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The Structure of Working Memory:  
A Review and New View of Psychometric Models 

 
By 

Kevin P. Rosales 
Claremont Graduate University: 2023 

 

Abstract 

 
Beginning in the 1970s, a great deal of research in cognitive psychology, developmental 

psychology, psychometrics, and cognitive neuroscience has investigated the structure and 

function of working memory (WM), defined as the ability to actively maintain and manipulate 

information in the service of complex cognition (Baddeley & Hitch, 1974). It is well established 

that WM is a limited capacity system and individual differences in WM capacity are strongly 

associated with important cognitive abilities and outcomes, such as general intelligence (Engle et 

al., 1999) and academic achievement (Swanson & Berninger, 1996; Ramirez et al., 2013). For 

this reason, WM is a central component in most general theories and models of cognition. 

However, over the years, different researchers have proposed different definitions of WM. This 

is problematic because researchers who adopt different definitions of WM also tend to 

administer different kinds of tasks to measure WM capacity, which has produced a pattern of 

inconsistent results reported throughout the literature.  This inconsistency has led to a lack of a 

consensus in the field regarding how to measure WM capacity and how to determine the “best” 

psychometric model of the structure of WM capacity. If we look to the most prominent 

contemporary theories of WM, both cognitive and psychometric, we can identify several 

different components of WM function that are thought to contribute to individual differences in 

WM capacity. These include attention control (Engle, 2002), verbal and spatial temporary 
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memory storage (Kane et al., 2004), and episodic memory retrieval (Unsworth et al., 2014; 

Oberauer, 2009). Though these components have been shown to contribute to variation in WM 

capacity, there currently is not a comprehensive psychometric model of WM that includes all of 

these components. Moreover, most of the research on individual differences in WM capacity has 

been conducted using traditional latent variable modeling approaches (factor models), which are 

based on problematic assumptions (Borsboom et al., 2003). More recently, network analysis has 

emerged as an attractive alternative psychometric modeling approach to study individual 

differences in cognitive abilities (Kan et al., 2019). Network analysis does not rely on the same 

problematic assumptions required by latent variable models, and it is more compatible with 

recent theories of intelligence, namely, Process Overlap theory (POT) (Kovacs & Conway, 

2016). POT proposes that broad cognitive abilities reflect multiple cognitive processes that are 

sampled in an overlapping manner across a range of cognitive tasks. This theoretical framework 

aligns well with network modeling where abilities are represented as an inter-connected network 

of multiple cognitive processes.Across two studies in this dissertation, we (1) compared network 

models to traditional latent variable models of WM capacity, with both types of models designed 

to include multiple components, namely, attention, verbal storage, spatial storage, and episodic 

memory retrieval and (2) tested the predictive validity of the models by estimating the 

correlation between WM capacity and fluid intelligence. The results show that a network model 

of WM fits the data just as well as a latent variable model, as predicted. However, we did not 

support the hypothesis that the network model of WM predicts fluid intelligence equally well as 

the latent variable model. Taken together, the current studies provide new insights into the 

psychometric structure of WM using the novel technique of network modeling. It is shown that a 

four-component network model of WM capacity is an accurate and comprehensive depiction of 
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WM. These results help to integrate cognitive models and psychometric models of WM, which is 

an important contribution to the field and has implications for research and practice in clinical 

and educational settings where measuring WM capacity effectively, and interpreting WM test 

scores properly, is of the utmost importance.  
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The Structure of Working Memory:  

A Review and New View of Psychometric Models 

Decades of research have examined the nature of working memory, which is a limited 

capacity system that allows for storage and processing of information in the face of distraction 

(Baddeley & Hitch, 1974). Importantly, working memory capacity predicts several real-world 

outcomes, such as reading comprehension (Daneman & Carpenter, 1980), mathematics 

performance (Ramirez et al., 2013), and writing ability (Swanson & Beringer, 1996), but is also 

associated with other important cognitive abilities like general intelligence (Kovacs & Conway, 

2016) and fluid reasoning (Kyllonen & Christal, 1990).  

Individual differences research has investigated the psychometric structure of working 

memory to understand its theoretical nature and predictive validity better. Here I will first (a) 

review leading theoretical perspectives on working memory, (b) review several psychometric 

models of working memory capacity, and (c) propose an alternative approach to understanding 

the psychometric structure of working memory via network modeling and (d) present two studies 

that test the psychometric structure of working memory via network modeling.  

Working Memory 

Conceptualizations of Working Memory 

  Research has established that working memory plays a central role in higher-order 

cognition and that working memory capacity is predictive of important real-world outcomes 

(Bailey, 2007; Borella et al., 2010; Duncan et al., 2007, & Gathercole et al., 2004). Problematic 

to the field, however, is that researchers have proposed different definitions of working memory. 

This has led to confusion in the field, and it has raised questions as to how to best measure 

working memory capacity. Researchers tend to adopt different notions of working memory, and 
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in turn, administer different kinds of working memory tasks, which often produces inconsistent 

results. This inconsistency of conceptual definitions of WM has led to a lack of a consensus in 

the field as to what determines the “best” psychometric model of the structure of working 

memory. In other words, the best model for researcher A who adopts operational definition A of 

working memory may be different from the best model for researcher B who adopts operational 

definition B. To give some insight into this problem, a brief summary of how working memory 

has been distinguished from other constructs will be provided here in the introduction.  

 In the infancy of working memory research, several schools of thought used the terms 

working memory and short-term memory (primary memory) synonymously to refer to the same 

cognitive construct. However, numerous studies have consistently supported the hypothesis that 

working memory is distinct from short-term memory (Cantor et al., 1991; Engle et al., 1999; 

Kane et al., 2004; Conway et al., 2002; Cowan, 2008). This distinction has been achieved mainly 

through individual differences studies and factor analysis (also known as latent variable 

modeling). For example, Engle et al. (1999) submitted a battery of simple span tasks and 

complex span tasks to confirmatory factor analyses. They tested two models: (a) a single-factor 

model that accounts for variance in performance on all tasks and (b) a two-factor model where 

one factor reflects short-term memory and accounts for variance in simple span tasks, and the 

other factor reflects working memory and accounts for variance in complex span tasks. The two-

factor model fit the data better than the one-factor model. This finding shows that, from a 

psychometric perspective, short-term memory and working memory are distinct constructs. 

Other studies have also provided evidence for the distinction between short-term memory and 

working memory on the basis of predictive validity. For example, Kane et al. (2004) reported 

that in a confirmatory factor analysis, a working memory factor predicted reasoning to a greater 
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degree than a short-term memory factor (similarly based on complex span tasks and simple span 

tasks, respectively). Similar finding have been reported elsewhere (Conway et al., 2002; Cowan, 

2008; Kane, Hambrick, & Conway, 2005).  

 Other lines of work have also focused on delineating the various definitions of working 

memory. Cowan (2017) provides a useful taxonomy of the various definitions currently found in 

the field. Specifically, Cowan proposes that there are nine different definitions of working 

memory. See Table 1 for a summary (adapted from Cowan, 2017). A taxonomy like this helps to 

clarify the numerous theories of working memory.  

Table 1.  

Cowan’s taxonomy of working memory definitions   

Definitions of Working Memory  
1. Computer WM (Laird, 2012) A holding place for information to be used 

temporarily, with the possibility of many 
working memories being held concurrently  

2. Life-planning WM (Miller et al., 
1960) 

A part of the mind that saves information 
about goals and subgoals needed to carry out 
ecologically useful actions 

3. Multicomponent WM (Baddeley & 
Hitch, 1974) 

A multicomponent system that holds 
information temporarily and mediates it use in 
ongoing mental activities 

4. Recent-event WM (Olton et al., 1977) A part of the mind that can be used to keep 
track of recent actions their consequences in 
order to allow sequences of behaviors to 
remain effective over time.  

5. Storage and Processing WM 
(Daneman & Carpenter (1980) 

A combination of temporary storage and the 
processing that acts upon it, with a limited 
capacity for the sum of storage and processing 
activities. 

6. Generic WM (Cowan, 1988)  The ensemble of the mind that hold a limited 
amount of information temporarily in a 
heightened state of availability for use in 
ongoing information processing.  

7. Long-term WM (Ericsson & Kintsch, 
1995) 

The use of cue and data-structure formation in 
long-term memory that allows the information 
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related to an activity to be retrieved relatively 
easily after a delay.  

8. Attention-control WM (Engle, 2002) The use of attention to preserve information 
about goals and subgoals for ongoing 
processing and to inhibit distractions from 
those goals. 

9. Inclusive WM (Unsworth & Engle, 
2007) 

The mental mechanisms that are needed to 
carry out a complex span task; it can include 
both temporary storage and long-term 
memory insofar as both of them require 
attention for the mediation of performance.  

Note. Adapted from Cowan (2017). 

 Of the numerous concepts above, only a few have been formalized as cognitive theories 

or psychometric models of working memory. Specifically, definition #3, multicomponent WM, 

is associated with the multicomponent theory of working memory originally proposed by 

Baddeley & Hitch (1974). Definition #6, generic WM, is associated with the embedded 

processes theory of working memory proposed by Cowan (1988). Also, definition #8, attention-

control WM, is associated with the psychometric model of working memory proposed by Engle 

(2002).  

However, all of these theories/models fail to provide a comprehensive approach to the 

measurement of working memory capacity, hence, the need for a new and improved 

psychometric model. To preview the limitations of previous approaches, the Baddeley model 

fails to provide a detailed account of executive attention, and both the Cowan and Engle models 

fail to account for the role of domain-specific verbal and spatial storage and retrieval processes. 

It is shown here that definition #9, the inclusive WM approach by Unsworth, is the best 

definition to guide future research on the measurement of working memory capacity. Before 

expanding on this discussion, a review of the most prominent cognitive theories of working 

memory is presented.  
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Cognitive Theories of Working Memory 

 While there are several informal conceptualizations of working memory, there are 

actually very few formal cognitive theories of working memory. In other words, some 

conceptualizations of working memory have not been tested empirically while others have been 

tested and supported. Arguably, the two most influential formal theories of working memory are 

Baddeley’s multicomponent model and Oberauer’s cognitive process model (which is largely 

based on Cowan’s embedded process model). An in-depth review of Baddeley and Oberauer’s 

theories is presented here.   

Baddeley’s multicomponent model 

 In their seminal paper, Baddeley and Hitch (1974) proposed a cognitive system that can 

simultaneously process and store information while experiencing distraction. Baddeley and Hitch 

proposed a working memory system composed of a central executive and two storage buffers, 

the visuospatial sketchpad and phonological loop. The central executive serves as an attentional 

mechanism that helps to select and maintain information active in working memory. The 

visuospatial sketchpad is considered to be a storage buffer that maintains visual information and 

the phonological loop is considered to be a storage buffer that maintains auditory information. 

Later, Baddeley and colleagues revised their model to include an episodic buffer (Baddeley, 

2000; see Figure 1). The episodic buffer allowed the model to account for the maintenance of 

multisensory information. This revision to the model was important given that the initial 

multicomponent model did not previously account for how multisensory information was 

processed. It is important to note here that a defining feature of Baddeley’s model is the non-

unitary nature of working memory. The idea of having multiple storage systems (or buffers) and 
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a central executive implies that there are multiple mechanisms (components) involved in 

working memory task performance.  

