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Abstract

In this work, the general problem of the detection of features in images is considered. One

of the methods, the orientation detection of lines, utilized the Radon transform (sinogram)

of an image to detect lines at different angles in an image. The line thickness algorithm

was generated by finding a pattern formed by particular lines in an image. The filtering

of reconstructed images dealt with the removal of blur and other artifacts that arose in

the course of inverting the Radon transform of an image to attempt to obtain the original

image.
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Chapter 1

Introduction

Inverse Problems

According to Jacques Hadamard, a well-posed problem has three properties:

(1) (Existence) A solution to the problem exists.

(2) (Uniqueness) The problem has only one solution.

(3) (Stability) The solution depends in a continuous fashion on the data associated with the problem.

Unfortunately, almost all inverse problems in physics or biology are ill-posed. However, the problems

of existence and uniqueness can often be addressed by considering a generalized solution and then

placing constraints on it. Stability is often lacking in inverse problems.

Inverse problems involve determining an unknown quantity (a cause) associated with a particular

object based upon measurements of the effects associated with this object. Therefore, the concepts

in inverse problems give rise to an underlying theory for remote sensing and non-destructive testing.

For example, if a sound wave is scattered by a target, and if one collects the scattered far field

signal, then the inverse problem is to determine the shape and physical characteristics of the target.

These problems are important in the identification of airborne objects as well as those submerged

in water.

An inverse problem for the earth is to find subterranean targets of interest based upon the analysis

1



of scattered field data for different positions or frequencies. Examples of this include an oil reserve,

a cave, or a mine. Another inverse problem is to find a fault or imperfection in a material by

determining the natural frequencies of a sample of the material. Additionally, an inverse problem

can involve the computation of an image from X-ray data, or the determination of the Earth’s

density based upon the collection of gravitational field data. If one can find the anomalies in an

object by collecting and analyzing the scattered returns from signals sent toward the object, then

one avoids invasive and potentially destructive testing.

Among the many inverse problems are inverse problems of potential theory, inverse spectral theory,

inverse scattering problems in quantum physics, inverse problems in geophysics, inverse problems for

the heat and wave equations, inverse obstacle scattering, finding small subsurface inhomogeneities

from the measurements of the scattered field on the surface, inverse problem of radiomeasurements,

impedance tomography (inverse conductivity) problem, and tomography and other integral geome-

try problems. Inverse problems in the area of tomography involve the use of the Radon transform.

The Radon transform was discovered by the Austrian mathematician Johann Karl August Radon

in 1917.

The Radon transform in two dimensions is the integral transform which takes a function f defined

on the plane to a function Rf defined on the two-dimensional space of lines in the plane whose value

at a particular line is equal to the line integral of the function over that line. The Radon transform

represents a transformation from a function of rectangular coordinates x and y to a function of

coordinates t and θ.

R(t, θ) =

∫
R2

f(x, y)δ(t− x cos θ − y sin θ)dxdy

where

t = x cos θ + y sin θ

is the line along which f is integrated to produce the line integral which is R(t,θ).

Given the Radon transform of a function f, we can recover the original function f through the use

of the Fourier transform.

2



Taking the Fourier transform of the above equation, we obtain

R̂(θ, ω) =

∫
R

exp(−2πiωt)R(t, θ)dt

=

∫ ∫ ∫
R3

f(x, y) exp(−2πiωt)δ(t− x cos θ − y sin θ)dtdxdy

=

∫ ∫
R2

f(x, y) exp(−2πiω(x cos θ − y sin θ))dxdy

after applying the sifting property of the Fourier Transform. Also, changing the order of integration

to put dt first follows from Fubini’s Theorem since f is bounded and measurable.

Now, the 2D Fourier Transform of a function f is given by

F (u, v) =

∫ ∫
R2

f(x, y) exp(−2πi(ux+ vy))dxdy

The 2D inverse Fourier Transform is given by

f(x, y) =

∫ ∫
R2

F (u, v) exp(2πi(ux+ vy))dudv

Converting from rectangular to polar coordinates with

u = ω cos θ v = ω sin θ

and replacing F(u,v) with R̂(ω, θ), we obtain

f(x, y) =

∫ ∫
R2

R̂(ω, θ)|ω| exp(2πiω(x cos θ + y sin θ)dωdθ

The Fourier Slice theorem relates the Radon transform to the Fourier transform. The Fourier Slice

Theorem [1] states that the one-dimensional Fourier transform of a projection Pθ(ρ) is equal to the

two-dimensional Fourier transform of f(x,y) evaluated at an angle θ.

3



Proof: Taking the one-dimensional Fourier transform of the projection, we obtain:

P̂θ(ω) = F(gθ(ρ)) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(ρ− x cos θ − y sin θ) exp(−i2πωρ)dρdxdy

where changing the order of integration to put dρ first is justified by Fubini’s Theorem

since f is bounded and measurable

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y) exp(−i2πω(x cos θ + y sin θ))dxdy

by applying the sifting property of the delta function

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y) exp(−i2π(ωx cos θ + ωy sin θ))dxdy

Now, the two-dimensional Fourier transform of f(x,y) is given by

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) exp(−i2π(ux+ vy)dxdy

In polar coordinates, (u,v) becomes (ω cos θ,ω sin θ). Thus,

F (u, v)
∣∣∣u=ω cos θ,v=ω sin θ = P̂θ(ω)

In the proof above, if we assume that f represents an image in the plane, then f is bounded since

values of f are constrained to lie in the interval [0,255]. Now f(x,y) is measurable if {(x,y) — f(x,y)

< r } ∀ r ∈ R is measurable. For r< 0, the above set has measure zero and is thus measurable.

For r>255, the above set is the entire image which is measurable and has measure m×n where the

image size is mxn. For 0<r<255, the above set is some portion of the image and is therefore some

percentage of m×n and is thus measurable.

Applications of the Radon reconstruction include stress analysis, geophysics, air pollutant stud-

ies, nondestructive testing, pattern recognition, communications, and computerized geophysical

tomography (CGT), computed axial tomography (CAT), barcode scanners, electron microscopy,

and seismology.
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Chapter 2

Previous Work

2.1 Filters Used Before or After Filtered Backprojection (FBP)

Some of the authors employed filters during the process of performing backprojection, while others

filtered the reconstructed images after FBP. Lyra and Ploussi, in their paper [2], discuss filters

utilized during the process of performing filtered backprojection (FBP). In his paper [3], Demirkaya

filters noise-degraded projection images using the nonlinear anisotropic diffusion filter. The images

were reconstructed from the filtered projections using filtered backprojection (FBP). In their paper,

Yang, Zhang, Huang, and Yang [4] employed a multiple sampling method in the projection domain

for low-signal and noisy projections. Then, a fuzzy entropy-based method with a block matching

3D (BM3D) filtering algorithm was used to improve image quality by reducing artifacts and noise

in the image domain. In their presentation and conference paper for the Radiological Society of

North America 2012 Scientific Assembly and Meeting, members of the Mayo Clinic [5] discussed

image-space denoising (ISD). They stated that linear or non-linear filters are directly applied to

reconstructed images to remove noise. They didn’t, however, describe the nature of the linear or

non-linear filters used. In his algorithm which was awarded a patent by the U.S. Patent Office [6],

Boas mentioned the use of an edge-preserving blur filter applied after filtered backprojection (FBP)

and linear interpolation but before forward projection and another FBP. These steps are applied
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in an iterative fashion. Boas, however, did not discuss the nature of the edge-preserving smoothing

filter used. The purpose was to remove metal artifacts from the image. It appears that this is the

closest to the work that we explore in chapter 3.

2.2 Non-Image Processing Methods Used for Crack Detection

Some researchers made use of external data or other methods besides image processing methods

for the detection of cracks.

[7] introduces a new optical method known as shearography. Shearography is an interferometric

method which uses an image-shearing camera. It allows full-field measurement of derivatives of

surface displacements. [8] describes a new method for crack detection in beams based on instan-

taneous frequency and empirical mode decomposition. In [9], two new methods for detecting a

fatigue crack in a planet carrier of an epicyclic transmission are presented.

The authors, [10] of this paper, note that the process of locating and configuring a shaft crack is

an inverse problem. They describe a genetic algorithm based method for shaft crack detection.

This method describes the shaft crack detection problem as an optimization problem via the finite

element method and employs genetic algorithms to search for the solution. The paper by [11]

presents the recent progress of the phased array and electromagnetic inspection techniques. The

authors, [12] of this paper, conduct an eigenvalue analysis using Lanczo’s algorithm in an adaptive

h-version finite element environment to control the discretization error for accurate evaluation of

modal parameters.

2.3 Wavelet-Based Methods of Crack Detection

Some of the researchers utilized wavelet transforms on external data and some applied them to

images. The former constituted non image-based methods. The paper [13] presents a method

for estimating the damage location in beam and plate structures. The two-dimensional wavelet

transform for plate damage detection is described. The location of the damage is determined by
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finding a peak in the spatial variation of the transformed response. Wavelet analysis can effectively

identify the defect position without information concerning structure properties or a mathematical

model. However, the technique appears to depend on displacement data for beams or plates. This

is not an image-based method. The paper [14] discusses a structural damage detection technique

based on wavelet analysis of spatially distributed structural response measurements. The method

assumes that cracks in a structure will cause structural response perturbations at damage sites. This

technique uses simulated deflection responses or smooth analytical crack-tip displacement fields.

The deflection of the displacement response is analyzed with the wavelet transform. This is not an

image-based method. The authors of [15] attempt to detect structural damage with spatial wavelets.

The displacement response data along parallel and perpendicular lines at different positions from

the crack are analyzed with the Haar wavelet. The peak of the spatial variation of the wavelets

indicates the direction of the crack. This method uses simulated structural response data and is

not an image-based technique. The paper [16] describes a method for crack identification of bridge

beam structures under a moving load based on wavelet analysis. The response obtained at a single

measuring point is analyzed using the continuous wavelet transform, and the location of cracks

is estimated. This is not an image-based technique. The paper [17] considers the sensitivity of

the wavelet technique in the detection of cracks in beam structures. Two types of wavelets are

compared: Haar and Gabor wavelets. The dimension of the crack projected along the longitudinal

direction can be deduced from analysis. The authors of this paper, [18], use wavelet-based elements

to model a cracked shaft in order to obtain precise frequencies. The normalized crack location

and depth are detected by means of a genetic algorithm. The paper [19] describes a new method

for automatically detecting cracks in pavement surface images. This technique is based on the

continuous wavelet transform. Post-processing yields a binary image which indicates the presence

of cracks if there any in a pavement surface image.
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2.4 Radon Transform-Based Methods of Crack Detection

In this paper, [20], computed tomography is used to investigate cracks in composite materials such

as short-fibre reinforced carbon fibre reinforced plastics (CFRP). The objective of this paper is to

detect all relevant cracks inside an object in a stable way, reducing the effect of noise.

2.5 Methods of Crack Detection Utilizing Wavelet and Radon

Transforms

These papers either combine the wavelet and Radon transforms or else use both separately for the

detection of cracks in images. The paper [21] describes an empirical method for the identification

of linear structural damage in asphalt pavements which are categorized by longitudinal, transverse,

diagonal, block (radon) and alligator (fatigue) fractures or cracks. A two-dimensional discrete

wavelet transform (DWT) is used for multidirectional and multiscale crack detection. The circular

Radon transform (CRT) is used for angular-geometric orientation analysis for the identification

and classification of crack types. The paper [22] describes an automatic diagnosis system for

the detection and classification pavement crack problem based on the Wavelet-Radon transform

(WR) and the Dynamic Neural Network (DNN) threshold selection. This method combines feature

extraction using WR and classification using the neural network. The authors of this paper, [23], use

a Radon neural network, based on a wavelet transform expert system to improve the capability of

the scale invariant feature extraction algorithm. The wavelet modulus is calculated, and the Radon

transform is then applied to the wavelet modulus. The features and parameters of the peaks are

used for training and testing the neural network. The paper [24] compared multi-resolution texture

analysis techniques using wavelet, ridgelet, and curvelet-based texture descriptors. Recall that the

Radon transform is defined as

Rf (θ, t) =

∫
R2

f(x, y)δ(t− x cos θ − y sin θ)dxdy
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The continuous ridgelet transform is defined as the application of the one-dimensional wavelet

transform to the projections of the Radon transform and can be expressed as

CRTf (a, b, θ) =

∫
R2

ψa,b(t)Rf (θ, t)dt

The curvelet transform is a higher dimensional generalization of the wavelet transform designed

to represent images at different scales and different angles. The technique in this paper consisted

of image collection, segmentation of the regions of interest, extraction of the most discriminative

texture features, and creation of a classifier that automatically identifies pavement distress and

storage. Curvelet-based methods perform better than all other multi-resolution techniques for

pothole damage. Ridgelet-based techniques perform better than all of the multi-resolution methods

for crack problems.

