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Mathematical Cognition and the Arts
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Department of Anthropology, University of Toronto, CANADA
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Synopsis

This article revisits the study of mathematics in the arts, and vice versa, the arts
in mathematics, with a view to connecting mathematical and artistic creativity
to the same neural circuits—a proposition put forward for mathematics and
language in a critical 2000 book by Lakoff and Núñez, Where Mathematics
Comes From. This expanded perspective would open up suggestive avenues for
connecting mathematics, language, and the arts as part of an imaginative blend
that comes out in different forms but having the same underlying neural source.
Whether or not this can be established empirically, it is plausible and highly
interesting and, thus, needs to be explored seriously in order to see if equations
to theorems are born of the same mental structures that produce music, poetry
and drawing, as the philosopher Max Black [4] had anticipated before the advent
of contemporary neuroscience in the early 1960s. The argument put forth here is
that art can be studied through a mathematical lens, and that mathematics can
be studied through an artistic lens, in order to glean what the common neural
substratum is like. The approach is called hermeneutic, in line with critical
approaches in the arts, from visual art to literature.

1. Introduction

When Pythagoras carried out the systematic investigation of numbers and
their geometrical properties he laid the foundations for mathematics as an
autonomous discipline. But he did not isolate it from philosophy or the arts,
seeing in mathematical concepts a means to understand connections between
phenomena such as the cosmos and music (Godwin [20], James [26]). Ac-
cording to the Pythagoreans, the proportions in the movements of celestial
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bodies and the ratios of the frequencies of strings that produced consonant
sounds were mirrored in mathematical proportions. Mathematics was thus
a means of studying the connection between numbers, cosmology, and the
human arts. The Renaissance continued the tradition of connecting math-
ematics with the arts. This was broken by the time of the Enlightenment,
when new social and educational realities encouraged a separation of the
two, with mathematics and science on one side and the arts and humani-
ties on the other. To this day, these are perceived as products of distinct,
separate mental faculties in school, society, and many sciences of the mind,
even though, as will be argued in this paper, this state of affairs is changing
(Gardner [18]).

In fact, despite this artificial separation, mathematics, science and the arts
are still felt to be interconnected by mathematicians, scientists, and artists
themselves (Bell [3]). The study of “mathematics-in-the arts”, or MIA for
short, continues to produce many valuable insights. But the reverse has rarely
been contemplated—namely, using the arts to study mathematics (Danesi
[10]). This can be called instead, an “arts-in-mathematics”, or AIM, mode
of inquiry. Starting with Stanislas Dehaene [11] and Brian Butterworth in [5]
the scientific search for the answer to whether or not mathematics is separate
from other faculties, such as language and the arts, has become a central
area of research with the cognitive and neurosciences. But these sciences
have rarely contemplated using the arts as a channel for gaining access to
the nature of mathematics.

This essay will take a look at the possibility of using an AIM approach to
the study of mathematical cognition—an approach that is not separate from
other approaches, including the MIA one. The groundwork for establishing
such an approach was laid, indirectly, by George Lakoff and Rafael Núñez
in their book Where Mathematics Comes From: How the Embodied Mind
Brings Mathematics into Being [32], in which they discussed a coherent,
albeit controversial, view of how mathematicians come to use and invent
their proofs and theorems through the use of analogies and metaphor. If
they are correct, then the same neural circuits are involved in mathematics
and the arts, and this would open up suggestive investigative avenues for
connecting mathematics, language, and the arts. Whether or not a neural
interconnection can be established empirically, the point is that it is plau-
sible and highly interesting and, thus, needs to be explored seriously if we
are ever to come to an understanding of what mathematical cognition is.
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If its basis is indeed analogical and metaphorical, then its artifacts, from
equations to theorems, are born of the same mental structures that produce
music, poetry and drawing, as the philosopher Max Black [4] had already
anticipated before the advent of neuroscience in the early 1960s.