Figure 1 

Baddeley’s multicomponent model of WM (Baddeley, 2010) 

 
 Several lines of research support Baddeley’s model. Evidence in support of the 

distinction between the phonological loop and visuospatial sketchpad stems from memory 

interference effects. Chein et al., (2011) tested the effects of interference on verbal and spatial 

recall in a study in which participants completed trials of a task that involved processing, storage, 

or both. (See Figure 2 for an illustration of the task design). The conditions that involved both 

processing and storage were manipulated by domain (verbal vs. spatial). The verbal storage 

conditions involved remembering letters while the spatial conditions involved remembering the 

positions of squares on a grid. On some of the trials, the domain of the processing component 
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matched the domain of the storage component (e.g., verbal storage and verbal processing); on 

other trials the domain of the processing component did not match that of the storage component 

(e.g., verbal storage and spatial processing). The task demands (i.e., processing and storage 

components) outlined above are typical features of complex span working memory measures. 

The number of items recalled was the dependent variable. They found that verbal processing 

interfered with verbal storage more than spatial processing interfered with verbal storage. 

Likewise, spatial processing interfered more with spatial storage than verbal processing 

interfered with spatial storage. The results from Chein et al. (2011) are presented in Figure 3. 

Similar findings were reported by Shah and Miyake (1996). Taken together, the above findings 

are evidence for a dissociation between the verbal and spatial components of working memory, 

which map onto Baddeley’s model as the phonological loop and visuospatial sketchpad, 

respectively. 

Figure 2.  

Chein et al. (2017) task design.  
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Figure 3 

Chein et al. (2011) interference effect results.  
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   Other evidence for the verbal and spatial storage distinction unique to Baddeley’s model 

comes from neuropsychological studies. For example, Vallar & Baddeley (1984) showed that 

patients with impaired verbal short-term memory failed to encode and rehearse verbal 

information but successfully processed visual-spatial information. Moreover, other 

neuropsychological studies have reported dissociation effects that favor the verbal and spatial 

distinction. Baddeley et al. (1988) conducted a study in which children who had a speech-related 

learning disability showed increased difficulty acquiring new vocabulary compared to their 

typically developing peers. Importantly, no visual processing impairments were shown for either 

group. Similarly, Gathercole and Baddeley (1990a) tested non-word learning in groups of 5-year-

old children were matched based on non-verbal ability. The children were shown toys that were 

given familiar names (e.g., Michael) or unfamiliar names (e.g., Peeton). Children with lower 

levels of verbal ability were worse at recalling new verbal information (non-words) than children 

who showed better verbal abilities. Importantly, the two groups did not differ on measures of 

visual processing. Taken together, these findings support Baddeley’s model and the idea that 

separate domain-specific storage systems are key components of overall working memory 

functioning.  

 In addition to the research that distinguished between the verbal and spatial components 

of working memory, other lines of work have supported Baddeley’s conceptualization of a 

domain-general central executive component that is critical for working memory functioning. 

Evidence for a domain-general central executive comes from individual difference studies of 

working memory capacity and the relationship between working memory capacity and other 

measures of cognitive performance. For example, across two experiments, Turner and Engle 

(1989) tested the domain-generality of working memory by correlating performance on span 
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tasks with performance on tests of reading comprehension. The specific goal was to determine 

whether the correlation between span tasks and reading comprehension (i.e., correct number of 

questions answered after reading a passage) was due to domain-specific processes or domain-

general processes. If the relationship between span task performance and reading comprehension 

was domain-specific, then the correlation between the span tasks and reading comprehension 

would change, such that the correlation would be highest for span tasks that contained a verbal 

processing component. However, if the relationship between the span tasks and reading 

comprehension is domain-general, then the correlations between the span tasks and reading 

comprehension would be similar, regardless of the type of processing component. The results 

showed that the correlation between working memory capacity and reading comprehension did 

not change as function of the type of processing task (i.e., arithmetic vs. reading). Notably, the 

correlation between working memory capacity and reading comprehension persisted even after 

controlling for quantitative skills. These findings provide evidence for the domain-general 

central executive component of working memory. Similar findings have been reported elsewhere 

(Conway & Engle, 1996; Conway et al., 2001; Engle, Cantor, & Carullo, 1992; Engle et al., 

1999; Engle 2002). 

 The work discussed above provides experimental and correlational evidence for the 

multicomponent model of working memory proposed by Baddeley. It is important to note here 

that Baddeley’s multicomponent model of working memory lends itself well to individual 

differences research that aims to understand the psychometric structure of working memory. 

Baddeley’s model provides support for four distinct components of working memory: a central 

executive, a phonological loop, a visuospatial sketchpad, and an episodic buffer. In terms of 

psychometric structure, Baddeley’s model is consistent with a four factor latent variable model, 
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in which the four components (or factors) are roughly equivalent to attention control (central 

executive), verbal storage (phonological loop), spatial storage (visuospatial sketchpad), and 

episodic memory (episodic buffer), which have all been identified as distinct factors in 

psychometric models of cognitive abilities (Conway et al., 2002; Engle et al., 1999; Kane et al., 

2004; Unsworth et al., 2014). Baddeley’s model of working memory therefore not only provides 

a framework of working memory, but it also maps well onto a psychometric model of working 

memory capacity. This is insight is important for the purpose of the current paper where the goal 

is to establish a new and improved psychometric model of working memory capacity that 

includes the components mentioned above.  

 Baddeley’s model of working memory offers a multicomponent view that is supported by 

numerous lines of evidence discussed above (i.e., interference studies, brain-lesion studies, 

individual differences). Though Baddeley’s model provides a conceptualization of working 

memory and can potentially lend itself to uncovering a more accurate psychometric model of 

working memory, it does not provide a sufficiently accurate description of the central executive 

component of working memory. The empirical work conducted on Baddeley’s model does not 

inform how the central executive functions, it does not identify the processes/mechanisms that 

constitute the central executive, and it does not explain various limitations of the central 

executive. It is now well established that executive function is not a unitary construct (Miyake et 

al., 2000), so failures of Baddeley’s model to identify different central executive processes is a 

major limitation of the model. For example, Baddeley’s model is incompatible with the 

influential unity/diversity theory of executive function, which is expressed as a psychometric 

model of individual differences and includes multiple executive processes (Friedman et al., 2006; 

Friedman et al., 2007; Miyake, 2000). The unity/diversity model has been supported by 
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experimental (Healey & Miyake, 2009; Miyake & Shah, 1999) and neuropsychological evidence 

(Miyake et al., 2000; Friedman et al., 2011; Snyder et al., 2015). Specifically, Miyake (2000) 

proposed that executive function (central executive) consists of three distinct mechanisms: 

updating, task-switching, and inhibition. This finding supports a non-unitary concept of the 

central executive in working memory and calls into question Baddeley’s unitary view of the 

central executive.   

Oberauer’s cognitive process model  

Considering the limitations of Baddeley’s model above, other researchers have sought to 

provide a more precise description of working memory and its components. In this section, 

Oberauer’s theory of working memory is discussed, highlighting how this framework can help to 

inform a new and improved psychometric model of working memory capacity. Oberauer’s 

model provides an account of domain-specific memory interference, consistent with Baddeley’s 

view of domain-specific storage buffers. However, in Oberauer’s model, interference effects 

arise from “representational interference” and “retrieval interference”, not from different storage 

buffers as proposed in Baddeley’s model. Representational interference is the result of active 

memory mechanisms whereas retrieval interference is the result of episodic memory 

mechanisms. Thus, Oberauer’s model points to three different memory components: verbal 

storage, spatial storage, and episodic retrieval. In addition, the model points to a non-unitary 

view of attention by providing a more precise account of executive processes, i.e., inhibition, 

switching, and updating.  A more detailed discussion of this model follows.  

 Oberauer (2009) proposed a cognitive processing model of working memory that is 

largely motivated by Cowan’s “embedded processes” model of working memory (Cowan, 1988). 

Oberauer proposes six functions that allow working memory to operate optimally, and in turn, 
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help to explain why WM capacity is predictive of higher-order cognitive abilities. The six 

functions are the ability to build and maintain new representations, the manipulation of structural 

representations, a general-purpose mechanism, rapid updating of structural representations, 

retrieval from long-term memory, and the transferring of information from working memory into 

long-term memory. For a description of each function please see Table 2 below.  

Table 2.  

Oberauer’s Six Functions of Working Memory 

Function  Description  

Building and maintaining new representations Binding elements like words and images into 
meaningful cognitive representations 

Manipulation of structural representations Selecting relevant information for a cognitive 
operation  

General-purpose mechanism Domain-general executive processes needed 
to create new structural representations 

Rapid updating of structural representations Updating the contents of WM 

Retrieval from LTM Accessing information from LTM that is 
relevant for the task goals 

Transferring WM contents to LTM Storing processed information from WM into 
LTM 

 Note. This table represents a brief description of the six functions of working memory proposed 

by Oberauer’s cognitive model.  

The next section discusses how Oberauer’s model conceptualizes the structure of working 

memory.  

The structure of working memory in Oberauer’s model  

 Oberauer’s model makes a distinction between declarative and procedural working 

memory. The declarative part of working memory is responsible for making information 

available for processing while the procedural part of working memory is necessary for enacting 

the processing of cognitive operations. The focus here is on the declarative component because it 
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is more relevant to the study of individual differences and psychometric models of working 

memory capacity. 

 Declarative working memory  

 In Oberauer’s model, declarative working memory consists of active long-term memory 

(LTM), the region of direct access (DA), and the focus of attention (FOA) (see Figure 4). The 

active LTM component represents contents from long-term memory that are relevant for the 

current task at hand, the DA region is responsible for holding bindings accessible for processing 

in the FOA, and the FOA is responsible for keeping information active for the service of an 

ongoing complex task. The layers of declarative working memory can be conceptualized as a 

narrowing of the amount of information, from the outermost layer, LTM, to the innermost layer, 

the focus of attention. In other words, the focus of attention processes a more narrow and specific 

set of stimuli compared to LTM, which processes a broader set of stimuli.  
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Figure 4 

Architecture of declarative working memory (Oberauer, 2009) 

 

 

 Active LTM  

Representations in LTM that are not currently activated are depicted by the unshaded 

circles in Figure 4. In contrast, representations in LTM that are currently active are depicted by 

the shaded circles. Representations in LTM are activated through either sensory input or through 

spreading activation (Collins & Quillian, 1969) from other conceptually related representations.  

 Direct-access region 

 In Figure 4 above, the DA region is the plane where the shaded circles (active 

representations) are bounded together. The DA region is characterized as a subset of active 

mental representations that are available for rapid access. Additionally, the DA region binds 
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these representations into a structure. The ability to do this requires the binding of content 

representations to context representations. For example, one can envision a chess player moving 

the pawn chess piece across the chess board. One is forming a new structure by binding the what 

(the pawn chess piece) to the where (position on the chess board). All of these pieces of 

information are activated as a cognitive representation that is maintained in the DA region. In 

sum, the DA region is a mechanism responsible for retaining active bindings between contents 

and contexts and forming new structures for the service of completing complex cognitive tasks.  

