Verba Volant, Scripta Manent

Tom Ward

University of Leeds, U.K.

Follow this and additional works at: https://scholarship.claremont.edu/jhm

Part of the Other Mathematics Commons

Recommended Citation

©2020 by the authors. This work is licensed under a Creative Commons License.

JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/

The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and-upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information.
I am grateful to Gunther Cornelissen for the conversations that led to the writing of this article.
Using examples, we attempt to prove the following assertions. None is original to the author, and each is readily contested. As a courtesy, the examples are artificially constructed rather than taken from the mathematical literature.

- Mathematical notation can either help or hinder the reader.
- Commutative algebra and harmonic analysis can be made more or less difficult by font choices.
- Making deliberate choices about line and page breaks can help or hinder the reader.

The so-called grid method in arithmetic amounts to this. To work out 13×15, think of $(10+3) \times (10+5)$ and expand: 10×10, 10×5, 3×10, and 3×5. Then we add 100, 50, 30, and 15 to obtain 195.
To avoid confusion, we denote the character group of a locally compact abelian group \(G \) by \(\hat{G} \), and the annihilator of a subgroup \(H < G \) by \(H^\perp \). Then for a closed subgroup \(H \) of \(G \), we have isomorphisms of topological groups as follows:

- \(\hat{G}/H \cong H^\perp \);
- \(\hat{H} \cong \hat{G}/H^\perp \);
- \((H^\perp)^\perp \cong H\), under the identification between \(G \) and the character group of \(\hat{G} \) given by Pontryagin duality.

Let \(R \) be a valuation ring of a field \(K \) and assume that we have \(R \subset R' \subset K \) with \(R \neq R' \). Let \(M \) be the maximal ideal of \(R \), and let \(P \) be the maximal ideal of \(R' \). Then

- \(P \subset M \subset R \) and \(P \neq M \).
- \(P \) is a prime ideal of \(R \) and \(R' \) is the localization \(R_P \).
- \(R/P \) is a valuation ring of the field \(R'/P \).

“90 percent of design is typography. And the other 90 percent is whitespace.” (Jeffrey Zeldman [2])

To avoid confusion, we use the same letter in different fonts, denoting the character group of a locally compact abelian group \(G \) by \(\mathcal{G} \), and the annihilator of a subgroup \(H < G \) with \(\mathcal{H} \). Then for a closed subgroup \(H \) of \(G \), we have isomorphisms of topological groups as follows:

- \(\mathcal{X} \cong \mathcal{H} \) where \(X = G/H \);
- \(\mathcal{H} \cong \mathcal{G}/\mathcal{H} \);
- \(\mathcal{X}' \cong H \), where \(X = \mathcal{H} \), under the identification between the character group of \(\mathcal{G} \) and \(G \).

Let \(\mathfrak{R} \) be a valuation ring of a field \(\mathfrak{K} \) and assume that \(\mathfrak{R} \subset \mathfrak{R}' \subset \mathfrak{K} \) with \(\mathfrak{R} \neq \mathfrak{R}' \). Let \(\mathfrak{M} \) be the maximal ideal of \(\mathfrak{R} \) and let \(\mathfrak{P} \) be the maximal ideal of \(\mathfrak{R}' \). Then

- \(\mathfrak{P} \subset \mathfrak{M} \subset \mathfrak{R} \) and \(\mathfrak{P} \neq \mathfrak{M} \).
- \(\mathfrak{P} \) is a prime ideal of \(\mathfrak{R} \) and \(\mathfrak{R}' = \mathfrak{R}_\mathfrak{P} \).
- \(\mathfrak{R}/\mathfrak{P} \) is a valuation ring of the field \(\mathfrak{R}'/\mathfrak{P} \).

“90 percent of design is typography. And the other 90 percent is whitespace.” (Jeffrey Zeldman [2])
References