2. Mathematics in the Arts

The Renaissance painters not only developed perspective drawing but also
examined the geometry behind it. They also studied and utilized the Golden
Ratio as part of their repertoire of tools for creating visual art works. The
tradition of connecting mathematics explicitly to the arts by artists and
mathematicians, or MIA, started essentially in that era. The intrinsic inter-
connection between the two—mathematics and art—reveals, arguably, that
the brain is based on what the Italian philosopher Giambattista Vico called
a “poetic logic” (Danesi [9]) and Edgar Allan Poe, a “bi-part” soul, that
blends imagination and reason (Stade [47]). As Growney [21] has convinc-
ingly shown, many poets have used their bi-part soul to create some mag-
nificent works of literary art, including poems with mathematical imagery
(Geometry by Rita Dove, Figures of Thought by Howard Nemerov, Pi by
Wislawa Szymborska, and others), and poems with mathematical structure,
such as Lewis Carroll’s The Mouse’s Tale.

In effect, MIA has been a means, since the Renaissance, for unraveling the
relationship between numbers and visual art, poetry, music, and other cre-
ative products, but it has not affected the way mathematics is studied in any
significant way. It is a hermeneutic tool, similar to the ones used by literary
critics, musicologists, and art critics for understanding the nature of creative
texts and the creative impulse itself. The overall method involves identifying
points of contact between the arts and mathematics. Mathematicians them-
selves have often sensed this connection, referring to “good mathematics” as
“beautiful,” much like a literary critic would designate a poem as aestheti-
cally pleasing or beautiful. It is relevant to repeat some of these here:

The mathematician’s patterns, like the painter’s or the poet’s
must be beautiful; the ideas, like the colors or the words must
fit together in a harmonious way. Beauty is the first test: there
is no permanent place in this world for ugly mathematics (G. H.
Hardy [22, page 85]).
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Mathematics, rightly viewed, possesses not only truth, but supreme
beauty—a beauty cold and austere, like that of sculpture, without
appeal to any part of our weaker nature, without the gorgeous
trappings of paintings or music, yet sublimely pure and capa-
ble of a stern perfection such as only the greatest art can show
(Bertrand Russell [43, page 60]).

It is impossible to be a mathematician without being a poet in
soul (Sophia Kovalevskaya [31]).

A mathematician who is not also something of a poet will never
be a complete mathematician (Karl Weierstrass [50, page xix]).

The sense of beauty that, say, a mathematical proof can evoke does indeed
have many features in common with a poetic or artistic text, which gener-
ates sense and aesthetic power through its coherence and internal symmetry.
In effect, MIA is a hermeneutic tool connecting structural features of art
forms and their aesthetic qualities to mathematical structures. This is likely
why some artists will even incorporate mathematics directly into their works,
starting with the perspective painters and a little later with polyphonic mu-
sic. Among well-known examples of mathematically-based musical works,
the polyphonic works of Johann Sebastian Bach, the atonal music of Arnold
Schoenberg, which employs permutation theory as its structural framework,
and the incorporation of the Golden Ratio by Debussy in La mer, are among
the best known ones. In the visual arts, fractal theory, mathematical sym-
metry, and topology have informed the works of painters and sculptors, such
as M. C. Escher who created pictures that explored the complex relation-
ship between perception and mathematics. Beginning around 1936, Escher
started drawing ambiguous patterns in which he interlocked repeated figures
of stylized animals, birds, and fish, leaving no spaces between the figures
(Schattschneider [44]). A little later, he began toying with visual percep-
tion itself, creating such “impossible figures” as staircases that appeared to
lead both upward and downward in the same direction, and alligators that
seemed to come to life, walking off the edge of the paper. In his famous 1960
lithograph, Ascending and Descending, the people in it are both climbers and
descenders at once.