 Oberauer’s model posits capacity limits of the DA region. The capacity limit is in the 

number of pieces of information that can be bounded together. This capacity limit arises from 

two sources: (a) representational interference and (b) retrieval competition. The first source of 

capacity limits, representational interference, is generated by contents of the DA region that 

interfere with and deteriorate each other to cause a decrement in performance. One example of 

this is the phonological similarity effect (Chow et al., 2016; Tehan et al., 2001; Copeland & 

Radvansky, 2001; Hitch et al., 1989). The phonological similarity effect is the finding that 

immediate serial recall is impaired when words within a list are phonologically similar compared 

to when they’re phonologically dissimilar. For example, consider the sounds for the letters “c” 

and “d”. These letters are phonologically similar, and this similarity is likely to cause 

representational interference during recall, and ultimately worse recall performance. On the other 

hand, the letters “k” and “n” are phonologically dissimilar and thus, do not cause representational 

interference during recall, and thus, leads to better recall performance (Chow et al., 2016).   

 The second source of capacity limits, retrieval competition, occurs when recall of stimuli 

from LTM competes with other similar stimuli during the retrieval process. Oberauer (2001) 

implemented a version of the Sternberg working memory task and showed that removing 
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irrelevant information from working memory was more difficult (slower reaction times) when 

the irrelevant information (non-target words) was similar to the relevant information (target 

words). This was not the case when the irrelevant information was dissimilar to the relevant 

information that was to be remembered. Thus, the more competition that exists in working 

memory when retrieving a stimulus, the more impaired retrieval of information is overall.  

 Focus of attention  

 Another component of Oberauer’s model is the focus of attention. This component is 

responsible for selecting specific representations or features of a representation and operating on 

these representations/features. Again, one can think of this through the chess example previously 

discussed. Consider a chess player who is contemplating several options for moving the queen. 

Out of the potential options, one move is more strategic and advantageous The chess player must 

shift features of the representation in and out of the focus of attention to consider each option and  

realize that one option is more advantageous. In this example, Oberauer’s conceptualization of 

the focus of attention refers to its functionality of selecting relevant information for processing.  

In summary, Oberauer’s model of working memory consists of three components: active 

LTM, direct-access region, and the focus of attention. These three components work in 

conjunction to bind information in working memory, create new structures, and enact cognitive 

operations on them for the purpose of completing a complex task. According to this model, the 

ability to do all of this is what is measured in a working memory task. Importantly, Oberauer’s 

model provides a more detailed description of working memory, especially in regard to the 

central executive component. Because of this, Oberauer’s model of working memory lends itself 

well to other fields like neuroscience and psychometrics. This is the case because the concentric 

structure of working memory proposed by Oberauer’s model is conceptually similar to models of 
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working memory proposed by studies in neuroscience where working memory is also thought to 

operate via distinct layers (Beukers et al., 2021). Studies in these fields have corroborated 

Oberauer’s findings. Converging evidence of this sort is a strength of Oberauer’s theory of 

working memory. The next section will discuss empirical evidence in support of Oberauer’s 

model of working memory.  

Evidence for Oberauer’s model of working memory 

 Oberauer’s model has been supported largely by experimental work. For example, in an 

influential paper, Oberauer (2002) explored the structure of working memory in two experiments 

using a memory-updating task originally designed by Salthouse et al. (1991). In Experiment 1, 

participants were asked to remember a series of digits that were presented in a 3x2 matrix on a 

computer screen (see Figure 5 below). These initial values were then updated according to 

arithmetic operations that were provided (e.g., “+4” or “-2”). After a total of 9 updating 

arithmetic operations on the initial values, participants were required to recall the final values. In 

the task, a key manipulation was that in some conditions the digits in both rows constantly 

changed (active condition), while in other conditions, one of the rows changed and the other row 

did not change (passive condition). Response times were slower in conditions with active sets 

than conditions with passive sets. This finding suggests that active sets are maintained in the 

limited capacity direct access region whereas passive sets can be maintained in active LTM. In 

other words, an active set needs to be in the direct access region because the task requires rapid 

access to the set for manipulation. In contrast, the static nature of the passive set means it does 

not require continuous maintenance and manipulation. This set of findings provide support for 

the distinction between active LTM and the region of direct access in Oberauer’s model.  
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Further support for Oberauer’s model comes from investigations of the focus of attention. 

Oberauer (2003) examined object-switch costs in the focus of attention. To do so, Oberauer 

(2003) utilized the same paradigm in Oberauer (2002), except that the task was modified so that 

arithmetic operations (e.g., “+3”) were applied to either the same digit as in the previous trial or 

the arithmetic operation was applied to a different digit than the one in the previous trial. 

Response times were longer on trials where the arithmetic operation was applied to different 

digit than on trials where the arithmetic operation was applied to the same digit. According to 

Oberauer’s model, object-switch costs can be interpreted as the time it takes for the focus of 

attention to bring new information into focus from the region of direct access. These findings 

provide evidence for how processes in the FOA impact information processing of working 

memory during complex tasks. In addition, Oberauer (2003) showed that as the length of the 

relevant lists get longer, response times also increase. This finding shows that the DA region is 

limited in capacity and becomes less effective as list lengths increase. Furthermore, Oberauer’s 

model contends that the focus of attention is limited to processing one item at a time. Evidence 

for this idea comes from dual-task studies. In these studies participants are instructed to attend to 

more than one stimulus at a time and make a response to these stimuli (e.g., remembering letters 

while making judgments about the veracity of sentences that are presented). Findings typically 

show that even when performing simple cognitive operations, participants’ responses slow 

significantly when making a selection if they are asked to attend to more than one stimulus. This 

concept is referred to as a response-selection bottleneck (Oberauer & Gothe, 2006). In sum, these 

findings support Oberauer’s model of working memory by showing that working memory 

operates via distinct layers with separate functions.  
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Figure 5 

Oberauer (2002) working memory task involving memory updating and recall. 

 

 

Taken together, Oberauer’s findings support his model and provide a more accurate 

theoretical account of working memory than does the model of Baddeley.  Importantly, 

Oberauer’s model converges with psychometric models of working memory (Engle & Kane, 

2004; Unsworth et al., 2006). This overlap allows for the development of more well-rounded 

models that are supported by findings from multiple fields.  

The next section builds from the evidence reviewed above by discussing work done on 

Oberauer’s model connecting it to current psychometric models of working memory. Doing so 
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sheds light on the idea that a more inclusive psychometric model of working memory is needed 

in the field.  

Psychometric Models of Working Memory 

 In this section, a review of the most influential psychometric models of WM will be 

provided. In comparison to the cognitive models above, psychometric models focus on 

examining the underlying measurement structure of cognitive abilities as opposed to 

understanding mechanisms that underlie cognitive performance. In this case, the psychometric 

models reviewed below will all speak to the measurement structure of WM. 

The work reviewed in the previous section clarified how Oberauer’s model of working 

memory provides a more precise and detailed account of working memory than other models 

previously discussed (e.g., Baddeley’s model). This allows the Oberauer model to better inform 

psychometric models of working memory that can be more inclusive. A more inclusive 

psychometric model of this sort is currently lacking in the field. To preview, the most influential 

and widely cited psychometric models of working memory are all latent variable models (factor 

models) but there is no consensus on the number of factors. The most parsimonious of these 

models consists of just one factor that is thought to be attention (executive attention theory, 

Engle, 2002). An alternative, more complex model, specifies three factors that are thought to 

reflect attention, verbal storage, and spatial storage (Kane et al., 2004 model). Unsworth’s 

inclusive model of working memory is an alternative model that specifies three factors, thought 

to reflect attention, primary memory capacity, and retrieval from secondary memory. Here we 

propose that all of these models fall short, and that working memory capacity is best explained 

by a four-factor psychometric model that reflects attention, verbal storage, spatial storage, and 

retrieval from secondary memory. Moreover, this inclusive model should be expressed as a 
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network model, rather than a latent variable model, for numerous reasons to be discussed. An 

overview of current psychometric models is discussed next. 

Executive attention view of working memory  

An influential psychometric model of working memory is the executive attention model 

(Engle & Kane, 2004). According to this model, variation in working memory capacity and its 

relationship with other abilities (e.g., reading comprehension, reasoning) is primarily driven by 

individual differences in cognitive control, also known as executive attention. This is the ability 

to regulate behavior to achieve a particular goal (Braver, 2012). Moreover, according to this 

model, cognitive control is a unitary ability that influences performance in a range of tasks in a 

domain-general manner. Numerous studies have shown that individual differences in working 

memory capacity are predictive of real-world outcomes. Starting with the work of Daneman and 

Carpenter (1980), performance on the reading span task was shown to predict reading 

comprehension. The reason for this is that the reading span task imposes a processing component 

that places greater demands on the executive attention component of working memory. Later 

research followed in which memory span tasks were utilized to test a host of questions, with the 

goal of understanding individual differences in working memory capacity and its predictive 

validity. The original reading span task developed by Daneman and Carpenter reflected the 

theoretical conceptualization of working memory posed by Baddeley and Hitch (1974). 

Specifically, the reading span task included a dual-task design that incorporated both storage and 

processing. Kane et al. (2007) added that the dual task requirements allow for an accurate 

measure of the executive component of working memory. The executive component of working 

memory is not only responsible for the ability to “control” attention for the successful 

completion complex tasks, but also for the ability to inhibit distracting information in the face of 
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concurrent processing. Because of this, working memory tasks like span tasks are good 

predictors of higher-order complex activities like writing (Swanson & Beringer, 1996) and 

mathematics performance (Ramirez et al., 2013).  

Another important contribution of the executive attention theory of working memory is 

the empirical evidence it generated on individual differences in working memory capacity and 

how these individual differences impact real-world outcomes and are related to other cognitive 

abilities. For example, Kane et al. (2001) had high and low working memory span individuals 

perform pro-saccade and anti-saccade tasks. In the pro-saccade task, participants were instructed 

to look in the direction of a visual signal that indicated where an upcoming stimulus (a letter) 

would appear on a screen. Once the stimulus appeared, the participant was to identify the target 

letter as quickly and accurately as possible. In the anti-saccade task, participants were presented 

with a visual signal and were instructed to look in the opposite direction of the signal and then 

identify the target letter. On the pro-saccade task, accuracy and response time were equivalent 

for high and low working memory span individuals. However, performance differed in the anti-

saccade condition; high working memory span individuals had faster response times and lower 

error rates than did low working memory span individuals. As discussed by Kane et al. (2001), 

the discrepancy in performance in the anti-saccade task can be attributed to the ability of high 

span individuals to maintain a goal, resist task interference (i.e., a salient visual stimulus), and 

consequently look to where the target letter is to be presented (i.e., the opposite location of visual 

signal). These factors all contribute to one’s capacity to control attention in high interference 

situations, in other words, cognitive control ability. In turn, high working memory span 

individuals effectively resist distracting information and maintain task goals due to higher levels 

of cognitive control compared to low working memory span individuals.  
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Other studies have reported similar findings. Kane and Engle (2003) examined the 

relationship between working memory capacity and cognitive control in the Stroop paradigm. 