2.6 Other Image Processing Methods for Analyzing Cracks

The authors, [25], describe a vision-based visual inspection technique involving the processing and

analysis of a big set of collected images. Utilizing images from different angles and prior knowledge

of typical appearance and properties of this class of faults, this technique can detect cracks near

bolts. The article by [26] describes a beamlet transform-based approach to automatically detect and

classify pavement cracks in images. To extract linear features such as surface cracks from pavement

images, the image is partitioned into small windows. Then, a Beamlet transform-based algorithm is

applied to the image. Crack segments are linked together and classified into four categories: vertical,

horizontal, transversal, and block. The authors of this paper, [27], describe a detection technique

for road cracks in several directions and each layer for pavement image in a contourlet domain.

The contourlet transform is a double filter bank structure composed of two pieces, the Laplacian

pyramid (LP) used to find point discontinuities, and a directional filter bank (DFB) then used to

link point discontinuities into linear structures which form contour segments. In this paper [28],

a new technique is described to detect and segment a crack on a pavement surface image from its

background. A weighted neighborhood pixels method is discussed, which is based on the intensities

of all pixels in three surrounding loops. The authors, [29], present a novel crack detection method
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based on local binary pattern (LBP), support vector machine (SVM), and Bayesian decision theory.

The technique described combines the information obtained from different video frames to enhance

the robustness and reliability of detection. The paper [30] describes the use of computer-vision

techniques in detection and analysis of cracks on a bridge deck. After feature extraction using the

training set images, statistical inference algorithms are employed to identify the cracks. The paper

[31] describes a new measure which considers simultaneously brightness and connectivity, in the

segmentation step, for crack detection on road pavement images. Features which are computed

along every free-form path allow detection of cracks with any form and orientation. The authors,

[32], of this paper propose a new method of crack image processing for concrete bridge bottom crack

inspections. They construct a machine vision system based on this method, which can detect cracks

in real time. In this paper [33], a novel local binary group (LBP)-based operator for pavement crack

detection is proposed. In this method, local neighbors are classified into a smooth area and a rough

area. Segmentation is only performed in the rough area to capture local feature information.

The authors, [34], reviewed fifty papers related to crack detection. They classified the image pro-

cessing methods in those papers into four categories: integrated algorithm, morphological approach,

percolation-based method, and practical technique. They considered features like length, width,

depth, surface of crack, and direction of propagation.

2.7 Percolation-Based Image Processing

The papers in this section utilize percolation-based methods of image processing for crack detection.

Percolation theory considers the activity of connected sets in a random graph. The authors of this

paper, [35], present an efficient and high-speed crack detection method that employs percolation-

based image processing. In this paper, the authors, [36], introduce an efficient and high-speed

method for crack detection employing percolation-based image processing. To lower the computa-

tion time, they use ideas from the sequential similarity detection algorithm (SSDA). From SSDA,

the percolation process is terminated by calculating circularity half-way through processing. The

authors, [37], describe a highly accurate and efficient method for crack detection using percolation-
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based image processing. Their technique uses a percolation model for crack detection in order to

analyze the crack features. The paper [38] describes a new technique for image processing based

on a percolation model. First, a cluster is formed through the percolation process. The, fea-

ture extraction is performed based on the cluster. This technique was verified by tests on crack

detection.

2.8 The Use of the Radon Transform for Orientation Detection

The paper [39] by Jafari-Khouzani and Soltanian-Zadeh presents a method for addressing the

problem of rotation invariant texture classification. For directional textures, the wavelet features

must be computed for a particular direction. In this paper, the Radon transform is first utilized

to determine the primary texture direction. The texture is then rotated in such a way that its

primary direction is at 0 degrees.

The paper [40] by Aggarwal and Karl notes that the determination of the location and orientation

of straight lines in images is of primary interest in fields like computer vision and image processing.

The Hough transform (a special case of the Radon transform) has been employed to address this

problem for binary images. The authors of this paper consider the line detection problem in images

as an inverse problem. They make use of the inverse Radon operator which relates parameters

involving the line location and orientation to the noise-degraded image. This places the problem

within a regularization context and improves the performance of Hough-based line detection through

the use of prior information with respect to regularization.

The paper [41] by Rajput, Som, and Kar uses the Radon Transform to determine the orientation

of license plates. There, each image is of a license plate oriented at a particular angle. They don’t,

however, deal with multiple license plates at different orientations in a single image. They briefly

discuss other methods which attempt to address multiple orientations and their limitations.

The authors of [42] utilize the Radon transform to determine the orientation of fingerprints as part

of a fingerprint recognition system. They note that the orientation of the ridge and the valley in a
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fingerprint is very important in the identification of fingerprints. The Radon transform is employed

for obtaining this orientation information.
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Chapter 3

Filtering the Reconstructed Image

Grayscale Images

Backprojection involves computing the inverse Radon transform and integrating (or summing in

the computer approximation to integration) the projections in the sinogram from 0 to 179 degrees.

What is implemented on the computer for backprojection [43] is something of the form:

f(x, y) =
1

Nap

Nap−1∑
i=0

∆θipθi(x cos θi + y sin θi),

where Nap is the number of angular projections computed in the course of calculating the sinogram,

and pθi is a projection or Radon transform.

Backprojection from several angles (directions) has the effect of applying a low-pass filter (with

frequency response 1
|ω|) to an image. This will boost the lower frequencies and attenuate the higher

frequencies. This can be compensated by multiplying the filter used during backprojection by

|ω|.

The reason for the need to multiply the filter by |ω| is due to the Central Slice Theorem which relates

the Fourier and Radon transforms. By the Fourier Slice Theorem, the one-dimensional Fourier

Transform of a projection (the Radon transform of a function) is equal to the two-dimensional

Fourier transform of the original function. Recall that the Radon transform of a function f(x,y) is
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given by

Rf = pθ(ρ) =

∫ ∞
−∞

f(x, y)δ(x cos θ + y sin θ − ρ)dxdy

Let

P (ω) = F [p(ρ)]

where F denotes the Fourier transform, p denotes the projection, and P is its Fourier transform.

Let

f(x, y) = F−1
2 F (vx, vy)

where F2 denotes the two-dimensional inverse Fourier transform of F. Now,

f(x, y) = F−1
2 F (vx, vy) =

∫ ∞
−∞

dvx

∫ ∞
−∞

F (vx, vy) exp 2πi(vxx+ vyy)dvy

Now, in polar coordinates,

vx = ω cos θ

vy = ω sin θ

and thus

dvxdvy = ωdωdθ

f(x, y) =

∫ 2π

0
dθ

∫ ∞
0

ωF (ω cos θ, ω sin θ) exp (2πiω(x cos θ + y sin θ))dω

=

∫ π

0
dθ

∫ ∞
−∞
|ω|P (ω) exp (2πiωρ)dω

=

∫ π

0
pθ(ρ)dθ

where

F (ω cos θ, ω sin θ) = P (ω)

by the Fourier Slice Theorem. Therefore,∫ ∞
−∞
|ω|P (ω) exp (2πiωρ) = F−1(|ω|P (ω)) = pθ(ρ)

In filtered backprojection, the above equation is modified to show the convolution of a projection

with a high-pass filter as in the following:

f(x, y) =
1

Np

Np−1∑
i=0

∆θipθihp(x cos θi + y sin θi),

14



where hp is the high-pass filter that is convolved with a projection pθi .

In filtered backprojection each 1-D projection is convolved with a 1-D high-pass filter (either Ram-

Lak or Shepp-Logan) to eliminate the blurring inherent in backprojection. A back-projected image

is also known as a laminogram.

The Ram-Lak filter is due to Ramachandran and Lakshiminarayanan. It has a frequency response

given by

H(ω) =

 1 , ω < Ω

0 , otherwise

The overall RL filter is a ramp filter and has a frequency response given by

HRL(ω) = H(ω)|ω| =

 |ω| , ω < Ω

0 , otherwise

Taking the inverse Fourier transform of this transfer function yields the following impulse response

function in the spatial domain which is applied to the sinogram (Radon transform) of the im-

age

h(x) =
Ω2

π

(
sinc (Ωx)− sinc2

(
Ωx

2

))
There is another filter called the Shepp-Logan filter. However, unlike the Ram-Lak filter, the Shepp-

Logan filter employs a function with a smoother frequency response. The frequency response of

the Shepp-Logan filter is given by

H(ω) =


π

2Ω

∣∣sinc (πω2Ω

)∣∣ , ω < Ω

0 , otherwise

The overall filter has a frequency response given by

HSL(ω) = H(ω)|ω| =


∣∣sin (πω2Ω

)∣∣ , ω < Ω

0 , otherwise

Taking the inverse Fourier transform of this filter yields the following impulse response function

which is applied to the sinogram (Radon transform) of the image.

h(x) =
1

π

π
2Ω − x sin (Ωx)(

π
2Ω

)2 − x2

15



In the process of reconstructing an image by filtered backprojection from a sinogram image, artifacts

were produced. In particular, when the image-building.tif source image was used, after a Radon

transform and subsequent reconstruction from the sinogram, some ghost artifacts could be seen

in the reconstructed image. Three different edge-preserving smoothing filters were studied for this

purpose [44].

The first such filter considered is the Malik-Perona filter. Consider the diffusion equation

∂I

∂t
= div(c · ∇I)

where c is the conductivity. If c is a real constant, then the diffusion process (which reduces to the

heat equation) is isotropic, conveying heat evenly in every direction. A characteristic of isotropic

diffusion is that it produces the same result as a Gaussian filter whose width increases with time.

Since Gaussian filters reduce the level of noise in an image while also unfortunately blurring the

edges, isotropic diffusion will do the same thing. In order to obtain edge-preserving smoothing, the

conductivity, c, is taken to be a function of the magnitude of the gradient of I. That is

c(x, y, t) = f(||∇I(x, y, t)||)

To smooth an image while not degrading the edges, f (which maps the real line into the unit

interval) must have high values in low gradient areas of the image (allowing smoothing there) while

taking on low values in regions of the image characterized by high values of the gradient. One such

example of a conductivity function is the function

f(r) = exp(−r/κ2)

When the Perona-Malik filter was coded in MATLAB for the image-building image, horizontal

streaking was produced in the image.

Another filter that was considered was the Bilateral filter. Typically, a low-pass filter for an image

works by convolving an image with a smoothing kernel. The kernel coefficients weight the associated

image pixels and are a function only of the distance to the center of the filter. In non-uniform filters,

the coefficients near the center have a larger value than those near the edges of the filter mask.
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In this way, the kernel incorporates the closeness of the associated image pixels. A filter whose

weights depend only on the spatial distance is a domain filter. The usual convolution mask filters

are all thus domain filters.

To construct a low-pass filter so that it will do the least amount of harm to the edges in an image,

either particular (edge) pixels can be removed from filtering or a lower weight can be assigned to

such pixels if they differ by more than a specified amount from the center pixel. If this is represented

by a filter, the kernel weights are a function of the difference in pixel values or the range. This type

of filter is called a range filter. A range filter can be expressed in the following way

Iout(u, v) =

∞∑
i=−∞

∞∑
j=−∞

I(i, j) ·Hr(I(i, j)− I(u, v))

where Hr is the range filter kernel. While a domain filter will either act as a high-pass or low-pass

filter on an image, a range filter will have no spatial effect on the image.

A Bilateral filter combines both domain and range filters into an edge-preserving low-pass filter.

If a given image pixel is near in value and in distance to the center pixel, then the Bilateral filter

acts as a low-pass filter. For example, in a flat region, where most surrounding pixels have values

similar to the center pixel, the Bilateral filter acts as a smoothing filter, controlled only by the

domain kernel Hd. If however, the image pixel has a much different value than the center pixel,

no filtering is done since this is likely an edge pixel. For example, when situated near a step edge

or an intensity ridge, only those pixels are included in the smoothing process that are similar to

the center pixel, thus avoiding blurring the edges. Thus, the edges are not degraded with this

filter. When a bilateral filter with a 2D Gaussian kernel for the domain filter and a 1D Gaussian

kernel for the range filter was used on the image after FBP, the resulting image did not show much

improvement from the FBP image.

