on the diagonal
represent something like a “thickness” measure, the tendency to stay in a bio-
geographical ancestry. Thickness is not order-dependent. The diagonal values
support our tenet of faith. The probability that a given position is not on the
boundary of segments contributed from two different biogeographical regions
is high. In this particular analysis it was at least 0.96866.

We should return to the graphic that represents our results, because it’s the
bottom line. With its high degree of fragmentation, the graphic we produced
looks nothing like the two produced by the companies. There is no apparent
way to determine which of the three analyses (theirs and the author’s) is closest
to the truth.

To move beyond this impasse, it would be helpful to analyze the X chromo-
some of someone who can say with confidence that their ancestry is only from
one of the regions. Figure 4 shows the results of the analysis for a person
whose ancestry has been thoroughly researched and is believed to have genetic
contributions only from northwestern Europe.
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Figure 4: The result of X chromosome biogeographical analysis using HMM for non-admixed
European man’s X chromosome. Color coding indicates the biogeographical origins of the
segments.

It would appear that not only is the model wrong; it is terribly wrong and
not useful. However, the title of this paper is not “The Folly of Using Hidden
Markov Modeling for Biogeographical Ancestry Analysis.” So this is not the
end of the exercise.

Smoothing

At this juncture it is pretty clear that the methodology is producing results
that are noise-ridden. Our approach is in need of modification and our thinking
turned to reducing what we choose to call “volatility.”

Instead of using the population frequencies at each sampled position, we use
the arithmetic mean of the observed frequencies in non-overlapping blocks of
n consecutive samples, where we hope to establish what value of n is optimal.
Rest assured, the HMM does not know that we're “cheating.” It certainly does
not know that we are using average frequencies instead of individual frequen-
cies. The block size, over which we will average, is so small that the entire
block almost certainly came from only one of our recent ancestors. Admix-
ture persisted in the analysis for our person of strictly European ancestry for
block sizes up to eight sampled positions. It vanished at block-size 9. Here
Tables 6-7 represent the converged block-size-9 state-transition matrices, for
the non-admixed European man and the author, respectively.
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European Man Amerind West African NW European

Amerind 0.03299 3.8555%10°¢ 3.7519*10°7
West African 1.72%102°  4.663*10°1 3.754*10%
NW European 0.96700 0.99999 0.99999

Table 6: Converged block-size-9 state-transition matrix
for European man.

Author Amerind West African NW European
Amerind 0.9979 0.0012 0.994

West African  0.0021 0.9988 8*10-142

NW European 107 3*10713 0.006

Table 7: Converged block-size-9 state-transition matrix
for the author.

Is what we have at this point right? Figure 5 for the author is now essentially
identical to the one produced by 23andMe, but it lacks the European ancestry
asserted by deCODEme.

European

Author

B West Africa 57% [l centromere
. Northwest Europe 0%
" North America 43%

Figure 5: These are X chromosome graphics corresponding to Tables 6-7. The legend
provides the percentages for the author.
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We’ve used the same smoothing window for both subjects. Perhaps we should
look at the score that the non-admixed European test case had when the
“noise” disappeared and then select a block size that gives a comparable score
for the author. We remind the reader that the scores are negative and for that
reason scores that are smaller in absolute value are larger.

Block Size Author non-admixed European

-2403.8  -2462.7
-2171.0 -2277.0
-2097.4  -2223.2
-2091.1 -2214.4
-2081.0 -2209.9

© 00 N W

Table 8: Adjusted Scores

The adjusted scores in Table 8 are found by multiplying the actual score by the
size of the block. We multiply by the block size because averaging over a block
size of n reduces the number of observations the model “sees” to the original
number of observations divided by n. When we consider how probabilities are
computed in this context (multiplication), together with the fact that we are
taking the logarithm of the result, it seems reasonable to adjust in this way
to make comparisons. As an example, for n = 2, we would have half as many
observations and the score could be expected to be about the square root of
the score for the original sequence of unaveraged frequencies. The logarithm
of that score would be roughly one half the logarithm of the original score.

Using these crude adjustments, it appears that block-size 3 produces a better
score for the author’s X chromosome analysis than block-size 9 does for the
control (European) case. (Block-size 2 does not.) If we use the score as the
criterion for getting the correct amount of noise reduction, while limiting the
risk of erasure of real contributions by over-smoothing, we get the results for
the author shown in Figure 6 (also see Table 9).