Participants were differentiated in terms of their working memory capacity (high spans vs. low 

spans) and then engaged in several variations of the Stroop task. Overall, high span individuals 

were faster and more accurate than low span individuals on the Stroop task. On incongruent trials 

(i.e., word RED in green ink), high span individuals verbalized the color of words faster and 

more accurately than low span individuals, reflecting individual differences in working memory 

that are driven by differential levels of cognitive control. Compared to low span individuals, high 

span individuals were more successful at maintaining access to the task goal and inhibiting the 

habitual reading response. Importantly, Kane and Engle (2003) reported that when 100% of trials 

in the Stroop task are incongruent (i.e., for all of the trials the color of the word did not match the 

word), accuracy and response time did not differ between low and high span individuals. This 

finding suggests that when goal maintenance is facilitated by the task (each trial serves as a 

reminder of the task goal), the differences between high and low span individuals are not 

observed in response times or accuracy. These findings indicate that apart from inhibition, goal 

maintenance is also an important factor influencing performance on measures of cognitive 

control, and in turn, working memory.  

Taken together, these studies suggest that working memory and cognitive control are 

strongly related, especially in tasks involving high interference (Shipstead, Harrison, & Engle, 

2015; Shipstead et al., 2014). That is, success in complex tasks is a function of high levels of 

cognitive control and working memory capacity (Conway et al., 1999; Kane et al., 2001; Kane & 

Engle, 2003). These studies support the executive attention theory of working memory, 
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according to which cognitive control is a unitary ability that influences performance in a domain-

general manner across a variety of tasks.  

Kane et al. (2004): A Three-factor model of WM 

Another widely cited psychometric model of working memory capacity is an extension of 

the executive attention view, but it rejects the notion of a single factor and suggests instead that 

working memory capacity is a non-unitary ability that can be decomposed based on content (i.e., 

spatial & verbal). Kane et al. (2004) proposed a three-factor model of working memory capacity 

that contains executive attention, verbal storage, and spatial storage. In an influential study, Kane 

et al. (2004) conducted a series of confirmatory factor analyses to determine whether the shared 

variance between verbal and visuospatial simple and complex span tasks can be explained by a 

single domain-general ability factor or if multiple factors are necessary. In addition, Kane et al. 

examined the predictive validity of simple and complex span tasks. Specifically, the different 

span tasks were used to predict general fluid intelligence. There were several important findings. 

First, the verbal and spatial complex span tasks were more strongly correlated with each other 

than were the verbal and spatial simple span tasks; the complex span tasks shared between 70% 

to 85% of their variance whereas the short-term spatial and verbal simple span tasks only shared 

about 40% of their variance. These findings suggests that complex span tasks largely reflect a 

unitary domain-general ability. It also suggests that simple span tasks are more domain-specific 

than are complex span tasks. Second, the complex span tasks were more predictive of general 

fluid intelligence than were the simple span tasks (Kane et al., 2004). Again, this suggests that 

complex span tasks are more domain-general and simple span tasks are more domain-specific. 

These are important findings because they show that the shared variance (~40%) between 
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complex span tasks and fluid intelligence occurs largely due to a domain-general executive 

mechanism (i.e., executive attention).  

These results have been largely supported by other studies (Colom, Abad, Rebollo, & 

Shih, 2005; Conway et al., 2002; Cowan et al., 2005; Kane, Hambrick, Conway, 2005; Engle, 

Kane, & Tuholski, 1999; Engle, Tuholski, Laughlin, & Conway, 1999). In addition, the findings 

reported by Kane et al. (2004) provide support for the idea that working memory capacity is non-

unitary and reflects both verbal and spatial abilities. As is, this model is largely compatible with 

Baddeley’s multicomponent model of working memory. The central executive, visuospatial 

sketchpad, and phonological loop in Baddeley’s model would map onto the domain-general 

executive attention component and the visual and spatial storages in the Kane et al model 

respectively.  

Though the work above identifies cognitive control as being an important individual 

difference measure of working memory, and Kane et al.’s work shows that working memory can 

be further specified by both verbal and visuospatial domains, this theory is limited in that 

attention seems to be the only central component of working memory. Moreover, attention is 

described as a unitary ability. Both of these theoretical tenets produce an overly simplistic model 

of working memory that does not converge with other lines of work that suggest a more inclusive 

model of working memory.  

Unsworth’s model of working memory  

Other studies have sought to identify the components of working memory that explain the 

relationship between working memory capacity and other cognitive abilities, such as fluid 

intelligence. This is important because work of this kind helps identify the components of 

working memory that are most important to include in psychometric models of working memory 
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capacity. In light of this, Unsworth has proposed a three-factor model of working memory 

capacity that includes primary memory capacity, attention control, and secondary memory 

retrieval. Studies have utilized structural equation modeling (SEM) to understand the 

psychometric structure of cognitive abilities. For example, Unsworth et al. (2014) examined the 

relationship between working memory capacity and fluid intelligence, specifically testing a 

mediation model in which working memory capacity and fluid intelligence are mediated by 

primary memory capacity, attention control, and secondary memory retrieval. The results 

indicated that the relationship between working memory capacity and fluid intelligence can be 

completely explained by primary memory capacity, attention control, and secondary memory 

retrieval. See Figure 6 below for a depiction of the results.  

Figure 6 

Unsworth’s model of working memory showing capacity, attention, and secondary memory fully 

mediating the relation between working memory and fluid intelligence. 

 
 

 

Note. WM-S= working memory storage, AC= attention control, SM= secondary memory 

retrieval, Gf= general fluid intelligence.  
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 In another study, Unsworth et al. (2009) examined the storage and processing 

components of complex span tasks and their relationship to general fluid intelligence (Gf). They 

conducted mediated SEM analyses to test whether the relationship between recall on the span 

tasks and Gf could be fully mediated by processing speed. Their results showed that partial 

mediation models fit the data the best, indicating that storage and processing speed do not fully 

explain higher-order cognition (i.e., Gf). See Figures 7 and 8 below.  

Figure 7 

 Mediated SEM model of recall, Gf, and processing time.  

 

 

 

Figure 8 

Mediated SEM model of recall, Gf, and processing accuracy  

 

 

 Based on these findings, Unsworth et al (2009) concluded that these psychometric 

models of working memory do not fully explain the “complexity” of complex span tasks and 

why they predict measures of complex cognition, like Gf. Though storage and processing add to 
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the predictive validity of complex span tasks, it is likely that a larger set of abilities influences 

working memory capacity and its predictive validity. Again, this suggests that a more 

comprehensive psychometric model of working memory capacity is needed.  

Nonetheless, findings like these provide important insight regarding components of the 

relationship between working memory and Gf. In sum, this view of working memory provides a 

mechanistic and inclusive view of working memory that is also coupled with an understanding of 

individual differences in working memory and how these differences impact other cognitive 

abilities and measures of real-world performance. Importantly, the role of secondary memory 

retrieval is emphasized as an important component of psychometric models of working memory. 

Because of this, Unsworth’s model of working memory provides a blueprint for building a more 

inclusive psychometric model of working memory that includes secondary memory retrieval as 

an important component.  

Understanding working memory psychometrically: A POT-based perspective  

 In addition to Unsworth’s work, this paper has also been largely motivated by Process 

Overlap Theory (POT). POT complements the inclusive view of working memory proposed by 

Unsworth’s model and support the goal of this paper. Kovacs and Conway (2016) proposed a 

novel model of intelligence, Process Overlap Theory. According to POT, the positive manifold 

of intelligence emerges from overlapping processes that are shared when engaging in complex 

tasks. Informed by evidence from cognitive, psychometric, and neuroscience data, POT supports 

the idea that “g”, the general factor of intelligence, is not a psychological attribute, but rather, is 

a statistical index that is useful for prediction. Although POT is a theory of intelligence, the 

foundation of the theory comes from working memory research. A vast amount of research in the 

field of working memory has shown that multiple processes are involved in working memory 
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performance (Kane & Engle, 2004; Unsworth et al., 2006; Miyake, 2000). For example, as 

discussed earlier, Unsworth’s studies on working memory report that multiple mechanisms 

produce variation in working memory capacity. These mechanisms are retrieval from secondary 

memory, attention control, and capacity of primary memory. In the POT model of Kovacs and 

Conway (2016), maintenance, manipulation, and retrieval are also discussed as mechanisms that 

jointly impact working memory performance. Moreover, Oberauer’s research on working 

memory shows that relational integration and coordination of information are also mechanisms 

that impact working memory capacity. The decades of research in the area of working memory 

converge on the idea that multiple processes overlap to produce individual differences in 

working memory capacity. Depending on tasks demands, different components of working 

memory are recruited for the service of complex cognition. Based on the POT theoretical 

framework, I propose that a novel psychometric modeling approach, network analysis, is more 

compatible with POT and is ultimately a more accurate approach to understanding the 

psychometric structure of working memory. Network modeling will now be discussed in more 

detail as an alternative psychometric approach to understanding cognitive abilities, specifically, 

working memory capacity. 

An Alternative to Modeling Cognitive Abilities: Network Analysis 

Historically, including the work discussed above, cognitive abilities research has 

predominantly used latent variable modeling to explore the structure of the cognitive abilities 

(e.g., working memory, fluid reasoning). Latent variable models are used to examine the 

covariation between observed (i.e., manifest) variables using multiple unobserved latent 

variables. Depending on the research goal, latent variable modeling can be data-driven via 

exploratory factor analysis or theory-driven via confirmatory factor analysis. Both are used to 
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study the structure of cognitive abilities. However, recently, several lines of work have noted 

disadvantages of latent variable modeling.  

First, latent variable models allow for subjective interpretations of the latent factors, that 

is, the researchers define the latent factors (Bollen, 2002; Borsboom et al., 2003). This feature is 

problematic given that tasks are not process-pure and are likely not measuring only what the 

researcher believes is being measured. The second disadvantage of latent variable modeling is 

the principle of local independence presupposed by latent variable models. The principle of local 

independence states that observations explained by a latent factor are independent from 

observations explained by other latent factors. For example, in a latent variable model, three 

spatial tasks that are fully explained by a spatial ability latent factor would not be related to other 

observed variables in the model. Under the lens of POT, this is problematic given that cognitive 

abilities frequently overlap during task performance, and thus, forcing local independence, is not 

an accurate method for testing the structure of cognitive abilities. Due to these limitations, 

research has shown that the use of network analysis as a statistical tool for overcoming such 

limitations held by latent variable models.  

As discussed above, latent variable models possess two important limitations: 

subjectivity of the latent factors and the principle of local independence. Network modeling has 

been proposed to overcome these limitations. Kan et al (2019) discusses that network models do 

not suffer from any of the limitations held by latent variable models. First, network modeling 

does not require researchers to specify any latent factors. Instead, network modeling uses only 

the partial correlations to create a network of the tasks (manifest variables) in a study. By doing 

this, network modeling eliminates the subjectivity in psychometric models of cognitive abilities. 