The last edge-preserving, smoothing filter that was employed was the Kuwahara filter. A Kuwahara

filter uses a set of filter masks. It then computes the mean and variance for the image pixels

corresponding to these masks and chooses the mean value of the mask with the lowest variance

to replace the pixel associated with the center of the mask. The filter area R is broken up into k
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Figure 3.1: The Four Subregions for the Kuwahara Filter

partially overlapping subregions R1,...,Rk. At each image pixel (m,n), the mean and variance of

each subregion are calculated as

µk(m,n) =
1

|Rk|
∑

(i,j)∈Rk

I(m+ i, n+ j) =
1

nk
Sum1,k(m,n)

σ2
k(m,n) =

1

|Rk|
·
∑

(i,j)∈Rk

(I(m+ i, n+ j)− µk(m,n))2

=
1

Rk
·

[
Sum2,k(m,n)−

Sum2
1,k(m,n)

|Rk|

]

for k = 1,...,K, with

Sum1,k(m,n) =
∑

(i,j)∈Rk

I(m+ i, n+ j),

Sum2,k(m,n) =
∑

(i,j)∈Rk

I2(m+ i, n+ j)

The mean of the subregion centered at (m,n) with the smallest variance is selected as the new pixel

value at (m,n). This means that

Iout(m,n) = µ∗k(m,n)

with

k∗ = arg min
k=1,...,K

σ2
k(m,n)

The original Kuwahara filter uses four 2x2 subregions in a 3x3 filter. The first subregion is the

2x2 block in the upper left portion of the 3x3 mask. The second subregion is the 2x2 block in

the upper right portion of the 3x3 mask. The third subregion is the 2x2 block in the lower right

portion of the 3x3 mask. The fourth subregion is the 2x2 block in the lower left portion of the

3x3 mask. The Tomita-Tsuji filter uses five 3x3 subregions in a 5x5 filter. Like the Kuwahara
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filter, four of the subregions cover the upper left, upper right, lower right, and lower left portions

of the filter. The fifth subregion is a 3x3 subregion centered at the center of the 5x5 filter. When
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Figure 3.2: The Five Subregions for the Tomita-Tsuji Filter

filtering the reconstructed version of image-building, the Tomita-Tsuji filter was used as well as

7x7 and 9x9 versions of that filter. Ghosting artifacts were visible in the reconstructed version

of image-building. With a 9x9 version of the Tomita-Tsuji filter, these artifacts were removed or

greatly reduced. There were still some visible artifacts from the computed projections, but the

filtered image was clearer than the reconstructed image.

Color Images

Filtering reconstructed color images involves applying a filter to the three color channels separately.

For the color image chosen, balloons-desaturate, the artifacts were not nearly as pronounced as those

in the grayscale image that was used. As a result, when the color version of the 9x9 Tomita-Tsuji

filter was used, it provided too much filtering, resulting in a black image. Next, a 5x5 Tomita-Tsuji

filter with 3x3 subregions was employed. In this case, the resulting image was saturated, causing at

least one of the original colors to change. Finally, a 3x3 Kuwahara filter with four 2x2 subregions

was used. The resulting image looked very similar to the reconstructed image. There might have

been a very slight improvement, which is understandable since the applied filter was a very light

one.
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Figure 3.3: Five Subregions of the Tomita-Tsuji 9x9 Filter
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Chapter 4

Preliminary Results

Grayscale Images

The image in figure 7.1 was input into a Radon transform. The sinogram was produced using

MATLAB code which utilized 180 1D projections taken starting at 0 degrees to 179 degrees.
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Figure 4.1: Input Image

After this image was processed by the Radon transform, the sinogram in figure 4.2 below was

produced.

Figure 4.2: Sinogram

Then after applying filtered backprojection to the sinogram, and, in the process, applying the

Ram-Lak filter to the sinogram, the reconstructed image in figure 4.3 was produced.
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Figure 4.3: Reconstructed Image with Ram-Lak Filter

After applying filtered backprojection to the sinogram and, in the process, applying the Shepp-

Logan filter to the sinogram, the reconstructed image in figure was produced.
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Figure 4.4: Reconstructed Image with Shepp-Logan Filter

After applying a 9x9 Tomita-Tsuji filter to the reconstructed image in figure 4.3, the image in figure

4.5 was produced.
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Figure 4.5: Ram-Lak Reconstructed Image after Processing with a 9x9 Tomita-Tsuji Filter

After applying a 9x9 Tomita-Tsuji filter to the reconstructed image in figure 4.4, the image in 4.6

figure was produced.
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Figure 4.6: Shepp-Logan Reconstructed Image after Processing with a 9x9 Tomita-Tsuji Filter

A measure of the improvement achieved by filtering the reconstructed images was computed with the

total variation (TV) norm of the images. The TV norm is computed by calculating the magnitude

of the intensity gradient of the image using the horizontal and vertical Sobel edge operators. In

particular, the magnitude of the gradient is approximated as

|∇I| =
√
I2
x + I2

y
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where Ix is approximated by

Ix ≈ I ∗ Sx where * denotes convolution and I denotes the input image

with

Sx =
1

8


−1 0 1

−2 0 2

−1 0 1


where Iy is approximated by

Iy ≈ I ∗ Sy where * denotes convolution and I is the input image

with

Sy =
1

8


−1 −2 −1

0 0 0

1 2 1


Then, the total variation norm is given by

TV =

N∑
j=1

M∑
i=1

|∇I(i, j)|
M ×N

where the input image I is an array of size MxN. Table 8.5 below shows the results of computing

the TV norm for three different grayscale images.
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Table 4.1: Total Variation Values for Grayscale Images

Image TV Norm

reconstructed (with RL filter) image-building 4.1297

reconstructed (with RL filter) and filtered image-building 1.9437

reconstructed (with SL filter) image-building 3.2138

reconstructed (with SL filter) and filtered image-building 0.8783

reconstructed (with RL filter) image-moon 3.6955

reconstructed (with RL filter) and filtered image-moon 0.3128

reconstructed (with SL filter) image-moon 0.8164

reconstructed (with SL filter) and filtered image-moon 0.2586

reconstructed (with RL filter) image-irish 4.8112

reconstructed (with RL filter) and filtered image-irish 1.1226

reconstructed (with SL filter) image-irish 3.5019

reconstructed (with SL filter) and filtered image-irish 1.0014

From Table 8.5 above, we see that the total variation of the filtered, reconstructed images is

significantly reduced from that of the reconstructed images without post-filtering.

Color Images

The image in figure 4.7 was processed by a Radon transform. That is, each of the three color

channels were processed separately by a Radon transform.
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Figure 4.7: Color Image Input into a Radon Transform

Figure 4.8 shows a reconstructed version of the color image above after applying filtered backpro-

jection (with the Ram-Lak filter) to the sinograms produced by the Radon transform applied to

each of the three color channels of the original image.
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Figure 4.8: Reconstructed Color Image with RL Filter

Figure 4.9 shows a reconstructed version of the color image above after applying filtered backpro-

jection (with the Shepp-Logan filter) to the sinograms produced by the Radon transform applied

to each of the three color channels of the original image.
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Figure 4.9: Reconstructed Color Image with SL Filter

The image in figure 4.10 shows the result of applying a 3x3 Kuwahara filter with four 2x2 subregions

to the reconstructed color image in figure 4.8 above.
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Figure 4.10: Kuwahara-Filtered RL Reconstructed Image

The image in figure 4.11 shows the result of applying a 3x3 Kuwahara filter with four 2x2 subregions

to the reconstructed color image in figure 4.9 above.
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Figure 4.11: Kuwahara-Filtered SL Reconstructed Image

To measure improvement after application of the Kuwahara filter to color images, a color version

of the TV norm was employed. In particular, the TV norm was computed for the red, green, and

blue channels of the color images. The results are shown in Table 4.2 below.

33



Table 4.2: Total Variation Values for Color Images

Image Red TV Norm Blue TV Norm Green TV Norm

color psychology recon (with RL filter) 1.9092 1.6846 1.5265

color psychology rec (with RL filter) filt 1.3505 1.3396 1.2234

color psychology rec (with SL filter) 1.7813 1.5696 1.4194

color psychology rec (with SL filter) filt 1.2927 1.2759 1.1601

balloons recon (with RL filter) 2.364 2.1695 2.4539

balloons rec (with RL filter) filt 1.7207 1.6134 1.7349

balloons rec (with SL filter) 2.1999 2.0149 2.2815

balloons rec (with SL filter) filt 1.6319 1.5356 1.6537

From Table 4.2 above, we see that the total variation of the filtered, reconstructed images is

significantly reduced from that of the reconstructed images without post-filtering.
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Chapter 5

Crack Detection with the Radon

Transform

The Radon Transform can be used to detect cracks in images of cracked and non-cracked bridge

decks, walls, and pavements. Since the Radon transform can readily detect line segments that

cross the entire width or length of an image, the input image was carefully selected so that a crack

that appeared had that property. Figure 5.1 shows the input image that was used. This input

image (001-105.jpg) which is an image of cracked pavement was selected from a set of crack images

available at

https://digitalcommons.usu.edu/all\_datasets/48/ The dataset is called SDNET2018: A

concrete crack image dataset for machine learning applications. The images in this dataset consist

of cracked and non-cracked images of pavement, walls, and bridges. First, the image was smoothed

using a 5x5 averaging, low-pass filter. Then, an edge map was generated from the image by

computing the magnitude of the gradient across the image using the 3x3 Sobel approximations to

the horizontal and vertical partial derivatives of the image. The binary edge map was produced by

thresholding the magnitude of the gradient at 10% of the maximum gradient intensity value in the

image. In particular, the magnitude of the gradient is approximated as

|∇I| =
√
I2
x + I2

y
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where Ix is approximated by

Ix ≈ S ∗ Sx where * denotes convolution

with Sx and Sy denoting the horizontal and vertical Sobel operators defined in the previous chapter.

where Iy is approximated by

Iy ≈ S ∗ Sy where * denotes convolution

where S = I∗SF with I = the input image and

SF =
1
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Figure 5.2 shows the edge map after applying the smoothing filter and the approximation to the

magnitude of the gradient to the image. The resulting edge map is then reduced in size by removing

the image border. This is done so that the Radon transform will not try to detect the borders as

line segments in the image. The reduced image is then processed by the Radon transform. Since

the crack is not a linear feature but rather a curve, one wouldn’t expect the Radon transform of

the crack to be a single point in the Radon domain but a cluster of points. The resulting sinogram

5.3 in figure shows a cluster of bright points. Since the bright points appear to be around an angle

of 90 degrees and between approximately 20 to 50 pixels in distance from the origin, this cluster

appears to correspond to the crack in the original image.
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Figure 5.1: Input Image 001-105
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Figure 5.2: Edge Map
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Figure 5.3: Sinogram With Single Bright Point
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Chapter 6

Enhancement Using the Radon

Transform

The Radon transform of a function f(x,y) on two-dimensional Euclidean space is defined by

Pθ(ρ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(ρ− x cos θ − y sin θ)dxdy

where δ(r) is the Dirac delta function. The presence of the term δ(ρ − x cos θ − y sin θ) in the

definition of the Radon transform forces the integration of f(x,y) along the line

ρ− x cos θ − y sin θ = 0

Thus, the Radon transform becomes a line integral.

If f(x,y) is a two-dimensional image intensity function, computation of its Radon transform yields

the projections across the image at varying orientations θ and distances (from the origin) ρ.

The Radon transform is a mapping from Cartesian (x,y) coordinates to coordinates (ρ,θ).

The Radon transform maps lines in image space to points in feature space. The mapping of image

space to feature space is illustrated in Figure 6.1 from [45]. Bright (dark) lines in an image are

mapped by the Radon transform to bright (dark) points in feature space.
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Figure 6.1: The Mapping of Image Space to Feature Space under the Radon Transform

For each angle θ and each distance ρ, the intensity of the object through which a ray perpendicular

to the ρ axis passes is summed up at Pθ(ρ). A set of many such projections under different angles

is a sinogram.