Perhaps the only way to grasp this illusion is to “slice the staircase,” as Fal-
letta [15, page 32] proposes. Doing so shows that the levels of the staircase
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do not lie in a horizontal plane, but rather move upward spirally. The steps,
on the other hand, remain in the horizontal plane. Hence, it is a geometrical
play on the representation of three-dimensions on a two-dimensional surface
that produces the illusion. Another well-known producer of this kind of op-
tical illusion art was the Swedish artist and art historian Oscar Reutersvärd.
One of his most famous works is the “devil’s triangle,” which creates a jar-
ring “devilish” sense of distortion and surreal unease. In 1958, the English
biologist L. S. Penrose and his son Roger drew their own version of the devil’s
triangle, which has since come to be known as the Penrose Triangle (Fauvel,
Flood, and Wilson [16]).

Works such as these are examples of what is known generally as “mathemati-
cal art,” that is, art that incorporates some mathematical property or idea in
its textual structure. One mathematical construct that has been particularly
fertile in this genre of art is the Golden Ratio (see Livio [33]). The ratio is
mentioned at the beginning of Book VI of Euclid’s Elements.

The Golden Ratio also inspired the first true MIA study in 1509, by Luca
Pacioli, called De divina proportione, a book illustrated by Leonardo da
Vinci. In it, Pacioli showed that the Golden Ratio, which he renamed the
“divine proportion,” was an inherent mathematical property that constitutes
a pattern in visual art and architecture. It is no coincidence that da Vinci’s La
gioconda (Mona Lisa) exhibits the divine proportion if a rectangle is drawn
around the face of the Mona Lisa. No documentation exists to indicate
that Leonardo consciously used the Golden Ratio in his painting, nor where
precisely the golden rectangle should be drawn. Nevertheless, the fact that
Leonardo was a close personal friend of Pacioli and illustrated his book leads
one to strongly suspect that he incorporated the divine proportion in that
work and in others. The number of art works that have since incorporated
the Golden Ratio is truly astounding. One of the most famous is by Salvador
Daĺı, who deliberately included it in many of his works. For example, the
ratio of the dimensions of Sacrament of the Last Supper is equal to the Golden
Ratio.

The connection between the Golden Ratio, mathematics, and aesthetics
was studied for the first time scientifically by the German and psycholo-
gist Gustav Theodor Fechner in the 1860s (Livio [33]). In one fascinat-
ing experiment, he presented ten rectangles varying in their length-to-width
ratios to subjects, who were then asked to select the most pleasing one.
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The results showed that 76% of all choices centered on the three rectangles
having proportions that either exhibited the Golden Ratio (1.62), or else
approached it (1.75 and 1.50). Subsequent research has shown a degree of
variance with these findings, indicating that culture-specific perceptual styles
probably guide the choice of aesthetic figures. But the fact remains that the
Golden Ratio has been embedded in some of the greatest art works of history
and is found across cultures and across time.

The exact same kind of story can be drafted for the presence of Fibonacci
numbers, π, and other mathematical forms in the arts of virtually all cultures
(for examples, see [45, 12, 7, 2, 1, 14, 38, 39]). Given the extensiveness of
this kind of story, MIA can be considered a tool not only for decoding the
presence of mathematical forms in art and music, but also for connecting
the dots between them. In effect, MIA might be a valuable tool of cognitive
science and the neurosciences aiming to investigate the nature of mathemat-
ical cognition via empirical research on the brain. Take, for example, the
work of the mathematician Benoit Mandelbrot [35], who (as is well known)
found that random fluctuations in Nature and in human affairs formed geo-
metrical patterns, which he called fractals when they were reduced to smaller
elements. As it turns out, fractals disclose a hidden pattern in shapes that
would otherwise appear random to the naked eye—shapes that are not unlike
contemporary modern art forms. Indeed today there is a whole field called
“fractal art” which is generated by computer fractal algorithms. Solomon
Marcus [36, page 179] makes the following appropriate observation on why
fractal geometry is such a powerful cognitive tool:

What art and poetry anticipated in the 19th century, together
with some phenomena pointed out by Weierstrass, Peano and
Koch, related to curves devoid of tangents in all their points, be-
came explicit in the mathematics of the second half of the past
century, when Benoit Mandelbrot invented the fractal geometry
of nature. Its idea is that nature, in most of its aspects, is not at
all simple and regular. Clouds, ocean coasts, Brownian motion,
snowflakes, mountains, rivers don’t fit with the regular objects of
traditional geometry. Even celestial bodies, longtime considered
models of regularity, prove to be less regular than they supposed
to be. How to approach this world of high complexity? The an-
swer proposed by Mandelbrot is the notion of a fractal object.