Additionally, network modeling is not constrained by the principle of local independence. In a 
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network model, the tasks are allowed to freely form connections with virtually any other task in 

the study. Tasks that share similar processes will cluster more closely than tasks in the model 

that may not share many processes. This approach is compatible with POT that states that 

cognitive abilities frequently overlap during cognitive activities and thus, network modeling is 

consistent with this idea that cognitive tasks are not process pure. In sum, network modeling 

overcomes the shortcomings possessed by traditional latent variable modeling.  

Given the advantages of network modeling discussed above, network models can help 

advance psychometric theories of cognitive abilities. Both by overcoming subjectivity and not 

imposing the principle of local independence, network modeling is best suited for theories like 

POT that support the idea that cognitive abilities overlap during cognitive activities. According 

to POT, intelligent behavior is the cause of the overlap between cognitive abilities. Network 

modeling fits well with this tenet because by design, the nodes and edges in a network model 

illustrate this concept. Another important feature of network modeling is the ability to derive 

cluster scores. These scores represent a composite score of node strength in a cluster of nodes 

(tasks). They are the “factor scores” of network modeling. Cluster scores can be used to predict 

outcomes like academic achievement and job performance. The ability to predict academic 

outcomes and other higher-order cognitive abilities like fluid reasoning is preserved in network 

modeling and can ultimately speak to the predictive validity of the tasks in a network model just 

as would be the case in a latent variable model. For these reasons, network modeling shows to be 

beneficial for understanding working memory psychometrically and aligns well with POT as 

mentioned earlier. Taken together, all of the above provide strong arguments for the use of 

network modeling over latent variable modeling, especially in situations when the tasks of choice 

are theoretically driven (e.g., complex span tasks).  
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Though network modeling holds important advantages over latent variable modeling, 

some limitations are worth highlighting.  First, network models are successful only if the 

covariance between variables is large (Kan et al., 2019). Second, if the data possess high 

measurement error, then the network structure can be misrepresented and be misleading (Kan et 

al., 2019). Finally, given the relative novelty of the network modeling technique in the field of 

cognitive abilities, there is no standard practice for implementing this technique on cognitive-

behavioral data. Despite these shortcomings, network modeling shows important strengths in 

regard to uncovering the psychometric nature of working memory.  

Proposed Research 

The ultimate goal of the studies presented here is to propose and test a new psychometric 

model of working memory capacity. The proposed model includes multiple components of 

working memory and will be examined using psychometric network analysis rather than the 

more traditional latent variable modeling approach. The model is compatible with recent 

research on working memory (e.g., by Oberauer and Unsworth), and it is more consistent with 

contemporary models of intelligence, such as POT. More specifically, a network model is 

proposed here that includes four components: attention, verbal storage, spatial storage, and 

retrieval from episodic memory (see figure 9 below); all these components are theoretically 

informed by Oberauer’s cognitive model of working memory and the psychometric models (i.e., 

Engle, Kane et al. & Unsworth) discussed earlier. For comparison, I will also test a latent 

variable model of working memory capacity that consists of the same four components and a 

higher-order factor (see Figure 10 below). Examining both psychometric models contributes to a 

greater understanding of which model explains the psychometric nature of working memory 

better. Doing so can bridge multiple forms of evidence together to propose a psychometric model 
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of working memory that can inform both theory and guide the measurement of working memory. 

This can ultimately be useful for practical contexts such as educational and clinical settings 

where measuring working memory effectively is important.  

The studies proposed here will be conducted using the data from Wilhelm et al. (2013). 

This dataset lends itself well to the current studies because there is performance data for 

measures of attention, working memory, episodic memory retrieval, and fluid intelligence; all of 

which are constructs of interest for the current studies. Furthermore, the data from Wilhelm et al. 

(2013) was used for a similar purpose as is proposed here, which is to study the psychometric 

structure of components of working memory and fluid intelligence. Thus, the number of tasks 

and type of tasks present in Wilhelm et al. are ideal for the current studies. However, a limitation 

of the Wilhelm dataset is worth noting as it pertains to the purpose of the current studies. 

Wilhelm et al. did not include direct measures of verbal and spatial storage, constructs of interest 

in the current studies.  To overcome this shortcoming, the initial trials from the complex span 

tasks will be used to obtain measures of both verbal and spatial storage. This is discussed in 

further detail below.  

 The goal of Study 1 is to determine whether a network model of WM fits the data as well 

as a latent variable model. Study 1examines the psychometric structure of working memory 

capacity using data from Wilhelm et al. (2013). A psychometric network model will be 

compared to a latent variable model. To do so, undirected psychometric network analysis will be 

utilized which will emphasize mutual associations among cognitive measures. The constructs to 

be examined in this study are attention, verbal and spatial storage, and retrieval from secondary 

memory. See Table 3 below for a brief description of the tasks that represent each proposed 

construct. A latent network approach will also be applied to these data. This approach combines 
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the advantages of both the network models and latent variable model approaches. The latent 

network model is a viable solution for accounting for measurement error and retaining the 

properties of latent variable models.  

The goal of Study 2 is to examine the predictive validity of WM as conceptualized via a 

network model and compare it to the predictive validity of WM in a latent variable model. The 

predictive validity of the network components of WM will be tested by modeling the relationship 

between working memory capacity and Gf. This will be done using cluster scores. Cluster scores 

in a network model serve the same purpose as factor scores in a latent variable model. A latent 

variable model will also be derived with 2 higher-order factors, WM and Gf, and the relationship 

between the two will be assessed. This association in the latent variable model will be compared 

to the cluster scores in the network model. Doing so will ultimately help determine whether a 

network model of WM shows comparable predictive validity of Gf as compared to traditional 

latent variable models.  

Study 1: A Network Modeling Approach to Investigating the Psychometric 

Structure of Working Memory 

In this study, psychometric network modeling was applied on the Wilhelm et al. (2013) 

data. Specifically, a network model that accounts for attention, verbal and spatial storages, and 

retrieval from episodic memory was produced. Importantly, no higher-order factors are specified 

in network modeling and that will be the case in this study as well. This approach offers an 

alternative perspective to study the correlational structure of cognitive abilities. Particularly, this 

is an alternative approach that maps well onto recent work showing that the interrelationships 

between cognitive variables occurs in an overlapping manner during complex cognition, such 

that tasks involving similar demands will recruit similar cognitive processes (Kovacs & Conway, 
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2016), and that psychometric modeling is an ideal manner for maintaining congruency with such 

theoretical perspectives (Van Der Mass et al., 2017). Traditionally, in most studies including 

Wilhelm et al. (2013), confirmatory theory-driven techniques are used. These techniques use 

latent factor models to estimate the relationships between observed and unobserved variables that 

are driven by specific theories. These theories typically rely on conceptual and statistical 

assumptions. However, a shortcoming of confirmatory latent factor models is that they may be 

too restricted for uncovering information that is not consistent with theories. Thus, in this study 

we assess whether the exploratory nature of network modeling can provide a less-constrained 

approach to studying WM and help to clarify the nature of the components that underlie WM. 

This technique mirrors a factor analysis approach by focusing on the patterns of pairwise 

conditional dependencies (edges) among observed variables (nodes) rather than dimensional 

reduction of multivariate data. This model was subsequently compared to a traditional latent 

variable model containing the latent factors of attention, verbal and spatial storage, and retrieval 

from episodic memory. The latent variable model of WM was specified by a higher-order WM 

factor. The goal was to assess if a network model of WM fits the data as a well as a latent 

variable model of WM, in which the former does not specify a higher-order WM factor and the 

latter does specify a higher-order WM factor. 

To provide more background on the current studies it is important to discuss Wilhelm et 

al. (2013) in more detail to gain an understanding of the nature of the measures that will be 

included in the current dissertation and how the models that will be derived in the current project 

compare with the latent variable models proposed by Wilhelm et al. (2013). In their study, 

Wilhelm et al investigated the relationship between different components of WM and Gf. Using 

structural equation modeling, measures of updating, binding, retrieval from secondary memory, 
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WM, inhibition, and GF were tested to determine their correlational structure. In addition, the 

ability of the working memory components was also tested in terms of the predictive validity of 

Gf. Several models were tested and Model 2 was found to be the best fitting model that described 

the relationship between WM and gF. See Model 2 below.  

Figure 9. 

Model 2 from Wilhelm et al representing a confirmatory factor model of WM and reasoning 

 

As can be seen above, Wilhelm et al. found first, that the common variance of the tasks 

measuring binding, updating, retrieval from secondary memory, and attention was accounted for 

by the higher order working memory factor. This finding suggests that these components of 

working memory are important aspects to measure working memory. Second, the authors 

reported the relation between WM and GF to be .83. Thus, 69% of the variance in Gf is 

explained by WM, which is higher compared to previous work where effect sizes ranged from 

30% to 50%. Taken together, the findings reported by Wilhelm et al. suggested that (a) WM can 
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be effectively modeled with tasks that account for binding, updating, retrieval from secondary 

memory, and attention and (b) WM continues to be a strong predictor of Gf. Here in Study 1 of 

this dissertation, we attempted to produce findings similar to the former finding reported by 

Wilhelm et al, but instead, only included the constructs of interest, attention, verbal storage, 

spatial storage, and retrieval from secondary memory. The second finding obtained by Wilhelm 

et al will be relevant later in Study 2.  

Study 1 Method 

 The current study is in part, a re-analysis of data by Wilhelm et al. (2013), where 

measures of attention, verbal and spatial storage, and retrieval from secondary memory will be 

used to produce a latent variable model of WM (as done by Wilhelm et al), but also, produce a 

network model of WM containing these measures. In their original study, they collected data 

from 276 participants across 17 measures. Specifically, there were 3 binding tasks, 3 updating 

tasks, 3 retrieval tasks, 3 reasoning tasks, 3 complex span tasks designed to measure working 

memory, and 2 attention tasks. For the purposes of the current study only the tasks measuring the 

constructs of interest will be included (attention, retrieval, verbal/spatial storage, & reasoning). 

See Table 3 below for a description of the tasks that will be used in these studies.  

All psychometric network analyses in both Study 1 and Study 2 are conducted with the 

“psychonetrics” package (v 0.9; Epskamp, 2021) in R. All network models are estimated by 

modeling the variance-covariance matrix of the data as Gaussian graphical model (Epskamp et 

al., 2017). A model optimization process is conducted on both types of network models, in which 

the models are pruned by a step-down search process with significance level of .01 in a recursive 

manner, such that edges that are not significant at α = .01 are automatically and recursively 

removed. The pruned models are then optimized by a step-up search process with significance 
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level of .01, such that the edges that are removed in the previous steps are added back, based on 

modification indices, until BIC no longer increase.  