Consider the equation of a summation line as y=ax+b, shown in Figure 6.2 , where b is the

y-intercept.
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Figure 6.2: Line in Image Space

Now,

a = −cos θ

sin θ

Also,

b sin θ = ρ⇒ b =
ρ

sin θ

Therefore,

y =

(
− cos θ

sin θ

)
x+

ρ

sin θ

42



Thus,

ρ = x cos θ + y sin θ

Let R denote the Radon transform operator. If f and g are functions, and if f(x,y)=g(x,y) for all

(x,y) ∈ R2, then Rf = Rg. Consequently, the Radon transform is well-defined.

In 1981, S.R. Deans in his paper, ”Hough Transform from the Radon Transform,” [1] listed four

properties of the Radon transform that he said Duda and Hart (in their paper entitled,”Use of the

Hough transform to detect lines and curves in pictures”) listed for the Hough transform. Deans

concluded that the Hough transform is a special case of the Radon transform.

Since both transforms utilize integration of a function on a collection of lines, they work well on noisy

images. The reason for this is that if we view a noise signal as having zero mean, then its variation

about the zero mean is cancelled out by the integration process. Also, as a consequence, the signal-

to-noise ratio of a noisy image containing a linear feature can be greater than that of the image

itself. The signal-to-noise ratio increases because the noise level is lowered by integration.

The Radon transform is more computationally efficient than the Hough transform, and this is a

consequence of the Fourier Slice Theorem.

This way of computing the Radon transform involves calculating the Fourier transform. The

following are the three steps in computing the Radon transform via the Fourier transform.

(1) Compute the two-dimensional Fourier transform F(u,v) of the image intensity function f(x,y).

(2) Interpolate the two-dimensional Fourier transform to obtain a set of functions Sθ(ω), each

defined in the frequency domain along a radial line set at an angle θ. Several angles need to be

considered. Here, Sθ(ω) is the Fourier transform of Pθ(ρ). Also,

Sθ(ω) = F (ω cos θ, ω sin θ)

as a consequence of the Fourier Slice Theorem.

(3) Compute the inverse Fourier transform of each function Sθ(ω). The result is a set of projections

Pθ(ρ) which together form the Radon transform of the image.
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The efficiency of the technique is due to the fact that the mapping from image space to feature

space is made via the frequency domain. Consequently, much of the computation can be carried

out by repeatedly using the Fast Fourier Transform (FFT)

The Radon transform will generate prominent and easily detectable peaks in feature space when it

is used on images which contain linear features extending across the image.

A drawback of the Radon transform method for line detection is that it cannot be used to detect

linear features with size much less than that of the image itself.

This is due to the fact that short lines may not generate peaks or troughs in the Radon transform

even though they might be very bright or dark (in intensity), since less intense, longer lines may

produce Radon transform values of equal magnitude.

Even when a small local maximum (minimum) occurs, it is hard to distinguish between two possi-

bilities

(1) The maximum (minimum) is due to a high intensity (dark) short line.

(2) The maximum (minimum) is due to a much longer line with less intensity.

A second drawback of the Radon transform method for line detection is the fact that it is unable

to extract information on the coordinates of the endpoints of detected lines, or on the distance

between endpoints.

The use of the Radon transform for line detection, along with the invertibility property of the Radon

transform operator, allows for a linear feature enhancement method in which an enhancement

operator is applied to the Radon transform of the image in feature space. Let s denote the Radon

transform of an image, i. Then s = Ri, where R is the Radon transform operator. Consider an

enhancement operator, E, which raises the peaks and lowers the valleys in feature space to yield a

modified Radon transform s′ where s′ = Es = ERi.

As a consequence of the invertibility characteristic of the Radon transform, there exists an image

i′ with Radon transform s′. Therefore, i′ = R−1s′ = R−1ERi.
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Any bright (dark) linear features in the original image will appear in the enhanced image i’ with

greater (less) mean intensity, for an appropriately chosen enhancement operator. Appropriate

filtering operators are those which raise the peaks and lower the valleys in the Radon transform

by large amounts while not affecting the values lying between the maximum and minimum much

if at all. Operators which square or cube the difference between each Radon transform value are

examples of such suitable operators.

The linear feature enhancement technique can be implemented using the Fourier transform to

compute the Radon transform and the filtered-Backprojection method to compute the inverse

Radon transform. Filtered-Backprojection is based on the following equations which allow an

intensity function f(x,y) to be expressed in terms of its Radon transform Pθ(ρ). The reconstructed

image f(x,y) can be expressed as follows:

f(x, y) =

∫ π

0
Qθ(t)dθ

where

Qθ(t) =

∫ ∞
−∞

Sθ(ω)|ω| exp(iωt)dω

with

Sθ(ω) =

∫ ∞
−∞

Pθ(ρ) exp(−iωρ)dρ

and

t = x cos θ + y sin θ

The filtered-Backprojection technique can be described in the following steps: (1) Compute the

Fourier transforms, Sθ(ω) of each projection Pθ(ρ).

(2) Filter the results by multiplying by |ω| in the frequency domain.

(3) Compute the inverse Fourier transforms, Qθ(t) of each product Sθ(ω)|ω|.

(4) Backproject the functions Qθ(t) over the the image plane to form the reconstructed image f(x,y).

This involves calculating the contribution made by each Qθ(t) to the reconstructed image. Since

each function Qθ(t) provides the same contribution to the image at all points (x,y) on the line t =

xcos θ+ysin θ, the image is effectively reconstructed by combining a large number of lines.
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Filtered-Backprojection in general provides excellent reconstructions. Reconstruction using back-

projection allows better resolution than the interpolation method. It also induces greater noise

because the filter tends to amplify high-frequency content.

The filtered-backprojection algorithm can be summarized with the following five steps:

(1) Compute projections g(ρ, θ) obtained at each fixed angle θ.

(2) Compute the Fourier transform G(ω, θ) of each projection g(ρ, θ).

(3) Multiply G(ω, θ) by the filter function |ω|.

(4) Compute the inverse of the results from 3.

(5) Integrate (sum) over all θ the results from 4.
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Chapter 7

Use of Optical Flow for Warping One

Edge-Detected Crack Image into

Another

Consider an image intensity function given by I(x(t),y(t),t) for moving objects in a sequence of

image frames. Then, under the assumption that the objects retain their luminance along the path

on which they travel (the constant brightness assumption), I(x(t),y(t),t) is constant with respect

to time. Then upon taking the time derivative of I, we obtain:

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 (7.1)

Let v1 =
dx

dt
and v2 =

dy

dt

Then equation (7.1) can be expressed as

∂I

∂x
v1 +

∂I

∂y
v2 +

∂I

∂t
= 0

This is an example of an inverse problem in which the image intensity function, I, is known, but the

optical flow variables v1 and v2 are unknown and must be found. There are a number of methods
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for finding the optical flow associated with objects in an image. The method that was used for this

work was the TV-L1 norm, based upon a paper by [46]. In that paper, two image frames, I0 and

I1 :Ω → R are considered. The goal is to determine a function u:Ω → R2, which minimizes the

sum of an image-based error constraint and a regularization term. The map u can then be found

by minimizing ∫
Ω
{λφI0(x)− I1(x+ u(x))) + ψ(u,∇u, ...)}dx

where φ(I0(x) − I1(x + u(x))) is the image data fidelity term or optical flow constraint term,

and ψ(u,∇u, ...) is the regularization term. λ provides a weighting between data fidelity and the

regularization force. Taking φ(x) = |x| and ψ(∇u) = |∇u| produces a functional with an L1 data

penalty term and a total variation regularization term given by

E =

∫
Ω
{λ|I0(x)− I1(x+ u(x))|+ |∇u|}dx (7.2)

This equation presents computational problems since neither the data fidelity term nor the regular-

ization term is continuously differentiable. The authors then utilize Chambolle’s method for solving

the Rudin-Osher-Fatemi energy for estimating a denoised image using total variation. In particular

that method is adapted to estimating optical flow. The authors then consider a first-order Taylor

approximation to image I1 near x+u0 which is given by

I1(x+ u) = I1(x+ u0) + (u− u0) +
∂I1

∂x
(x+ u0)

where u0 is a given discrepancy map. For a fixed u0 and utilizing the first-order approximation for

I1, the TV-L1 functional in equation (7.2) can now be expressed as

E =

∫
Ω
{λ|u∂I1

∂x
+ I1(x+ u0)− u0

∂I1

∂x
− I0|+ |∇u|}dx (7.3)

Utilizing the first-order Taylor approximation to image I1 requires that the functional in equation

(7.3) be incorporated into an iterative warping technique to offset nonlinearities in the image. Also,

a multi-level method is used to deal with large discrepancies between images. Let ρ(u, u0, x) (or

just ρ(u) be equal to the residual term. That is

ρ(u, u0, x) = I1(x+ u0) + (u− u0)
∂I1

∂x
− I0
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Then, introducing a variable v, the authors seek to minimize a convex approximation to the func-

tional in equation (7.3).

Eθ =

∫
Ω
{|∇u|+ 1

2θ
(u− v)2 + λ|ρ(v)|}dx

where θ is a small real number, chosen so that v is a close approximation of u. This convex

optimization problem can be solved by alternately updating u and v in every iteration. For fixed

v, solve the following minimization problem.

min
u

∫
Ω

{
|∇u|+ 1

2θ
(u− v)2

}
dx

For fixed u, solve the following minimization problem.

min
v

∫
Ω

{
1

2θ
(u− v)2 + λ|ρ(v)|

}
dx

The authors then state results from other papers that provide the solutions of these two minimiza-

tion problems.

Proposition 1: The solution of the first minimization problem is given by

u = v − θ∇ · ~p

where p = (p1,p2) satisfies

∇(θ∇ · ~p− v) = |∇(θ∇ · ~p− v)|~p

which can be solved via an iterative fixed-point method given by

~pk+1 =
pk + τ∇(∇ · ~pk − v/θ)
1 + τ |∇(∇ · ~pk − v/θ)|

where p0 = 0 and the time step τ ≤ 1
8

Proposition 2: The solution of the second minimization problem above is given by a thresholding

step:

v = u+


λθ ∂I1∂x if ρ(u) < −λθ

(
∂I1
∂x

)2

−λθ ∂I1∂x if ρ(u) > λθ
(
∂I1
∂x

)2

−ρ(u)
∂I1
∂x

if |ρ(u)| ≤ λθ
(
∂I1
∂x

)2

The algorithm described in the two propositions above was what was implemented in the MATLAB

code found on GitHub.

49



Image 002-100 in Figure 7.1 is a crack image of pavement that was selected from a set of crack

images available at

https://digitalcommons.usu.edu/all\_datasets/48/ The dataset is called SDNET2018: A

concrete crack image dataset for machine learning applications. The dataset consists of crack and

non-crack images of pavement, walls, and bridges. After the edge maps were computed, the images

which consisted of upper and lower cracks, were segmented into two separate crack images by

partitioning the column width of each edge map into many subintervals and approximating the

crack by a linear or constant function in each subinterval. The optical flow MATLAB code was

then used to warp one of these cracks into the other. First, the image of a pavement crack in

Figure 7.1: Input Image 002-100 of a Pavement Crack

figure 7.1 was smoothed using a 5x5 averaging, low-pass filter. Then, an edge map was generated

from the image by computing the magnitude of the gradient across the image using the 3x3 Sobel
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approximations to the horizontal and vertical partial derivatives of the image. The binary edge

map was produced by thresholding the magnitude of the intensity gradient at 22% of the maximum

intensity value in the image. In particular, the magnitude of the gradient is approximated as

|∇I| =
√
I2
x + I2

y

where Ix is approximated by

Ix ≈ S ∗ Sx where * denotes convolution

where Sx is the Sobel vertical operator and S is the 5x5 low-pass filter, both discussed in chapter

4. where Iy is approximated by

Iy ≈ S ∗ Sy where * denotes convolution

where Sy is the Sobel horizontal operator discussed in chapter 4.