Marcel Danesi 323

Such objects are obtained as limits of some asymptotic processes,
starting with some regular figures. If the first steps of these pro-
cesses are visible objects and fit with the simplicity of traditional
geometry, as soon as we go to next steps the new objects become
less and less visible and regular. At the limit, we get completely
invisible, however perfectly intelligible objects, the fractal ones.
What makes them very attractive is their inner, hidden simplic-
ity, in contrast with their outer complexity: in a fractal object,
there is a remarkable phenomenon of self-similarity: it repeats
at its different levels in the same structure As a matter of fact,
everybody can test this fact looking carefully at the structure of
a tree in the forest.

Fractal shapes were known long before Mandelbrot provided a mathematical
framework for studying them. They turn up in Islamic art, in Celtic artifacts,
and in ancient myths. In Mahayana Buddhism, for example, the fractal
nature of reality is captured in the Avatamsaka Sutra by the god Indra’s
net, a vast network of precious gems hanging over Indra’s palace, arranged
in such a way that all the gems are reflected in each other. In recent times,
both Daĺı and Escher have exploited fractal techniques, creating shapes out
of repeated copies of one another.

Perhaps an overarching explanatory model that can be enlisted to explain
the connections between mathematics and art is Carl Jung’s concept of
archetypes [27]. To the best of my knowledge, cognitive scientists and neuro-
scientists have not used this Jungian construct to investigate mathematical
cognition. The Golden Ratio, the Fibonacci sequence, and other mathemat-
ical constructs may, however, either be archetypes themselves or else derive
from some archetypal substratum in the mind. This might explain why
they crop up in music, poetry, and other creative activities (Emmer [13]).
An “archetype theory” of mathematical cognition should thus be considered
seriously in the scientific research agenda in order to grasp the meaning of
such coincidences. If we look for archetypes in the arts, music, dance, poetry,
and the like we will find them. In an interesting and relevant book, Stuart
Isacoff [25] argues that the invention of western musical harmony traditions
came about from an unconscious Pythagorean archetype. Stewart [48, page
9] makes the following relevant observation:
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The main empirical support for the Pythagorean concept of a
numerical universe comes from music, where they had noticed
some remarkable connections between harmonious sounds and
simple numerical facts. Using simple experiments they discovered
that if a plucked string produces a note with a particular pitch,
then a string half as long produces an extremely harmonious note,
now called the octave. A string two-thirds as long produces the
next most harmonious note, and one three-quarters as long also
produces a harmonious note. These two numerical aspects of
music are traced to the physics of vibrating strings, which move in
patterns of waves. The number of waves that can fit into a given
length of string is a whole number, and these whole numbers
determine the simple numerical ratios. If the numbers do not
form a simple ratio then the corresponding notes interfere with
each other, forming discordant ‘beats’ which are unpleasant to
the ear. The full story is more complex, involving what the brain
is accustomed to, but there is a definite physical rationale behind
the Pythagorean discovery.

Remarkably, in 1865 the British chemist John Newlands discovered that by
arranging elements according to atomic weight, those with similar properties
occur at every eighth element like musical octaves. It came to be called, ap-
propriately, the Law of Octaves, and it led to the development of the Periodic
Law of chemical elements. This discovery strongly suggests that the structure
of matter and music is likely to be one and the same, and that mathemat-
ics is the conceptual bridge between them. But the archetype hypothesis
also poses a deep riddle. When ratios between certain string vibrations are
set, other ratios are thrown off, making strict use of a single tuning system
impossible because it produces dissonances. This means that a fatal defect
haunts the Pythagorean model of harmonics, which the Pythagoreans knew
but kept secret. To banish the dissonances, the keyboard was tempered
by breaking the octave into equal parts, so that all harmonies sounded in
tune. The most prominent example of this is Bach’s Well-Tempered Clavier.
This made the flourishing of western music a reality. In other words, it
was a human invention that turned the Pythagorean archetype into a vi-
able tradition. Dissonances exist and are even employed aesthetically by
musicians; but they can be understood mainly in opposition to consonances.
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In other words, dissonant music is an outgrowth of consonant traditions; the
reverse would never have produced contemporary music.