To evaluate the models, model fit indices were examined. Model fit was deemed 

appropriate when: (a) the ratio of model chi-square (χ 2 ) to degrees of freedom is less than or 

equal to 3.00, (b) comparative fit indices (e.g., Comparative Fit Index (CFI) and Tucker–Lewis 

Index (TLI)) are greater than or equal to 0.95, and (c) Root Mean Square Error of Approximation 

(RMSEA)1 values are less than or equal to 0.06. Additionally, Akaike Information Criteria 

(AIC) and Bayesian Information Criteria (BIC) values can be used to compare models: smaller 

values indicate better fit. All of these thresholds are following the recommendations of Schreiber 

et al. (2006). Furthermore, fit indices were extracted using functions within the lavaan, openMx, 

and qgraph packages that compare original covariance matrices to the implied covariance 

matrices generated by each latent variable and psychometric network model. The hypothesis is 

that the network model of working memory and the latent variable model of working memory 

will fit the data equally well. If both models show similar fit statistics, then the network model 

will be the preferred model given its theoretical compatibility with theories like POT discussed 

above. 

 
 
Table 3 
Tasks of Cognitive Abilities from Wilhelm et al. (2013) that will be used in Study 1 and Study 2 

Latent Construct Cognitive Task  

Attention  Simon task: Responses were made to diamond 
and square shapes that were presented either 
in the top half or bottom half of the screen 
Flanker task: Responses were made to arrows 
pointing left or right. Five arrows were shown 
at-a-time and responses were made based on 
the orientation of the middle arrow 
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Verbal Storage 

 

Initial trials of the Reading span task: 
Participants remembered letters while judging 
whether sentences were sensical or not. Only 
the first trials of this tasks will be used as an 
index of verbal storage. List lengths varied 
from 2-5. Accuracy for list lengths 3 and 4 
will be analyzed.  
Initial trials of the Operation Span task: 
Participants remembered letters while 
determining whether presented math 
problems were correct or not. Only the first 
trials of this tasks will be used as an index of 
verbal storage. List lengths varied from 2-5. 
Accuracy for list lengths 2 and 3 will be 
analyzed. Trials for set sizes 2 and 3 were 
extracted and aggregated, means were then 
calculated.  
 

Spatial Storage Initial trials of the Rotation Span task: 
Participants remembered the spatial 
orientation of arrows while judging whether 
letters were mirror-reversed or not 
Recall 1-Back Spatial/Figural: Participants 
are shown a 3x3 grid of squares and are asked 
to recall and click on the last square that lit-up 
on the grid. List lengths varied from 2-5. 
Accuracy for list lengths 2, 3, and 4 will be 
analyzed. Trials for set sizes 2 and 3 were 
extracted and aggregated, means were then 
calculated.  
 

Secondary memory retrieval  Word-word: Participants recalled 20 pairs of 
words in sequential order across 2 blocks 
Word-number: Participants recalled 20 pairs 
of word-digit pairs sequentially across 2 
blocks 
Letter-position: Participants recalled letters 
that were paired to spatial positions on a 4x4 
matrix across 2 blocks 

Reasoning (Gf) 

*Used in Study 2 only 

Berlin Test of Fluid and Crystallized 
Intelligence: Participants completed 3 subtests 
from this test battery requiring make 
inferences from a set of premises (verbal), 
solve arithmetic reasoning problems 
(numerical), and had to infer irregularities 
from geometric shapes (figural) 
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Note. A table providing a description of the tasks that will be used in Study 1 and Study 2.  

 

Results 

 Data for 216 participants (56% female, 44% male) is reported here. This sample was of a 

mean age of 27.41(SD= 4.83) years. See Table 5 for descriptive statistics of the cognitive ability 

tasks used in Study 1 and Study 2. Correlations among the tasks ranged from small to large with 

tasks measuring the same construct showing higher correlations overall (see Table 6). 

Table 5 

Descriptive Statistics for Cognitive Ability Tasks from Wilhelm et al. (2013) 

Task Mean SD Skew  Kurtosis 

Reading Span 
Storage 

0.85 0.18 -2.04 4.92 

Operation Span 
Storage 

0.95 0.11 -4.29 23.00 

Rotation Span 
Storage 

0.84 0.16 -1.68 3.69 

1-back Spatial 0.44 0.17 -0.23 .10 

SM- Verbal 0.44 0.26 0.05 -1.06 

SM- Figural 0.26 0.16 0.72 0.17 

SM- Numerical 0.26 0.16 0.50 0.13 

Simon -0.05 0.10 -6.09 42.57 

Flanker -0.06 0.14 1.05 -4.97 

Note. SM= Secondary memory. Descriptive statistics were calculated for accuracy across all 
tasks. 
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Variable 1 2 3 4 5 6 7 8 

         

1. Reading- Span 
Storage                 

                  

2. Operation 
Span- Storage .50**               

                  

3. Rotation  
Span- Storage .45** .37**             

                  

4. 1-back Storage .18** .27** .36**           

                  

5. SM Verbal .31** .31** .29** .22**         

                  

6. SM Figural .18** .16* .25** .19** .31**       

                  

7. SM Numerical .29** .31** .30** .20** .71** .41**     

                  

8. Simon .28** .34** .41** .25** .17* .12 .21**   

                  

9. Flanker .14* .13 .17* .07 .19** .09 .19** .32** 
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Note. SM= Secondary Memory. *= p<.05, **= p<.01.  



     
PSYCHOMETRIC STRUCTURE OF WM   
 

44
   
 
   
 

Here in Study 1, a confirmatory factor analysis was conducted on the Wilhelm et al. 

(2013) data set using only tasks measuring attention, verbal storage, spatial storage, and 

secondary memory. As mentioned earlier, verbal and spatial storage were calculated by 

averaging performance on the initial trials (set sizes 2-3) of the operation, reading, and rotation 

span tasks. The CFA model we report here is a correlated four-factor higher order model of WM 

which can be referred to as Model 1. Overall, Model 1 shows good fit as indicated by the model 

fit indices, c2(23)= 23.44, p= 0.43, CFI= 0.99, TLI= 0.99, SRMR= .03, RMSEA= .009, AIC= -

2140.82, BIC= -2066.56. CFI for the present model is above the acceptable threshold of 0.95 as 

is also the case for TFI. Likewise, the SRMR value for Model 1 falls under the threshold of .05. 

In addition, the RMSEA value for Model 1 falls under the threshold of .06. Taken together, 

Model 1 shows good model fit.  

Furthermore, as seen in Figure 9 below, the latent factors show standardized coefficients 

of 0.84 for verbal storage, 0.90 for spatial storage, 0.53 for episodic memory (secondary 

memory), and 0.66 for attention. The standardized coefficients range from moderate to large. 

Taken together, Model 1 shows good fit and the latent factors proposed to measure working 

memory show moderate to strong relations with a higher-order WM factor. 
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Figure 9 

A four-factor higher-order model of working memory predicting verbal storage, spatial storage, 

episodic memory (secondary memory), and attention 

 

 Note. Vbs= verbal storage, SpS= spatial storage, EpM= episodic memory, Att= attention, 

WM= higher-order working memory factor.  

Network model of working memory 

 Using the same tasks from Model 1 above, a network model was produced. The tasks 

representing verbal storage, spatial storage, attention, and episodic memory (secondary memory) 

were included. Each node in a network model represents a task, while the coloring of each node 

represents a latent factor. Second, the connections between each node are termed edges, where 

blue edges between each node represent positive associations while red edges reflect negative 

associations. The thickness of the edges reflect the strength of the associations between the nodes 
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(tasks) where thinner edges indicate weaker associations while thicker edges indicate stronger 

associations. Network models calculate partial correlations between each task and plots these 

relations. Given the literature reviewed above, we specified a network model with nodes 

representing four latent factors (i.e., verbal storage, spatial storage, episodic memory, and 

attention). See Figure 10 below.  

Figure 10 

A network model of WM representing verbal storage, spatial storage, episodic memory 

(secondary memory), and attention 
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Note. Sm_verb= secondary memory verbal, SM_num= secondary memory numerical, 

SM_fig= secondary memory figural, OperStorage= operations span storage, ReaStorage= 

reading span storage, RotStorage= rotation span storage, OneStorage= 1-back spatial storage. 

Yellow nodes= attention, green nodes= episodic memory (secondary memory), orange nodes= 

verbal storage, blue nodes= spatial storage. 

The network model above, referred to as Model 2, showed good fit according to model fit 

indices, c2(25)= 24.65, p= 0.48, CFI= 1.00, TLI= 1.00, RMSEA= 0.01, AIC= -2125.61, BIC= -

2027.72. CFI for the present model is above the acceptable threshold of 0.95 as is also the case 

for TFI. In addition, the RMSEA value for Model 2 falls under the threshold of .06. Taken 

together, Model 2 shows good model fit.  

The network model of WM shows that that tasks representing the same construct 

generally are more strongly connected with one another than with tasks representing other 

constructs. This is especially the case for verbal and numerical secondary memory and for the 

operation storage and reading storage (verbal storage). Similarly, but to a lesser extent, the 

spatial storage measures (rotation span storage & 1-back spatial storage tasks) also showed 

stronger edges between one another. However, the attention tasks, Simon and Flanker, did not 

show strong edges with each other. This will be discussed later. 

Discussion 

In Study 1 the goal was to produce a traditional CFA model of WM (Model 1) and using 

a more novel technique, produce a psychometric network model of WM (Model 2). Each model 

represented four components of WM: attention, verbal storage, spatial storage, and episodic 

memory (secondary memory). These four components were selected utilizing a theory-driven 

approach and are motivated by the following theories: Oberauer’s model of WM (Oberauer, 
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2009), Unsworth’s inclusive model of WM (Unsworth et al., 2014), the Executive Attention 

view of WM (Engle, 2002), and Baddeley’s model of WM (Baddeley & Hitch, 1974). All of 

these propose one or more of the components of WM examined in this study. Here, in 

Experiment 1, we find that the four-factor higher-order CFA model of WM (Model 1) shows 

good fit. That is, the four components of WM along with a specified higher-order factor of WM, 

indicate a good measurement model of WM. Importantly, the network model of WM also 

showed good fit. This pattern of results supports the hypothesis for this study. Given that both 

the CFA model of WM and the network model of WM show good fit, the model of choice is the 

network model because it aligns well with theoretical perspectives like POT (Kovacs & Conway, 

2016). Some notable findings to highlight from the network model are the clusters formed by the 

tasks. Generally, the episodic memory tasks formed relatively stronger edges with one another 

than with other nodes. This is also true of the verbal storage tasks. It is important to also 

highlight that the verbal secondary memory node is associated with Reading Span storage (a 

measure of verbal storage), and figural secondary memory is related to Rotation Span storage (a 

measure of spatial storage). This shows evidence for the idea that WM is in part driven by 

domain-specific components. This corroborates previous research showing that variability in 

WM is in part explained by domain-specific processes as well (Kane et al., 2004). In addition, 

another important finding is that the Simon task shows edges with both measures of verbal and 

spatial storage. This indicates that the relation between measures of attention and measures of 

storage is domain general. This corroborates a bulk of research supporting attention as a domain-

general component of WM (Baddeley & Hitch 1974, Engle et al., 1999). 