Figure 7.2 shows the edge map after applying the smoothing filter and the approximation to the

magnitude of the gradient to the image.
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Figure 7.2: Edge Map

The image in figure 7.2 was carefully cut into two separate images shown in figure 7.3 and 7.4, using

a piecewise linear function defined on appropriate subintervals of the column domain to separate

them or segment the original edge map via thresholding. The piecewise linear function was chosen

as functions of the columns contained in each subinterval.
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Figure 7.3: Upper Edge
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Figure 7.4: Lower Edge

Applying the warping optical flow MATLAB code to the images in figures 7.3 and 7.4 yielded the

image in figure 7.5
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Figure 7.5: Merged Upper and Lower Edges of Pavement Crack after Applying Optical Flow
Warping

The second image, in figure 7.6, was of a bridge deck crack. Its edge map was formed by thresholding

the the magnitude of the intensity gradient at 10% of the maximum gradient intensity value in the

image.
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Figure 7.6: Image 7003-18 of a Bridge Deck Crack

Figures 7.7 and 7.8 show the edge map after it as been separated into two images, an upper image

and a lower image.
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Figure 7.7: Image of Upper Portion of Edge Map for Bridge Deck Crack
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Figure 7.8: Image of Lower Portion of Edge Map for Bridge Deck Crack

Figure 7.9 shows the result of applying the optical flow warping code to merge the two crack

portions of the bridge deck crack into one crack
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Figure 7.9: Merged Upper and Lower Edges of Bridge Deck Crack After Applying Optical Flow
Warping

The third image, in figure 7.10 , was of a wall crack. Its edge map was formed by thresholding

the the magnitude of the intensity gradient at 10% of the maximum gradient intensity value in the

image.
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Figure 7.10: Image 7070-24 of a Wall Crack

Figures 7.11 and 7.12 show the edge map after it as been separated into two images, an upper

image and a lower image.
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Figure 7.11: Image of Upper Portion of Edge Map for Wall Crack
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Figure 7.12: Image of Lower Portion of Edge Map for Wall Crack

Figure 7.13 shows the result of applying the optical flow warping code to merge the two crack

portions of the wall crack into one crack
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Figure 7.13: Merged Upper and Lower Edges of Wall Crack After Applying Optical Flow Warping

The fourth image, in figure 7.14, was of a pavement crack. Its edge map was formed by thresholding

the the magnitude of the intensity gradient at 22% of the maximum gradient intensity value in the

image.
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Figure 7.14: Image 004-114 of a Pavement Crack

Figures 7.15 and 7.16 show the edge map after it as been separated into two images, an upper

image and a lower image.
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Figure 7.15: Image of Upper Portion of Edge Map for Pavement Crack
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Figure 7.16: Image of Lower Portion of Edge Map for Bridge Deck Crack

Figure 7.17 shows the result of applying the optical flow warping code to merge the two crack

portions of the pavement crack into one crack
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Figure 7.17: Merged Upper and Lower Edges of Pavement Crack After Applying Optical Flow
Warping

The fifth image, in figure 7.18, was of a bridge deck crack. Its edge map was formed by thresholding

the the magnitude of the intensity gradient at 8% of the maximum gradient intensity value in the

image.
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Figure 7.18: Image 7002-28 of a Bridge Deck Crack

Figures 7.19 and 7.20 show the edge map after it as been separated into two images, an upper

image and a lower image.
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Figure 7.19: Image of Upper Portion of Edge Map for Bridge Deck Crack

69



Figure 7.20: Image of Lower Portion of Edge Map for Bridge Deck Crack

Figure 7.21 shows the result of applying the optical flow warping code to merge the two crack

portions of the bridge deck crack into one crack
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Figure 7.21: Merged Upper and Lower Edges of Bridge Deck Crack After Applying Optical Flow
Warping
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Chapter 8

Image Processing Algorithms for

Feature Detection

8.1 Crack Endpoint Detection

A crack endpoint detection algorithm was generated that works for the upper and lower portions

of a crack image. Different code is required for different cracks. MATLAB code was written which

works for the upper and lower portions of the crack image 7070-24 which is a wall crack image.

Separate MATLAB code was written for the upper and lower portions of the crack image 7003-18

which is a bridge deck crack.

The MATLAB code works by scanning across a crack image, which is a binary image, and first

finding the left endpoints. Then, the right endpoints are found. A separate set of code within this

MATLAB script works on the special case where a line segment portion of a crack which has other

crack line segments beneath it, ends and then begins again.

Let I denote the image array. In the search for the left endpoints, a pixel (i,j) such that I(i,j)=255

is sought while simultaneously checking that I(i,j-1) = 0 and I(i+1,j-1) = 0, where i denotes the

row and j the column in the image array. Then, if simultaneously, I(i-1,j) = 0, I(i-1,j-1) = 0,
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I(i+1,j-1) = 0 while I(i+1,j-1) 6= 0 or I(i,j-1) 6= 0 or I(i+1,j) = 0, then we declare that (i,j) is a

crack left endpoint. Alternatively, if this last ”if” condition is not satisfied, then if I(i+1,j) = 0 and

I(i+1,j-1) = 0 and I(i-1,j) 6= 0 and I(i-1,j-1) = 0 and I(i-2,j-1) = 0, then we declare that (i,j) is a

crack left endpoint. This last if condition is necessary so that one of the left endpoints in the lower

crack 7070-24-det-low will be detected an two endpoints in the upper crack 7070-24-det-up will be

detected.

For the detection of the right endpoints, set a counting variable k = 0. Then, while I(i,j+k) > 0, we

increment k. Then if I(i+1,j+k) = 0 and I(i+1,j+k+1) = 0 and I(i-1,j+k+1) = 0 and I(i-1,j+k+1)

6= 0 or I(i,j+k+1) 6= 0 or I(i-1,j+k) = 0, then we declare (i,j+k) to be a crack right endpoint.

Alternatively, if this last ”if” condition is not satisfied, then if I(i-1,j+k) 6= 0 and I(i,j+k) 6= 0 and

I(i-2,j+k+1) = 0 and I(i,j+k) = 0 or I(i-1,j+k) = 0 or I(i-2,j+k) 6= 0 or I(i+1,j+k) = 0 or I(i,j+k)

= 0 and I(i,j+k) = 0 or I(i,j+k-1) 6= 0 or I(i-1,j+k) = 0 or I(i-2,j+k) = 0 or I(i+1,j+k+1) = 0

and I(i,j+k+1) 6= 0 or I(i-1,j+k+1) = 0 or I(i+1,j+k+1) = 0 and I(i,j+k) = 0 or I(i-1,j+k) =

0 or I(i+1,j+k) = 0 or I(i+1,j+k+1) = 0, then we declare (i,j+k) to be a crack right endpoint.

Without this alternative path, not all of the right endpoints would be detected. Finally, there is

a special case to deal with one of the right endpoints in the upper portion of crack 7070-24-det or

in 7070-24-det-up. There, we have a situation where a line segment stops and then restarts while

the segments below it continue without interruption. To address this case, consider the vector of

crack endpoints, ep. Let z = size(ep,2). Consider whether or not |i − ep(z − 1)| > |j + k − ep(z)|

This expression checks whether or not the absolute value of the difference between the current row

and the previous row coordinate of the crack endpoint is greater than the difference between the

current column (j+k) and the previous column coordinate.If the row difference is greater than the

column difference, then if I(i-1,j+k) = 0 and I(i-1,j+k+1) = 0 and I(i+1,j+k) 6= 0, then we declare

a crack right endpoint at (i,j+k).

For the bridge deck crack 7003-18, the same basic algorithm can be used to detect the crack

endpoints if we add the following alternative to the search logic for the left endpoints: If I(i,j) =

255 and I(i,j-1) = 0 and I(i-1,j+1) = 0 and I(i-1,j) = 0, then execute the next set of statements.
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Inserting this alternative condition into the search logic alters nothing in the detection of endpoints

for the wall crack 7070-24 while allowing for the detection of the left endpoints (and thereby the

associated right endpoints) for the bridge deck crack 7003-18. The image in Figure 8.1 was used

Figure 8.1: Input Image 7070-24-det-up.jpg

as an input to the crack endpoint detection algorithm. The result was the set of crack endpoints

(4,72), (13,81), (14,86), (15,90), (14,109), (14,116), (15,122), (15,125), (18,132), (23,138), (28,142),

(69,199), (75,208), (78,219), (79,222), (81,228), (82,232), and (96,253). The image in figure 8.2

shows the same crack as in figure 8.1, but the addition of horizontal and vertical axes against which

the computed endpoints can be checked.
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Figure 8.2: Input Image of figure 8.1 with Horizontal and Vertical Axes Added

The image in Figure 8.3 was used as input to the endpoint crack detection algorithm. The result

was the set of crack endpoints (4,77), (9,82), (11,90), (11,91), (10,110), (11,116), (11,123), (13,128),

(14,133), (69,199), (73,211), (75,219), (76,224), (77,230), (78,232), (85,246), (86,248), and (90,253).

The image in figure 8.4 shows the same crack as in image 8.3, but with the addition of horizontal

and vertical axes against which the computed endpoints can be checked.
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Figure 8.3: Input Image 7070-24-det-low

Figure 8.4: Input Image of figure 8.3 with Horizontal and Vertical Axes Added
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Figure 8.5: Input Image 7003-18-det-up.jpg

The image in Figure 8.5 was used as input to the endpoint crack detection algorithm. The result was

the following set of crack endpoints: (82,249), (101,233) ,(104,223), (107,215), (112,203), (116,188),

(116,189), (121,176), (126,164), (134,166), (143,150), (160,144), (165,141), (189,122), (204,114),

(215,49), (215,73), (216,46), (217,57), (217,101), (218,18), (219,8), (219,11), and (221,4). The

image in figure 8.6 is the same as the image in figure 8.5 but with horizontal and vertical axes

added so that the endpoints can be checked.

77



Figure 8.6: Input Image in figure 8.5 with Horizontal and Vertical Axes Added

Figure 8.7: Input Image 7003-18-det-low.jpg
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Figure 8.8: Input Image in figure 8.8 with Horizontal and Vertical Axes Added

The image in Figure 8.7 was used as input to the endpoint crack detection algorithm. The result was

the following set of crack endpoints: (79,246), (99,230), (100,222), (100,225), (103,214), (109,197),

(112,187), (112,188), (113,185), (124,161), (132,163), (142,146), (158,141), (180,124), (184,122),

(202,110), (211,50), (211,73), (213,42), (213,58), (213,101), (215,8), (215,11), (215,18), and (217,4).

The image in 8.8 is the same as the image in figure 8.7 with horizontal and vertical axes added

against which the endpoints can be compared.

8.2 Detection of Crack Intersection Points

The crack intersection point algorithm reads in an input image. The algorithm uses vertical dif-

ferences between two branches or parts of a crack to determine where the two parts intersect. The

pixel distances were computed by determining the pixel location (i,j) of the last pixel with value

255 before the pixel in the next row (i+1,j) would have value 0, starting an index k at 0, and

then determining the next pixel with value 255 at pixel location (i+1+k,j). The pixel distance is k.

Horizontal differences were used where the two crack branches had more of a vertical characteristic.
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When one-pixel differences are found between two parts of a crack for pixels where I(i+k,j+1)=255

and I(i+1+k,j+1)=255, and I(i+1+k,j+2) =255, then for the particular row, i, each column j+k+1

is noted for each k>= 0. Then the crack intersection points are assigned as (i,j+1+k). This worked

for the crack, 7070-24-det-clean.tiff. By adding some code to check for horizontal differences be-

tween two parts of a crack for pixels where I(i-1,j+k) = 255 and I(i-1,j+1+k)=255, this worked for

the crack, 7003-18-det-clean.tiff. In particular, when one-pixel differences are found between two

parts of a crack. Then for the particular column, j, each row i-1-k is noted for each k>= 0. Then,

the crack intersection points are assigned as (i-1-k,j).

Figure 8.9: Input Image 7070-24-det-clean.jpg
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The image in Figure 8.9 was used as input into the crack intersection algorithm. The output was

the set of crack intersection points (68,198), (68,199), (68,200), (75,218), (75,219), and (75,220).

The image in figure 8.10 is the same as the image in figure 8.9, but with horizontal and vertical

axes added so that the intersection points can be checked.