3. The Arts in Mathematics

In a 2008 collection of scientific studies on mathematical cognition, edited by
James Royer [42], the study of mathematical cognition is portrayed as an in-
terdisciplinary enterprise, with computer science and neuroscience standing
out as primary approaches. The studies published in the journal Mathe-
matical Cognition, also show a wide range of approaches to mathematical
cognition. But rarely is art seen as a complementary discipline for study-
ing the mathematical mind included within the cognitive science paradigm.
Whatever the reason for this, there is little doubt that if we are ever to
make a true headway into the study of the mathematical mind, we cannot
avoid an “arts-in-mathematics”, or AIM, line of inquiry, as the Renaissance
artists and mathematicians certainly understood. Immanuel Kant [28] also
saw mathematics as the ability to use visual signs to grasp quantity and space
in a symbolic-artistic way. His perspective found a correlative view in the
ideas of Charles Peirce [37] and, especially, in his Existential Graph Theory,
whereby he claimed that the diagrams that mathematicians make mirrored
their thought processes.

An AIM approach would allow cognitive scientists and neuroscientists a
means for casting a wider net to the study of mathematical cognition, without
excluding the extant interdisciplinary focus of the whole enterprise. The in-
terdisciplinary study of mathematical cognition really took off after the pub-
lication of Lakoff and Núñez’s 2000 book, mentioned above [32]. In it, Lakoff
and Núñez claimed that the ability to do math is not separate from other fac-
ulties such as language—an hypothesis that has been corroborated by various
neuroscientific studies since and which are beyond the scope of the present
discussion. One concrete verification of this is the fact that we use language
to learn math and that math has many structural properties that are lin-
guistic (Danesi [10]). What unites mathematical and linguistic reasoning is
metaphor. In a lecture given at the Fields Institute of Mathematics at the
University of Toronto in 2011, titled “The Cognitive and Neural Foundation
of Mathematics: The Case of Gödel’s Metaphors,” Lakoff elaborated upon
the work he carried out with Nüñez, arguing essentially that mathemati-
cians devise their proofs by resorting to metaphorical (analogical) strategies.
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He looked specifically at Gödel’s famous indeterminacy theorem and how
Gödel likely came to conceptualize it—by analogy with Georg Cantor’s di-
agonal method of proof. Gödel found a statement in a set of statements
that could be extracted by going through them in a diagonal fashion—now
called Gödel’s diagonal lemma. The statement, S, like Cantor’s C, simply
does not exist in the set of statements. Cantor’s diagonalization proof is a
conceptual metaphor, as Lakoff calls it; it is the result of linking different
domains of knowledge into a new one that is a “blend” of these domains.
The blend produces new insights. It led Gödel to imagine three metaphors
of his own. The first one, called the “Gödel Number of a Symbol,” is evident
in the argument that a symbol in a system is the corresponding number in
the Cantorian one-to-one matching system (whereby any two sets of symbols
can be put into a one-to-one relation). The second one, called the “Gödel
Number of a Symbol in a Sequence,” consists in Gödel’s demonstration that
the nth symbol in a sequence is the nth prime raised to the power of the
Gödel Number of the Symbol. And the third one, called “Gödel’s Central
Metaphor,” was his proof that a symbol sequence is the product of the Gödel
numbers of the symbols in the sequence. Gödel’s metaphors, Lakoff argued,
come from neural circuits linking a number source to a symbol target. In
each case, there is a blend, with a single entity composed of both a number
and a symbol sequence. When the symbol sequence is a formal proof, a new
mathematical entity appears—a “proof number.” The underlying premise
in this whole line of argumentation is that metaphorical blends in the brain
produce knowledge and insights. This applies to the creation of new language
as it does to the creation of new mathematics.