To further extend the findings from Study 1, in the next study, the predictive validity of 

WM was tested in two ways, first, using a traditional CFA approach, and later using a network 
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model. Specifically, the predictive validity of Gf was tested. Fluid intelligence has traditionally 

been related to WM and thus, examining this relationship here can serve as a psychometric 

“check”. The goal of Study 2 is to test whether the components of WM in a network model 

predict Gf similarly as they would in a traditional CFA model. Testing this question can lead to 

further insight about the ability for network models to preserve predictive validity of other 

higher-order constructs. This is important given that establishing predictive validity in CFA 

models of WM is a common goal of psychometric studies of cognitive abilities.  

Study 2: Predicting Gf via a Psychometric Network Model of WM 

 Historically, a great deal of research has been devoted to understanding the relationship 

between WM and Gf. Thus, to examine this relationship from a psychometric perspective in this 

study is important as this will address one of the aims of this dissertation, namely, to understand 

which components of working memory are crucial for measuring and in turn, predicting Gf. As 

discussed earlier, Wilhelm et al. (2013) tested the relationship between the various components 

of WM and Gf. They found WM and Gf to be highly related constructs. Here, we will utilize the 

tasks included in Wilhelm et al to also produce a latent variable model of WM and Gf. 

Specifically, we will specify a correlated 2-factor higher-order latent variable model of WM and 

Gf. In contrast to Wilhelm et al, we will also use network analysis to test the predictive validity 

of the different components of WM when predicting Gf. Specifically, Study 2 will test the extent 

to which attention, verbal and spatial storage, and retrieval from secondary memory predict Gf, 

and it is predicted that each of these constructs will account for unique variance in Gf. 

Importantly, we predict that the predictive power of WM in the network model will be equivalent 

to the predictive power of WM in the latent variable model regarding Gf. Showing this pattern of 

findings will strengthen the claim that not only does the network model of WM fit the data just 
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as well as a latent variable model of WM (Study 1), but also that we preserve the ability to 

predict higher-order constructs like Gf using network modeling. This will lead to a greater 

understanding of how network modeling can inform our knowledge of how components of WM 

are structurally related to Gf. 

Study 2 Method 

Study 1 used both latent variable modeling and psychometric network modeling to 

examine the structure of WM. Here we extend Study 1 and include measures of Gf to examine 

the extent to which the different components of WM predict Gf. We utilized the tasks in Table 2 

to carry out the goal of this study. First, we produced a latent variable model of WM and Gf. We 

used factor scores to determine the extent to which WM and Gf are related in the latent variable 

model. Next, we produced an undirected network model of the measures of the components of 

WM and the measures of Gf. Next, we used cluster scores to determine the strength of the 

network associations between nodes of WM and the Gf node.  The cluster scores are comparable 

to the factor scores in the latent variable model. As such, we were able to compare the predictive 

validity of WM in predicting Gf in the network model and in the latent variable model. As stated 

above, the network modeling procedures used in Study 1 were also used here.  

In addition, the model fit indices described above in Study 1 (Schreiber et al., 2006) were 

also used here to determine the fit of both the network and latent variable model of WM and Gf.  

In Study 2, it is predicted that the cluster scores of the components of WM will predict unique 

variance in Gf. Moreover, it is predicted that about 50% of the variance in Gf will be explained 

by the network model of WM. In addition, it is predicted that in the latent variable model, the 

WM factor will explain about 50% of the variance in the Gf factor. If these findings hold, this 

will be evidence that a network model of the components of WM preserves the predictive 
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validity typically obtained in latent variable models of WM and Gf. As in Study 1, the network 

model will be the preferred model given its theoretical compatibility with models like POT that 

motivate the studies here.  

Results 

Participant data here in Study 2 is the same as that of Study 1. In addition to the measures 

used in Study 1, here in Study 2 we also included a composite measure of Gf. See Table 2 for a 

description of the measures.  

First, a confirmatory factor analysis was conducted on measures of attention, verbal 

storage, spatial storage, episodic memory (secondary memory), and Gf. This model can be 

referred to as Model 3. Overall, Model 3 showed good fit statistics according to criteria proposed 

by previous sources (Schreiber et al., 2006; Kline, 2015). Specifically, Model 3 shows: c2(49)= 

84.40, p< 0.01, CFI= 0.95, TLI= 0.93, SRMR= 0.06, RMSEA= 0.05, AIC= -2841.14, BIC= -

2743.25. CFI for the present model is above the acceptable threshold of 0.95 as is also the case 

for TFI. Likewise, the SRMR value for Model 3 falls within proximity of the .05 threshold. In 

addition, the RMSEA value for Model 1 falls under the threshold of .06. Taken together, Model 

3 shows good model fit.  

Furthermore, as seen in Figure 11 below, the latent factors show standardized coefficients 

of 0.81 for verbal storage, 0.96 for spatial storage, 0.59 for episodic memory (secondary 

memory), and 0.62 for attention. The standardized coefficient path between WM and Gf was 

0.77, 95% CI [0.71, 0.82]. The standardized coefficients range from moderate to large. Taken 

together, Model 3 shows good fit and the latent factors proposed to measure working memory 

show moderate to strong relations with a higher-order WM factor. Further, the higher-order WM 

factor also shows a strong relation with the latent Gf factor. In terms of effect size, 64.8% of the 
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variance in the verbal storage factor was shared with the higher-order WM factor, 92% explained 

in the spatial storage factor, and 34.8% explained in the episodic memory latent factor. Notably, 

59% of the variance in the GF factor was shared with the higher-order WM factor. In sum, the 

effect sizes in this model were all large.  

Figure 11 

A CFA model depicting the structural relation between a higher-order WM factor and Gf 

 

Note. Rst= reading span storage, OpS= operation span storage, RotS= rotation span storage, 1-

backS= one-back storage, SM-V= secondary memory verbal, SM-N= secondary memory 

numerical, SM-F= secondary memory figural, WM= higher-order working memory factor, GF= 

fluid reasoning.  

 

Network model analyses 

Using the same tasks from Model 3 above, a network model was produced. The tasks 

representing verbal storage, spatial storage, attention, episodic memory (secondary memory) and 
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Gf were included. This model can be referred to as Model 4. The same specifications as those 

used for Model 2 earlier in Study 1 were used to calculate this model with the main difference 

being that in this Model 4 we proposed a fifth node representing Gf. See Figure 12 below.  

Figure 12 

Network model of WM components and Gf 
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Note. Sm_verb= secondary memory verbal, SM_num= secondary memory numerical, 

SM_fig= secondary memory figural, OperStorage= operations span storage, ReaStorage= 

reading span storage, RotStorage= rotation span storage, OneStorage= 1-back spatial storage, 

gf= fluid intelligence. Yellow nodes= attention, green nodes= episodic memory (secondary 

memory), orange nodes= verbal storage, blue nodes= spatial storage, pink node= Gf.  

Model 4 showed good fit statistics according to criteria proposed by previous sources 

(Schreiber et al., 2006; Kline, 2015). Specifically, Model 4 shows: c2(31)= 27.21, p< 0.01, CFI= 

1.00 , TLI= 1.00, RMSEA= 0.01, AIC= -2490.14, BIC= -2375.38. CFI for the present model is 

above the acceptable threshold of 0.95 as is also the case for TFI. Likewise, the RMSEA value 

for Model 1 falls under the threshold of .06. Taken together, Model 4 shows good model fit.  

In terms of the WM components (attention, verbal/spatial storage, and episodic memory), 

and similarly to Model 2 in Study 1, the network model of WM shows that that tasks 

representing the same construct generally are more strongly connected with one another than 

with tasks representing other constructs. This is especially the case for verbal and numerical 

secondary memory and for the operation storage and reading storage (verbal storage). Similarly, 

but to a lesser extent, the spatial storage measures (rotation span storage & 1-back spatial storage 

tasks) also showed stronger edges between one another. However, the attention tasks, Simon and 

Flanker, did not show strong edges with each other. Importantly, the Gf node is associated with 

most nodes in the network. The Gf node showed the strongest edge weights with the figural 

measure of secondary memory and then with the 1-back spatial storage measure.  

In addition to producing a network model of WM, cluster scores were calculated to 

determine the extent to which the four components of WM (attention, verbal/spatial storage, & 

episodic memory) are predictive of Gf. In this analysis, Gf was calculated as a composite from 
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three Gf tasks: Gf verbal, Gf numerical, and Gf figural. As outlined earlier, cluster scores are 

comparable to factor scores in traditional CFA analyses. This model can be referred to as Model 

5. See Figure 13 below.  

Figure 13 

A regression model depicting cluster scores for each WM component predicting Gf 

 

Note. VS= verbal storage, SS= spatial storage, EM= episodic memory, AT= attention, gf= fluid 

intelligence, gff= gf figural, gfv= gf verbal, gfn= gf numerical.  
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Per Model 5 above, not all components of WM were predictive of Gf. Spatial storage was 

predictive of Gf at 0.60 and episodic memory was predictive of Gf at 0.39. However, verbal 

storage was not predictive of Gf as was also the case with attention. Cumulatively, 51% of the 

variance in Gf was explained by the components of WM. An effect size of 51% is associated 

with an estimated association of 0.71 [0.64, 0.77]. Thus, in a follow-up analysis we tested for a 

difference of associations and found that the association between WM and Gf (0.77) in model 11 

(CFA model) is not significantly different from the association between the components of WM 

and Gf (0.71) in model 13 (network model), p= 0.17. A discussion of these findings will now be 

provided.  

Discussion 

In Study 2 the goal was to determine the extent to which WM was predictive of Gf in 

both a traditional CFA model and a network model. First, the findings showed that both a CFA 

model and network model of WM and Gf fit the data well. Second, the findings show that the 

CFA model of WM predicted Gf at 0.77 with 59% of the variance being explained in Gf. Using 

cluster scores, the network model of WM explained 51% of the variance in Gf. Both findings are 

in-line with previous research showing that WM and Gf are correlated at about 0.72, where about 

50% of the variance is shared between both constructs (Kane et al., 2005). Contrary to our 

hypothesis, the findings show that the network model of WM does not explain as much variance 

in Gf as does the CFA model of WM and Gf. A reason for this result is due to the lack of 

predictive validity shown by both the verbal storage and attention components. Between both 

cluster scores, only about 4% of the variance is explained in Gf. This does not corroborate 

previous findings showing that attention is a significant predictor of Gf (Engle, 2002). 

Nonetheless, though the network model of WM did not explain as much variance in Gf as the 
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WM factor in the CFA model (Model 3), the WM components in the network model still 

explained about 50% of the variance in Gf, which is what is typically reported in this field of 

work (Kane et al., 2005; Unsworth et al., 2014; Engle et al., 1999; Kane et al., 2004). 

Furthermore, a follow-up test of difference in correlations showed that the differences in 

variance explained between the CFA model (59%) and the network model (51%) are not 

significantly different. Thus, showing that network models of WM retain predictive validity, 

especially regarding Gf. Importantly, it is worth acknowledging that the CFA model in this study 

could be overestimating the relationship between WM and Gf, while the network model could be 

estimating this relationship more accurately; this will be discussed in the next section. A larger 

discussion of the findings from Study 1 and Study 2 will now be provided.  