Figure 8.10: Input Image in figure 8.9 with Horizontal and Vertical Axes Added
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Figure 8.11: Input Image 7003-18-det-clean.jpg

The image in Figure 8.11 was used as input into the crack intersection algorithm. The output was

the set of crack intersection points (124,164), (213,72), (213,73), and (213,74). The image in figure

8.12 is the same as the image in figure 8.11, but with horizontal and vertical axes added so that

the intersection points can be checked.
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Figure 8.12: Input Image in figure 8.11 with Horizontal and Vertical Axes Added
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8.3 Orientation Detection of Lines

The orientation detection algorithm computes the Radon transform (sinogram) of a image of lines

at various angles. Then, the maximum value of the sinogram is computed at each angle and

is plotted as a function of angle. This allows for the selection of a threshold that will separate

the actual Radon transform-detected angles from the rest of the values in the sinogram, or the

clutter level. The clutter in the image is caused by the number of lines at different angles being in

close proximity to each other as they emerge from one point. The clutter level is evident when the

histogram of the maximum values of the sinogram is plotted. The fact that the maximum sinogram

value obtained at the angle of each line in the image is much greater than the level of the clutter

allows for the selection of a threshold that will separate the actual Radon transform-detected angles

from the clutter values in the sinogram. That threshold is chosen to be the mean of the maximum

sinogram values. If the maximum value of the sinogram at a particular angle ∈ the interval [0,180]

degrees is greater than the mean of the maximum values of the sinogram and if ms(θ-1) < ms(θ)

and if ms(θ+1) < ms(θ), where θ is the current angle and θ-1 and θ+1 denote one degree less and

one degree greater than the current angle and where ms denotes the vector of maximum sinogram

values, then the output matrix at location (i,j) is set to 1. Otherwise, the output matrix at location

(i,j) is set to 0. Next, the values in each column are summed, and if the result is greater than 1,

it is set to 1. Next, the values in each column are added up, and if the result is greater than 1,

it is set to 1. If the column sum is nonzero, then the orientation count (which counts the number

of angles in the sinogram) is incremented by 1. Finally, the mean and the standard deviation are

computed. Now, the column index in the sinogram denotes the angle in degrees. However, since the

established angles in the sinogram lie in the interval [0,179] degrees, and since vectors in MATLAB

do not have an index of 0, but instead start at 1, it is necessary to subtract 1 from the column

index, j.

For the three-line image shown in figure 8.13 , the plotted maximum sinogram value versus orien-

tation is shown in figure 8.14.

84



Figure 8.13: Input Image for Orientation Detection Algorithm

Figure 8.14: Sinogram Plot for Threshold Determination

For this three-line image, with lines at angles of 0 degrees, 45 degrees, and 135 degrees, the computed

mean was 60 degrees with a standard deviation of 12.6491 degrees.
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Figure 8.15: Input Image with Lines at 14 Different Angles

Figure 8.16: Histogram of Maximum Sinogram at each Angle for 14 Input Angles

Figure 8.15 above shows the input image with 14 lines at different angles, starting at 5 degrees and

continuing in 5-degree increments up to 70 degrees. Figure 8.16 above shows a histogram of the

maximum of the sinogram at each angle. What appears clearly is 14 angles associated with lines

that are perpendicular to the lines at the original 14 angles in the input image.

Figure 8.17 shows the number of lines for each angle for the case of 14 lines. In this case of 14 lines,

the number of computed lines at each angle is equal to the number of true lines at each angle.
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Figure 8.17: The Number of Lines per Angle for 14 Angles

Figure 8.18: Input Image Showing Lines at 35 Different Angles
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Figure 8.19: Histogram of Maximum of Sinogram at Each Angle for 35 Input Angles

Figure 8.18 above shows the input image with 35 lines at different angles (starting at 2 degrees,

with 2-degree increments, up to 70 degrees). Figure 8.19 above shows a histogram of the maximum

of the sinogram at each angle. 31 of 35 angles can be counted from the histogram. However,

the sinogram of the image shown in figure 8.20 shows 35 peaks which correspond to 35 detected

lines.

Figure 8.20: Sinogram of 35 Lines at 35 Angles Showing the Peaks of the 35 Detected Lines

Figure 8.21 shows the number of lines for each angle for 35 lines. In the case of 35 lines, the number

of computed lines at each angle is equal to the true number of lines at each angle.
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Figure 8.21: The Number of Lines per Angle for 35 Angles

The mean of the 14 detected angles was computed to be 37.5 degrees which is exactly the mean of

the 14 input angles. Also, the standard deviation of those 14 detected angles is 20.1556 degrees.

Similarly, the mean of the 35 detected angles was computed to be 36 degrees which is precisely the

mean of the 35 input angles. Also, the standard deviation of those 35 detected angles is 20.199

degrees.
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Consider the following input image in figure 8.22

of 8 lines at angles of 50, 55, 60, 65, 70, 75, 80,

and 85 degrees. Figure 8.23 is the corresponding

sinogram.

Figure 8.22: Input Image with Lines at Eight
Different Angles

Figure 8.23: Sinogram Corresponding to Image
with Lines at Eight Different Angles

Table 8.1 shows the numerically recovered an-

gles and the true angles after applying the Radon

transform to the image of eight different lines.

Numerically Recovered Angle True Angle

50 50

55 55

60 60

65 65

70 70

75 75

80 80

85 85

Table 8.1: Numerically Recovered Angles versus
True Angles

90



Figure 8.24 shows an image with 10 lines at an

angle of 25 degrees and 5 lines at an angle of 60

degrees.

Figure 8.24: Image with 10 Lines at 25 degrees
and 5 lines at 60 degrees, with angles measured
with respect to the vertical

When the Radon transform processed the image

in figure 8.24, it should produce peaks at the

two angles, equal to the number of lines at each

angle. The resulting sinogram shown in figure

8.25 shows those peaks.

Figure 8.25: Sinogram Showing Peaks at Two
Different Angles

When processed by the orientation detection al-

gorithm, it should detect lines at those two an-

gles, and this is what it does. Figure 8.26 shows

the number of lines at each of the two angles.

Figure 8.26: The Number of Lines at Each Angle
for Two Different Angles
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Figure 8.27 shows an image with 18 lines at 6

different angles. The corresponding sinogram is

shown in figure 8.28

Figure 8.27: Image with 18 Lines at 6 Different
Angles

Figure 8.28: Sinogram Associated with Image of
18 Lines at 6 Different Angles

The bar plot in figure 8.29 shows the maximum

of the sinogram values in figure 8.28. The bar

Figure 8.29: Maximum Value of the Sinogram
for 18 Lines

plot in figure 8.30 shows the true number of lines

at each angle in the image of 18 lines at 6 dif-

ferent angles. The bar plot in figure 8.31 shows

the computed number of lines at each angle in

the image of 18 lines at 6 different angles. The

three lines at the last of the six angles were not

detected, since the length of the lines relative to

the size of the image was too small.

Figure 8.30: True Number of Lines at Each An-
gle for 18 Lines at 6 Different Angles
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Figure 8.31: Computed Number of Lines at Each
Angle for 18 Lines at 6 Different Angles
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8.4 Determination of Line Thickness

The line thickness algorithm consisted of four parts, a part to detect horizontal lines and determine

their thickness, a part to detect vertical lines and determine their thickness, a part to detect lines

at 45 degrees and -45 degrees and determine their thickness, and parts to determine lines at other

selected angles.

To detect a horizontal line, the algorithm determined that a pixel located at (i,j) was on a horizontal

line if I(i,j) 6= 0 and if I(i,j-1) = 0 and if I(i,j+1) 6= 0 and if I(i-1,j) = 0 and if I(i,j+5) 6= 0 and if

I(i,j+10) 6= 0, where I denotes the pixel value or intensity. Then, to determine the thickness, while

I(i+k,j) 6= 0, increment k (k=k+1) and thick (thick=thick+1) where k is the row increment and

thick is the line thickness.

This is illustrated in figure 8.32

0 0 0 0 0 0 0 0 0 0 0

0 255 255 · · · 255 · · · 255

0 · · · · · · · · · ·

0 · · · · · · · · · ·

0 · · · · · · · · · ·

0 255 255 · · · 255 · · · 255

0 0 0 0 0 0 0 0 0 0 0

Figure 8.32: Depiction of a Horizontal Line

A pixel at location (i ,j) was determined to lie on a vertical line if I(i,j) 6= 0 and if I(i-1,j) = 0 and

if I(i,j-1) = 0 and if I(i+1,j) 6= 0 and if I(i+5,j) 6= 0 and if I(i+10,j) 6= 0. Then, to determine the

line thickness, while I(i,j+k) 6= 0, increment k (k=k+1) and thick (thick=thick+1).

This is depicted in figure 8.33

94



0 0 0 0 0 0 0

0 255 · · · 255 0

0 255 · · · 255 0

0 · · · · · ·

0 · · · · · ·

0 · · · · · ·

0 255 · · · 255 0

0 · · · · · ·

0 · · · · · ·

0 · · · · · ·

0 255 · · · 255 0

Figure 8.33: Depiction of a Vertical Line

A pixel at location (i,j) is determined to lie on a line (which is increasing with j) at an angle of

multiple pixel thickness if I(i,j) 6= 0 and if I(i,j-1) = 0 and if I(i,j+1) = 0 and if I(i+1,j) 6= 0 and

if I(i+1,j+1) 6= 0 and if I(i+1,j+2) = 0. To determine the line thickness, while I(i,j+k) 6= 0, then

increment k (k=k+1) and thick (thick=thick+1).

A pixel at location (i,j) is determined to lie on a line (which is decreasing with j) at an angle of

multiple pixel thickness if I(i,J) 6= 0 and if I(i,j-1) = 0 and if I(i,j+1) = 0 and if I(i+1,j-1) 6= 0

and if I(i+1,j) 6= 0 and if I(i+1,j+1) = 0. To determine the line thickness, while I(i+k,j) 6= 0, then

increment k (k=k+1) and thick (thick=thick+1).
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Figure 8.34: Input Image with Eight Lines of Different Thicknesses

The input image in figure 8.34 shows eight lines of varying thicknesses. The far-right vertical line

has a thickness of 5 pixels. The vertical line in the middle of the image has a thickness of 2 pixels.

The far-left vertical line has a thickness of 3 pixels. The top horizontal line has a thickness of

4 pixels. The horizontal line in the middle of the image has a thickness of 1 pixel. The bottom

horizontal line has a thickness of 2 pixels. The diagonal line that is decreasing from left to right

has a thickness of 3 pixels. The diagonal line that is increasing from left to right has a thickness of

4 pixels. The sum of all of the pixel widths is equal to 24. The number of lines is 8. Therefore, the

average pixel thickness is 3 with a standard deviation of 1.2247. This is exactly what the MATLAB

code determined.
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Figure 8.35: Input Image with Twelve Lines of Different Thicknesses

The input image in figure 8.35 shows twelve lines of different thicknesses. The two far-right vertical

lines have a thickness of 5 pixels. The two vertical lines in the middle of the image have a thickness

of 2 pixels. The vertical lines on the far-left have a thickness of 3 pixels. The horizontal lines at the

top have a thickness of 4 pixels. The horizontal line in the middle of the figure has a thickness of

1 pixel. The horizontal lines at the bottom of the figure have a thickness of 2 pixels. The diagonal

line decreasing from left to right has a thickness of 3 pixels. The diagonal line increasing from left

to right has a thickness of 4 pixels. The sum total of the line thicknesses is 38. Therefore, since the

number of lines is 12, the average line thickness is 3.1667, and the standard deviation is 1.21335.

This is exactly what the MATLAB code determines.
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Figure 8.36: Input Image with 24 Lines of Different Thicknesses

The input image in figure 8.36 shows 24 lines of different thicknesses used as input into the line

width algorithm. In addition to the horizontal and vertical lines, there are lines at angles of 5, 35,

40, 45, 50, and 55 degrees. Each line decreasing from left to right had a width of 3 pixels, and

each line increasing from left to right had a width of 4 pixels. The algorithm determined that the

average thickness is 3.333 pixels and that the standard deviation is 0.942809 pixels.
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Figure 8.37shows an input image with 7 parallel

lines with 4 different thicknesses. Figure 8.38

shows its corresponding sinogram.

Figure 8.37: Input Image with Seven Parallel
Lines With Four Different Thicknesses

Figure 8.38: Sinogram Corresponding to the In-
put Image with Seven Parallel Lines with Four
Different Thicknesses

Line Number True Thickness Detected Thickness

1 1 1

2 2 2

3 3 3

4 4 4

5 3 3

6 2 2

7 1 1

Table 8.2: True versus Detected Thickness for 7
parallel lines with 4 Thicknesses
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Figure 8.39: The Number of Lines at Each Thickness for 8 Lines

Figure 8.39 shows the number of lines at each thickness when an image with 8 lines was used. In

the case of 8 lines, the number of computed lines for each thickness is equal to the number of true

lines for each thickness.