Myriad treatises have been written about proof. However, rarely before
Lakoff has it been considered to be a kind of metaphorical process that reveals
a need to organize mathematical information into textual forms that make
sense to us in the same ways that all kinds of texts do—poems, drawings,
novels, songs, and so on. Proof is thus a type of text-making governed by
principles of analogy and blending that make sense to the human brain. So is
art, poetry, and other creative products. The statements by mathematicians
that mathematics is beautiful, when considered from Lakoff’s perspective,
and AIM more broadly, suggest that their sense of beauty derives from the
parts of a proof forming blends that produce insights along the pathways of
the proof. A similar approach can be seen in a groundbreaking 1962 study by
the American philosopher Max Black [4], a study that has clearly influenced
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the work of Lakoff and others subsequently. Black argued that mathematics
was not solely the result of deducing theorems from observations, but also,
and primarily, by making inferences and connections between facts, other
theories, and even everyday experience. Indirectly, Black laid the founda-
tions for AIM long before the advent of cognitive science in the mid-1980s
(Gardner [18]).

The AIM and MIA perspectives were unconscious frames of mind in the an-
cient world. Plato devised the first known school curriculum for his academy,
dividing it into four fields—arithmetic, geometry, astronomy, and music
(called the quadrivium). In combination with the liberal arts of grammar,
rhetoric, and logic (known as the trivium), the basis for integrated learning
was laid by the Greek philosopher. The implicit objective of Plato’s curricu-
lum was a Pythagorean one—to interconnect mathematics with other mental
faculties and visual artifacts. To this day, the most powerful form of inves-
tigation is to envision mathematical forms as having visual artistry. In a
fascinating study, Louis H. Kauffman [41] illustrates how this type of inquiry
can be easily carried out, showing how knot theory might overlap with visu-
alization strategies. In effect, knots are de facto art structures when they are
viewed through the mind’s eye at the same time that they are hidden math-
ematical structures. The same can be said about mathematics and rhythm,
as Luis Radford [41] has cogently demonstrated. He defines rhythm as “a
complex of conflicting ‘components,’ each one exploring and expressing our
experience of the world in a different manner.” Radford explored this idea
with an ingenious experiment, whereby a class of Grade 9 students, divided
in groups of three, were asked to figure out the algebraic pattern inherent in
a sequence of circle figures by first drawing the next figure in the sequence,
then calculating the number of circle figures, and finally devising an algebraic
formula that describes the pattern. The key result of the experiment showed
that the students arrived at the deduction through corporeal movement, that
is, by the use of bodily movements that were connected rhythmically with
thought—pointing, gesturing, and so on. Using voice analysis software to
record the tones of the speech of one of the subjects, Radford also found that
the tone patterns matched the rhythms of the gestures. The main compo-
nents of rhythm (meter, grouping, theme, and prolongation) manifest them-
selves in both the gestural and vocal components of the thought processes
manifested by the subjects.
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4. AIM-Oriented Research

The claim made here is that mathematical cognition can be studied as scien-
tifically, not just speculatively, through the arts—a challenge that has actu-
ally been taken up, in a fledgling way, by several pioneering neuroscientists
and educators. As an example, the Dana Foundation, a philanthropic or-
ganization, sponsored several major research projects in 2004 to study the
hypothesis that learning mathematics can be bolstered by the arts. Un-
der the guidance of the well-known neuroscientist, Michael S. Gazzaniga, a
group of cognitive and neuroscientists from seven universities were assembled
to develop a research agenda to examine the possibility that the visual arts,
music, dance, and theater might affect other areas of learning, including and
especially mathematics.