General Discussion 

Across Study 1 and Study 2 the goal of this set of studies was to (1) examine the 

psychometric structure of WM via network modeling and (2) determine the extent to which 

network models of WM are predictive of Gf in comparison to traditional CFA models of WM. 

The results show support for the hypothesis proposed for Study 1, but the results do not fully 

support the hypothesis for Study 2.  

In regard to Study 1, it was hypothesized that a network model of WM would fit equally 

well to a traditional CFA model of WM. In both models, the components of WM were attention, 

verbal storage, spatial storage, and episodic memory (secondary memory). The results indicated 

that the network model (Model 2) fit the data well just as the CFA model of WM memory 

(Model 1). This finding is important for several reasons. First, these findings corroborate 

previous work proposing important components that produce variation in WM. Namely, 

attention, verbal/spatial storage, and episodic memory. Starting with attention, a long line of 



     
PSYCHOMETRIC STRUCTURE OF WM   
 

58
   
 
   
 

work has argued that individual differences in WM are primarily driven by individual differences 

in attention (also known as cognitive control, attention control, controlled attention) (Conway et 

al., 2001; Kane et al., 2001). Numerous studies have shown that attention serves as the 

bottleneck of WM capacity. For example, Conway et al., (2001) showed that in dichotic listening 

tasks, high WM span participants were less likely to hear their name from the unattended 

listening channel compared to low WM span participants (20% vs 65%, respectively). This 

finding supports the idea that having a higher ability to resist distracting information is a defining 

feature of being a high WM span individual. More akin to the current study, other work, using 

latent variable modeling, has shown that a latent WM factor is more predictive of higher-order 

cognition (e.g., intelligence) than STM. Presumably, this is due to the domain-general shared 

variance between WM and intelligence (Engle et al., 1999). In the network model of WM 

produced here (Model 2), there is evidence for this domain-generality of attention in the WM 

network. The Simon task, a typical measure of attention, was related to both verbal and spatial 

storage. This corroborates previous research showing that attention is a domain-general ability.  

Further, the network model of WM showed strong relations among most measures of 

domain-specific storage. The verbal storage tasks were related to one another non-storage 

abilities in the network. This pattern of findings was also true for the spatial storage tasks. The 

secondary memory tasks also showed associations with the storage tasks according to content. 

For instance, the secondary memory verbal task shared an edge with the reading span storage 

measure (both are verbal tasks) and the secondary memory figural task shared an edge with the 

rotation span storage measure. This is evidence for the convergent validity of the domain-

specific measures. One potential caveat that is worth discussing is that the measures of verbal 

and spatial storage are derivatives of larger tasks. In other words, the storage measures calculated 
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here are part of larger tasks. A consequence of this is that the associations between the verbal 

storage and spatial storage tasks are similar in this study. Past research shows that tasks 

measuring the same content domain should be more strongly correlated with one another than 

with tasks measuring a different content domain. However, that isn’t necessarily the case here. 

For example, the reading span storage task and rotation span storage task share and edge weight 

of 0.32, while the edge weight shared between the rotation span storage task and 1-back spatial 

storage task is of 0.30. This finding can be attributed to the fact that the reading span storage 

measure and the rotation span storage measure represent the smaller list lengths of the larger 

more traditional reading and rotation complex span tasks, respectively. In these smaller list 

lengths, participants are still engaging in resolving the processing (distractor) task, which 

requires the ability to resist distraction and resolve interference. So, the potential reason why the 

associations between the verbal and storage tasks are more similar than expected is because these 

indices are not purely reflective of storage, but rather storage and attentional abilities. Despite 

this, the overall findings of Study 1 have important implications.  

The findings of Study 1 show that a network model of WM fits the data just as well as a 

CFA model of WM. This supports our hypothesis. With that, the network model is the preferred 

model given its compatibility with theories like POT. Unlike traditional CFA models that are 

restricted by assumptions like the principle of local independence, the statistical assumptions that 

govern network modeling and their theoretical implications fit well with theories like POT, 

which suggests that cognitive abilities are best thought of as collaborating in an overlapping 

manner during complex tasks. Network models establish this kind of perspective, while CFA 

models do not. Not only are the findings from Study 1 consistent with POT, but they are also 

consistent with other WM theories. Mainly, Oberauer’s (Oberauer, 2009) and Unsworth’s 
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(Unsworth, 2014), theories of WM. Oberauer’s theory of WM assumes a structure of working 

memory that relies on the ability to resolve retrieval competition from stimuli in WM and from 

representational interference. To resolve both, WM relies on the capacity of the FOA and the 

ability to update the contents in the FOA. Oberauer also produces a more accurate description of 

the FOA. Oberauer identifies numerous mechanisms that influence WM performance. Doing so 

aligns with the current findings where it is shown that accounting for multiple components of 

WM is psychometrically fitting and theoretically accurate. Furthermore, both Oberauer and 

Unsworth emphasize the importance of secondary memory retrieval. Accounting for secondary 

memory retrieval allows for a more comprehensive view of WM, which is also consistent with 

the findings of Study 1. Model 2 of Study 1 presents an inclusive network of components of WM 

that as a network structure, fit the data well statistically, and is theoretically compatible with the 

numerous theories outlined above. For this reason, the findings from Study 1 unify psychometric 

(Unsworth) and cognitive models (Oberauer) of WM. This outcome has been largely absent in 

previous work in the field of WM.  

The goal of Study 2 was to test the predictive validity of WM as it pertains to Gf. This 

was done by comparing the degree to which WM explained variance in Gf in a traditional CFA 

model, and the degree to which the components of WM explained variance in Gf in a network 

model. Contrary to our hypotheses, the results showed that the latent WM factor in the CFA 

model predicted more variance in GF (59%) than the components of WM in the network model 

(51%) (though this difference was not statistically significant). We suspect that this can be for a 

couple of reasons. First, attention was not measured well in this study. The attention tasks were 

the Simon task and the Flanker task. These tasks correlated at r= 0.32, which is lower than 

expected. Second, these tasks showed very weak cluster scores in Model 5. Attention showed a 
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coefficient of -0.05. This is abnormally low given previous research showing that attention is a 

significant factor that drives the relation between WM and Gf. Next, verbal storage also showed 

a low coefficient of -0.16. In this case it is suspected that there is a suppression effect on behalf 

of the spatial storage component. The path between spatial storage and verbal storage shows a 

coefficient of 0.88, which is alarmingly high. Thus, this leads to the inability for verbal storage to 

explain any meaningful variance in Gf. It is also plausible that the CFA model is overestimating 

the variance in Gf that is predicted by WM and that the network model approximates the true 

relation between WM components and Gf given its statistical advantages. More research is 

needed to confirm this explanation.  

Expanding the idea of estimation above, a reason why CFA models could be 

overestimating the relationship WM and Gf could be due to the underlying differences in 

computation between CFA models and network models. CFA models rely on estimating the 

extent to which variance in observed variables is captured by a common cause or latent factor. 

The influence of other variables in the model are not accounted for. In network models, partial 

correlations among variables are calculated without assuming common causes or latent variables. 

In a network model, the association between two variables is not influenced by any other 

variable in the model; those influences have already been accounted for. However, this is not 

necessarily the case in CFA models. Thus, the differences in these computational approaches can 

lead to the idea that CFA models are overestimating the relationship between WM and Gf, while 

network models could be quantifying this relationship more accurately. Further research is 

necessary on this end.  

Nonetheless, though the components of WM in the network model (Model 4) did not 

predict as much variance in Gf as the WM factor in the CFA model (Model 3), explaining 51% 
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of the variance is consistent with previous findings testing the relationship between WM and Gf. 

Typically, WM explains about 50% of the variance in Gf (Kane et al., 2005; Conway et al., 

2002; Engle et al., 1999). Under this standard, the network model corroborates previous 

literature and establishes predictive validity of Gf. This is an important finding that showcases 

the ability for network models to retain predictive power, especially within this vein of research.  

There are a few limitations that are worth discussing. First, the sample of measures used 

to assess attention was not ideal. Psychometrically, the attention measures did not show good 

psychometric properties, these include skewed distributions and weak correlations with every 

other cognitive task in this set of studies. Poor measurement of attention could have contributed 

to the findings of Study 2, where network component of attention did not explain any unique 

variance in Gf. Second, the indices of verbal and spatial storage are not ideal. As mentioned 

earlier, these are smaller portions of larger complex span tasks. Having true measures of storage, 

such as simple span tasks would be more appropriate. Future studies should attempt to 

administer the full range of WM tasks to attempt to investigate the veracity of this four-

component model of WM. In addition, future studies should attempt to investigate how this 

network structure varies across different populations and changes developmentally as well. 

Addressing these inquiries can advance the field of WM meaningfully both at the theoretical 

level and at the applied level. Despite the limitations discussed earlier, the current study 

effectively tests the questions posed here and sheds light on understanding the psychometric 

nature of WM. Implications of the findings of these studies will now be discussed.  

Overall, Study 1 provides important theoretical implications. First, Study 1 shows that a 

network model of four components of working memory (attention, verbal storage, spatial 

storage, and secondary memory) shows good model fit and is a psychometrically accurate 
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manner of representing WM as compared to a CFA model of WM. Previous research has 

proposed models of working memory that includes at most three out of the four components 

proposed here. We extend these previous findings and show that a more inclusive approach to 

studying WM, accounting for four factors, not only shows to be psychometrically sound, but also 

is more compatible with strong cognitive models of WM, and also with emerging theories of 

cognition like POT. CFA models are not able to achieve this goal due to their statistical 

assumptions as discussed earlier. In sum, the current studies offer a novel psychometric 

perspective to conceptualize WM, both statistically and theoretically.  

Not only do the current findings provide theoretical implications, but also practical 

implications. Specifically, the current studies identify four components of WM that should be 

measured in both educational and clinical settings. For instance, WM has primarily been 

measured through tasks that involve high interference and the ability to engage in dual-task 

demands. However, we show here that other components of WM should be accounted for in 

measurement (i.e., secondary memory retrieval, verbal storage, spatial storage) to ensure that 

WM is being assessed completely. Doing so allows for more accurate diagnoses of learning 

disabilities that might be caused by deficits in WM, for example. In addition, educational and 

clinical interventions can also be informed by the current findings such that any paradigm 

designed to remediate WM can be constructed in such a way that targets the four components of 

WM proposed here. Achieving this can essentially produce a greater impact on improving WM 

capacity.  

Ultimately, the current studies provide novel insight regarding the psychometric structure 

of WM using the novel technique of network modeling. It is shown that a four-component model 

of working memory is an accurate and comprehensive approach to conceptualizing WM. This 
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was done by unifying evidence from cognitive models and psychometric models of WM, which 

is an important endeavor that is largely lacking in the field. Convincing evidence is offered here 

that WM exists as a multicomponent construct that is best represented as a network of interacting 

abilities.  
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