Figure 8.40 shows the number of lines at each thickness when an image with 12 lines was used. In

the case of 12 lines, the number of computed lines at each thickness is equal to the number of true

lines at each thickness.

Figure 8.41 shows the number of lines at each thickness when an image with 18 lines was used. In

the case of 18 lines, the number of computed lines at each thickness is equal to the true number of

lines at each thickness.

Figure 8.42 shows the number of lines at each thickness when an image with 24 lines was used. In

the case of 24 lines, the number of computed lines at each thickness is equal to the true number of

lines at each thickness.

The algorithm designed for 24 lines at at different angles was successfully tested on 8, 12, 13, 15,
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Figure 8.40: The Number of Lines at Each Thickness for 12 Lines

Figure 8.41: The Number of Lines at Each Thickness for 18 Lines

101



Figure 8.42: The Number of Lines at Each Thickness for 24 Lines

16, 18, 18, 20, 21, 22, 23, and 24 lines respectively. There were other test cases with 23 and 8

lines on which the algorithm did not successfully detect all of the lines. Another image with 8 lines

in which only 7 were detected had the end of one line touching another line. Since the algorithm

detects the endpoints and uses those to determine a line has been detected as well as its thickness,

the ends of lines need to be free and not touching other lines. One image with 23 lines had 25 lines

detected. This may be due to the fact that lines were introduced at angles not programmed into

the algorithm.
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Figure 8.43: Input Image with Two Sets of Par-
allel Lines, 13 Lines Total

Figure 8.44: Sinogram Corresponding to the In-
put Image with Two Sets of Parallel Lines, 13
Total Lines

Figure 8.43 shows an input image with 13 lines,

10 parallel lines of different thicknesses at 45 de-

grees and 3 parallel lines at -45 degrees.

Figure 8.44 shows the sinogram corresponding to

the image in figure 8.43.

Figure 8.45 shows a bar plot of the true line

thickness distribution corresponding to the in-

put image in figure 8.43. Figure 8.46 shows a

Figure 8.45: Bar Plot of the True Line Width
Distribution for Parallel Lines at 2 Different
Angles

Figure 8.46: Bar Plot of the Computed Line
Width Distribution for Parallel Lines at 2 Dif-
ferent Angles

bar plot of the computed line thickness distribu-

tion corresponding to the input image in figure

8.43. The difference in the true andn computed

bar plots is due to the fact that the three lines

with single pixel thickness were not detected by

the line width algorithm.
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8.5 Filtering of Reconstructed Images

I had previously looked at using a Kuwahara filter to process a reconstructed image, that is an image

which had been transformed with the Radon transform into a sinogram and then reconstructed using

filtered back projection. Since the adaptive Kuwahara filter starts with four processing windows

and increases the size of those windows depending upon whether or not the variance of the newly

sized window is less than the variance of the previously sized window, and uses the mean of the

window with the smallest variance, I had proposed using instead the interquartile range (IQR) and

median of the processing windows. However, this combination failed to produce any output. I

then tried other combinations of IQR/variance and median/mean. I was able obtain output for the

combination of IQR and mean. In addition, I was able to generate an adaptive (in the sense of a

changing window size) version for IQR and mean.

In his paper, [47], Bartyzel describes how to construct an adaptive Kuwahara filter so that the

window size changes automatically based upon the satisfaction of certain criteria. In this work,

his method is used with IQR replacing variance. First, the filter window or mask is divided into

four subregions as discussed previously. These subregions will initially consist of four pixels (2x2

subregions) Next,for each subregion, the mean and IQR are computed. For a given subregion, the

size of the subregion window is increased by 1 (i.e. 2x2 becomes 3x3) Next, for the new window

size, the mean and IQR are calculated. If the IQR of the newly sized subregion is smaller than

the IQR of the window before the resizing of the window (previous subregion size), then the newly

calculated values are assigned as the new subregion values. Then, the size of the window for the

subregion continues to be increased until its size reaches the maximum allowable size or until the

IQR of the newly enlarged subregion is greater than that calculated for the previous size of the

subregion. The minimum IQR and corresponding mean will be attained The computations in this

step are repeated for each of the subregions. Finally, the IQRs of each of the four subregions are

compared. The subregion with the lowest IQR is sought. The value of the current pixel is then

replaced with the mean of the subregion with the lowest IQR. Figure 8.47 shows an example of

increasing the size of the upper left subregion. Figure 8.48 shows an example of changing (or leaving
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Figure 8.48: Example of Changing Windows in All Four Subregions

it as it is) the size of all four subregions.

Figure 8.47: Example of Changing Window Size in a Subregion
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Figure 8.49: Reconstructed Image Using Filtered Back Projection with a Ram-Lak Filter

Consider the input image in figure 8.49. The image was produced by using filtered back projection

with the Ram-Lak filter on a Radon-transformed image (sinogram). This image was filtered using a

9x9 Tomita-Tsuji filter with the window variance replaced by the interquartile range (IQR) yielding

the image shown in figure 8.50.

Finally, an adaptive version (automatically changing the processing window size) of the Kuwahara

filter was applied to the RL reconstructed image using the IQR instead of the window variance,

producing the image shown in figure 8.51.

106



Figure 8.50: Filtered RL Reconstructed Image Using 9x9 Tomita-Tsuji Filter with IQR and Mean
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Figure 8.51: Adaptive Kuwahara Applied to RL Reconstructed Image Using IQR and Mean

Consider the image in figure 8.52 reconstructed using filtered back projection and a Shepp- Logan

filter.

Figure 8.53 shows the result of applying the 9x9 Tomita-Tsuji filter with IQR replacing the window

variance to the SL-reconstructed image in figure 8.52.
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Figure 8.52: Reconstructed Image Using Filtered Back Projection with a Shepp-Logan Filter

Figure 8.53: Filtered SL Reconstructed Image Using 9x9 Tomita-Tsuji Filter with IQR and Mean
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Finally, figure 8.54 shows the result of applying an adaptive version of Kuwahara filter to an SL

reconstructed image in figure 8.52 using the IQR instead of the window variance.

Figure 8.54: Adaptive Kuwahara Filter Applied to SL Reconstructed Image Using IQR and Mean

The RL reconstructed image of the moon in figure 8.55 was processed with a 9x9 Tomita-Tsuji filter

with the window variance replaced by the IQR resulting in the image shown in figure 8.56
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Figure 8.55: Reconstructed Image Using Filtered Back Projection with Ram-Lak Filter

Figure 8.56: Filtered RL Resconstructed Image Using 9x9 Tomita-Tsuji Filter with IQR
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Finally, the image in figure 8.55 was processed with an adaptive Kuwahara filter resulting in the

image in figure 8.57

Figure 8.57: Filtered RL Reconstructed Image Using Adaptive Kuwahara Filter with IQR

Consider the image in figure 8.58. This reconstructed image was produced by filtered backprojection

using the Shepp-Logan filter.
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Figure 8.58: Image Reconstructed with Filtered Back Projection and the Shepp-Logan Filter

The image in figure 8.59 is the result of applying a 9x9 Tomita-Tsuji filter with IQR replacing the

window variance to the image in figure 8.58.

Finally, the image in figure 8.58 was processed using an adaptive Kuwahara filter with IQR replacing

the window variance resulting in the image shown in figure 8.60.
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Figure 8.59: SL-Reconstructed Image Filtered with 9x9 Tomita-Tsuji Filter

Figure 8.60: SL-Reconstructed Image After Filtering with Adaptive Kuwahara Filter
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Consider the image in figure 8.61. This reconstructed image was produced by filtered back projec-

tion using the Ram-Lak filter.

Figure 8.61: Reconstructed Image Using Filtered Back Projection with Ram-Lak Filter

This image was then processed by the 9x9 Tomita-Tsuji filter with IQR replacing window variance

resulting in the image shown in figure 8.62

Then, the image in figure 8.61 was processed using an adaptive Kuwahara filter with IQR replacing

the window variance resulting in the image shown in figure 8.63
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Figure 8.62: Filtered RL Reconstructed Image Using 9x9 Tomita-Tsuji Filter and IQR

Figure 8.63: RL- Reconstructed Image Filtered with Adaptive Kuwahara Filter with IQR

116



Consider the image in figure 8.64 which was produced by filtered back projection using the Shepp-

Logan filter.

Figure 8.64: Reconstructed Image Using Filtered Back Projection and the Shepp-Logan Filter

The image in figure 8.64 was processed using a 9x9 Tomita-Tsuji filter with IQR replacing the

window variance, resulting in the image shown in figure 8.65.

Next, the image in figure 8.64 was processed with an adaptive Kuwahara filter with IQR replacing

the window variance, resulting in the image shown in figure 8.66.
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Figure 8.65: SL-Reconstructed Image Filtered with 9x9 Tomita-Tsuji Filter with IQR

Figure 8.66: SL-Reconstructed Image Filtered with Adaptive Kuwahara Filter with IQR
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Consider the image shown in figure 8.67.

Figure 8.67: Reconstructed Image Produced by Filtered Back Projection with Ram-Lak Filter

The reconstructed image in figure 8.67 was produced by filtered back projection using the Ram-

Lak filter. This image was filtered using a 9x9 Tomita-Tsuji filter with IQR replacing the window

variance resulting in the image shown in figure 8.68

Next, the image in figure was processed by an adaptive Kuwahara filter with IQR replacing the

window variance, resulting in the image in figure 8.69
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Figure 8.68: RL-Reconstructed Image Using 9x9 Tomita-Tsuji with IQR

Figure 8.69: RL-Reconstructed Image Filtered with Adaptive Kuwahara Filter with IQR
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Consider the image in figure which was produced by filtered back projection with the Shepp-Logan

filter.

Figure 8.70: Reconstructed Image Produced by Filtered Back Projection with Shepp-Logan Filter

The image in figure 8.70 was processed using a 9x9 Tomita-Tsuji filter with IQR replacing the

window variance, resulting in the image shown in figure 8.71

The image in figure was then processed by an adaptive Kuwahara filter with IQR replacing window

variance, resulting in the image shown in figure 8.72.
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Figure 8.71: SL-Reconstructed Image Filtered with 9x9 Tomita-Tsuji Filter with IQR

Figure 8.72: SL-Reconstructed Image Filtered with Adaptive Kuwahara Filter with IQR
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Table 8.3: Total Variation Values for Grayscale Images

Image TV Norm

Reconstructed (with RL filter) image-building 3.4244

Reconstructed (with RL filter) and filtered with 3x3 Kuwahara (with IQR) 2.6322

Reconstructed (with RL filter) and filtered with Adaptive Kuwahara (with IQR) 2.1245

Reconstructed (with RL filter) and filtered with 5x5 Kuwahara (with IQR) 1.6886

Reconstructed (with RL filter) and filtered with 9x9 Tomita-Tsuji (with IQR) 0.903

Reconstructed (with SL filter) image-building 3.2268

Reconstructed (with SL filter) and filtered with 3x3 Kuwahara (with IQR) 2.5070

Reconstructed (with SL filter) and filtered with Adaptive Kuwahara (with IQR) 2.0460

Reconstructed (with SL filter) and filtered with 5x5 Kuwahara (with IQR) 1.6407

Reconstructed (with SL filter) and filtered with 9x9 Tomita-Tsuji (with IQR) 0.8796

Reconstructed (with RL filter) image-moon 0.8537

Reconstructed (with RL filter) and filtered with 3x3 Kuwahara (with IQR) 0.7681

Reconstructed (with RL filter) and filtered with Adaptive Kuwahara (with IQR) 0.5907

Reconstructed (with RL filter) and filtered with 5x5 Kuwahara (with IQR) 0.5488

Reconstructed (with RL filter) and filtered with 9x9 Tomita-Tsuji (with IQR) 0.2615

Reconstructed (with SL filter) image-moon 0.8164

Reconstructed (with SL filter) and filtered with 3x3 Kuwahara (with IQR) 0.7403

Reconstructed (with SL filter) and filtered with Adaptive Kuwahara (with IQR) 0.5729

Reconstructed (with SL filter) and filtered with 5x5 Kuwahara (with IQR) 0.5351

Reconstructed (with SL filter) and filtered with 9x9 Tomita-Tsuji (with IQR) 0.2588