The first results were published in 2008 under the rubric of Learning, Arts,
and the Brain. One of these, by psychologists Michael Posner and Brenda
Patoine [40], who observed the brain activity of children 4-6 years of age
while they worked on exercises intended to simulate the attention-focusing
aspects of art, found that such simulation enhanced the children’s attention
spans, thus improving cognition. Another study, by neuroscientist Elizabeth
Spelke [46], is of special relevance to AIM, since it examined the relation-
ship between music and mathematical abilities. Specifically, she sought to
determine if engaging students in music will activate brain systems that also
enable them to understand representations of number and geometry. If music
training fosters mathematical ability, it does so by activating and enhanc-
ing one or more cognitive systems, as blending theory, mentioned above,
also postulates. This study thus established a tentative link between mathe-
matical cognition and music. More significantly, the music-trained students
outperformed those with little or no music training at detecting geometrical
properties.

The various studies of the Dana report, however, were not received posi-
tively by other neuroscientists and educators, who claimed that they did
not establish that arts training directly boosts mathematical cognition. This
might be somewhat true, but the studies did tighten up the connections that
had been noted anecdotally before, as discussed above, laying the founda-
tions for an AIM-based research paradigm into a causality between the arts
and mathematics. In his introduction to the reports, Gazzaniga [19] also
saw the project as a first step that will undoubtedly open up neuroscience,
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at long last, “to discover how the performance and appreciation of the arts
enlarge cognitive capacities will be a long step forward in learning how better
to learn.” The negative reception of the Dana reports is due, as Gazzaniga
also seems to imply, to a kind of residue intransigence in cognitive science
and neuroscience towards using the arts as channels for understanding sci-
ence and mathematics. It may also be simply part of a myth that sees the
need for specialized learning. For the present purposes, it is sufficient to state
that the kind of work initiated by the Dana Foundation is likely to catch on,
colloquially speaking, as more and more neuroscientists and mathematicians
are starting to look to the arts in order to understand mathematics or, more
generally, how the two are related neurologically. In other words, AIM is an
unconscious “force” in both neuroscience and education that probably can-
not be stemmed. Already in 2007, Hetland, Winner, Veneema, Sheridan, and
Perkins [24] published a persuasive study, which found that arts programs
activate a special set of cognitive skills that they call “studio habits of mind”
that enhance thinking skills generally. These “habits” predispose students
to understand the inherent connectivity among the disciplines, giving them
more confidence to handle all kinds of complex learning tasks.

It is useful here to list the eight general findings of the Dana Project as
discussed by Gazzaniga [19], since they strongly support the claim that AIM
is likely to become an important line of inquiry within the cognitive and
neurosciences. These can be paraphrased as follows:

1. Learning some art skill motivates a sustained attention re-
quired to improve performance in other areas of cognition.

2. Genetic studies might explain individual differences in chil-
dren’s and adult’s interest in the arts.

3. There are links between music training and memory; these
extend beyond music into mathematics.

4. In children, there seem to be specific links between engage-
ment with music and geometrical representation.

5. Music training and literacy are intertwined; this general find-
ing can, presumably, be extended to numeracy.
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6. Training in the theater arts seems to lead to memory im-
provement.

7. Interest in aesthetics leads to an “openness” of mind, which
in turn is influenced by dopamine-related genes.

8. Learning to dance enhances the neural substrate that sup-
ports the organization of complex actions.

The findings thus support the main claim of this paper, namely that mathe-
maticians and artists have always understood the connectivity between their
crafts. Studying the works of Escher is, in effect, a study of the geometrical
part of the brain that produces everything from proofs to topological models
of thought. Ideas such as π, imaginary numbers, and the like are related to
visual images, rhythms, and so on that are felt to be intuitively valid. AIM
intends to make these intuitions factually obvious.

One hidden myth that research of this kind may finally eradicate is the idea
that “mathematical cognition” is unique, and thus separate from all other
kinds of cognition. To the contrary, mathematics and the arts may, in fact,
be different manifestations of the same faculty—a bi-part soul, as Poe called
it. Mathematics is certainly seen by science as its natural language; but
the many excursions into the mathematical structure of art forms, discussed
above, suggests that it may also be the language of the arts.