Note that with these adjustments the state-transition matrix for the author
has a dominant diagonal, while a glance back at the European control case
reveals a dominant European row.

On the basis of the adjusted score, the author suspects that averaging using
block-size 9 is than better than using the block-size-3 results. Further, observe
that for the author’s X chromosome the adjusted scores at block-size 10 begin
to decrease, after having steadily improved up to block-size 9. See Table 10.
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B West Africa B centromere
B Northwest Europe
. North America

Figure 6: The HMM results for the author using block-size 3.

Author Amerind West African NW European
Amerind 0.991426  3.8555%10°° 0.050368
West African  0.001412  0.998596 0.008261
NW European 0.007162  0.001182 0.941371

Table 9: Converged block-size-3 state-transition matrices
for the author.

Block Size Adjusted Score

1 -2462.7
3 -2277.0
7 -2223.2
8 -2214.4
9 -2209.9
10 -2084.77
20 -2082.02
80 -2160.76

Table 10: Adjusted score for various block sizes.
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For the Furopean control case, the score continued to increase after block-size
9, but the result did not change. It remained 100 percent European.

Throwing in this last bit of evidence leads to choosing the block-size-9 result,
which we show again below (Figure 7) as the “winner,” along with the corre-
sponding state transition matrix (Table 11). Note that the diagonal values of
the state transition matrix are large only in the positions that correspond to
the Amerind and West African populations.

Author Amerind West African NW European
Amerind 0.9979 0.0012 0.994

West African  0.0021 0.9988 8. 107142

NW European 1077 3-10713 0.006

Table 11: The converged state-transition matrix for the
author.

Author

B West Africa [l centromere
. Northwest Europe
I North America

Figure 7: The “winning” graphic for the author.

In Table 11, the value 0.994 in the topmost row might be puzzling. This is
best interpreted as an indication of the affinity of the European SNP data
characteristics with those of the North American data and sheds light on why
there was so much European “noise” for block sizes smaller than 9.

Just for fun, we recall that of thirty-two 3™ great grandparents, only eight of
them are on the “glide path” to my X chromosome. Suppose that the Native
American ancestor who made the contribution was a 3'¢ great grandmother.
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She would have been one of eight (sixth Fibonacci number) ancestors from
that generation who could have contributed to my X chromosome. Figure 8
displays in green a possible path for her contribution.

IR

Figure 8: X chromosome contribution path (in green) from the 3¢ great grandparent that
minimizes recombination events. No paternal ancestors contribute to a male’s X chromosome
and, for sake of simplicity, the paternal branch is not shown. (Circles are female ancestors,
Squares are male.)

Along the green path there are only two recombination events, since the males
pass the X to their daughters virtually unchanged. If this scenario corresponds
to fact, it is not at all surprising that a large contribution from this 3'¢ great
grandmother might remain intact all the way from her, a woman who was
likely born in the 1700s, to the author.

Conclusions

The observations in this study lead the author to conjecture that perhaps
the adjusted score is the right mechanism to use as an indication that the
correct block size has been chosen. The rule would be: If the analysis shows
contributions from more than one biogeographical region, continue to increase
the block size until there is only one biogeographical region represented in the
analysis or until the adjusted scores level off or begin to decrease.
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Of course, we would need to do this kind of analysis for a large sample of
people, whose ancestry is well-known, before trying to draw firm conclusions.
We have analyzed three other non-admixed Europeans with results consistent
with the case shown here. We have also done the analysis for three people
whose ancestry is not so well-established and happen to be closely related to
the author. The approach also holds up in those cases.

Again, we would need to handle a lot more cases, before trying to sell this as
being sound analysis. There is also the question of how many different popula-
tions the HMM approach will support at once. Here the analysis was limited
to three populations because I was confident that I knew what populations
could possibly have contributed to my genome. This is obviously not the case
in general.

As for the East Asian versus Amerind difficulties that researchers have encoun-
tered, we've addressed this in a straightforward way in our analysis by taking
segments that have been assigned as Amerind and holding a bake-off on the
segments. When doing this, we take West Africa and Northwest Europe out
of the model. Instead, we use only the Amerind population and introduce one
East Asian population on the segments that had been designated Amerind in
the original three-way analysis. Amerind prevailed, overwhelmingly, for each
choice of East Asian population, Yakut, Han, etc.
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