The entries in Table 8.3 show that the total variation (TV) norm decreases with increasing window
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Table 8.4: Total Variation for Grayscale Images (Continued)

Image TV Norm

Reconstructed (with RL filter) image-fruits 2.4273

Reconstructed (with RL filter) and filtered with 3x3 Kuwahara (with IQR) 1.9219

Reconstructed (with RL filter) and filtered with Adaptive Kuwahara (with IQR) 1.5776

Reconstructed (with RL filter) and filtered with 5x5 Kuwahara (with IQR) 1.3236

Reconstructed (with RL filter) and filtered with 9x9 Tomita-Tsuji (with IQR) 0.8043

Reconstructed (with SL filter) image-fruits 2.2868

Reconstructed (with SL filter) and filtered with 3x3 Kuwahara (with IQR) 1.8357

Reconstructed (with SL filter) and filtered with Adaptive Kuwahara (with IQR) 1.5303

Reconstructed (with SL filter) and filtered with 5x5 Kuwahara (with IQR) 1.2859

Reconstructed (with SL filter) and filtered with 9x9 Tomita-Tsuji (with IQR) 0.7858

Reconstructed (with RL filter) image-irish 3.8177

Reconstructed (with RL filter) and filtered with 3x3 Kuwahara (with IQR) 2.7818

Reconstructed (with RL filter) and filtered with Adaptive Kuwahara (with IQR) 2.0953

Reconstructed (with RL filter) and filtered with 5x5 Kuwahara (with IQR) 1.9635

Reconstructed (with RL filter) and filtered with 9x9 Tomita-Tsuji (with IQR) 1.026

Reconstructed (with SL filter) image-irish 3.5019

Reconstructed (with SL filter) and filtered with 3x3 Kuwahara (with IQR) 2.6148

Reconstructed (with SL filter) and filtered with Adaptive Kuwahara (with IQR) 2.0142

Reconstructed (with SL filter) and filtered with 5x5 Kuwahara (with IQR) 1.7045

Reconstructed (with SL filter) and filtered with 9x9 Tomita-Tsuji (with IQR) 1.0013
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size. Also, the adaptive Kuwahara filter which starts with a 3x3 Kuwahara filter performs better

than the standard 3x3 IQR Kuwahara filter.

8.5.1 Filtering of Reconstructed Color Images

We can apply the Kuwahara filter to color images using the IQR instead of the variance of a

processing window.

Figure 8.73: Reconstructed Balloons by Filtered Back Projection with the Ram-Lak Filter

When the Ram-Lak reconstructed image in figure 8.73 is processed by the color Kuwahara filter

using IQR instead of variance, the resulting image is shown in figure 8.74 below.

The image in figure 8.75 below shows the result of applying an adaptive 3x3 color Kuwahara filter

using IQR instead of variance.
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Figure 8.74: RL Color Kuwahara with IQR

Figure 8.75: RL Adaptive Color 3x3 Kuwahara Filter Using IQR
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Consider now the image in figure 8.76 It was produced by filtered back projection using the Shepp-

Logan filter. Then, this image was filtered using a 3x3 Kuwahara filter with IQR replacing the

window variance, resulting in the image shown in figure 8.77

Figure 8.76: Reconstructed Image Produced by Filtered Back Projection with Shepp-Logan Filter
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Figure 8.77: SL-Reconstructed Image Filtered with 3x3 Kuwahara Filter with IQR

Next, the image in figure 8.76 was filtered with an adaptive Kuwahara filter with IQR replacing

the window variance, resulting in the image shown in figure 8.78
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Figure 8.78: SL-Reconstructed Image Filtered with Adaptive Kuwahara Filter with IQR

Consider the image in figure 8.79. It was produced by filtered back projection with the Ram-Lak

filter. Then, this reconstructed image was filtered with a 3x3 Kuwahara filter with window variance

replaced with IQR, resulting in the image shown in figure 8.80
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Figure 8.79: Reconstructed Image Produced by Filtered Back Projection with Ram-Lak Filter

Next, the image in figure 8.79 was filtered with an adaptive Kuwahara filter with IQR replacing

the window variance, resulting in the image in figure 8.81
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Figure 8.80: RL-Reconstructed Image with 3x3 Kuwahara Filter with IQR

Figure 8.81: RL-Reconstructed Image Filtered with Adaptive Kuwahara Filter with IQR
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Consider the image in figure which was produced by filtered back projection using the Shepp-

Logan filter. Then, this image was filtered using a 3x3 Kuwahara filter with IQR replacing window

variance, resulting in the image in figure 8.83

Figure 8.82: Reconstructed Image Produced by Filtered Back Projection with Shepp-Logan Filter

Finally, the image in figure 8.82 was filtered with an adaptive Kuwahara filter with IQR replacing

the window variance, resulting in the image in figure 8.84

132



Figure 8.83: SL-Reconstructed Image Filtered with 3x3 Kuwahara Filter with IQR

Figure 8.84: SL-Reconstructed Image Filtered with Adaptive Kuwahara Filter with IQR
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Table 8.5: Total Variation Values for Color Images

Image TV Red Norm TV Green Norm TV Blue Norm

RL-Reconstructed balloons image 2.3640 2.1695 2.4539

RL-Recon and 3x3 Kuwahara with IQR 1.8414 1.6854 1.9145

RL-Recon and 5x5 Kuwahara with IQR 1.4364 1.3105 1.4877

RL-Recon and Adaptive Kuwahara with IQR 1.40 1.2788 1.4508

SL-Reconstructed balloons image 2.1999 2.0149 2.2815

SL-Recon and 3x3 Kuwahara with IQR 1.7569 1.6065 1.8277

SL-Recon and 5x5 Kuwahara with IQR 1.3942 1.2733 1.4441

SL-Recon and Adaptive Kuwahara with IQR 1.3578 1.2405 1.4070

RL-Reconstructed color-psychology image 1.9092 1.6846 1.5265

RL-Recon and 3x3 Kuwahara with IQR 1.5271 1.3440 1.2062

RL-Recon and 5x5 Kuwahara with IQR 1.1893 1.0309 0.8938

RL-Recon and Adaptive Kuwahara with IQR 1.1507 0.9994 0.8550

SL-Reconstructed color-psychology image 1.7813 1.5696 1.4194

SL-Recon and 3x3 Kuwahara with IQR 1.4528 1.2762 1.1401

SL-Recon and 5x5 Kuwahara with IQR 1.1505 0.9953 0.8584

SL-Recon and Adaptive Kuwahara with IQR 1.116 0.9673 0.8228

The TV norm in each of the three color channels, red, green, and blue is a measure in each of those

channels of the noise or extraneous detail in the image. Now, since the entries for the reconstructed

and adaptive filter color images show values which are less in each of the three color channels

than those values for the reconstructed filtered images (using a 3x3 Kuwahara filter), the adaptive

Kuwahara filter improves the image quality over the 3x3 and 5x5 Kuwahara filters for both the
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Ram-Lak and Shepp-Logan reconstructed images, and for both the balloons image and the color

psychology image.
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Chapter 9

Conclusions

A number of algorithms have been presented for accomplishing various purposes in images: crack

endpoint detection, detection of crack intersection points, orientation detection of lines, determi-

nation of line thickness, and filtering of reconstructed images.

The crack endpoint detection algorithm worked by scanning across a binary crack image and de-

termining the left endpoint of a crack and then the right endpoint of a crack. The cracks were so

different from each other that a separate set of code was required for different cracks. Code was

developed and tested on two cracks.

The detection of crack intersections worked by reading in a binary crack image and computing

vertical differences between two parts of a crack to determine where they intersect. Horizontal

differences were used when the two crack branches had more of a vertical characteristic.

The orientation detection algorithm computes the Radon transform (sinogram) of an image of

lines at various angles. Then, the maximum value of the sinogram is computed at each angle and

is plotted as a function of angle. This allows for the selection of a threshold that will separate

the actual Radon transform-detected angles from the rest of the values in the sinogram, or the

clutter level. The clutter in the image is caused by the number of lines at different angles being in

close proximity to each other as they emerge from one point. The clutter level is evident when the
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histogram of the maximum values of the sinogram is plotted. The fact that the maximum sinogram

value obtained at the angle of each line in the image is much greater than the level of the clutter

allows for the selection of a threshold that will separate the actual Radon transform-detected angles

from the clutter values in the sinogram. That threshold is chosen to be the mean of the maximum

sinogram values.

Figure 8.18 above shows the input image with 35 lines at different angles (starting at 2 degrees,

with 2-degree increments, up to 70 degrees). Figure 8.19 above shows a histogram of the maximum

of the sinogram at each angle. A count of the histogram peaks reveals 31 angles. However, the

sinogram of figure 8.18 shows 35 peaks at 35 angles corresponding to the 35 detected lines. The

mean of the 14 detected angles was computed to be 37.5 degrees which is exactly the mean of

the 14 input angles. Also, the standard deviation of those 14 detected angles is 20.1556 degrees.

Similarly, the mean of the 35 detected angles was computed to be 36 degrees which is precisely the

mean of the 35 input angles. Also, the standard deviation of those 35 detected angles is 20.199

degrees.

The line thickness algorithm consisted of four parts, a part to detect horizontal lines and determine

their thickness, a part to detect vertical lines and determine their thickness, a part to detect single

pixel thick lines at an angle, a part to detect multiple pixel thick lines with a positive slope and

determine their thickness, and a part to detect multiple pixel thick lines with a negative slope and

determine their thickness. One image to which this algorithm was applied has eight lines of varying

thicknesses. The far-right vertical line has a thickness of 5 pixels. The vertical line in the middle

of the image has a thickness of 2 pixels. The far-left vertical line has a thickness of 3 pixels. The

top horizontal line has a thickness of 4 pixels. The horizontal line in the middle of the image has

a thickness of 1 pixel. The bottom horizontal line has a thickness of 2 pixels. The diagonal line

that is decreasing from left to right has a thickness of 3 pixels. The diagonal line that is increasing

from left to right has a thickness of 4 pixels. The sum of all of the pixel widths is equal to 24.

The number of lines is 8. Therefore, the average pixel thickness is 3 with a standard deviation of

1.2247. This is exactly what the MATLAB code determined.
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The last problem considered was that of filtering images which had been Radon-transformed and

then reconstructed from the sinograms using filtered backprojection with either the Ram-Lak or

Shepp-Logan filter. Four gray scale images, a building, fruit, another building, and the moon

were all Radon-transformed, producing sinograms. The projections forming the sinogram were

then convolved with a high-pass filter (either Ram-Lak or Shepp-Logan) and then integrated (or

summed in the computer approximation to integration) from 0 to 179 degrees in order to produce the

inverse Radon transform (or an approximation to it on the computer). This filtered backprojection

produced filtered laminograms or reconstructed images. Then, Kuwahara-like filters were utilized

to remove the noise and blurring in the reconstructed images. However, instead of computing the

mean and variance in a window around each pixel in the image, the mean and the interquartile

range (IQR) were instead computed. Then, a 9x9 Tomita-Tsuji filter with a 7x7 subregion filter was

used to remove the blurring. Next, an adaptive Kuwahara filter was employed. This filter started

with a window size of 3x3 using 2x2 subregions whose size could grow if the IQR of the next greater

window size was less than the IQR of the current window size. The Kuwahara filter was also used

for a 5x5 filter with 3x3 subregions as well as a 3x3 filter with 2x2 subregions. These filters were

applied to each Ram-Lak reconstructed image as well as to each Shepp-Logan reconstructed image.

Next, the total variation (TV) norm was computed on the filtered images. The total variation

measures the amount of blurring or noise in the image. The idea is that the lower the TV norm,

the more a particular filter is reducing noise or blurring. The adaptive Kuwahara filter always

performed better than the 3x3 filter and slightly worse than the 5x5 filter. Finally, the adaptive

Kuwahara filter was used on two color images, an image containing balloons and a color psychology

image. Here, the filter had to be applied to each color channel (red, green, and blue) separately.

An adaptive Kuwahara filter was applied to each Ram-Lak reconstructed image as well as to each

Shepp-Logan reconstructed image. Here, the adaptive Kuwahara filter with an inital 3x3 window

with 2x2 subregions performed better than than the Kuwahara filter with a 3x3 window and 2x2

subregions and better than the Kuwahara filter with a 5x5 filter with 3x3 subregions.
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