5. Concluding Remarks

The AIM approach to how mathematics occurs in the mind, as exemplified
by the research projects above is a scientific one, alerting traditional cogni-
tive science and neuroscience that studying mathematics through the arts is
a fertile and meaningful area of investigation. The MIA approach, whereby
art is studied through a mathematical lens, is also a meaningful mode of
inquiry. It has been called hermeneutic here. Most artistic fields have a
hermeneutic discipline—literature has literary criticism, music has musicol-
ogy, and so on. Mathematics has started to have such a critical discipline, as
the foundation of the Journal of Mathematics and the Arts in 2007 certainly
brings out. The articles in this journal indicate, in effect, that mathematics
can also be studied hermeneutically. Together with AIM, which provides the



Marcel Danesi 331

empirical side to the question of what mathematics is, MIA can shed signif-
icant light on the phenomenon of mathematical cognition, in the same way
that a literary critic might illuminate the cognitive source of literary works.
Chaitin [6] has introduced the term, “meta math,” to provide a conceptual
frame for looking at mathematics as an abstract ability that produces actual
mathematical ideas. It could well be that there is also a “meta art” which
overlaps with meta math to produce blended artifacts, from equations and
formulas to art forms and poems that are manifestations of this overarching
faculty. The study of abstract structure is what mathematics is all about. So
is the abstract study of art, music, and poetry (Hersh [23]). This is because
the brain is likely to be a “parallel distributing organ,” as implied by work
on so-called Parallel Distributed Processing (PDP) theory, which is based
on writing computer programs designed to show how, potentially, brain net-
works interconnect with each other in the processing of information. The
PDP model appears to perform the same kinds of tasks and operations that
language and problem-solving do in tandem (MacWhinney [34]).

It is relevant to note that What Is Mathematics? [8] was the title of a sig-
nificant book written for the general public by Courant and Robins in 1941.
Their answer to their question was an indirect one—that is, they illustrate
what mathematics looks like and what it does, allowing us to come to our
own conclusions as to what mathematics is. Similarly, the only meaningful
way to answer What is music? is to play it, sing it, or listen to it. A year
before, in 1940, Kasner and Newman published another important popular
book titled Mathematics and the Imagination [29]. The authors also illus-
trate how mathematics is tied to imaginative thought and its many products
in art and elsewhere. We come away grasping intuitively that mathemat-
ics is both a system of thought and an art. AIM aims (no pun intended)
to turn the approach in these popular treatises into an investigative tool.
By illustrating mathematics as an art form and, vice versa, art as a math-
ematical form, we may be assembling valuable new pieces to the puzzle of
mathematical cognition.

The notion of AIM and MIA as research tools within cognitive science and
neuroscience may not, in the end, penetrate the substance of the enigma
of what mathematics is beyond interesting anecdotal comparisons and infer-
ences. But as Lynne Gamwell [17] has shown, mathematicians and artists
have been on a common quest since antiquity to understand the physical
world they see before them. Their visions are complementary. Indeed, per-
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haps the only way we can understand what mathematics and art are is by
comparison, as Kasner and Newman also showed. An MIA-AIM paradigm
would likely also be comparison-based. This paradigm is starting to gain
a foothold within the brain sciences and mathematics itself, with new ven-
tures such as The CogSci Network of the Fields Institute for Research in
Mathematical Sciences and the Springer series “Mathematics in Mind,” pub-
lished under the aegis of the Network, which aim to introduce all kinds of
disciplinary approaches to the study of mathematical cognition, including
and especially the arts. As literary critic John William Navin Sullivan [49]
so aptly put it, mathematics is perhaps itself best defined as an art: “The
significance of mathematics resides precisely in the fact that it is an art;
by informing us of the nature of our own minds it informs us of much that
depends on our minds.”
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